
ARGUMENTATION FOR PROTECTING USERS’ PRIVACY IN ONLINE SOCIAL

NETWORKS

by

Nefise Gizem Yağlıkçı

B.S., Computer Engineering, TOBB University of Economics and Technology, 2014

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2016

iii

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to my thesis supervisor Prof. Pınar

Yolum. I have learned so much during the two years that I have worked with her. She

was always patient with me and encouraged me. I can sincerely say that she is one of

the people who inspires me in life.

I would like to thank my thesis committee members Assist. Prof. Albert Ali

Salah and Assist. Prof. Reyhan Aydoğan for accepting to be in my thesis committee.

I would also like to thank Nadin Kökciyan for her support and valuable contributions

to this work.

I have met with great people in the Computer Engineering Department. I would

like to thank Berkant Kepez, Dilara Keküllüoğlu, Binnur Görer, Çağıl Uluşahin, Okan

Aşık, Arda Çelebi, İlke Gültekin, Metehan Doyran, Cihan Camgöz, Çağatay Yıldız,

Taha Ceritli, Alper Kamil Bozkurt, Hazal Koptagel and Yiğit Yıldırım for their valu-

able friendship and support.

I would also like to thank my dear friends Harun Serçe, Betül Kekik, Şeyda

Çetintaş, Ayşegül Şahin, Merve Kaştan, Alena Beyer, Ahmet Gündüz, Ramazan Metkin

and Çağlar Bayraktar for being a part of my life. I am grateful for their friendship and

support.

Finally, I am most grateful to my dear parents and my brother for their love and

support. I would not have all of the great things that I have today without them.

This work has been supported by the Scientific and Technological Research Coun-

cil of Turkey (TUBİTAK) under grant 113E543.

iv

ABSTRACT

ARGUMENTATION FOR PROTECTING USERS’

PRIVACY IN ONLINE SOCIAL NETWORKS

Preserving privacy in online social networks (OSNs) is becoming increasingly

important as more people expose their personal information in those networks. A

social network user can easily share a post concerning other users. However, privacy

constraints of these relevant users may be different from each other so that privacy

violations occur. Therefore, all relevant users must be able to engage in a discussion

and express themselves, so that they can protect their privacy.

We propose PriArg to enable relevant users discuss on a post using Assumption-

Based Argumentation (ABA). We present each user in an OSN with an agent, which is

equipped with an ontology. Ontologies involve the social network knowledge of users as

well as their privacy constraints. Hence, agents are fully aware of the privacy constraints

of their user and can act on behalf of them. When an agent wants to share a post, an

argumentation session starts between the agent and other relevant agents. They provide

each other arguments to express themselves and to convince other agents that their

claim is true. At the end of the argumentation, we use an ABA engine to find whether

sharing the post is justified according to the provided arguments. Agents may not have

necessary information in their ontology to support their arguments. In this case, they

can ask other agents in the social network for information. We evaluate our approach

by showing its applicability with the real world scenarios. Moreover, we conduct a

survey and an interview to compare the PriArg results with user expectations. At last,

we compare the related work in the literature with PriArg.

v

ÖZET

ÇEVRİMİÇİ SOSYAL AĞLARDA KULLANICILARIN

MAHREMİYETİNİN MÜNAKAŞA İLE KORUNMASI

Çevrim içi sosyal ağlarda mahremiyetin korunması, bu ağlarda kişisel bilgi-

lerini paylaşan insanların çoğalmasıyla daha da önemli hale gelmektedir. Herhangi

bir sosyal ağ kullanıcısı kolaylıkla başka bir kullanıcıyı ilgilendiren bir paylaşımda

blunabilir. Fakat, paylaşım ile bağlantılı olan kullanıcıların mahremiyet kısıtları bir-

birinden farklılık gösterebilir ve bu durum mahremiyet ihlallerine neden olabilir. Bu

nedenle tüm bağlantılı kullanıcılar, mahremiyetlerini korumak için kendi aralarında bir

müzakere gerçekleştirmeli ve kendilerini ifade etmelidir. Bu çalışma, Varsayım-Tabanlı

Münakaşa kullanarak kullanıcıların bir paylaşım üzerine müzakere etmelerini sağlayan

PriArg’ı sunmaktadır. Bir çevrimiçi sosyal ağdaki her kullanıcı bir etmen tarafından

temsil edilmektedir. Her bir etmen kullanıcıların sahip olduğu bilgileri ve mahremiyet

kısıtlarını içeren bir ontoloji ile donatılmıştır. Bu sayede, her etmen kendi kullanıcısının

mahremiyet kısıtlarından haberdardır ve onun yerine hareket edebilir. Bir etmen bir

paylaşım yapmak istediğinde, bu etmen ile diğer tüm bağlantılı etmenler arasında bir

münakaşa gerçekleşir. Etmenler, kendilerini ifade edebilmek ve karşılarındaki etmeni

ikna edebilmek için birbirlerine argümanlar sağlarlar. Münakaşa sonunda paylaşımın

yapılıp yapılmamasına karar vermek için, münakaşa sırasında sağlanan tüm bilgiler

alınır ve bir Varsayım-Tabanlı Münakaşa motoruna verilir. Etmenler gerek duydukları

her bilgiyi kendi ontolojilerinde bulamayabilirler. Bu durumda, sosyal ağ içerisindeki

diğer etmenlere danışabilirler. Çalışmamız, PriArg’ın gerçek dