
EFFECTS OF THE RECEIVER CHARACTERISTICS, VARIATION OF TARGET

INTENSITY AND NONLINEARITY ON PROBABILITY HYPOTHESIS

DENSITY FILTER COMPARED TO DATA ASSOCIATION TECHNIQUES

by

Kemal ÖKSÜZ
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Boğaziçi University

2016



iii

ACKNOWLEDGEMENTS

Firstly I would like to thank to my supervisor Assoc. Prof. Ali Taylan Cemgil

who has the leading role on my academic attempt and progress. He was a member of

oral interview committee when I decided to embark on a different career by applying to

computer engineering master program of Boğaziçi University in 2013. Since then, with
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ABSTRACT

EFFECTS OF THE RECEIVER CHARACTERISTICS,

VARIATION OF TARGET INTENSITY AND

NONLINEARITY ON PROBABILITY HYPOTHESIS

DENSITY FILTER COMPARED TO DATA ASSOCIATION

TECHNIQUES

Target tracking algorithms adopted in modern radars are designed such that they

can track multitarget by considering target births and target deaths. These algorithms

are derived by integrating the data association techniques into the single target filters.

Recently, target tracking methods exploiting random finite sets have been emerged as

an alternative to the data association techniques. Unlike data association methods,

random finite set based techniques do not perform tracking based on the targets but

instead propagate a target intensity function covering the entire state space in time

and thereby decrease the dimension of the state space. In this thesis, firstly on a linear

scenario we investigate the effects of receiver characteristics and variation of target

intensity on the performance of PHD filter that is a random finite set based filter. The

parameters we consider for receiver characteristics are detection probability and false

alarm intensity; for variation of target intensity we investigate the effect of target birth

and death probabilities. We also provide a linear regression model representing effects

of these parameters. As a tracking performance metric we use OSPA distance. At each

step, we compare our results with a data association method, global nearest neighbor

technique, in order to identify the advantages and disadvantages of the both of the

methods. Secondly we investigate the effect of the nonlinear models on both of the

methods. By fixing the parameters to the values that results in equal average OSPA

distances of both techniques in the linear case, we include nonlinear models in order

to identify which technique is effected by nonlinearity more.
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ÖZET

ALICI ÖZELLİKLERİ, HEDEF YOĞUNLUĞUNDAKİ

DEĞİŞİM VE NONLİNEERLİĞİN OLASILIK HİPOTEZ

YOĞUNLUĞU FİLTRESİ ÜZERİNDE VERİ

İLİŞKİLENDİRME TEKNİKLERİNE KIYASLA ETKİLERİ

Modern radarlarda kullanılan hedef takip algoritmaları, hedef doğum ve

ölümlerini dikkate alarak birden çok hedefi aynı anda takip edebilecek şekilde dizayn

edilmektedir. Bu algoritmalar, tek hedef takibi için kullanılan filtrelere veri

ilişkilendirme tekniklerinin entegre edilmesiyle geliştirilmiştir. Son dönemde ise veri

ilişkilendirme temelli metodlara alternatif olarak rassal sonlu kümeleri kullanan hedef

takip algoritmaları ortaya çıkmıştır. Veri ilişkilendirme tekniklerinden farklı olarak,

rassal sonlu küme temelli teknikleri hedeflere dayalı bir takip gerçekleştirmezler, onun

yerine bütün durum uzayını örten bir hedef yoğunluk fonksiyonunu zaman içerisinde

yayarlar ve bu şekilde durum uzayının boyutunu azaltırlar. Bu tezde, öncelikle lineer

bir senaryo üzerinde alıcı özellikleri ve hedef yoğunluğundaki değişimin bir rassal

sonlu küme temelli teknik olan OHY Filtresinin performansı üzerindeki etkisini

araştırıyoruz. Alıcı özelliği parametreleri olarak tespit olasılığı ve parazit oranını;

hedef yoğunluğundaki değişim için ise hedef doğum ve ölüm olasılıklarını

kullanıyoruz. Bu parametrelerin etkilerini açıklayan bir lineer regresyon modeli de

sunuyoruz. Performans ölçütü olarak ise OSPA mesafesini kullanıyoruz. Her bir

adımda sonuçlarımızı bir veri ilişkilendirme tekniği ile, en yakın global komşu tekniği

ile, her iki tekniğin avantaj ve dezavantajlarını belirlemek için kıyaslıyoruz. İkinci

olarak ise lineer olmayan modellerin her iki teknik üzerindeki etkisini araştırıyoruz.

Lineer durumdaki ortalama OSPA mesafesini her iki teknik için eşit yapan değerlere

sabitleyerek, hangi tekniğin lineer olmayan modellerden daha çok etkilendiğini

belirlemek maksadıyla modele nonlineerliği ilave ediyoruz.
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ē
(c)
p,card(X, Y ) OSPA cardinality error of sets X and Y with parameters p, c

ē
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1. INTRODUCTION

Since the first radar patent [1] issued to Christian Hulsmeier for his experiment

on detection of radio waves reflected from ships and the proposal that is to investigate

the feasibility of death rays to disable an aircraft leaded Sir Robert Watson-Watt

[2] to the detection of an aircraft using radio waves; the radar systems have evolved

significantly not only in military applications but also in civilian cases. Especially, after

the computer science has started to effect all of the fields and get the things automated;

the radar technologies have evolved such that they have the Automatic Detection

and Tracking (ADT) characteristic for performing their tracking function. Since then

radar tracking have become a proliferous research area spanning from α − β tracking

filters [3] devised in 1957 to random finite set based approaches that have began to be

spotlighted in the beginning of this millennium. Dating back to α− β tracking filters,

the conventional radar tracking methods including single target tracking methods such

as Kalman filter [4,5] and data association techniques like multi hypothesis tracking [6]

are well studied, thus any combination of this methods has been implemented for radar

tracking. Kalman filter examines the tracking problem from Bayesian point of view by

assuming the model complies with linearity and normally distributed. This technique

is among the most prevalent techniques used for radar tracking and a few variations of

the technique exist.

Since the Kalman filter based approaches assumes the transition and

measurement models to be Gaussian, in some cases, i.e. model with heavy tailed

densities, the filter may not perform well. Hence Monte Carlo techniques, particularly

Sequential Monte Carlo [7–9] (aka particle filter), are also commonly used for radar

tracking scenarios since these techniques have the power of dealing with integrals that

are not mathematically tractable. Especially the rapid improvements in the hardware

of the computer systems enable the tracking engineers to integrate particle filter

based approaches to the radar processing unit, since the significant drawback of the

Monte Carlo methods is their dependency on high processing time. However, a radar

system that is an example of a real time system needs to carry out the estimation in
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an online manner.

Unless combined with data association techniques, Kalman filter and SMC based

approaches can be solely implemented in single target environments. But this is not

appropriate for the real world problems since air traffic is getting more complex in

time involving not only the conventional targets such as aircraft, helicopter etc, but

also unconventional flying objects like UAV and quad-copter. Since it is not feasible to

allocate a radar per target, somehow we need to extend these filters to the multitarget

environment. Technically speaking, why single target approaches fail in multitarget

environment is their lack of methodology for associating the measurements with the

tracks. More precisely, after completing one scan a radar gathers the measurement

data some of which are originated from a target and the rest are not. Hence the radar

has a set of targets for the previous time interval and a set of measurements for now

but single target tracking methods do not offer a association solution between these

two sets. That’s why we employ data association (also called measurement to track

association) techniques [10]. After successful association between measurements and

the targets, multiple number of single tracking filters can concurrently process the data.

Unlike these approaches that we label as conventional approaches, recently

random finite set based approaches for target tracking have drawn great interest. The

peculiarity of these approaches is that they omit the data association problem,

thereby increasing the response time of the algorithm by simplifying the problem.

From a mathematical point of view these techniques are derived from the point

process theory [11] but in order to enable the tracking engineers use the approaches

without delving into the complex mathematical formulation, its own terminology and

statistics called finite set statistics [10, 12] have ensued. Various filtering methods

using this point of view have emerged in the last decade such as Probability

Hypothesis Density (PHD) filter [13], Cardinalized PHD filter [14] and Multi

Bernoulli filter [10]. Specifically the PHD filter is the correspondent technique of

α − β filters with respect to both their intuition and to be the initiatory of their

research spaces. The PHD filter propagates the first order statistical moment, namely

the PHD function of the filtering density. Even though the technique was introduced
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theoretically without any implementation method initially, researches of the past

decade resulted in mainly two implementation techniques including particle filter

based approaches [15, 16] and gaussian mixture based [17,18] approaches.

In this thesis we aim to identify the effects of receiver characteristics, variation

in the target number and nonlinearity on the PHD filter. The parameters that we

consider for receiver characteristics are detection probability and false alarm intensity,

on the other hand for variation in the target intensity we investigate the effect of

variation of birth and death probabilities of the target. We also represent a linear

regression analysis that shows the effects of the parameters. At each step we depict

the performance comparison with a data association technique, specifically global

nearest neighbor technique. Then, in order to measure the effect of the nonlinearity,

we fix the parameters to the values where in the linear case we have equal

performance and measure how much the performance deteriorates for each nonlinear

PHD filter implementation. PHD filter implementation technique that is used for

linear case is Gaussian Mixture PHD filter and for nonlinear case we use Extended

Kalman PHD filter, Unscented Kalman PHD filter and Improved Sequential Monte

Carlo PHD filter. For the data association part, we use Kalman filter global nearest

neighbor (GNN) in the linear case and Extended Kalman filter GNN for the

nonlinear case. Moreover, we also aim at making up the thesis like a tutorial for

someone interested in this area be familiarize with the basic notions of multitarget

tracking. That’s why, we include some toy examples when we describe the

multitarget filters. The structure of the thesis is as follows: In Chapter 2 we represent

the basics of a radar in order to familiarize the reader with some radar concepts and

its data processing mechanism. Then in Chapter 3 we formulate the tracking

problem, depict the problem in three different scenerios along with their directed

graphical models and provide the optimal solution of the problem by explaining the

optimal Bayesian filter. Afterwards we begin to offer the solution techniques for the

problem. In Chapter 4 we represent the techniques that are used for single target

tracking that are Kalman filter based approaches and particle filter. After explaining

these single target tracking methods, we extend them to multitarget tracking

environments by depicting the data association problem and a solution technique,
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particularly global nearest neighbor in Chapter 5. This ends the conventional

techniques of the multitarget tracking and we begin to represent the PHD filter in

Chapter 6. In Chapter 7 we provide the implementation strategies for the PHD filter.

Then we represent experiments that investigates the effects of receiver characteristics,

variation in target intensity and nonlinearity on PHD filter in Chapter 8 and

conclude the thesis in Chapter 9.
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2. BASICS OF THE RADAR

The word Radar, abbreviation of Radio detection and ranging, reflects the

purpose of the initial efforts inspired by developing a system that can only detect the

target and estimate its range. Then gradually today’s modern radar systems have

become complex digital systems that not only detect targets and determine range but

also track, identify, image, and classify targets while suppressing strong unwanted

interference and countermeasures. Modern systems apply these major radar functions

in an expanding range of applications, from the traditional military and civilian

tracking of aircraft and vehicles to two and three-dimensional mapping, collision

avoidance, earth resources monitoring, and many others. Rather than interfering

directly with tracking filters, we think that having basic knowledge on radars will

help the reader understand the role of these tracking methods. Thus, by avoiding the

complex details of the subject, we provide a brief introduction on radars consisting of

its major elements, EM waves, what a radar measures and how it detects and lastly

its basic functions.

2.1. Major Elements of a Radar

Although the elements of the radars can vary with respect to application, an

elementary form of radar comprises a transmitter, a receiver, an antenna and a signal

processor. You may see these elements along with a simple transmission and reception

process in Figure 2.1. Generally these 4 subsystems have the following functions in a

radar system:

• Transmitter: It is responsible for generating the EM waves.

• Antenna: It sends and receives the EM waves between transmitter and the

atmosphere.

• Receiver: It amplifies the received signal, converts the RF signal to an

intermediate frequency (IF) and before sending it to the signal processor,

convert the analog signal into a digital form. Receiver Protector Switch is
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Figure 2.1. Basic radar elements involving in transmission and reception process

(adapted from [19])

responsible for protecting the sensitive receiver from the high-power transmit

signal while they can be attached to the antenna simultaneously.

• Signal Processor: It is the subsystem where the tracking algorithms are executed.

The input, provided by the receiver, is processed to infer the relevant data and

decide what to do next. This is the subsystem where tracking algorithms are

implemented.

2.2. EM Waves

EM waves are nothing but a type of light, hence they act according to the laws

of light. In this section, in order to provide general overview about the type of the EM

waves utilized in radars, the space in the electromagnetic spectrum that can be used

by radars and possible interactions of these waves through its journey from transmitter

to receiver is explained.



7

2.2.1. Radar Frequencies

Conventional radars generally have been operated at frequencies extending from

about 220 MHz to 35 GHz. These are not necessarily the limits, since radars can

be, and have been, operated at frequencies outside either end of this range. Skywave

HF over-the-horizon (OTH) radar might be at frequencies as low as 4 or 5 MHz, and

groundwave HF radars as low as 2 MHz. At the other end of the spectrum, millimeter

radars have operated at 94 GHz. Laser radars operate at even higher frequencies. The

place of radar frequencies in the electromagnetic spectrum is shown in Figure 2.2 [20].

Figure 2.2. Radar Frequencies and Electromagnetic Spectrum [20].

The letter designation in Figure 2.2 represents different radar frequency bands.

Although it was initally employed in order to provide secrecy for the military

applications, this convention is still prevalent due to the necessity for classification.

To illustrate, HF band for radar is utilized for detecting targets at long ranges (2000

nmi) by taking the advantage of the refraction of HF energy by the ionosphere. On

the otherhand, radars at X band are convenient in size, so this facilitates mobility

while curtailing the range. For more information about the peculiarities of the radar

bands one may see [21]. Furthermore, since the usage of the electromagnetic

spectrum is excessive, it is divided in small intervals and each interval is allocated for
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a specific purpose by International Telecommunications Union (ITU). Thus, for a

specific letter-band only a portion of its interval is available in practice. Table 2.1

represents letter-band nomenclature standard adopted by IEEE [22] and specific

portions of the electromagnetic spectrum for radiolocation (radar) use for Region 1

that includes Turkey [23].

2.2.2. Interaction with Matter

During their journey, from transmitting to receiving, EM waves can be exposed to

some internal and external factors that may effect their characteristics. These factors

consist of diffraction occurring due to antenna; attenuation, refraction, depolarization

occurring due to atmosphere and lastly reflection due to target. We do not delve into

the details of these factors due to the scope of our research, but one must be aware

of these factors while modeling the measurements, that are nothing but incoming EM

waves.

2.3. Basic Radar Measurements and Detection

In this section, we introduce possible types of measurements that a radar can

gather and the detection phenomenon including some definitions.

2.3.1. Basic Radar Measurements

A radar must get some inputs constantly so as to provide its operator with the

desired output that is the location of the target in general case. Modern radars can

observe the following target parameters simultaneously:

(i) Azimuthal Angle

(ii) Elevation Angle

(iii) Range Using the Speed of Light

(iv) Range Rate Using Doppler Frequency Shift

(v) Polarization
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Table 2.1. IEEE Standart for Radar Frequency Letter-Band Nomenclature.

Band Frequency
Specific Frequency Ranges for Radar Based

on ITU Frequency Assignments for Region 1

HF 3-30 MHz

4.438-4.488 MHz

5.25-5.275 MHz

9.305-9.355 MHz

13.45-13.55 MHz

16.1-16.2 MHz

24.45-24.6 MHz

26.2-26.35 MHz

VHF 30-300 MHz
39-39.5 MHz

42.0-42.5 MHz

UHF 300-1000 MHz
420-450 MHz

890-942 MHz

L 1000-2000 MHz 1215-1400 MHz

S 2000-4000 MHz
2300-2500 MHz

2700-3600 MHz

C 4000-8000 MHz 5250-5850 MHz

X 8000-12000 MHz 8400-10680 MHz

Ku 12-18 GHz
13.4-14.0 GHz

15.4-17.7 GHz

K 18-27 GHz 24.05-24.25 GHz

Ka 27-40 GHz 33.4-37.0 GHz

V 40-75 GHz 59.0-64.0 GHz

W 75-110 GHz

76.0-77.5 GHz

78.0-81.0 GHz

92.0-100.0 GHz

mm 110-300 GHz

136.0-155.5 GHz

231.5-235.0 GHz

238.0-248.0 GHz
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2.3.1.1. Azimuthal and Elevation Angle. These are the angles that are determined by

the pointing angle of the antenna main beam at the time of detection.

2.3.1.2. Range Using the Speed of Light. Since EM waves propagate at the speed of

light, it is enough to detect the time interval between the transmitting and receiving

back the wave. Equation 2.1 represents the range where c is the speed of light in meters

per second (c ≈ 3× 108 m/s) and ∆T is the elapsed time.

R =
c∆T

2
(2.1)

2.3.1.3. Range Rate Using Doppler Frequency Shift. If there is relative motion

between the radar and the target, then the frequency of the EM wave reflected from

the target and received by the radar will be different from the frequency of the wave

transmitted from the radar. This is called the Doppler effect and analogously the

difference between the frequency of the received wave and that of the transmitted

wave is called the Doppler frequency shift. Equation 2.2 represents an approximation

for the Doppler frequency shift, fd, that holds as long as vr � c, where vr is the

radial component of the target’s velocity vector toward the radar and λ is the

wavelength of the transmitted EM wave. Range Rate, the measurement obtained by

the radar, is defined as the negative of the radial velocity.

fd ≈
2vr
λ

(2.2)

2.3.1.4. Polarization. By using the change in the polarization of the EM wave that

reflects from the target, a radar may have some information about the geometrical

shape of that target. Moreover, this information may help the radar or the operator

to discriminate between a target and unwanted reflected wave [19].
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2.3.2. Noise and Detection

All objects in the universe with a temperature above absolute zero radiates EM

waves called thermal noise. The receiver also has its own internal thermal noise owing to

randomly moving electrons while searching occurs. Assuming that a detection occurs,

there will be observed voltage sum in the receiver that consists of these noises and

the target signal power. If the target signal power is much greater than the noise

power, then applying a detection threshold will detect only the targets while ignoring

the thermal noise. To illustrate basically, in Figure 2.3 you may see 300 samples two

(134th and 283rd) of which have higher frequency than the threshold, thus makes them

labeled as targets.
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Detection, Miss Detection and False Alarm

Figure 2.3. Noise and Detection Example: The figure represents 300 samples of

echoes obtained in the receiver. The blue line is the samples and red dashed line is

the threshold for detection.

However, since the noise in the environment is random, it is possible that the noise

signal exceeds the threshold even if no target is present. This is an example of false
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alarm. Additionally, owing to this random nature it is also possible that there exists a

target but the sum of target signal power and the noise does not exceed the threshold.

This is called a missed detection. In Figure 2.3 183rd detection may be regarded as false

alarm. The randomness in the process results in specifying the notions in a probabilistic

manner. Namely pD and pFA are called probability of detection and probability of false

alarm respectively and we call them as receiver characteristics throughout the thesis

(You may see them as Receiver Operating Characteristics(ROC) in some textbooks).

By changing the threshold, pD and pFA can be adjusted. For example increasing

the threshold will increase pD but unfortunately it will also increase pFA that is an

undesirable result. To increase pD while at the same time lowering pFA, the target

signal power must be increased relative to the noise power. The ratio of the target

signal power to noise power is referred as the signal-to-noise ratio. For the detection

theory Bayesian and Neyman Pearson view points exist to determine a good threshold

and [24] is a detailed reference on the detection process including how to model signals,

determine the threshold and how the threshold effects pD and pFA etc.

2.4. Basic Radar Functions

While there are hundreds of different types of radars in use, basic functions [19]

of the radars can be listed as:

(i) Searching/Detecting: Almost all radars have to search a given volume and

detect targets without a priori information regarding the targets’ presence or

position. A radar searches a given volume by pointing its antenna in a

succession of beam positions that collectively cover the volume of interest. A

mechanically scanned antenna moves through the volume continuously. At each

position, one or more pulses are transmitted, and the received data are

examined to detect any targets. The antenna is then steered to the next beam

position, and the process is repeated. This procedure is continued until the

entire search volume has been tested, at which point the cycle is repeated.

(ii) Tracking: Once a target is detected in a given search volume, a measurement

is made of the target state, that is, its position in range, azimuth angle, and
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elevation angle, and, often, its radial component of velocity. Tracking radars

measure target states as a function of time. Individual position measurements are

then combined and smoothed to estimate a target track. Individual measurements

are invariably contaminated by measurement noise and other error sources. An

improved estimate of the target position over time is obtained by track filtering,

which combines multiple measurements with a model of the target dynamics to

smooth the measurements. This function is the correspondence of the tracking

filters that are described in this thesis. Also it must be noted that the optimum

radar configurations for tracking and searching are different. Consequently, these

search and track functions may be performed by two different radars. This is

common in situations where radar weight and volume are not severely limited.

When radar weight and volume are limited, as in airborne operations, the search

and track functions must be performed by one radar that must then compromise

between optimizing search and track functions.

(iii) Imaging: In radar, imaging is a general term that refers to several methods for

obtaining detailed information on discrete targets or broad-area scenes. One

application of imaging is to identify the target in order to choose the required

response accurately. One technique is to measure a one-dimensional high-range-

resolution ”image” or two dimensional range/cross-range image of the target.

Then by analyzing this image to make an identification decision.
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3. CONVENTIONAL MODELING OF TRACKING

PROBLEM AND OPTIMAL BAYESIAN FILTER

Tracking is the processing of measurements obtained from a target in order to

maintain an estimate of its current state, which typically consist of:

• Kinematic components: position, velocity, acceleration, turn rate, etc.

• Feature components: radiated signal strength, spectral characteristics, radar

cross-section, target classification, etc.

• Constant or slowly varying parameters: aerodynamic parameters, etc. [25]

In other words, informally we can address the tracking problem as inferring the

current state of the target by getting use of the measurements. We can formalize the

problem as follows: Consider the evolution of the state sequence {xt, t ∈ N} of a target

given by

xt = ft(xt−1, wt−1) (3.1)

where ft : Rnx×Rnw → Rnx is a possibly non-linear function of the state xt−1, {wt−1, t ∈

N} is an i.i.d. process noise sequence, nx, nw are dimensions of state and process noise

vectors, respectively, and N is the set of natural numbers. The object of tracking is to

recursively estimate xt from measurements

yt = ht(xt, vt) (3.2)

where ht : Rnx × Rnv → Rny is a possibly non-linear function, {vt, t ∈ N} is an i.i.d.

measurement noise sequence, ny, nv are dimensions of measurement and measurement

noise vectors, repectively. In particular, we seek filtered estimates of xt based on the

set of all available measurements y1:t = {yt, t = 1, ..., t} up to time t [9].
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It is also benificial to emphasize the structure of the model associated with the

problem. Since the tracking phenomenon is an instance of dynamical time series

modeling, Hidden Markov Model [26–28] is a suitable model, in other words different

tracking models are just the different variations of HMM. In addition, the density

that we are to infer using HMM is defined as the filtering density, p(xt|y1:t), and this

type of problem is called the filtering problem [27]. That’s why in the literature, the

methods that are devised to solve the tracking problem are called the filters, e.g.

Kalman filter, PHD filter, etc.

In the rest of this section we construct graphical models for the problem in

gradually complex stages, respectively for a single target environment, for a

multitarget environment without target birth, death, spawning, missed detection and

false alarm, lastly for a complete realistic multitarget environment. We believe that

modeling the problem in this gradual manner help the reader to understand the

problem and modeling the complex environment used in this thesis. Subsequently we

derive an optimal filter by exploiting the HMM structure.

3.1. Single Target Modeling

In this model there is only one target in the environment and for each time interval

t, we have exactly one measurement that is obtained by the radar from the target. For

simplicity assume that both the state and the measurement space is one dimensional

and there is only one radar collecting measurements. State and measurements at time

t are represented by xt and yt respectively. For single target motion and measurement

models we have the directed graphical model [27] represented in Figure 3.1.

3.2. A Simple Multitarget Environment Modeling

In this model we have N targets and the radar collects exactly one measurement

for each, thus we have N measurement at each time interval t. However, for each time

step after collecting the measurements the radar does not have an idea about which

measurement belongs to which target. In Figure 3.2 xit and yjt represents ith target
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Figure 3.1. Bayesian Network of Single Target Model.

state and jth measurement at time t. Additionally there is a switch variable, nt for

each time interval to infer which of the measurement is the true one. For each different

configuration of measurement to state data associations, nt is set to a different value

in order to find the configuration that maximizes the likelihood. For N targets at time

t, there are N! different configurations and for each value of nt we must investigate the

the likelihood in order to learn the bayesian network. We will introduce basic data

association methodology [29,30] in Chapter 5.

Figure 3.2. Bayesian Network of Basic Multitarget Model.
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3.3. Multitarget Modeling: Missed Detection, False Alarm,Target Birth,

Death and Spawning

In this section, we introduce a common and realistic model along with some

necessary definitions frequently used in multitarget modeling. Initially we represent the

directed graphical model in Figure 3.3. As can be seen from this figure, major difference

from Figure 3.2 is the number of targets and measurements in the environment are also

dynamic. Namely at each time interval a new target may be born, or an existing target

may spawn into new targets or die resulting in a possible variation of the target number

for each time interval, denoted by Nt in Figure 3.3. For the measurements, the radar

may not detect all the targets for that time interval (Missed Detection) or may signal a

detection even though a target does not exist (False Alarm), thus in this model number

of measurements is not necessarily equal to the number of targets (see Subsection 2.3.2).

Furthermore, possible number of configurations for a switch variable of time t, nt, also

increases since we must investigate not only the possibility of belonging to a specific

target for a measurement but also the probability of being a false alarm and a new

born target.

Figure 3.3. Bayesian Network of Realistic Multitarget Model.
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Based on these explanations, we list some definitions and symbolization for

multitarget tracking as follows:

• pB:Probability of birth of new target

• pS:Probability of spawning of an existing target into new targets

• pFA:Probability of being false alarm for a measurement

• pD:Probability of detection a target for the radar

Also note that these probabilities can also be adjusted in the model such that they may

fluctuate over time. In the next section we will derive an optimal filter as a solution of

this problem.

3.4. Optimal Bayesian Filter

The purpose of Bayesian inference is to provide a mathematical machinery that

can be used for modeling and thereby learning a system, in which the uncertainties of

the system are taken into account and the decisions are made according to the inferred

knowledge from the model. The tools of this machinery are the probability distributions

and the rules of probability calculus. [31] For the problem that we have defined up to

now, we use these tools and derive a filter called optimal Bayesian filter [31, 32] that

aims to compute the filtering density, p(xt|y1:t). Sequential state estimation by using

Bayesian perspective was first mentioned in [33] and now it has been investigated by

many researchers for a wide range of applications.

Assume that prior distribution, p(x0), measurement and target motion model,

measurements up to time t, y1:t, are known, states follow a first order Markov process

and the observations are independent of the given states, we must derive p(xt|y1:t) from

p(xt−1|y1:t−1).

(i) Initialization: We initialize the filter by setting the prior, p(x0), as the initial

filtering density.

(ii) Prediction: Assuming that we know the filtering density of previous step,
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p(xt−1|y1:t−1), the joint distribution of xt, xt−1 can be computed by using

Markov property as

p(xt, xt−1|y1:t−1) = p(xt|xt−1, y1:t−1)p(xt−1|y1:t−1)

= p(xt|xt−1)p(xt−1|y1:t−1)

Integrating over xt−1 gives Chapman-Kolmogorov equation;

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (3.3)

This is the prediction step of the filter.

(iii) Update: Since we have p(xt|y1:t−1) and the measurement model, we can compute

the filtering density by using Bayes’ Rule.

p(xt|y1:t) =
1

Zt
p(yt|xt, y1:t−1)p(xt|y1:t−1)

Since the measurements are conditionally independent, y1:t−1 of p(yt|xt, y1:t−1)

can be dropped:

p(xt|y1:t) =
1

Zt
p(yt|xt)p(xt|y1:t−1) (3.4)

where the normalization constant, Zt =
∫
p(yt|xt)p(xt|y1:t−1)dxt.

In the following chapter we devise two filters based on optimal Bayesian filter,

Kalman filter and particle filter.
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4. SINGLE TARGET TRACKING TECHNIQUES

The traditional method of obtaining tracks with a surveillance radar has been

to have an operator manually mark with grease pencil on the face of the cathode ray

tube the location of the target on each scan. The simplicity of such a procedure is

offset by the poor accuracy of the track. It was found that the accuracy of track can

be improved by using a computer to determine the trajectory from inputs supplied by

an operator. Again, it came that a human operator cannot update target tracks at

a rate greater than about once per two seconds and its effectiveness of detecting new

targets decreases after about half an hour of operation [34]. Then with the advent

of Automatic Detection and Targeting, operations in the tracking process (such as

the target detection, track initiation, track association, track update, track smoothing

or filtering and track termination) have begun to be carried out by the computers.

After the handover to the computers, one of the first tracking algorithms presented

by Sklansky in 1957 is α-β filter [3, 20, 21, 35]. While α-β filter is improved to α-β-γ

filter [35] and α-β-γ-δ filter [35] in time, the initial version computes the smoothed

position of the target by following equations:

xt|t−1 = xt−1|t−1 + νt−1∆T (4.1)

xt|t = xt|t−1 + α(yt − xt|t−1) (4.2)

νt = νt−1 +
β

∆T
(yt − xt|t−1) (4.3)

where xt|t−1 is the predicted position, xt|t is the updated position and ∆T is the time

interval. The selection of the α and β parameters is a design trade off. The simplicity

and the compactness of the filter is unequivocal. First we predict the position according

to the law of motion, then we inject the measurement and proceed recursively.

In addition to α-β filter, one of the first tracking filters named after Rudolph E.

Kalman, who offered a recursive solution to the linear data processing problem in 1960,

is Kalman filter [36]. Since then, Kalman filter has become a popular tool in a wide
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range of applications, thus there are numerous tutorials and books on Kalman filter

including modified versions and its implementation on a particular field [5, 35, 37–40].

Particularly [25], [41] and [10] handle the topic from a radar tracking perspective. In

this chapter, we present Kalman filter along with two extensions for the nonlinear

environments of this filter, Extended Kalman filter and Unscented Kalman filter and

then we provide an another approximation strategy known as particle filter.

4.1. Kalman Filter

Kalman filter is derived from optimal Bayesian filter by imposing linearity and

Gaussian assumptions. Firstly to represent the model to be dealt with, we go through

the following stochastic process based on Figure 3.1.

xt = Axt−1 + wt−1 (4.4)

yt = Cxt + vt

wt ∼ N (wt; 0, Q)

vt ∼ N (vt; 0, R)

x0 ∼ N (x0;µ0, P0)

Note that this model is a special case of the general model that is described in Chapter

3 by imposing the following assumptions.

• the noise parameters, wt and vt, are statistically independent and drawn from

N (0, Q), N (0, R) respectively such that Q and R are known.

• State transition and measurement models are normally distributed with known

matrices A, C that defines linear functions.

• x0 is drawn from Gaussian with known parameters.

Holding these conditions Kalman filter recursion cycle consists of following equations:

(i) Initialization: Set µ0|0 and P0|0 from prior, N (µ0, P0)
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(ii) Prediction:

µt|t−1 = Aµt−1|t−1 (4.5)

Pt|t−1 = APt−1|t−1A
T +Q (4.6)

(iii) Update:

µt|t = µt|t−1 +Kt(yt − Cµt|t−1) (4.7)

Pt|t = (I−KtC)Pt|t−1 (4.8)

where Kt matrice is Kalman gain such that Kt = Pt|t−1C
T (CPt|t−1C

T + R)−1;

µt|t−1, µt|t are predicted and updated mean values and Pt|t−1, Pt|t are predicted

and updated covariance matrices for the corresponding Gaussian distribution

respectively. As seen the filter propagates the first and second order moments

of the Gaussian distribution and by these sufficient statistics online estimation is

processed.

On a toy example of estimating the altitude of a hovering helicopter (or more

informally estimating a constant number), we explain the notion of filtering as follows.

The model is described in Table 4.1.

Table 4.1. Hovering Helicopter Model.

Transition Model Measurement Model

xt = xt−1 + wt−1 yt = xt + vt

x0 ∼ N (x0; 1000, 10) vt ∼ N (vt; 0, R = 10)

wt ∼ N (wt; 0, Q = 0.0001)

In Figure 4.1 you may see tracking altitude of a hovering helicopter by Kalman

filter for 150 seconds. When more measurements are collected, estimated mean is
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corrected and also variance decreases. Stabilizing the filter by decreasing the variance

constitutes the desirable property of a filter. When we set R of the Kalman filter to

10 that is the value in the model, the variance asymptotically converges to 0 and the

filter rapidly have approximate values for the mean although initialized from 995.
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Figure 4.1. Tracking the Attitude of a Helicopter by Kalman Filter: Mean

estimations are on the left and covariance estimations are on the right.

Next we investigate what if we determine R parameter of the model wrongly

on two examples. In Figure 4.2, while we keep the measurements the same, we have

changed the value of R by a 0.01 and 100 factors respectively in order to show the effect

of the parameters on the estimation. In the upper pair of the subfigures of Figure 4.2,

you may see that the filter responds excessively to each measurement since the filter

is told that the variance of the measurements are very low. In other words it believes

the measurements too much due to their dummy exactness. This is followed by good

variance estimates of the filter but unstable mean (position) estimates. In the lower

pair of the figures, the filter does not respond to the measurements since the filter

recognizes the measurements as unbelievable due to their variance of 1000. Despite

150 measurements, both the filter can not reach to the attitude of the helicopter and

the variance is still high and does not seem to converge.



24

0 50 100 150

time

990

995

1000

1005

1010

T
h

e
 A

tt
it
u

te
(m

)

states
measurements
Estimated Mean

0 50 100 150

time

0

0.02

0.04

0.06

0.08

0.1

V
a

ri
a

n
c
e

0 50 100 150

time

990

995

1000

1005

1010

T
h

e
 A

tt
it
u

te
(m

)

states
measurements
Estimated Mean

0 50 100 150

time

4

6

8

10

V
a

ri
a

n
c
e

Figure 4.2. Erroneous Estimation Example: Tracking the attitude of a hovering

helicopter with wrong model parameters, R = 0.1 for the upper pair of figures and

R = 1000 for the lower pair of figures.

4.2. Extended Kalman Filter

Many natural dynamical models are nonlinear in nature. While there are a lot of

variations of the Kalman filter for solving the non-linearity problem such as Gaussian

sum filter, Point-mass approach, spline function and Fourier series expansion, extended

Kalman filter is the one that is the most prevalent among engineers. We know that

there are modern air surveillance systems in Turkish Armed Forces performing tracking

via a kind of extended Kalman filter (EKF). Nonlinearity prevents P (xi|y1, ..., yt−1)

and P (xi|y1, ..., yt) to be Gaussian and may cause them not to have any particular

probability distribution, so any form of sufficient statistics can not be propagated in

time. However Extended Kalman filter linearizes the model locally by exploiting Taylor

series expansion1 of the nonlinear functions ft(.) and ht(.) of Equation 3.1 and Equation

3.2 respectively. Taylor series expansion of the function ft(xt−1, 0) and ht(xt, 0) about

1Taylor Series Expansion of a real function f(x) about a point x = a is given by

f(x) = f(a) + f ′(a)(x− a) + f(2)(a)
2! (x− a)2 + ...+ f(n)(a)

n! (x− a)n + ...
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xt−1|t−1 is(Note that we excluded the noise term by setting it to 0):

ft(xt−1, 0) = ft(xt−1|t−1, 0) + f ′t(xt−1|t−1, 0)(xt−1 − xt−1|t−1) + ... (4.9)

ht(xt, 0) = ht(xt|t−1, 0) + h′t(xt|t−1, 0)(xt − xt|t−1) + ... (4.10)

Thus by omitting the terms after the second term, EKF performs the approximation

to the point and this is called local linearization. After incorporating the white noises

of the transition and measurement models, the model looks like those in the Kalman

filter:

xt ≈ ft(xt−1|t−1, 0) + At−1(xt−1 − xt−1|t−1) + wt−1 (4.11)

yt ≈ ht(xt|t−1, 0) + Ct(xt − xt|t−1) + vt (4.12)

wt ∼ N (wt; 0, Q) (4.13)

vt ∼ N (vt; 0, R) (4.14)

x0 ∼ N (x0;µ0, P0) (4.15)

such that At−1 and Ct Jacobian matrices defined as:

At−1 =
∂ft(x, 0)

∂x

∣∣∣∣
x=xt−1|t−1

, Ct =
∂ht(x, 0)

∂x

∣∣∣∣
x=xt|t−1

(4.16)

Resulting EKF recursion equations are as follows:

(i) Initialization: Set µ0|0 and P0|0 from prior, N (µ0, P0)

(ii) Prediction:

µt|t−1 = ft(µt−1|t−1, 0) (4.17)

Pt|t−1 = At−1Pt−1|t−1A
T
t−1 +Q (4.18)
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(iii) Update:

µt|t = µt|t−1 +Kt(yt − h(µt|t−1, 0)) (4.19)

Pt|t = (I−KtCt)Pt|t−1 (4.20)

(4.21)

Before passing to another variation of the Kalman filter, we refer to three more

points here. Firstly, one may take into account any number of the terms from the

Taylor expansion even though we considered only two terms. Clearly this will make

the linearization approximation more precise but result in expensive computation.

Secondly we may also allow the noises be dynamically change in the process, however,

we have assumed the noises do not change in time. Finally, we list the shortcomings

of EKF as linearization can produce highly unstable filters if the assumptions of local

linearity is violated and derivation of the Jacobian matrices are nontrivial [42]. Thus

in the next section we introduce another approximation methodology for the

nonlinear model, Unscented Kalman filter, that can resolve these limitations.

4.3. Unscented Kalman Filter

Linearization process of the EKF assumes that all second and higher order

terms of Taylor expansion are negligible, but sometimes these higher order terms,

effecting the posterior significantly, decrease the performance of the EKF filter. Polar

to cartesian coordinate transformation in [43] is an example of this this situation.

Unscented Kalman filter (UKF) is inspired from the intuition that it is easier to

approximate a probability distribution than it is to approximate an arbitrary

nonlinear function or transformation [44]. Hence, unlike EKF, UKF aims to

approximate the posterior by using a set of transformed samples that are called sigma

points. Although at first glance the technique may seem similar to particle filter, it is

different owing to the nature of sampling which is not random for UKF. The samples

to be transformed are well defined and exhibit certain characteristics. From a broad

perspective the algorithm proceeds as follows: after initialization we select sigma
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points, then prediction step transforms the sigma points by using the nonlinear

function (unscented transformation) and the update step are performed respectively.

Following we define unscented transformation before passing on to the recursion

equations.

4.3.1. Unscented Transformation

Unscented transformation is the process of applying a nonlinear function to the

sigma points that have xt−1 mean and Pt−1 variance in order to compute the statistics

of the posterior, particularly xt and Pt, by using the transformed points. In the case of

non-additive transition and measurement noise, the unscented transformation scheme

is applied to the augmented state [45]:

xaugt =
[
xTt wTt−1 vTt

]T
(4.22)

You may see the depiction of the principle of the unscented transformation in Figure

4.3.

Figure 4.3. Principle of the Unscented Transformation [43].

4.3.2. UKF Algorithm

UKF algorithm consists of the following steps:

(i) Initialization: Set µ0|0 and P0|0 from prior, N (µ0, P0)
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(ii) Selection of Sigma Points: We need a total of 2n + 1 sigma points and their

associated weights where n is the dimension of the state space. There are some

methods for selecting the sigma points such as a general method called scaled

unscented transformation [46]. Setting w0 such that −1 < w0 < 1 and

x0
t−1 = µt−1|t−1 and satisfying the condition

∑2n
i=0w

i = 1 for the weights,

following procedure is an instance of the unscented transformation.

xit−1 = x0
t−1 +

(√
n

w0
Pt−1|t−1

)
i

, i = 1, ..., n (4.23)

xi+nt−1 = x0
t−1 −

(√
n

w0
Pt−1|t−1

)
i

, i = 1, ..., n (4.24)

wi =
1− w0

2n
, i = 1, ..., 2n (4.25)

such that
(√

n
w0Pt−1|t−1

)
i

is the ith row or column of the matrix square root of

n
w0Pt−1|t−1. Determining the w0 effects the points to be accumulated or scattered

with respect to the origin. For example if w0 > 0, sigma points move further

from the origin.

(iii) Prediction: In this part sigma points are instantiated through the transition

model by using the unscented transformation to calculate predicted mean and

covariance. The procedure is as follows:

xit = f(xit−1, 0), i = 0, 1, ..., 2n (4.26)

µt|t−1 =
2n∑
i=0

wixit (4.27)

Pt|t−1 =
2n∑
i=0

wi(xit − µt|t−1)(xit − µt|t−1)T +Q (4.28)

(iv) Update: In this part xit’s are instantiated through the measurement model. By

using these points we calculate innovation covariance matrix and cross

covariance matrix, P y
t , P xy

t respectively. Then by using Kalman filter equations,
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measurement update is performed.

yit = h(xit, 0), i = 0, 1, ..., 2n (4.29)

ŷt =
2n∑
i=0

wiyit (4.30)

P y
t =

2n∑
i=0

wi(yit − ŷt)(yit − ŷt)T +R (4.31)

P xy
t =

2n∑
i=0

wi(xit − µt|t−1)(yit − ŷt)T (4.32)

Kt = P xy(P y
t )−1 (4.33)

µt|t = µt|t−1 +Kt(zt − ŷt) (4.34)

Pt|t = Pt|t−1 −KtP
y
t K

T
t (4.35)

We assumed that the noise is additive and constant but it may vary in time

and may not be additive. We can incorporate time dependent noise into the model

by adding a subscript to the noise parameters, Q and R. You may also find the

derivation and general equations of the filter for the augmented state vector, xaugt , that

is constructed when the noise is nonadditive in [43].

Until now we considered a limited set of solutions for single target environment,

since Kalman filtering based techniques imposes Gaussian assumption to the model.

In the next section we represent how we drop this assumption by accepting an

approximation using Sequential Monte Carlo techniques.

4.4. Sequential Monte Carlo in Target Tracking

In a non Gaussian and non linear environment, optimal algorithms tend to fail

due to the complexities of the multidimensional integrals. Thus as an alternative,

approximation methods are prevalent to find a solution to these problems. However,

these approaches, particularly Monte Carlo Methods, provide only approximate and

suboptimal solutions. Monte Carlo Methods are random sampling approaches that
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solve difficult numerical integration problems. Since their first use in 1949 by

Metropolis and Ulam [7], Monte Carlo methods have been explored to address many

intractable problems including target tracking under a class of MC Methods called

particle filter. Particle filter was first introduced formally to Bayesian target tracking

in 1993 [8] as a combination of Monte Carlo sampling and Bayesian statistics. The

particle filter approximates the posterior by a set of random samples with associated

weights. As the number of the samples becomes very large, computed distribution

gets closer to the posterior distribution. Particle filter gets use of an online extension

of Importance Sampling and Resampling methods to compute the filtering density,

p(xt|y1:t). Thus in this section we introduce the topics that the Particle filter logic

based upon.

4.4.1. Importance Sampling

Consider a target distribution π(x) = φ(x)/Z where the non-negative function

φ(x) is known, but the overall normalization constant Z is assumed to be

computationally intractable. The main idea of importance sampling (IS) is to

estimate expectations Eπ(ϕ(x)) by using weighted samples from a tractable IS

distribution q(x). Note that unlike other MC methods, our goal is not directly

generating samples but estimating expectations via weighted samples. More

specifically, we can write the normalization constant as

Z =

∫
φ(x)dx =

∫
φ(x)

q(x)
q(x)dx =

∫
W (x)q(x)dx = Eq(W (x))

where W(x) ≡ φ(x)/q(x) is called weight function. Therefore we have

Eπ(ϕ(x)) =
1

Z

∫
ϕ(x)

φ(x)

q(x)
q(x) =

Eq(ϕ(x)W (x))

Eq(W (x))

A Monte Carlo estimate of Eπ(ϕ(x)) is then given by

µN =

∑N
i=1 W

(i)ϕ(x(i))/N∑N
i=1W

(i)/N
(4.36)
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where W (i) ≡ W (x(i)) and the ’particles’ are sampled from q(x). Using normalized

weights w(i) ≡ W (i)/
∑N

i′=1W
(i′) we can write the approximation as

µN =
N∑
i=1

w(i)ϕ(x(i)) (4.37)

In other words, instead of sampling from the target density p(x), we sample from a

different tractable distribution q(x) and correct by reweighing the samples accordingly.

4.4.2. Resampling

A practical issue is that, unless the IS sampling density q(x) is close to the

target density π(x), the normalized weights will typically have mass in only a single

component. This can be partially addressed using resampling. Resampling is a

randomized pruning algorithm where we discard particles with low weight and

increase the number of particles with high weight. As an input to the resampling, we

have the weighted particles that are generated by Importance Sampling. Following

are the two common techniques for resampling.

Multinomial resampling equivalent to the inversion method when the target is a

discrete distribution. Here, we view the weighted sample set x(i) as a discrete

distribution with categories i = 1...N where the probability of the ith category is

given by the normalized weight w(i). To sample M times independently from this

target, we generate u(j) ∼ U(0, 1) for j = 1...M and we obtain an unweighted set of

particles by evaluating the generalized inverse at each u(j).

Systematic resampling is quite similar to multinomial resampling, only the

generation of u(j) is not entirely random but systematic. To generate M samples we

only select u(1) uniformly random from the interval [0, 1/M ] and set u(j) =

u(1) + (j − 1)/M . Therefore, each u(j) is located on a uniform grid with a random

initial shift.
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4.4.3. Sequential Importance Sampling

We now apply importance sampling to the tracking problem.The goal is to draw

samples from the posterior

p(x1:t|y1:t) = p(y1:t|x1:t)p(x1:t)︸ ︷︷ ︸
φ(x1:t)

/ p(y1:t︸ ︷︷ ︸
Zt

) (4.38)

where we assume that the normalization term Zt is intractable. An importance

sampling approach uses at each time t an importance distribution qt(x1:t), from that

we draw samples x
(i)
1:t with corresponding importance weights.

W
(i)
t =

φ(x
(i)
1:t)

qt(x
(i)
1:t)

(4.39)

The key idea in particle filter is the sequential construction of the IS distribution q

and the recursive calculation of the importance weights. Without loss of generality, we

may write

qt(x1:t) = qt(xt|x1:t−1)qt(x1:t−1) (4.40)

In particle filtering, one chooses an IS proposal q that only updates the current xt and

leaves previous samples unaffected. This is achieved using

qt(x1:t) = qt(xt|x1:t−1)qt−1(x1:t−1) (4.41)

As we are free to chose the IS proposal q fairly arbitrarily, we can also construct the

proposal on the fly conditioned on the observations seen so far:

qt(x1:t|y1:t) = qt(xt|x1:t−1, y1:t)qt−1(x1:t−1|y1:t−1) (4.42)

we will not include y1:t in the notation but it should be understood that the proposal

q can be constructed at the observations so far.
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Due to the sequential nature of the tracking problem and q, the weight function

Wt(x1:t) admits a recursive computation

Wt(x1:t) =
φ(x1:t)

qt(x1:t)
=
p(yt|xt)p(xt|xt−1)

∏t−1
i=1 p(yi|xi)p(xi|xi−1)

q(xt|x1:t−1)
∏t−1

i=1 q(xi|x1:i−1)

=
p(yt|xt)p(xt|xt−1)

q(xt|x1:t−1)︸ ︷︷ ︸
vt

Wt−1(x1:t−1) (4.43)

where vt is called the incremental weight. Particle filtering algorithms differ in their

choices for qt(xt|x1:t−1). The optimal choice (in terms of reducing the variance of

weights) is the one step filtering distribution

qt(xt|x1:t−1) = pt(xt|xt−1, yt) (4.44)

However, sampling from this filtering density is often difficult in practice, and simpler

methods are required. The popular bootstrap filter uses the model transition density

as the proposal

qt(xt|x1:t−1) = pt(xt|xt−1) (4.45)

for that the incremental weight is vt = p(yt|xt). For the bootstrap filter, the IS

distribution does not make any use of the recent observation and therefore has the

tendency to lose track of the high-mass regions of the posterior. Indeed, it can be

shown that the variance of the importance weights for the bootstrap filter increases in

an unbounded fashion so that the state estimates are not reliable. In practice,

therefore, after a few time steps the particle set typically loses track of the exact

posterior mode. A crucial extra step to make the algorithm work is resampling that

prunes branches with low weights and keeps the particle set located in high

probability regions. It can be shown that although the particles become dependent

due to resampling, the estimations are still consistent and converge to the true values

as the number of particles increases to infinity [47].
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In order to represent the internal dynamics of the PF algorithm, we illustrate

it by a toy example that is modeled according to Table 4.2. Data is predefined and

Table 4.2. Particle Filter Toy Example Model.

Transition Model Measurement Model

xt = Axt−1 + wt−1

where A =


1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1



Target in range of ith radar;yt(i) = dt(i) + vt

else yt(i) = ∅

where dt(i) =‖RadarLoc(i)−

 1 0 0 0

0 0 1 0

xt‖

yt(i) is the ith element of measurement vector yt

wt ∼ N(wt; 0, 0.01) vt ∼ N(vt; 0, 0.1)

p
(
x0 = (0,−0.2, 0,−0.5)′

)
= 1

generated in advance according to transition model in order to enable the target pass

through the areas where the radars are located and the prior information is known.

In other words, the system knows where the target will come. The location of the

radars, the trajectory of the target and the expectation of the trajectory inferred by

PF Algorithm along with ten particles’ per each time interval during 1000 seconds can

be observed in Figure 4.4.

From a general point of view the intuitive recursion of the algorithm is as follows.

After initialization, the particles are propagated according to the transition model (This

corresponds to the prediction step) and importance weights are evaluated according to

the observation model (This corresponds to the update step) due to bootstrap filter

choice for filtering. Then new weights of the particles are assigned in a recursive

manner. Finally the algorithm proceeds with resampling.In the example there are

three zones with radar located and between them two zones that are radar free. In the

first radar covered zone that has radar1, radar2 and radar3; since we have three range

measurements, the probability concentrates on specific locations. In addition, whenever

the particles moving according to the proposal, they tend to scatter. However owing to

resampling, the scattered particles with less weights are discarded, hence the particles

gathered such that their likelihoods are greater. Basically the role of the resampling
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Figure 4.4. Tracking an Aircraft by Particle Filter: The figure represents the behavior

of the particles when the target is detected and not detected. At each time step 10

particles are represented in the figure.

to prevent the domination of a single particle by increasing the possibility of giving

offsprings of particles with greater weights. After the target leaves the zone of the

radars and come to radar free zone, the particles tends to scatter since we do not have

any measurement, hence the algorithm assumes the uniform importance weights. The

particles just makes a random walk in the space according to the proposal. However,

you can observe the gathering of the particles as soon as a new measurement data is

available which is also apparent in the second radar zone. Finally for the last radar

zone that has only a single range only radar we observe that estimated trajectory does

not fit the trajectory of the target although the projected ten particles are in the right

track. The reason is simply as follows: This is a range only radar, so it generates

particles that reflects the model. However a single range only radar is not enough for

detecting the position correctly. The particle filter algorithm is represented in Figure

4.5.
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In this chapter we considered Kalman filter and SMC based approaches for a

single target noncluttered environment. As a result of this we have just one target

and measurement, thus we know in advance that which measurement belongs to which

target. However, all variations of these filters can be used also for multitarget tracking

including many real life applications such as the one that we gave as an example

from the Turkish Armed Forces in the beginning of the this chapter. The requirement

in a multitarget environment is measurement to track association (also called data

association) methodology. As long as this association is performed, these filters can

propagate either larger covariance matrices and mean vectors or larger particle sets,

hence can perform multitarget tracking. In the next chapter we consider this problem

and refer to a method as a solution to data association problem from a Bayesian

perspective.
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1: for i = 1 to N do

2: Compute the IS distribution: qt(xt|x(i)
1:t−1) possibly using the latest

measurement yt

3: Generate offsprings:x̂t
(i) ∼ qt(xt|x(i)

1:t−1)

4: Evaluate importance weights:

v
(i)
t =

p(yt|x̂t(i))p(x̂t(i)|x(i)
t−1)

qt(x̂t
(i)|x(i)

t−1)
,W

(i)
t = v

(i)
t W

(i)
t−1

5: end for

6: ESS = 1/
∑

i(w̃
(i)
1:t)

2

7: if ESS > Threshold then

8: No need to Resample

9: Extend Particles: x
(i)
t = (x

(i)
t−1, x̂t

(i)), i = 1, ..., N

10: else

11: Resample

12: Normalize important weights:

Z̃t ←
∑
j

W
(j)
t , w̃t ← (W

(1)
t , ...,W

(N)
t )/Z̃t

13: Generate association via a Resampling Method

(a(1), ..., a(N))← Resample(w̃t)

14: Discard or Keep Particles and Reset Weights:

x
(i)
0:t ← (x

a(i)
0:t−1, x̂t

a(i)),W
(i)
t ← Z̃t/N, i = 1, ..., N

15: end if

Figure 4.5. Particle Filter Algorithm
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5. EXTENDING TO MULTITARGET ENVIRONMENT:

DATA ASSOCIATION

In Chapter 4 we provided the basic infrastructure of the target tracking

including the filtering phenomenon, linear, nonlinear models and various model

transition distributions. Since allocating a radar for each target is not doable in the

real world, tracking algorithms need to be designed such that the radars can maintain

the information of several targets simultenously. For example a single AN/MPQ-64

(Sentinel) radar can track more than 50 targets simultaneously and can prioritize

them to enable the operator override the system manually to examine targets of

particular interest [48]. In this chapter we present the basic notions for multitarget

tracking. Throughout this chapter we get use of the correspondent model for

multitarget environment, that is, the one presented in Figure 3.3. Initially we explain

transition and measurement models, then we introduce the essential steps of

multitarget tracking and finally we represent global nearest neighbor data association

technique.

5.1. Transition and Measurement Models

In this section we explain formally the assumptions of conventional transition

and measurement models respectively in multitarget environments. Conventional

multitarget transition model is based on following assumptions [10]:

• The motions of the targets are statistically independent.

• New targets appear in the scene uniformly distributed and with Poisson-time

arrivals.

• pS is the survival probability of a target from time t to t+ 1.

Similarly, conventional multitarget measurement model is based on following

assumptions [10]:
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• A single sensor observes a scene involving an unknown number of unknown

targets.

• No target generated measurement is generated by more than a single target.

• A single target generates either a single measurement with probability pD or no

measurement with probability 1− pD.

• The false alarm process is Poisson distributed in time and uniformly distributed

in space.

• Target generated measurements are conditionally independent of state.

• The false alarm process and target measurement process are statistically

independent.

As we described above we may have no measurement or more than one

measurement for each existing track and at the end of each step we do not know

explicitly which track ensues which measurement. The only information that we have

is a list of measurements that are gathered now and the tracks that are estimated in

the previous time stamp. The process of choosing the best measurement for each

track is called data association. Independent of the algorithm that is preferred, the

process of data association is depicted in Figure 5.1. The intuition of the process is

that after we collect the measurements we predict the next position of each target via

the prediction equations of the filter that we use, in the gating step we limit the

possible number of associations, then we carry out the association by using a data

association algorithm and lastly we just update all the predicted tracks by using the

correspondent measurement.

Since the prediction and the update parts are the parallel processed single

target tracking filters, in this part we investigate the gating and measurement-track

association steps.

5.2. Gating

As a result of the combinatorial explosion in the number of possible

measurement-track association hypotheses, we cannot consider all measurement to
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Figure 5.1. Data Association Process: In addition to the conventional recursive steps

of a filter, gating and measurement to track association steps are incorporated in the

process.

track combinations. Hence, we need a method of decreasing the number of hypothesis

to a managable amount. This method is called gating (a.k.a. validation of candidates

step). A measurement in the gate, while not guaranteed to have originated from the

target the gate pertains to, is a valid association candidate [25]. If there is more than

one measurement in the gate, this leads to an association uncertainty and can be

resolved by a measurement to data association technique described in next section.

An example of this problem is depicted in Figure 5.2. In the figure there are four

measurements collected by the radar (circles) and two predicted tracks (crosses). If

we exclude gating, we have a total of 840 possible association hypotheses but by

gating we decrease it to 62 hypotheses since we label some associations as invalid. For

example we can not consider associating the measurement y4 with any of the tracks.

It may be either a false alarm or a new track.

There are a lot of techniques for implementing the gates. Owing to its simplicity

rectangle gates [49] are common in the tracking process. Furthermore, more complex
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Figure 5.2. Gating Step Example: Measurements are represented by circles and the

predicted tracks are represented by crosses.

gates can be used such as the one derived by Kalman equations for Gaussian systems.

Formally the procedure is as follows: Assuming that the radar provides M possible

target each having a measurement vector ym. Each hypothesis has tracks xit with

covariance P i
t . If the measurement ym is inside the gating region size of G then;

(ym − Cxit)TB−1(ym − Cxit) ≤ G (5.1)

such that B = R + CP i
tC

T . However, this operation involves matrix inversion which

is an expensive operation compared to the rectangle gates.

5.3. A Data Association Algorithm: Global Nearest Neighbor Technique

After having only the valid measurements for the correspondent track, we need

to have the best measurement(or depending on the technique, a logical combination

of these measurement) for each existing predicted track. Several tracking algorithms

have been proposed performing the data association ranging from the simpler nearest



42

neighbor filter to the complex multi hypothesis trackers such as Multi Hypotheses

Tracking, Probabilistic Data Association and Joint Probabilistic Data Association. In

this section we represent the technique that we use in our experiment, global nearest

neighbor technique [10]. Generally for a data association algorithm, there are four

essential steps to be included: hypothesis generation step, hypothesis evaluation step,

track maintenance step and determining the best hypothesis step, and this process is

the method how we examine global nearest neighbor technique.

(i) Hypothesis Generation: A hypothesis, denoted by θ, is a consistent

measurement to track association that can formally be defined as

θ : {1, 2, ...,Mt} → {0, 1, 2, ..., Nt−1, b
1
t , ..., b

n
t } such that Mt is the number of

measurements collected at time t and Nt−1 is the number of targets that are

detected for time t-1 with 0 represents false alarms and bit represents new tracks.

After each collection of measurements, all of the feasible hypotheses need to be

generated by the algorithm in order to monitor the search space consisting of

these hypotheses. For example consider Figure 5.2, then a feasible hypothesis

can be stated as y1 and y2 are associated with x1 and x2 respectively, y3 is a

new track so associated with x3 and y4 is a false alarm. Another valid but less

probable hypothesis is to label all measurements with new tracks. You may see

all of the hypotheses that can be generated for the corresponding time interval

of Figure 5.2 in Figures 5.3 and 5.4 that represents a matrix representation and

a tree representation of the hypotheses respectively.

(ii) Hypothesis Evaluation: As can be inferred from the name of the technique, we

try to assign the nearest neighbor to the predicted track positions, xt|t−1. But as

in Figure 5.2 there may be some measurements that results in conflicts. Thus,

purpose of the GNN association is to minimize the global association distance for

each time interval. We define the global association distance for an association

hypothesis θ as:

D2
θ ,

n∑
i=1

d(xit|t−1, y
j
t ) (5.2)
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Figure 5.3. Matrix Representation of Generated Hypotheses: Each row corresponds

to an hypothesis. Red rows are inconsistent rows, i.e. one track is assigned by two

measurements. Thus they must be deleted from the matrix.

such that according to θ association hypothesis yjt is associated with xit|t−1. Now

we derive d(xit|t−1, y
j
t ) that is not simply an Euclidean distance but a measure

that takes into account the uncertainties as follows. The total likelihood that yjt

is generated by xit|t−1 is

p(yjt |xit|t−1) =

∫
p(yjt |x)p(x|xit|t−1)dx (5.3)

We can derive the posterior using Bayes Theorem by assuming p(yjt ) is uniform

since there is no prior information about the collected measurements.

p(xit|t−1|y
j
t ) =

p(yjt |xit|t−1)∑Mt

k=1 p(y
k
t |xit|t−1)

(5.4)

So we can define the d(xit|t−1, y
j
t ) , −log(p(xit|t−1|y

j
t ))
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Figure 5.4. Tree Representation of Generated Hypotheses: From root to any leaf,

each path corresponds to a hypothesis. In order to be clear, sub-trees generated by

first and third children of y2 are not depicted.

(iii) Determining the Best Hypothesis: After determining the distance between the

tracks and the hypothesis we need to find a solution to the optimization problem.

However a straightforward implementation of an algorithm to solve this problem

can be an exhaustive search in the association space by considering all possible

associations but this is not a efficient solution for a real time system. Thus

there are various optimization algorithms designed for minimization including

Hungarian Algorithm [4] and JVC Algorithm [50].

(iv) Track Maintenance: Track maintenance resolves track initialization and track

deletion since the multitarget model involves target births and target deaths.

From GNN perspective, track initialization and track deletion are carried out by

some rules that are application dependent. To illustrate what is meant by a rule,

track initialization is processed if four measurements for a target are collected

in last six time intervals. Also we can exemplify the application dependence by

a ballistic missile tracker in which rather than waiting it is better to label a

measurement by a new track, so this four consecutive measurements rule may be
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decreased to two consecutive measurements.

The GNN approach, which only considers the single most likely hypothesis for

track update and new track initiation, only works well in the case of widely spaced

targets, accurate measurements, and few false alarms in the track gates. For example,

from results given in [49], even if the true target return is present, a single uniformly

distributed false alarm in a three dimensional radar measurement space (typically range

and two angles) reduces the probability of correct association to about 0.85. Thus, in

about one out of six track update attempts a false alarm will be chosen rather than

the correct target return. For the more usual case of multiple closely spaced targets

and where missed true target detections occur, the probability of false track update is

much worse. Experience indicates that often a single false update may lead to track

loss and two consecutive false updates will usually lead to track loss [51].

Until now we described the single target tracking techniques and extend them

by including data association methods. Dating back from the first radar technologies,

nearly all the radars developed get use of the combination of these two techniques.

In the next chapter we begin to view the problem from a different and new emerging

perspective based on random finite sets.
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6. MULTITARGET TRACKING VIA PROPAGATING

FIRST ORDER STATISTICAL MOMENT:PHD FILTER

In Chapter 4 we represented how Kalman filter performs recursive and online

estimation as a close form solution of the optimal Bayesian filter of Section 3.4.

Rather than propagating the full distribution, what Kalman filter does is to

propagate the first and second moments2 of the filtering density, that is the mean xt|t

and Pt|t respectively. If it is assumed that SNR ratio is high enough then the higher

order moment-tensors can be neglected, thus results in xt|t and Pt|t are sufficient

statistics and that is the case in Kalman filter. Now assume that SNR is so high that

only first statistical moment, that is xt|t particularly, can represent the filtering

density. Even though, it may seem inconvenient for the real world applications at

first glance, an example of this kind of filter is α − β filters (also called constant gain

Kalman filter) represented in the introduction of Chapter 4. The criteria that we

defined is the increase in the Signal to Noise Ratio that results in covariance matrices

(higher order statistical moments in general) to dwarf and if the covariance is small

then unimodal distributions are all look similar. In other words the likelihood is so

highly accumulated around some xt|t that any distribution derived is similar to each

other. Hence under some conditions dropping higher order statistical moments,

thereby approximating the filtering density is convenient and results in less

computation from an implementation point of view. Probability Hypothesis Density,

abbreviated as PHD, is an analogy of the single target case for the multitarget case.

It is also first order moment of the multitarget filtering density, but it is not a fixed

number like xt|t but a distribution over the entire target state space. The concept

relies on Random Finite Sets (RFS) and Finite Set Statistics (FISST) as represented

in the Mahler’s original work in [13]. We introduce the PHD filter from point of view

in [13], however, the RFS and FISST approaches are mathematically based on

non-homogenous poisson point processes [11]. Singh et.al. addressed the problem and

the filter by using the pure point process theory in [52]. We represent the radar

2n-th moment of a real valued continuous function f(x) of a real variable about a value c is defined
as: µn =

∫∞
−∞(x− c)nf(x)∂x
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tracking model via RFS’ in Section 6.1, then we introduce finite set statistics that

includes the methodology for deriving the PHD in Section 6.2. In Section 6.3, we

define what is and is not the probability hypothesis density and finally derive the

prediction and update recursions in Section 6.4.

6.1. Modeling Tracking Using Random Finite Sets

As can be inferred from the term, a Random Finite Set (aka Point Process) is a

generalization of a random variable to sets. To be more precise, the size of a random

variable is fixed, but the size of a random finite set can be varying. This property makes

the random finite sets suitable for transition and measurement models of tracking. To

illustrate the variation of the sizes of the set, you may see the Figure 6.1. While at

time t there are two targets in the scene, just three of many possible scenarios for time

t+ 1 are depicted in the figure. In the upper scenario, there is no either a target birth

or a target death, thus set size is still same with different state values of x1 and x2. In

the middle figure, you may see x1 is dead and in the lower x3 is a new target appearing

in the scene. Therefore by using a function over the entire state space along with the

transition and measurement models, we aim to find out the target intensity function

of t+ 1.

PHD filter models the uncertainty in the system using a multitarget set Ξ

Ξ = {x1
t , x

1
t , ..., x

Nt
t } (6.1)

where Nt is the number of targets and the elements of Ξ are random instantiates from

the single target state space. Then we can define the multitarget state space as all

the finite subsets of single target state space. Similarly we can define the multitarget

measurement space by combining all single target measurement spaces. Then any

multitarget measurement must be a subset of this combined space. Next, we represent

the probability distribution of a RFS, then the transition and the measurement models

that are used in RFS.
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Figure 6.1. Illustration of Possible Scenarios of an RFS: The figure illustrates possible

scenarios of an RFS for the next time step. As seen, in subfigures (b) and (c), the set

size changes. An intensity function must be able to capture this information by using

the state transition model. x1, x2 and x3 are the track identities and the state space

is 5× 5 two dimensional space.
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6.1.1. Probability Distribution of a RFS

Due to the nature of the random variable, an RFS also has a probability

distribution that also take the number of the events (targets/measurements in this

case) in account. It can be stated as follows:

fΞ(X) =



fΞ(∅) if X = ∅

fΞ({x1}) if X = {x1}

fΞ({x1, x2}) if X = {x1, x2}, |X| = 2

. .

. .

. .

Also by comparing a set and a vector in which the order is important, we can state

a term of the distribution explicitly as p(Ξ) = n!p(Xt) where Ξ represent the random

set and Xt is the corresponding vector. Furthermore if
∫
fΞ(X)δX = 1, then it is a

multitarget density function where we define the set integral in region S as follows:

∫
S

fΞ(X)δX = fΞ(∅) +
∞∑
n≥1

1

n!

∫
S

fΞ({x1, ..., xn})dx1...dxn (6.2)

Even though summation of the sets are undefined, thus we need to define what is

meant by fΞ({x1, ..., xn}). Since it is the unordered structure of a vector we can define

fΞ({x1, ..., xn}) = n!fX(x1, ..., xn) To illustrate simply, fΞ({x1, x2})=2! × fX(x1, x2)

where fX is the corresponding multivariate probability distribution. It is clear since in

the set the order is not important, thus both (x1, x2) and (x2, x1) vector serves for the

{x1, x2} set.

Lastly in this section we define the cardinality distribution of a RFS that is the

distribution for the number of events (e.g. number of targets). In other words the
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probability that there are n elements in RFS Ξ is

pΞ(n) =

∫
|X|=n

fΞ(X)δX (6.3)

=
1

n!

∫
fΞ({x1, ..., xn})dx1...dxn (6.4)

6.1.2. Transition Model

If we have an RFS at time t− 1 for target states as follows:

Ξt−1 = {x1
t−1, x

2
t−1, ..., x

Nt−1

t−1 } (6.5)

then at time t we have the following RFS.

Ξt = T (x1
t−1) ∪ ... ∪ T (x

Nt−1

t−1 )︸ ︷︷ ︸
Survive or Die

∪ϕ(x1
t−1) ∪ ...ϕ(x

Nt−1

t−1 )︸ ︷︷ ︸
Spawn

∪ ϕ︸︷︷︸
New born

(6.6)

where

T (xit−1) =

 ∅ if die with (1-pS)

{ft(xit−1, wt−1)} if survives with pS

ϕ(xit−1) is the RFS defining the set of spawned target that is modeled as Poisson.

Lastly ϕ is the RFS of the new born targets at time t that is also modeled as Poisson.

Also it is assumed that T (xit−1), ϕ(xit−1) and ϕ are independent.

6.1.3. Measurement Model

If we have a RFS at time t for target states as follows:

Ξt = {x1
t , x

1
t , ..., x

Nt
t } (6.7)
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then at time t we have the following RFS with respect to the measurements.

Σt = Υ(x1
t ) ∪ ... ∪Υ(xNt

t )︸ ︷︷ ︸
Detected or Missed Detection

∪ Θ︸︷︷︸
False Alarm and Clutter

(6.8)

where

Υ(xit) =

 ∅ if not detected with (1-pD)

{ht(xit, wt)} if detected with pD

Θ is the RFS of the false alarms and clutters at time t that is modeled as Poisson

distributed.

6.2. Finite Set Statistics(FISST)

Finite Set Statistics (FISST) is a methodology devised for dealing with the

multitarget tracking without delving into the abstractions and complexities of Point

Process theory [11] that also models stochastic multiobject problems. In other words,

finite set statistics is a stripped-down version of point process theory aiming to avoid

all possible abstractions. For example missed detections and dying targets could be

represented as thining and marking of a nonhomogeneous poisson point process, but

from a FISST point of view these are defined more engineering friendly without losing

the essence of the theory. Mahler established the approach while defining the PHD

filter in [13] and then by relating the topic with statistical behavior of random

variables (he presented a tutorial for this also in [53]), he made up a tutorial that we

believe the briefest possible one in [12]. Furthermore a detailed information on the

approach can be found in [10].

In order derive the appropriate PHD filter, main methodology that can be tracked

is as follows:

(i) Construct RFS motion and measurement model

(ii) Using multitarget calculus, convert these models into multitarget densities and
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likelihood functions

(iii) From these construct the optimal approach: a multitarget Bayes filter

(iv) Convert the Bayes filter into probability generating functional form

(v) Use simplifying approximations and multitarget calculus to derive PHD filters for

the application.

Apart from the motion and measurement models that we discussed in the previous

section, the upper road map makes up the topics that we represent in this section.

6.2.1. Construct the Multitarget Densities and Likelihood Functions

In order to derive the multitarget density we have two steps, converting the

model into a belief mass function, then converting the belief mass function to densities.

Belief mass function, that is analogous to cumulative distribution functions of random

variables, βT (xit−1)(S), where S is a closed set variable, of T (xit−1) is defined as follows:

βT (xit−1)(S) = p(T (xit−1) ⊆ S) (6.9)

= p(T (xit−1) = ∅) + p(T (xit−1) 6= ∅, T (xit−1) ⊆ S) (6.10)

= 1− pS(xit−1) + pS(xit−1)

∫
S

ft(xt−1, wt−1)dxt (6.11)

Also for birth and spawning are Poisson as stated in the previous section. Thus the

belief mass function of a Poisson distributed set variable, say B, with expected number

of λB is:

βϕ(S) = exp(−λB + λB

∫
S

s(x)dx) (6.12)

where s(x) is the spatial distribution of new appearances. Lastly due to the

independence of the terms, belief mass function of the random set is:

βΞt(S|Xt) = βT (x1t−1)(S)...β
T (x

Nt
t )

(S).βϕ(x1t−1)(S)...β
ϕ(x

Nt
t )

(S).βϕ(S) (6.13)
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Now the belief mass functions are to be converted into multitarget density and

multitarget likelihood function as in Eequation 6.14 and equation 6.15 respectively.

But notice that the derivatives and the integrals are set derivatives and set integrals

(see chapter 11 of [10] for differential rules of multiobject derivatives.

p(Xt|Xt−1) = [
δ

δXt

βΞt|t−1
(S|Xt−1)]S=∅ (6.14)

p(Yt|Xt) = [
δ

δYt
βΣt(T |Xt)]T=∅ (6.15)

Following on a simple scenario we clarify the methodology for deriving multitarget

density and likelihood function. Assume that there is no target in the scene and we want

to derive the multitarget likelihood function. So Xt = ∅ but there may be arbitrary

number of measurements only consisting of false alarms. Thus the measurement model

is Σt = Θ. Firstly we must construct the belief mass function of the model.

βΣt(T |Xt = ∅) = p(Θ ⊆ T |∅) (6.16)

=
∞∑
m=0

p(Θ ⊆ T, |Θ| = m|∅) (6.17)

=
∞∑
m=0

p(|Θ| = m|∅)p(Θ ⊆ T |∅, |Θ| = m) (6.18)

= e−λFA

∞∑
m=0

λFA
m!

p({θ1, ..., θNFA
} ∈ T ) (6.19)

= e−λFA

∞∑
m=0

λFA
m!

p(θ ∈ T )m (6.20)

= e−λFA

∞∑
m=0

λFA
m!

pc(T )m (6.21)

= e−λFAeλFApc(T ) (6.22)

= eλFApc(T )−λFA (6.23)



54

Second we need to derive the multitarget likelihood function:

p(Yt|Xt) =
δβΣt

δYt
(T |Xt = ∅) (6.24)

=
δ

δYt
eλFApc(T )−λFA (6.25)

=
δm

δym...δy1

eλFApc(T )−λFA (6.26)

=
δm−1

δym...δy2

δ

δy1

eλFApc(T )−λFA (6.27)

=
δm−1

δym...δy2

eλFApc(T )−λFA
δ

δy1

(λFApc(T )− λFA) (6.28)

= λFAc(y1)
δm−2

δym...δy3

δ

δy2

eλFApc(T )−λFA (6.29)

= λ2
FAc(y1)c(y2)

δm−2

δym...δy3

eλFApc(T )−λFA (6.30)

= ... = λmFA.c(y1)...c(ym).eλFApc(T )−λFA (6.31)

Throughout the derivation of the multitarget likelihood function, we get use of the

multitarget calculus, specifically derivative rules. In this case chain rule, linear rule

and sum rule are used. One may see [10] for the list of rules that can be incorporated

in the derivation of such densities. Finally, as in equation 6.15 we set T = ∅ and get

the multitarget likelihood function as follows:

p(Yt|Xt) =
δβΣt

δYt
(T = ∅|Xt = ∅) = e−λFAλmFAc(y1)...c(ym) (6.32)

6.2.2. Construct the Multitarget Optimal Bayes Filter

The equations are the generalized version of the optimal Bayes filter represented

in Section 3.4.

(i) Prediction Step:

p(Xt|Y1:t−1) =

∫
p(Xt|Xt−1)p(Xt−1|Y1:t−1)dXt−1 (6.33)
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(ii) Update Step:

p(Xt|Y1:t) =
1

Zt
p(Yt|Xt)p(Xt|Y1:t−1) (6.34)

where the normalization constant, Zt =
∫
p(Yt|Xt)p(Xt|Y1:t−1)dXt

By applying the multitarget density and the likelihood function into the equations, we

construct the optimal filter for multitarget tracking. Although we derived all the terms

required for the optimal mutitarget Bayes filter, the integrals defined are set integrals

and they are intractable. Thus, we get use of a transformation that is called probability

generating functionals.

6.2.3. Convert the Bayes Filter into Probability Generating Functional

Form

In this section we derive the concept of probability generating functional in a

gradual manner. Initially to define what a probability generating function [54], it is a

power series representation of the probability distribution of a discrete random variable

and it is formally defined as:

Gx(s) = p(x = 0) + p(x = 1)s1 + p(x = 2)s2 + ... =
∞∑
i=0

p(x = i)si (6.35)

where x is the random variable, p(x) is the probability distribution of x. As seen, s is

the free variable of the function Gx(s) and for all values of s, the function converges.

To illustrate, Gx(0) = 0 and Gx(1) = 1. Probability generating function is one of the

transformation method that is used in order to simplify the operations such as Fast

Fourier Transform in physics. An example of what probability generating functions

catalyze is to enable us to calculate the expectation (or first statistical moment) easily
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by using the first derivative of the function at s = 1 since

Gx(s) = p(x = 0) + p(x = 1)s1 + p(x = 2)s2 + ... (6.36)

G′x(s) = 1.p(x = 1)s0 + 2.p(x = 2)s1 + ... (6.37)

and equation 6.37 is the definition of the first statistical moment of a discrete variable.

Another issue that must be clarified as a preliminary is that briefly a functional is

simply the function of the functions. A functional is a function from a vector space into

its underlying scalar field, or a set of functions of the real numbers. In other words, it is

a function that takes a vector as its input argument, and returns a scalar. [55]. Indeed

in the multitarget case, since the process does not count on the random variables but

instead the vectors and the sets, probability generating functions are not sufficient

to describe to process. Thus by combining these two notions, probability generating

functionals [11] are able to represent the characteristics of the process.

Let ft|t(Xt|Y1:t) be the multitarget filtering density at time t. Then the probability

functional is defined by

Gt|t[h|Y1:t] =

∫
ft|t(Xt|Y1:t)h

XδX (6.38)

such that the power functional of the function 0 ≤ h(x) ≤ 1 is defined by

hX =

 1 if x = ∅∏
x∈X h(x) otherwise

When we compare the Equation 6.35 and Equation 6.38, the similarity stands

out. Furthermore, the convenience of estimating the expectation of a random variable

holds with respect to probability generating functionals as well. Since the expectation

of a multitarget density function is the PHD, we can find PHD as follows by using
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probability generating functional.

Dt|t(x|Y1:t) =

[
δGt|t

δh
[h]

]
h=1

(6.39)

As a consequence, for the PHD filter rather than propagating the full joint

posterior, we propagate the first moment of the joint posterior by firstly converting

the recursion into a probability generating functional form and then find out the

PHD by setting h to be 1.

6.3. The PHD

Before deriving the recursion of the PHD filter, in this section we illustrate the

notion of Probability Hypothesis Density by giving examples and explaining its

properties. It is shown that probability hypthesis density is the first order statistical

moment of a point process, a.k.a. random finite set, in [13, 56, 57] and we give the

essential information of PHD by associating it with the conventional expected value

definition. The first-order moment of filtered multitarget density,ft|t(Xt|Y1:t), is

conventionally stated as:

X̂t|t =

∫
X.ft|t(Xt|Y1:t)δX (6.40)

However, since the basic operations such as addition is undefined on random finite sets

are not defined, we adopt the following transformation for X.

δXt ,

 0 if Xt = ∅∑
b∈Xt

δb(xt) otherwise

where δb(x) is the Dirac Delta function concentrated at b. Hence, after the

transformation, the first-order statistical moment, that is Probability Hypothesis

density(or intensity function in point process terminology), Dt|t has the following
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form.

Dt|t(xt|Y1:t) =

∫
δXt(xt).ft|t(Xt|Y1:t)δX (6.41)

Since the set integral of Equation 6.41 can be expanded by using Equation 6.2

Dt|t(xt|Y1:t) = 0 +

∫
δx1t (xt)ft|t(x

1
t |Y1:t)dx

1
t+ (6.42)∫ ∫

[δx1t (xt) + δx2t (xt)]ft|t(x
1
t , x

2
t |Y1:t)dx

1
tdx

2
t + ...+ (6.43)∫

...

∫
︸ ︷︷ ︸
Nt times

[δx1t (xt) + ...+ δ
x
Nt
t

(xt)]ft|t(x
1
t ...x

Nt
t |Y1:t)dx

1
t ...dx

Nt
t (6.44)

For example, assume that we know that there are two targets,x1
t , x

2
t , in the

environment, then the form that the density have is

Dt|t(xt|Y1:t) =

∫ ∫
[δx1t (xt) + δx2t (xt)]ft|t(x

1
t , x

2
t |Y1:t)dx

1
tdx

2
t (6.45)

=

∫ ∫
δx1t (xt)ft|t(x

1
t , x

2
t |Y1:t)dx

1
tdx

2
t +

∫ ∫
δx2t (xt)ft|t(x

1
t , x

2
t |Y1:t)dx

1
tdx

2
t

(6.46)

=

∫
ft|t(x

1
t = xt, x

2
t |Y1:t)dx

2
t +

∫
ft|t(x

1
t , x

2
t = xt|Y1:t)dx

1
t (6.47)

= ft|t(x
1
t = xt|Y1:t) + ft|t(x

2
t = xt|Y1:t) (6.48)

In general if there are Nt targets in the environment, then

Dt|t(xt|Y1:t) =
Nt∑
n=1

ft|t(x
n
t = xt) (6.49)

It can easily inferred from the Equation 6.49

N̂t =

∫
Dt|t(xt|Y1:t)xt (6.50)
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such that N̂t is the expected number of targets for time t. In other words, probability

hypothesis density is not a probability distribution that sums up to 1 but a function

whose peaks are the possible states of targets. To concretize the PHD, we present

the illustration in Figure 6.2. In the figure the PHD function of a one dimensional

state space is represented by blue solid line. In order to extract the target states from

the function, we must first determine the number of objects which is the integration

of the PHD itself. For the particular case the integration produces 4, thereby using

the counting property of the PHD, we project the four peaks of the function to the

state space that are represented by the red dashed lines in the figure. Indeed we deal

with the state estimation problem in detail in the next section that explains the filter

equations.

-10 -5 0 5 10

x
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0.2
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Probability Hypothesis Density
Projection of the Peaks

Figure 6.2. An Illustration of the Probability Hypothesis Density on One

Dimensional State Space.

6.4. PHD Filter

We adopt the same methodology that is used in previous chapters when we

described the behavior of a filter. To be more precise, PHD filter consists of four

steps as usual: Initialization, prediction, update and finally state estimation.
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6.4.1. Initialization

In order to initialize the filter, it is enough to determine a priori PHD that

encapsulates the priori knowledge about the multitarget environment. Specifically,

this knowledge consists of both the number of targets and their distributions on the

state space. That is, assuming that N̂0 is the expected number of targets apriori and

s0(x) is the probability density with maxima corresponding the target states.

D0|0(x|Y0) = D0|0(x) = N̂0s0(x) (6.51)

Similar to the general idea represented in Equation 6.51, the sum of Gaussians can be a

initialization method (we also get use of the sum of Gaussians in Figure 6.2), since each

Gaussian has a density summing up to 1, thus the integration of these Gaussians will be

the number of Gaussians in the summation. The method is formulated as follows such

that µi0 and P i
0|0 corresponds to the means and covariances of the particular addends

respectively.

D0|0(x) = N (x, µ1
0, P

1
0|0) + ...+N (x, µN̂0

0 , P N̂0

0|0 ) (6.52)

6.4.2. Prediction

We briefly present the methodology employed to derive the prediction equation

of the PHD filter and describe the prediction recursion equation in this section. We

assume that for the prediction step we have the updated PHD of time

t − 1,D(xt−1|Y1:t−1) and want to construct the predicted PHD of time t, D(xt|Y1:t−1).

First by denoting the resulting prediction density by p(Xt|Y1:t−1), we can express it in
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terms of its probability generating functional by using Equation 6.38 as follows:

Gt|t−1[h] =

∫
hXtp(Xt|Y1:t−1)δXt (6.53)

=

∫
hXt

(∫
p(Xt|Xt−1)p(Xt−1|Y1:t−1)dXt−1

)
δXt (6.54)

=

∫ (∫
hXtp(Xt|Xt−1)dXt

)
p(Xt−1|Y1:t−1)δXt−1 (6.55)

=

∫
Gt+1|t[h|Xt−1]p(Xt−1|Y1:t−1)δXt−1 (6.56)

So for the prediction step, we can recursively proceed in terms of probability generating

functionals and by using Equation 6.39, we can find the first statistical moment, the

PHD, of the prediction density as follows:

D(xt|Y1:t−1) =

[
δGt|t−1

δxt
[h]

]
h=1

(6.57)

Consequently we have the following prediction equation:

D(xt|Y1:t−1) = b(xt)︸︷︷︸
birth targets

+

∫
(pS.p(xt|xt−1)︸ ︷︷ ︸

surviving targets

+ b(xt|xt−1)︸ ︷︷ ︸
spawning targets

).D(xt−1|Y1:t−1)dxt−1

(6.58)

where

• b(xt) is the PHD of the target birth. Since target birth is assumed to be a Poisson

process

b(xt) = λBsB(xt) (6.59)

such that sB(xt) is the spatial distribution of the target births and λB is the

expected value of the Poisson process. Both of the quantities may be adjusted to

vary in time. On the other hand fixed values can be also considered according to

the requirements of the application.

• b(xt|xt−1) is the PHD of the target spawning. Since the spawning process is
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analogous to the birth process in the structure, by adopting the variables

pertaining to the spawning, λS and sS(xt) respectively,the expressions referred

are valid also for spawning targets.

• pS is the survival probability of a target. In the equation we referred pS as fixed.

However, it may vary both with respect to time and/or location.

• p(xt|xt−1) is the transition model of the target.

• D(xt−1|Y1:t−1) is the updated PHD of time t− 1.

6.4.3. Update

Before constructing the update equation of time t, D(xt|Y1:t), we assume that we

have the predicted PHD of time t,D(xt|Y1:t−1). Now we consider first the fraction part

of the Bayes update of Equation 6.34 and express it in terms of probability generating

functionals by using Equation 6.38.

F [g, h] =

∫
gYtp(Yt|Xt)δYt

∫
hXtp(Xt|Y1:t−1)δXt (6.60)

=

∫
hXt

∫
gYtp(Yt|Xt)p(Xt|Y1:t−1)δXtδYt (6.61)

=

∫
hXtG[g|Xt]p(Xt|Y1:t−1)δXt (6.62)

where G[g|Xt] =

∫
gYtp(Yt|Xt) (6.63)

the PHD can be expressed as:

D(xt|Y1:t) =
1

Zt

δyMt+1
t F

δyMt
t ...δy1

t δx
[0, 1] (6.64)

where the denominator of Equation 6.34 and also Equation 6.64 is

Zt =
δMtF

δyMt
t ...δy1

t

[0, 1] (6.65)
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Consequently by using the methodology expressed above the following update PHD

equation is derived.

D(xt|Y1:t) ≈ [1− pD]D(xt|Y1:t−1)︸ ︷︷ ︸
No Detection(Σ = ∅)

+
Mt∑
i=1

pDp(y
i
t|xt)D(xt|Y1:t−1)

fa(yit) +
∫
pDp(yit|xt)D(xt|Y1:t−1dxt)︸ ︷︷ ︸

Detection Cases

(6.66)

where

• fa(yit) is the likelihood of yit with respect to the probability distribution of false

alarm.

• pD is the detection probability of the radar for a target. In the Equation we

determined it as fixed, however it may vary over time and/or location.

• p(yit|xt) is the measurement likelihood of yit.

• D(xt|Y1:t−1) is the predicted PHD of time t.

Also you may notice for Equation 6.66 that unlike the prediction step it is an

approximation. We discuss this condition in Section 6.5 while evaluating characteristics

of the PHD filter.

6.4.4. State Estimation

As depicted in Figure 6.2, for a specific time t, initially we evaluate the integral

of the PHD function and find out the expected number of targets, N̂t; then it is enough

to find N̂t maxima points of the function. However in the implementation the value of

N̂t may be unstable and sensitive to the false alarms and missed detections. Thus, if

the target number of the application is known not to be very dynamic, then one can

employ averaging the target number for a time window,say T̄ , as formulated below.

N̄t =

∑T̄
i=1 N̂t−i+1

T̄
(6.67)
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6.5. Evaluation of the PHD Filter

For an approximate first order moment filter these three properties can be

regarded as good properties.

(i) Information loss from distributions to the moment should be minimized.

(ii) The prediction step should be lossless, that is the predicted distribution pt|t−1(X)

should result in the moment Dt|t−1(x).

(iii) The update step should be lossless, that is the updated distribution pt|t(X) should

result in the moment Dt|t(x).

In [13], it is shown that PHD filter satisfies the first two good properties. However

this is not the case for the third one. As stated in update part of the previous section

it is an approximation since in order to go through the derivation, p(Xt|Y1:t−1) must be

assumed to be Poisson. However, if sensor covariances and SNR is high enough such

that it causes false alarm rates not to be large, then the measurements will accumulate

around the target states and moment matching operation of the equation will perform

well.

Another shortcoming of the filter appears when the targets are closely located.

The scene is depicted in Figure 6.3. In the figure, the upper left one is the example

depicted in Figure 6.2 and for three consecutive rows we adjusted the mean of the

Gaussian densities such that this operation results in accumulation of the targets.

Then gradually it is observed that the peaks of the filter disappears and even though

we know the expected number of targets (that is also not so stable as discussed in

previous section), that is four specifically, we are not able to extract the target states

from the PHD function.

Another disadvantage of the filter is the unstability of N̂ . This problem and a

possible solution is issued in the state estimation part of the previous section, so we do

not require to recite it again. [58] represents this unstability and also stimulated Mahler

to develop cardinalized PHD filter [14]. Along with the PHD, CPHD filter propagates
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Figure 6.3. Effect of the Closer Targets on PHD: Blue solid lines refer to the

corresponding PHD function for each scenario and red dashed lines are the projection

of the peaks of the PHD function onto the one dimensional state space.

the cardinality distribution (see Equation 6.3) of the filtering density in time, so it

resembles to Kalman filters that propagates the second order statistical moment as

well but cardinality distribution is not the exact covariance density. The covariance

density function is defined in [59] but the filter equations can not be extracted due to

the intractability of the function.

On the other hand, omitting data association significantly makes the PHD filter

attractive. Moreover the computational demand is O(NtMt) for a time interval and

that makes the filter computationally implementable. It also admits the standard

multitarget measurement and transition model dynamics including target birth and

death, spawning, missed detection and false alarm.

In the next chapter we consider the implementation strategies of the PHD filter

that we represented from a theoretical framework in this chapter.
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7. IMPLEMENTATION STRATEGIES OF THE PHD

FILTER

As represented in Equations 6.58 and 6.66, PHD filter recursion involves integrals

that are hard to deal with. However, there has been devised an approximation strategy

and a closed form solution for these integrals. We cover these two implementation

methods in the chronological order that they were developed. The first method is to

get use of particle filter (See Section 4.4) to approximate the integrals and the second

one is based on Gaussian assumptions and called Gaussian Mixture PHD.

7.1. Particle Filter Based Approaches

Since the equations have intractable integrals, immediately one may resort to

Monte Carlo methods that allow to approximate these integrals by means of different

sampling strategies. For this specific case, it is the Sequential Monte Carlo method

that can be applied recursively to the equations in an online manner. As a result three

independent algorithms were proposed in 2003. Mahler proposed an algorithm that

does not include target birth and death in [60]. The algorithm in [61] does not include

false alarm property of the model and was not a general algorithm but considered a

special case for ground target tracking. The algorithm that includes all aspects of the

transition and measurement models was first developed by Vo in [15] and that is further

improved in [16]. In our thesis we consider Vo’s improved algorithm and like the other

subjects in our thesis, we adopt a simple to harder approach. Thus next two sections

provide the basic algorithm and the improved version respectively. It must also need

to be mentioned that there are other implementations of the filter based on particle

filter such as the extension of auxiliary particle filter to the PHD filter [62,63].
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7.1.1. SMCPHD Filter

There is an important characteristic of this algorithm that also motivated us

choosing it. Firstly, the particles are in an adaptive manner such that the algorithm

prevents the system to be inefficient. Note that the particle number is the bottleneck

of the particle filter methods with respect to performance. Furthermore it is an

extension of the standard particle filter algorithm that is discussed in Section 4.4. As

a result when we omit the target birth and death along with assuming only one

target without clutter then it reduces to the standard particle filter algorithm. We

handle the algorithm in the prediction and update steps first, finally we represent the

pseudocode.

7.1.1.1. Initialization. To initialize the filter, we need to have a particle approximation.

Thus we can approximate the prior intensity (PHD) function by means of importance

sampling.

7.1.1.2. Prediction. Assuming at t−1 we have the set of particles and their associated

weights,{x(i)
t−1|t−1, w

(i)
t−1|t−1}

Lt−1

i=1 , that approximatesD(xt−1|Y1:t−1), we want to constitute

the predicted PHD approximation. By substituting the particles into the prediction

equation of PHD filter (Equation 6.58) we have the following;

D(xt|Y1:t−1) = b(xt) +

∫
[pS.p(xt|xt−1) + b(xt|xt−1)].D(xt−1|Y1:t−1)dxt−1 (7.1)

≈ b(xt) +

Lt−1∑
i=1

[pS.p(xt|x(i)
t−1|t−1) + b(xt|x(i)

t−1|t−1)]w
(i)
t−1|t−1 (7.2)

Thus if we split the approximation from the addition operation and apply two

independent particle filter applications by using two proposals for target birth part

and the rest; we have D(xt−1|Y1:t−1) approximation. Assuming that qt(x
(i)
t |x

(i)
t−1, Y1:t)

and rt(x
(i)
t |Y1:t) are the proposals corresponding to the right hand side part of

equation and left hand side of the equation respectively, the weights are estimated as
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follows:

w
(i)
t|t−1 =


[pS .p(xt|x

(i)
t−1|t−1

)+b(xt|x(i)t−1|t−1
)]w

(i)
t−1|t−1

qt(x
(i)
t |x

(i)
t−1,Y1:t)

, i=1,...,Lt−1

b(x
(i)
t )

Jtrt(x
(i)
t |Y1:t)

, i=Lt−1,...,Lt−1 + Jt

7.1.1.3. Update. Assuming at t we have the set of particles and their associated

weights,{x(i)
t|t−1, w

(i)
t|t−1}

Lt−1+Jt
i=1 , that approximates D(xt|Y1:t−1), we want to constitute

the updated PHD approximation. Applying the update results in

D(xt|Y1:t) ≈
Lt−1+Jt∑
i=1

w
(i)
t δx(i)t

(x) (7.3)

where

w
(i)
t|t = [1− pD]w

(i)
t|t−1 +

Mt∑
j=1

pDp(y
j
t |x

(i)
t )w

(i)
t|t−1

fa(yjt ) +
∑Lt−1+Jt

k=1 pDp(y
j
t |x

(k)
t )w

(k)
t|t−1

(7.4)

7.1.1.4. State Estimation. Target state estimates are extracted from the

approximation of the intensity function by applying clustering techniques such as

k-means clustering.

7.1.1.5. The Algorithm. If we do not limit the increasing particle number somehow,

then in every step the particle number increase by Jt. In order to achieve that we first

estimate the expected number of targets for time t by N̂t =
∑Lt−1+Jt

i=1 w
(i)
t|t , then if we

want to allocate ρ particles per time, we perform the resampling such that we have

ρN̂t particles are generated. Thus by means of resampling we adaptively allocate the

particles to the targets. The algorithm is represented in Figure 7.1.
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1: for i = 1 to Lt−1 + Jt do

2: Compute the IS distributions: qt(x
(i)
t |x

(i)
t−1, Y1:t), rt(x

(i)
t |Y1:t)

3: Generate offsprings:

x̂t
(i) ∼ qt(x

(i)
t |x

(i)
t−1, Y1:t) for i = 1, ..., Lt−1

x̂t
(i) ∼ rt(x

(i)
t |Y1:t) for i=Lt−1,...,Lt−1 + Jt

4: Evaluate importance weights:

w
(i)
t|t−1 =


[pS .p(xt|x

(i)
t−1|t−1

)+b(xt|x(i)t−1|t−1
)]w

(i)
t−1|t−1

qt(x
(i)
t |x

(i)
t−1,Y1:t)

, i = 1, ..., Lt−1

b(x
(i)
t )

Jtrt(x
(i)
t |Y1:t)

, i = Lt−1, ..., Lt−1 + Jt

5: Compute new weights in the update step:

w
(i)
t|t = [1− pD]w

(i)
t|t−1 +

Mt∑
j=1

pDp(y
j
t |x

(i)
t )w

(i)
t|t−1

fa(yjt ) +
∑Lt−1+Jt

k=1 pDp(y
j
t |x

(k)
t )w

(k)
t|t−1

6: Resampling Step

7: Compute the Expected Number of Particles: N̂t =
∑Lt−1+Jt

i=1 w
(i)
t|t

8: Generate Lt particles via a Resampling Method

{
w

(i)
t|t

N̂t

, x̃
(i)
t

}Lt

i=1

← Resample(

{
w

(i)
t|t

N̂t

, x
(i)
t

}Lt−1+Jt

i=1

)

9: Multiply the weights by N̂t to get
{
w

(i)
t|t , x

(i)
t

}Lt

i=1

10: end for

Figure 7.1. SMCPHD Filter Algorithm.
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7.1.2. Improved SMCPHD Filter

The algorithm that is represented in Figure 7.1 has drawbacks and needs to be

improved. Firstly target birth may take place anywhere and this results in generating

particles that are spreaded all over the state space. Since the bottleneck of a particle

filter is the number of particles propagated and we are obliged to have a good

approximation to have good estimates; the algorithm gets in trouble with respect to

efficiency. A possible solution is rather than generating new born targets over all

target space, we can confine these particles to be born near the measurements,

namely the regions with high measurement likelihood. In comparison to the

SMCPHD algorithm, the results established in [16] are efficient with the same

number of particles. The second drawback is the ad hoc clustering approaches of

SMCPHD Algorithm that are used for target state estimation. In the same paper, a

new approach is also represented for target state and error estimation. In this section

we firstly represent the adapted PHD recursion formulation of Improved SMCPHD

filter, then represent how the target states are extracted.

7.1.2.1. Improved SMCPHD Formulation of the PHD. Since the new technique rely

on improving the efficiency of target births by allowing them to be generated around

the measurements, then we must somehow distinguish the survived targets and new

born targets. This is performed by using an augmented state vector defined as

xt =
[
x′t βt

]T
(7.5)

where x′t is the conventional state matrix and βt is the label of the target that

distinguishes a newborn target from a survived target such that

βt =

 0 , for a survived target

1 , for a newborn target
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Now by adapting this convention we modify the PHD prediction and update

equations, Equation 6.58 and Equation 6.66 respectively. For the prediction step we

need to rephrase the birth PHD and state transition model since the pS does not depend

on βt. The birth PHD can be restated as follows:

b(xt) = b(x′t, βt) =

 b(x′t) , βt = 1

0 , βt = 0

The transition model can be derived as follows:

p(xt|xt−1) = p(x′t, βt|x′t−1, βt−1) (7.6)

= p(x′t|βt, x′t−1, βt−1)p(βt|x′t−1, βt−1) (7.7)

= p(x′t|βt, x′t−1, βt−1)p(βt|βt−1) (7.8)

= p(x′t|βt, x′t−1)p(βt|βt−1) (7.9)

= p(x′t|x′t−1)p(βt|βt−1) (7.10)

(7.11)

such that

p(βt|βt−1) =

 0 , βt = 1

1 , βt = 0

Assuming no spawning and so dropping b(xt|xt−1) we have the following

prediction equation

D(x′t, βt|Y1:t−1) = b(x′t, βt) +
1∑

βt−1=0

∫
pS.p(x

′
t, βt|x′t−1, βt−1).D(x′t−1, βt−1|Y1:t−1)dxt−1

(7.12)
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Thus,

D(x′t, βt|Y1:t−1) =


b(x′t) , βt = 1∫
pS.p(x

′
t, 0|x′t−1, 0).D(x′t−1, 0|Y1:t−1)dxt−1+∫

pS.p(x
′
t, 0|x′t−1, 1).D(x′t−1, 1|Y1:t−1)dxt−1 , βt = 0

D(x′t, βt|Y1:t−1) =


b(x′t) , βt = 1∫
pS.p(x

′
t|x′t−1).D(x′t−1, 0|Y1:t−1)dxt−1+∫

pS.p(x
′
t|x′t−1).D(x′t−1, 1|Y1:t−1)dxt−1 , βt = 0

Similar operations are applied to the update equation. We consider the

measurement model and detection probability. We assume that new targets are

always detected, so the detection probability is:

pD =

 1 , βt = 1

pD , βt = 0

The measurement model does not rely on βt:

p(yt|xt) = p(yt|x′t, βt) = p(yt|x′t) (7.13)

When we adapt the above convention, the PHD update equation has the following

form:

D(x′t, βt|Y1:t) ≈ [1− pD]D(x′t, βt|Y1:t−1) (7.14)

+
Mt∑
i=1

pDp(y
i
t|x′t, βt)D(x′t, βt|Y1:t−1)

fa(yit) +
∑1

βt=0

∫
pDp(yit|x′t, βt)D(x′t, βt|Y1:t−1)dxt
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If βt = 0;

D(x′t, 0|Y1:t) ≈ [1− pD]D(x′t, 0|Y1:t−1)+

Mt∑
i=1

pDp(y
i
t|x′t)D(x′t, 0|Y1:t−1)

fa(yit) +
∫
pDp(yit|x′t)D(x′t, 0|Y1:t−1)dxt +

∫
pDp(yit|x′t)D(x′t, 1|Y1:t−1)dxt

(7.15)

If βt = 1;

D(x′t, 1|Y1:t) ≈ (7.16)

Mt∑
i=1

pDp(y
i
t|x′t)D(x′t, 1|Y1:t−1)

fa(yit) +
∫
pDp(yit|x′t)D(x′t, 0|Y1:t−1)dxt +

∫
pDp(yit|x′t)D(x′t, 1|Y1:t−1)dxt

Now for the prediction and update equations of improved SMCPHD, the integrals needs

to be approximated by the weighted particles. But firstly we consider the method of

generating particles of the birth targets. For jth measurement of time t, denoted as

yjt , ith of total ρ newborn particles, denoted as x
(i)
t|t−1,b, is generated such that yjt is

a random sample from p(yjt |x
(i)
t|t−1,b)b(x

(i)
t|t−1,b) and the weights of particles of the birth

targets are uniform:

w
(i)
t|t−1,b =

vt|t−1,b

ρMt

(7.17)

such that vt|t−1,b is the expected number of newborn particles from t−1 to t as follows:

vt|t−1,b =
Mt∑
j=1

ρ∑
i=1

p(yjt |x
(i+(j−1)ρ)
t|t−1,b )b(x

(i+(j−1)ρ)
t|t−1,b ) (7.18)

For the prediction step to estimate the particles and weights of the surviving targets,

respectively denoted as x
(i)
t|t−1,s, w

(i)
t|t−1,s , it is a classical particle filtering example,

namely we just sample from a proposal, say p(xt|xt−1). Assuming that It−1 is the

total number of particles for time t− 1, For the update step we update the weights of
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surviving and newborn targets as follows:

w
(i)
t|t,s = [1− pD]w

(i)
t|t−1,s+

Mt∑
j=1

pDp(y
j
t |x

(i)
t|t−1,s)w

(i)
t|t−1,s

fa(yjt ) +
∑ρMt

k=1 w
(k)
t|t−1,b +

∑It−1

k=1 pDp(y
j
t |x

(k)
t|t−1,s)w

(k)
t|t−1,s

(7.19)

w
(i)
t|t,b =

Mt∑
j=1

w
(i)
t|t−1,b

fa(yjt ) +
∑ρMt

k=1 w
(k)
t|t−1,b +

∑It−1

k=1 pDp(y
j
t |x

(k)
t|t−1,s)w

(k)
t|t−1,s

(7.20)

7.1.2.2. State and Error Estimation. The examination of Equation 7.15 gives the

intuition that the update state is the creation of Mt + 1 replicas of the particle set

{xit|t−1; i = 1, ..., It−1} since the summation of Mt + 1 terms is the same as the union

of replicated particles. Then denoting the weights of the corresponding replica of the

jth(j ∈ {0, 1, ...,Mt}) particle set by {wi,jt|t,p; i = 1, ..., It−1}, then the weights can be

estimated by the following:

If j = 0;

wi,jt|t,s = [1− pD]w
(i)
t|t−1,s (7.21)

Else if j = 1, ...,Mt

wi,jt|t,s =
pDp(y

j
t |x

(i)
t|t−1,s)w

(i)
t|t−1,s

fa(yjt ) +
∑ρMt

k=1 w
(k)
t|t−1,b +

∑It−1

k=1 pDp(y
j
t |x

(k)
t|t−1,s)w

(k)
t|t−1,s

(7.22)

Now we define W j
t,s =

∑It−1

i=1 w
i,j
t|t,s, that is the total weight assigned to a particle set

replica j = 1, ...,Mt. If yjt is a measurement that results in non-zero likelihood for some

particles, it is possibly originated from a target, thus results in high W j
t,s, otherwise it

will tend to zero. For each particle set replica the state estimate, x̂jt and its covariance
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matrix Pj
t , that is a value of error, can be computed as

x̂jt =

It−1∑
i=1

wi,jt|t,sx
i
t|t−1,s (7.23)

Pj
t =

It−1∑
i=1

wi,jt|t,s(x
i
t|t−1,s − x̂

j
t)(x

i
t|t−1,s − x̂

j
t)
T (7.24)

The algorithm is represented Figure 7.2.

7.2. Gaussian Mixture Based Approaches

SMCPHD provides an approximation to the PHD function without posing any

restrictions. On the other hand, Gaussian Mixture PHD provides a closed form

solution for the PHD function by assuming the linear Gaussian transition and

measurement models. For the first time Vo and Ma showed in [17] that if the initial

function is a gaussian mixture, then the posterior PHD is also a gaussian mixture.

Furthermore the idea is extended to the nonlinear case (but still Gaussian) in [18] by

adopting the approaches of EKF and UKF. We represent these approaches in this

section respectively. Since we represented EKF and UKF in Chapter 4, rather than

reexplaining we just refer to the PHD implementation strategies of these subjects.

7.2.1. GMPHD Filter

Linear Gaussian model was discussed in Section 4.1, we represented the model

particularly in Equation 4.4. For that specific model we impose the following

assumptions.

(i) Initial PHD function is a Gaussian Mixture.

(ii) PHDs of target birth and target spawning are mixture of Gaussians as represented
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1: INPUT:

2: 1.Particle set of surviving targets:{w(i)
t−1,s, x

(i)
t−1,s}

Lt−1

i=1

3: 2.Particle set of newborn targets:{w(i)
t−1,b, x

(i)
t−1,b}

St−1

i=1

4: 3.Measurement Set Zt = {z1t , ..., z
Mt
t }

5: Union New Born Targets and Surviving Targets:

{w(i)
t−1, x

(i)
t−1}

It−1

i=1 = {w(i)
t−1,s, x

(i)
t−1,s}

Lt−1

i=1 ∪ {w
(i)
t−1,b, x

(i)
t−1,b}

St−1

i=1

6: for i = 1 to It−1 do

7: Draw x
(i)
t|t−1,s ∼ p(x|x

(i)
t−1)

8: Compute Weights w
(i)
t|t−1,s = pSw

(i)
t−1

9: Compute Weights w
(i)
t|t,s according to Equation 7.19.

10: for j = 1 to Mt do

11: Compute Weights w
(i),j
t|t,s according to Equation 7.22

12: end for

13: end for

14: for j = 1 to Mt do

15: if W j
t,s =

∑It−1

i=1 w
(i),j
t|t,s > τ then

16: Compute x̂jt ,P
j
t according to Equations 7.23, 7.24

17: end if

18: end for

19: Estimate Cardinality: vst =
∑It−1

i=1 w
(i)
t|t,s; n̂t = ROUND(vst )

20: Estimate Number of Particles to Resample: Lt = n̂t.ρ

21: Resample Lt times from {w(i)
t|t,s/v

s
t , x

(i)
t|t−1,s}

It−1

i=1 to obtain {w(i)
t,s, x

(i)
t,s}

Lt
i=1

with w
(i)
t,s = vst /Lt

22: for j = 1 to Mt do

23: for k = 1 to ρ do

24: i = k + (j − 1) ρ

25: Draw x
(i)
k|k−1,b ∼ b(x|y

j
t )

26: Compute Weights: w
(i)
t|t−1,b = vbt|t−1/(ρMt)

27: Compute Weights: w
(i)
t|t,b according to Equation 7.20.

28: end for

29: end for

30: Estimate Number of Particles to Resample: St = ρMt

31: Resample St times from {w(i)
t|t,b/

∑St

i=1, x
(i)
t|t−1,b}

St
i=1 to obtain {w(i)

t,b , x
(i)
t,b}

St
i=1

Figure 7.2. Improved SMCPHD Filter Algorithm.
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respectively.

b(xt) =

J
(b)
t∑
i=1

w
(b,i)
t N (xt;m

(b,i)
t , P

(b,i)
t ) (7.25)

b(xt|xt−1) =

J
(b′)
t∑
i=1

w
(b′,i)
t N (xt;xt−1 +m

(b′,i)
t , P

(b′,i)
t ) (7.26)

where m
(b,i)
t , P

(b,i)
t are the mean and covariances of the ith Gaussian component

of the target birth PHD and xt−1 +m
(b′,i)
t , P

(b′,i)
t are the mean and covariances of

the ith Gaussian component of the target spawning PHD.

(iii) The survival and detection probabilities, pD, pS, does not vary with respect to a

target or time. They are constant.

Following we represent the recursive equations of GMPHD.

7.2.1.1. Prediction. Assume that we have:

D(xt−1|Y1:t−1) =
∑Jt−1

i=1 w
(i)
t N (xt−1;m

(i)
t−1, P

(i)
t−1) and want to construct D(xt|Y1:t−1).

D(xt|Y1:t−1) = b(xt) +

∫
(pS.p(xt|xt−1) + b(xt|xt−1)).D(xt−1|Y1:t−1)dxt−1 (7.27)

=

J
(b)
t∑
i=1

w
(b,i)
t N (xt;m

(b,i)
t , P

(b,i)
t )

+

∫ pS.N (xt;Axt−1, Q).

J
(b′)
t∑
i=1

w
(b′,i)
t N (xt;xt−1 +m

(b′,i)
t , P

(b′,i)
t )


.

Jt−1∑
i=1

w
(i)
t N (xt−1;m

(i)
t−1, P

(i)
t−1)dxt−1 (7.28)

Theorem 7.1. Given A, d, Q, m and P of appropriate dimensions, with Q and P
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positive definite.

∫
N (xt;Axt−1 + d,Q)N (xt−1;m,P ) = N (xt;Am+ d,Q+ APAT ) (7.29)

Now applying the Theorem 7.1 to the integral of the derived expression and

making some simplifications we have the following expression for the prediction

equation.

D(xt|Y1:t−1) = b(xt) +D(α)(xt|Y1:t−1) +D(β)(xt|Y1:t−1) (7.30)

D(α)(xt|Y1:t−1) = pS

Jt−1∑
i=1

w
(i)
t−1N (xt;m

(i)
t|t−1, P

(i)
t|t−1) (7.31)

m
(i)
t|t−1 = Am

(i)
t−1 (7.32)

P
(i)
t|t−1 = Q+ Ft−1P

(i)
t−1F

T
t−1 (7.33)

D(β)(xt|Y1:t−1) =

Jt−1∑
i=1

J
(b′)
t∑
j=1

w
(i)
t−1w

(b′,i)
t N (xt;m

(i,j)
t|t−1, P

(i,j)
t|t−1) (7.34)

m
(i,j)
t|t−1 = m

(i)
t−1 +m

(b′,j)
t (7.35)

P
(i,j)
t|t−1 = P

(i)
t−1 + P

(b′,j)
t (7.36)
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7.2.1.2. Update. Assume that we have:

D(xt|Y1:t−1) =
∑Jt|t−1

i=1 w
(i)
t|t−1N (xt;m

(i)
t|t−1, P

(i)
t|t−1) and want to construct D(xt|Y1:t).

D(xt|Y1:t) ≈ [1− pD]D(xt|Y1:t−1) +
Mt∑
i=1

pDp(y
i
t|xt)D(xt|Y1:t−1)

fa(yit) +
∫
pDp(yit|xt)D(xt|Y1:t−1dxt)

(7.37)

≈ [1− pD]

Jt|t−1∑
i=1

w
(i)
t|t−1N (xt;m

(i)
t|t−1, P

(i)
t|t−1) (7.38)

+
Mt∑
j=1

pDN (xt;Cxt, R)
∑Jt|t−1

i=1 w
(i)
t|t−1N (xt;m

(i)
t|t−1, P

(i)
t|t−1)

fa(yjt ) +
∫
pDN (xt;Cxt, R)

∑Jt|t−1

i=1 w
(i)
t|t−1N (xt;m

(i)
t|t−1, P

(i)
t|t−1)dxt

(7.39)

Theorem 7.2. Given C, R, m and P of appropriate dimensions, with P and R positive

definite.

N (z;Cx,R)N (x;m,P ) = q(z)N (x; m̄, P̄ ) (7.40)

Now applying the Theorem 7.1 to the integrals and Theorem 7.2 to the

appropriate product of Gaussians we have the following expression for the update

equation.

D(xt|Y1:t) ≈ (1− pD)D(xt|Y1:t−1) +
Mt∑
j=1

D(xt|yjt ) (7.41)

where

D(xt|yjt ) =

Jt|t−1∑
i=1

pDw
(i)
t|t−1q

(i)
t (yjt )N (x;m

(i)
t (yjt ), P

(i)
t )

fa(yjt ) + pD
∑Jt|t−1

k=1 w
(k)
t|t−1q

(k)
t (yjt )

(7.42)

q
(k)
t (yjt ) = N (yjt ;Cm

(k)
t|t−1, R + CP

(k)
t|t−1C

T ) (7.43)

m
(i)
t (yjt ) = m

(i)
t|t−1 +K

(i)
t (yjt − Cm

(i)
t|t−1) (7.44)

P
(i)
t = [I −K(i)

t C]P
(i)
t|t−1 (7.45)

K
(i)
t = P

(i)
t|t−1C

T (CP
(i)
t|t−1C

T +R)−1 (7.46)
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The algorithm and the state estimation process are represented in Figure 7.3 and Figure

7.4 respectively.

7.2.1.3. Pruning for the GMPHD. It can be observed from Equations 7.30 and 7.41

that at some time t, there exists (Jt−1(1 + J
(b′)
t ) + J

(b)
t )(1 + |Yt|) Gaussian components.

As when t increases, the number of these components increases; so we need a method

of dealing with the problem. Deleting the components with lower peaks is a way

of handling the problem. Moreover we can also approximate the two near located

peaks of Gaussians by one more strong Gaussian. The pruning algorithm including the

truncating and merging skills is represented in Figure 7.5.

7.2.2. EKFPHD Filter

We represented Extended Kalman filter to the nonlinear cases by using Taylor

series expansion in Section 4.2. The intuition is to linearize locally the transition and

the measurement model such that Kalman recursions can be applied and thereby

approximate the posterior by a Gaussian. We can also apply the intuition to the

GMPHD filter and adjust the filter with respect to the nonlinear scenarios. The

algorithm is represented in Figure 7.6 in which we call it EKFPHD filter.

7.2.3. UKFPHD Filter

Similar to the EKFPHD filter that is derived from the conventional Kalman filter

by applying the EKF formulation to it, UKFPHD is analogously derived by means

of UKF represented in Section 4.3. Basically, unlike the linearization of EKF, the

idea of UKF is to approximate the posterior using the unscented transformation of

some weighted points. Since the prediction and update equations of PHD consist of

Gaussians, we can approximate independent peaks of the equations by applying UKF

and EKF techniques. The algorithm is represented in Figure 7.7.
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1: INPUT:

2: 1.Components of Gaussian Mixture {w(i)
t−1,m

(i)
t−1, P

(i)
t−1}

Jt−1

i=1

3: 2.a measurement set Zt

4: Step 1:Prediction for target birth

5: i = 0

6: for j = 1 to J
(b)
t do

7: i = i+ 1, w
(i)
t|t−1 = w

(b,j)
t , m

(i)
t|t−1 = m

(b,j)
t , P

(i)
t|t−1 = P

(b,j)
t

8: end for

9: for j = 1 to J
(b′)
t do

10: for k = 1 to Jt−1 do

11: i = i+ 1, w
(i)
t|t−1 = w

(k)
t w

(b′,j)
t , m

(i)
t|t−1 = m

(b′,j)
t−1 +m

(k)
t−1, P

(i)
t|t−1 = P

(b′,j)
t + P

(k)
t−1

12: end for

13: end for

14: Step 2:Prediction for existing targets

15: for j = 1 to Jt−1 do

16: i = i+ 1, w
(i)
t|t−1 = pSw

(j)
t−1, m

(i)
t|t−1 = Am

(j)
t−1, P

(i)
t|t−1 = Q+AP

(j)
t−1A

T

17: end for

18: Jt|t−1 = i

19: Step 3:Construction of PHD Update Components

20: for j = 1 to Jt|t−1 do

21: η
(j)
t|t−1 = Cm

(j)
t|t−1,S

(j)
t = R+ CP

(j)
t|t−1C

T ,K
(j)
t = P

(j)
t|t−1C

T [S
(j)
t ]−1,P

(j)
t|t = [I −K(j)

t C]P
(j)
t|t−1

22: end for

23: Step 4:Update

24: for j = 1 to Jt|t−1 do

25: w
(j)
t = (1− pD)w

(j)
t|t−1, m

(j)
t = m

(j)
t|t−1, P

(j)
t = P

(j)
t|t−1

26: end for

27: k = 0

28: for ∀y ∈ Yt do

29: k = k + 1

30: for j = 1 to Jt|t−1 do

31: w
(kJt|t−1+j)
t = pDw

(j)
t|t−1N (y; η

(j)
t|t−1, S

(j)
t )

m
(kJt|t−1+j)
t = m

(j)
t|t−1 +K

(j)
t (y − η(j)t|t−1), P

(kJt|t−1+j)
t = P

(j)
t|t

32: end for

33: w
(kJt|t−1+j)
t =

w
(kJt|t−1+j)

t

fa(y)+
∑Jt|t−1

i=1 w
(kJt|t−1+i)

t

, for j=1,...,Jt|t−1

34: end for

35: Jt = kJt|t−1 + Jt|t−1

36: OUTPUT:{w(i)
t ,m

(i)
t , P

(i)
t }

Jt
i=1

Figure 7.3. GMPHD Filter Algorithm.
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1: INPUT:{w(i)
t ,m

(i)
t , P

(i)
t }

Jt
i=1

2: Set X̂t = ∅

3: for i = 1 to Jt do

4: if w
(i)
t > 0, 5 then

5: for j = 1 to ROUND(w
(i)
t ) do

6: X̂t = [X̂t,w
(i)
t ]

7: end for

8: end if

9: end for

10: OUTPUT:X̂t as the multitarget state estimate

Figure 7.4. GMPHD Filter State Estimation.

1: INPUT:

2: 1.Components of Gaussian Mixture {w(i)
t ,m

(i)
t , P

(i)
t }

Jt
i=1

3: 2.a truncation threshold τ

4: 3.a merging threshold M

5: 4.maximum allowable number of Gaussian terms Jmax

6: r = 0

7: I = {i = 1, ..., Jt|w(i)
t > τ}

8: repeat

9: r = r + 1

10: j = argmaxi∈Iw
(i)
t

11: L = {i ∈ I|(m(i)
t −m

(j)
t )T (P

(i)
t )−1(m

(i)
t −m

(j)
t ) ≤M}

12: w̃
(r)
t =

∑
i∈L w

(i)
t

13: m̃
(r)
t = 1

w̃
(r)
t

∑
i∈L w

(i)
t x

(i)
t

14: P̃
(r)
t = 1

w̃
(r)
t

∑
i∈L w

(i)
t (P

(i)
t + (m̃

(r)
t −m

(i)
t )(m̃

(r)
t −m

(i)
t )T )

15: I = I\L

16: until I = ∅

17: if r > Jmax then replace {w̃(i)
t , m̃

(i)
t , P̃

(i)
t }ri=1 by those of the Jmax Gaussians with largest

weights.

18: OUTPUT:{w̃(i)
t , m̃

(i)
t , P̃

(i)
t }ri=1 as pruned Gaussian components.

Figure 7.5. Pruning for GMPHD Filter.
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1: INPUT:

2: 1.Components of Gaussian Mixture {w(i)
t−1,m

(i)
t−1, P

(i)
t−1}

Jt−1

i=1

3: 2.a measurement set Zt

4: Step 1:Prediction for target birth

5: Follow Step 1 of GMPHD Algorithm

6: Step 2:Prediction for existing targets

7: for j = 1 to Jt−1 do

8: i = i+ 1, w
(i)
t|t−1 = pSw

(j)
t−1, m

(i)
t|t−1 = ft(m

(j)
t−1, 0)

P
(i)
t|t−1 = Gt−1QG

T
t−1 +At−1P

(j)
t−1A

T
t−1 where

At−1 =
∂ft(xt−1, 0)

∂xt−1

∣∣∣∣
xt−1=m

(j)
t−1

, Gt−1 =
∂ft(m

(j)
t−1, wt−1)

∂wt−1

∣∣∣∣∣
wt−1=0

9: end for

10: Jt|t−1 = i

11: Step 3:Construction of PHD Update Components

12: for j = 1 to Jt|t−1 do

13: η
(j)
t|t−1 = ht(m

(j)
t|t−1, 0),S

(j)
t = UtRU

T
t + CtP

(j)
t|t−1C

T
t

K
(j)
t = P

(j)
t|t−1C

T
t [S

(j)
t ]−1,P

(j)
t|t = [I −K(j)

t Ct]P
(j)
t|t−1 where

Ct =
∂ht(xt, 0)

∂xt

∣∣∣∣
xt=m

(j)

t|t−1

, Ut =
∂ht(m

(j)
t|t−1, vt)

∂vt

∣∣∣∣∣∣
vt=0

14: end for

15: Step 4:Update

16: Follow Step 4 of GMPHD Algorithm to obtain {w(i)
t ,m

(i)
t , P

(i)
t }

Jt
i=1

17: OUTPUT:{w(i)
t ,m

(i)
t , P

(i)
t }

Jt
i=1

Figure 7.6. EKFPHD Filter Algorithm.
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1: INPUT:

2: 1.Components of Gaussian Mixture {w(i)
t−1,m

(i)
t−1, P

(i)
t−1}

Jt−1

i=1

3: 2.a measurement set Zt

4: Step 1:Construction of target birth components

5: Follow Step 1 of GMPHD Algorithm

6: for j = 1 to i do

7: Set µ =

m(j)
t|t−1

0

, C =

P (j)
t|t−1 0

0 R


(We denote x0t−1, Pt−1|t−1 of unscented transformation in Section 4.3 by µ,C)

8: Use unscented transformation with mean µ and covariance C to generate a set of sigma points

and weights, denoted by {z(k)t , u(k)}Lk=0

9: Partition z
(k)
t = [(x

(k)
t|t−1)T , (v

(k)
t )T ]T , for k = 0, 1, ..., L

10: Compute y
(k)
t|t−1 = ht(x

(k)
t|t−1, v

(k)
t ), for k = 0, 1, ..., L

η
(j)
t|t−1 =

∑L
k=0 u

(k)y
(k)
t|t−1, S

(j)
t =

∑L
k=0 u

(k)(y
(k)
t|t−1 − η

(j)
t|t−1)(y

(k)
t|t−1 − η

(j)
t|t−1)T

G
(j)
t =

∑L
k=0 u

(k)(x
(k)
t|t−1 −m

(j)
t|t−1)(x

(k)
t|t−1 − η

(j)
t|t−1)T , K

(j)
t = G

(j)
t [S

(j)
t ]−1

P
(j)
t|t = P

(j)
t|t−1 −G

(j)
t [S

(j)
t ]−1[G

(j)
t ]T

11: end for

12: Step 2:Construction of existing target components

13: for j = 1 to Jt−1 do

14: i = i+ 1

15: w
(i)
t|t−1 = pSw

(j)
t−1

16: Set µ =


m

(i)
t−1

0

0

, C =


P

(i)
t−1 0 0

0 Q 0

0 0 R


17: Use unscented transformation with mean µ and covariance C to generate a set of sigma

points and weights, denoted by {z(k)t , u(k)}Lk=0

18: Partition z
(k)
t = [(x

(k)
t−1)T , (w

(k)
t−1)T , (v

(k)
t )T ]T , for k = 0, 1, ..., L

19: Compute x
(k)
t|t−1 = ft(x

(k)
t−1, w

(k)
t−1), for k = 0, 1, ..., L

y
(k)
t|t−1 = ht(x

(k)
t|t−1, v

(k)
t ), for k = 0, 1, ..., L

m
(i)
t|t−1 =

∑L
k=0 u

(k)x
(k)
t|t−1,P

(i)
t|t−1 =

∑L
k=0 u

(k)(x
(k)
t|t−1 −m

(j)
t|t−1)(x

(k)
t|t−1 −m

(j)
t|t−1)T

η
(i)
t|t−1 =

∑L
k=0 u

(k)y
(k)
t|t−1, S

(i)
t =

∑L
k=0 u

(k)(y
(k)
t|t−1 − η

(j)
t|t−1)(y

(k)
t|t−1 − η

(j)
t|t−1)T

G
(j)
t =

∑L
k=0 u

(k)(x
(k)
t|t−1 −m

(j)
t|t−1)(x

(k)
t|t−1 − η

(j)
t|t−1)T , K

(i)
t = G

(i)
t [S

(i)
t ]−1

P
(i)
t|t = P

(i)
t|t−1 −G

(i)
t [S

(i)
t ]−1[G

(i)
t ]T

20: end for

21: Jt|t−1 = i

22: Step 3:Update

23: Follow Step 4 of GMPHD Algorithm to obtain {w(i)
t ,m

(i)
t , P

(i)
t }

Jt
i=1

24: OUTPUT:{w(i)
t ,m

(i)
t , P

(i)
t }

Jt
i=1

Figure 7.7. UKFPHD Filter Algorithm.
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8. EXPERIMENTS AND RESULTS

In this chapter we represent the performance of the PHD filter under varying

receiver characteristics, target intensity and linearity conditions compared to a data

association technique, specifically global nearest neighbor data association. As a

performance metric we use OSPA Distance we define in Section 8.1. Then we

represent our experimental evaluation in two sections categorized according to the

linearity of the measurement model. Section 8.2 represents the performance of the

PHD filter for linear case and it also investigates how PHD filter is effected from the

variations in the receiver characteristic and target number variation parameters. In

this section we compare GMPHD with the KFGNN as a data association technique.

Then the following section represents the nonlinear case in which we investigate the

effect of the nonlinearity to both of the techniques. For the nonlinear case we extend

the comparison to EKFPHD, UKFPHD and ISMCPHD as implementation

techniques of the nonlinear PHD filters, on the other hand we use EKFGNN as a

data association method for comparison purposes.

8.1. OSPA Distance

OSPA distance [64] is a Wesserstein distance based metric consisting of two parts,

localization and cardinality errors. Informal definition can be expressed as the error

per target and formally can be defined as:

ē
(c)
p,loc(X, Y ) =

(
1

n
minπ∈Πn

m∑
i=1

d(c)(xi, yπ(i))
p

)1/p

(8.1)

ē
(c)
p,card(X, Y ) =

(
cp(n−m)

n

)1/p

(8.2)

ifm ≤ n, and ē
(c)
p,loc(X, Y ) = ē

(c)
p,loc(Y,X), ē

(c)
p,card(X, Y ) = ē

(c)
p,card(Y,X) else. The notation

is as follows: d(c)(x, y) = min(c, d(x, y)) is the distance between x and y cut off at

c > 0, d(x, y) is an arbitrary norm. Πk is the set of permutations on {1, 2, ..., k} for
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any k ∈ N = {1, 2, ...}. X = x1, ..., xm and Y = y1, ..., yn are state and estimated state

set. Here c and p are the parameters of the OSPA Metric. By increasing c, we look

for a correspondence in a larger space, along with increasing the penalty of miss, p

determines the corresponding norm. Throughout our experiments we use p = 2, c = 5

in the linear case and c = 20 in the nonlinear case.

8.2. Linear Model

In this section we try to find out how target number variation and receiver

characteristics effect KFGNN compared to GMPHD. Table 8.1 represents the domain

of each parameter and underlined values are their default values. Namely, if we want

to find out the effect of parameter x, then we declare other three parameters as

constants and set them their default values. In each experiment we use scenarios

consisting of 100 time intervals, then we get the average OSPA distance. Moreover, in

order to sweep the effects of the extremum scenarios, we run 30 Monte Carlo

simulations and average the averaged OSPA distance value again. Lastly, we assumed

that initially there are two targets present that are being tracked by the filter.

Table 8.1. Domain of Each Parameter for Linear Model Experiments.

Parameter

λFA 10 30 50 70

Pb 0.05 0.2 0.4 0.6

Ps 0.8 0.9 0.95 1

PD 0.6 0.8 0.95 1

8.2.1. Realization of the Filters

In this section we show an instance of the realization of both of the filter with the

default values of the parameters. Table 8.2 represents model of the linear environment.

In order to represent the model we use the default values in the model. However the
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parameters expressed above are not fixed throughout the experiments. By using the

Table 8.2. State Transition and Measurement Models of the Linear Scenario.

Transition Model Measurement Model

xit = Axit−1 + wt−1, yit =

 Cxit + vt , if detection occurs

∅ , if no detection

A=


1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1

 C =

 1 0 0 0

0 0 1 0



wt−1 ∼ N (0, Q), Q =


0.01 0 0 0

0 0.01 0 0

0 0 0.01 0

0 0 0 0.01

 vt ∼ N (0, R), R =

 0.1 0

0 0.1



xi0 = [X0, V0, X0, V0]T |ct| ∼ PO(λFA), λFA = 30

X0 ∼ U(−500, 500), V0 ∼ U(−5, 5) cit ∼ [U(−500, 500), U(−500, 500)]T

pb = 0.2, pS = 0.95 pD = 0.95

xt =
|tracks|⋃
k=1

xit yt =
|obs|⋃
k=1

yit

|ct|⋃
k=1

cit

expressed model, all the measurements generated are superimposed in Figure 8.1. That

is, both of the filters are applied to these measurements.

Results of the KFGNN filter and GMPHD filter are depicted in Figure 8.2 and

Figure 8.3 respectively. By just glancing at the resulting figures we can infer that

KFGNN has some latency for deciding about a target births and target deaths

compared to GMPHD. On the other hand GMPHD can decide some irrelevent

measurements as targets lasting just for one time interval. This is just because both

of the filters have totally different target birth strategy. That is, while KFGNN looks

for two measurements in four time intervals, GMPHD propagates a mixture of

gaussians and decides target if corresponding Gaussian peak exceeds threshold.

Figure 8.4 represents the resulting localization, cardinality and total OSPA distance
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All Measurements Superimposed for 100 Time Interval

Figure 8.1. The Measurements Generated According to the Model in Table 8.2.
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Figure 8.2. KFGNN Filtering of the Measurements in Figure 8.1.
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Figure 8.3. GMPHD Filtering of the Measurements in Figure 8.1.

comparison over time. With these default values of the parameters GMPHD performs

better than KFGNN by an OSPA distance of 1.82 compared to 2.35. In the following

section we see how OSPA distance is effected by changes in parameters.

8.2.2. Effects of the Parameters

In this section we see how OSPA distance changes when environmental and sensor

parameters are changed and try to decide in which circumstances we should prefer

which technique. As told before the parameters to be examined are λFA, Pb,Ps and

PD.

8.2.2.1. Receiver Characteristic Parameters: λFA and PD. As described in Chapter

6, PHD is an intensity function and may be effected by every measurements even if

they are clutters. However, data association techniques can discard most of the false

alarms by using gating strategies. In other words data association techniques just

care about the measurements that are in the gating regions and the number of

measurements outside the gating region does not effect the result. Thus, whereas
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Figure 8.4. OSPA Distance Comparison for Filters Over Time: Upper pair of figures

represent the localization and cardinality components of OSPA distance and the

below one is the total OSPA distance.

changes in false alarm intensity does not effect the data association techniques

significantly, the performance of the GMPHD filter degrades as shown in Figure 8.5.

Second parameter that we investigate in this subsection is the detection

probability of the radar. As expected, the performance of both of the filters improves

as PD increases, but in Figure 8.6 we notice that better detection ratios contributes

GMPHD filter more than KFGNN filter.

8.2.2.2. Target Intensity Parameters: PB and PS. In this section we investigate how a

variation in the target intensity effects the performance of the filters. Basically, target

number variation is effected by two parameters: PB and PS. Higher PB values and

lower PS values will result in more variation on the target number in time. Figures 8.7

and 8.8 depict the behaviors of the filters under different PB and PS values. Naturally

each existing target take some time for both of the filters to be labelled as a new

target, but we see in Figure 8.7 that PHD filter is more capable of rapid detection of

new targets.
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Figure 8.5. OSPA Distance Comparison for Varying λFA.
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Figure 8.6. OSPA Distance Comparison for Varying PD.
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Figure 8.7. OSPA Distance Comparison for Varying PB.

Moreover in Figure 8.8, it is depicted that if the targets in the scene more tend

to disappear (which means that lower PS), then the performance of KFGNN degrades.

On the other hand, PHD filter is not significantly effected by PS parameter. As a

result of these two paramater investigation, we can say that the variation of the target

number effects KFGNN filter more than GMPHD filter.

8.2.3. Linear Regression Analysis

In previous section, we analyzed the effects of the four parameters by fixing the

values of all other parameters. In this section we are trying to understand whether the

results that we derived in previous section are valid if all parameters are free (of course

each parameter is free only within its limits). Thus we construct the following linear

regression model.

ē = x1.PB + x2.PS + x3.PD + x4.λFA + x5 (8.3)
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Figure 8.8. OSPA Distance Comparison for Varying PS.

In order to find out the regression coefficients, we simulate both of the filters with every

combination of the values depicted in Table 8.1 (in total 44 = 256 four tuples) and we

noted the resulting OSPA distance for the corresponding technique in vector ~̄e where

for each tecnique ~̄e is 256 × 1 vector. Then the problem has the form of solving the

following equation by using minimum least squares technique.

~̄e =



0.05 0.80 0.60 10 1

0.05 0.80 0.60 30 1

0.05 0.80 0.60 50 1
...

...
...

...
...

0.60 1 1 30 1

0.60 1 1 50 1

0.60 1 1 70 1


256×5



x1

x2

x3

x4

x5


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If ~xGNN and ~xPHD are the vectors holding the regression coefficients, resulting values

are as follows:

~xGNN =



2.6228

−3.2747

−4.2097

−0.0002

8.7823


, ~xPHD =



0.8113

−0.1328

−5.1112

0.0223

6.2050


(8.4)

Then we can deduce the following results:

• For PB; Since 2.6228>0.8113>0, both of the techniques degrades, if Pb increases;

but KFGNN degrades more rapidly than GMPHD.

• For PS; Since −3.2747< − 0.1328<0, both of the techniques improves, if Ps

increases. On the other hand, the improvement of KFGNN is significant but for

GMPHD the improvement is very slight since the value is close to 0. So we can

say that GMPHD filter is not effected significantly from Ps.

• For PD; Since −5.1112< − 4.2097<0, both of the techniques improves, if PD

increases; but GMPHD improves more rapidly than KFGNN.

• For λFA; Since 0.0223>− 0.0002 ≈ 0, GMPHD degrades when λFA increases but

KFGNN is not effected by the clutter rate parameter. Even if the value 0.0223

seems to close 0, note that the domain of λFA is not [0, 1] like other parameters,

its domain is 10, 30, 50, 70, thus 0.0223 is a sufficiently large value to effect the

performance of the filter.

These deductions from the regression analysis match with the results that we

depicted on Figures 8.5, 8.6, 8.7 and 8.8 literally.

Since we know that least squares estimation is an approximation with some error,

we also provide the 2− norm of the 256× 1 error vectors, erri, i = GNN or PHD, in
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order to show the quality of the estimation as follows:

erri = ~̄ie−



0.05 0.80 0.60 10 1

0.05 0.80 0.60 30 1

0.05 0.80 0.60 50 1
...

...
...

...
...

0.60 1 1 30 1

0.60 1 1 50 1

0.60 1 1 70 1





x1

x2

x3

x4

x5


i

(8.5)

‖errGNN‖ = 5.3975 (8.6)

‖errPHD‖ = 4.4307 (8.7)

(8.8)

2 − norm of the error vectors encapsulates all the error of 256 distinct simulations.

So error per simulation is 0.0173 and 0.0211 for GMPHD and KFGNN respectively.

These values can be interpreted as small errors and the model is said to be verified by

considering these small errors.

Before delving into the nonlinear model case, we provide a table that encapsulates

entire results that we derived for the linear case in Table 8.3.

Table 8.3. The Results of the Linear Model Experiments.

Parameters KFGNN GMPHD Result

ROC

Parameters

λFA Increase No Effect
Degrade

Significantly
Worse receivers

degrade PHD filter

more rapidlyPD Decrease Degrade
Degrade

more

Target

Intensity

Parameters

PB Increase
Degrade

Significantly

Slightly

Degrade
Variation in target

intensity degrades GNN

filter more rapidlyPS Decrease
Degrade

Significantly
No Effect
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8.3. Nonlinear Model

In this section we investigate how nonlinearity effects the performance of the

nonlinear extensions of the PHD filter and GNN data association techniques. Rather

than analyzing the effect of the parameters, we fix the parameters to values which we

have equal OSPA distance showing that their linear expected performance is equal too.

The transition and measurement models are represented in Table 8.4. Different from

the linear case, the measurement model estimates the noisy distance, that is Euclidean

norm, and noisy azimuthal angle, that is a function of arctangent. Moreover, since these

values need to be calculated depending upon a radar, we included a radar at (0, 0). In

Section 8.3.1, we represent the realization of each technique on the same data set and

depict the effect of the nonlinearity by comparing the average OSPA distances of each

technique. Similar to the linear case we run 30 Monte Carlo simulations, scenarios

consist of 100 time intervals and assumed that initially there are five targets present

that are being tracked by the filter.

Table 8.4. State Transition and Measurement Models of the Nonlinear Scenario.

Transition Model Measurement Model

xit = Axit−1 + wt−1, yit =

 h(xit) + vt , if detection occurs

∅ , if no detection

A=


1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1

 h(xit) =

 ‖ [xit,1 xit,3]T −RadarLoc‖
arctan(

xit,3−RadarLoc2
xit,1−RadarLoc1

)



wt−1 ∼ N (0, Q), Q =


0.01 0 0 0

0 0.01 0 0

0 0 0.01 0

0 0 0 0.01

 vt ∼ N (0, R), R =

 10 0

0 π
180

2

, RadarLoc=

 0

0



xi0 = [X0, V0, X0, V0]T |ct| ∼ PO(λFA), λFA = 42

X0 ∼ U(−500, 500), V0 ∼ U(−5, 5) cit ∼

 U(0, RadarRange)

U(0, 2π)

 , RadarRange = 1000

pb = 0.2, pS = 0.95 pD = 0.95

xt =
|tracks|⋃
k=1

xit yt =
|obs|⋃
k=1

yit

|ct|⋃
k=1

cit
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8.3.1. Realization of the Filters

The filters that we take into account as a RFS based technique are EKFPHD,

UKFPHD and ISMCPHD, on the other hand as a data association method we use

EKFGNN for comparison purposes. You may see the superimposed measurements

generated according to the measurement model of Table 8.4 in Figure 8.9. Results of

the EKFPHD, UKFPHD, ISMCPHD filter and EKFGNN filter are depicted in Figure

8.10, Figure 8.11, Figure 8.12 and Figure 8.13 respectively. For ISMCPHD, we use

η = 800 and ρ = 200 as the number of particles per persisting target and number of

particles for investigating a measurement if it ensues a birth in our experiments. Also

the the threshold of the RFS based techniques for labeling a target is set to 0.95. In

order to depict the performance of each implementation technique, we provide Figure

8.14. For this specific experiment we observe that nonlinearity effects the Kalman

filter based implementation methods more than Data Association techniques. However

ISMCPHD performs better than other Kalman filter based methods and even as good

as EKFGNN.

-1000 -500 0 500 1000

x

-1000

-500

0

500

1000

y

All Measurements Superimposed for 100 Time Interval

Figure 8.9. The Measurements Generated According to the Model in Table 8.4.



98

-1000 -500 0 500 1000

x

-1000

-500

0

500

1000

y

EKFPHD State Estimation

State
Measurement
Estimated Position

Figure 8.10. EKFPHD Filtering of the Measurements in Figure 8.9.
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Figure 8.11. UKFPHD Filtering of the Measurements in Figure 8.9.
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Figure 8.12. ISMCPHD Filtering of the Measurements in Figure 8.9.
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Figure 8.13. EKFGNN Filtering of the Measurements in Figure 8.9.
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Figure 8.14. OSPA Distance Comparison of Realization Techniques for Nonlinear

Implementations Over Time: Dashed lines represent the average of 100 OSPA

distance values.

There is one more point we address in this section about ISMCPHD. It is known

that as a result of central limit theorem and law of large numbers, the more particles

generated, the better the performance of ISMCPHD will be. So, let’s consider setting

the ρ = 500 and η = 2000 to improve the performance of ISMCPHD. The resulting

OSPA distance compared to GNN is depicted in Figure 8.15. Compared to 15, OSPA

distance of ISMCPHD decreases to 14.1 when we use more particles and this makes it

the most precise algorithm among all. Therefore we can conclude that if we have enough

computation that allows us to propagate the particles in real time, ISMCPHD performs

better than all the other realization techniques and data association techniques.

8.3.2. Effect of the Nonlinearity

While the previous section describe each of realization technique, in this section

we provide a general comparative analysis with 30 MC simulations of each technique.

In Figure 8.16 we see that all of the RFS based techniques performs worse than

EKFGNN. However from the previous section we know that SMC based

implementation of PHD filter can be improved by allocating more particles. Lastly

we also observe that SMC based and KF based implementation methods have similar
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Figure 8.15. Effect of Using More Particles on ISMCPHD: Using more particles on

ISMCPHD improves the performance by decrementing OSPA distance.

patterns on the same measurement set, on the other hand the EKFGNN can be

distinguished easily.
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Figure 8.16. Effect of Nonlinearity on the Filters.
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9. CONCLUSION AND FUTURE WORK

In this thesis, after we explained the basic notions of target tracking and data

association based multitarget tracking methods, we provided an RFS based method,

probability hypothesis density filter, by considering its all of the implementation

techniques. Then we performed experiments in order to find out how PHD filter is

effected from the receiver characteristics, variation in target number and nonlinearity

compared to a data association technique, particularly global nearest neighbor. The

result that we have is if signal to noise ratio is high enough, namely clutter rate is low

and detection probability is high, PHD filter has better performance. On the other

hand the performance of the PHD filter degrades significantly when clutter rate

increases but GNN is not effected from this parameter. For the variation of target

number, we observed that PHD filter has better performance and is not effected

significantly compared to GNN technique. Lastly, for the nonlinearity analysis we

observed that nonlinearity effects KF based realization techniques better, while

ISMCPHD method may result in better performance than GNN technique if we have

such a high computational power that can propagate a huge number of particles in

real time.

For further research topics, although the total OSPA distance is suitable for

multitarget tracking, cardinality and localization error components may be improved by

including the extracted states that are out of the cut distance into the cardinality error,

but not in localization error component. Therefore, localization error can represent

the precision of the filter and cardinality error may be a metric for measuring the false

alarm output rate of the filter. Secondly, as we observed in the experiments, RFS based

realization methods have high false alarm rate that are scattered all around the radar

scope but they can detect almost every target in the scene. Thus if we suggest a scheme

to sweep out the scattered false alarms by imposing a gating strategy, then they tend

to have better performances. But if we impose a gating strategy then we again need

some rules for target birth and target death as in data association techniques. Luckily,

RFS based techniques can decide target deaths inherently by considering the decrease
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in the PHD function. On the other hand, for target births we can use the particle

approximation strategy of the ISMCPHD. Since we just need particles for detecting the

target births, then the computational power we need will not be so high as the original

ISMCPHD. So, in order to sweep the false alarms we will try to combine the three

different methodology. Thirdly, nowadays the most popular RFS based methodology

has become the Multi-Bernoulli (MeMBeR) filter that can approximate directly to

multitarget filtering density, not the first moment as in the PHD filter case. Therefore,

we plan to lead our research into MeMBeR filter.
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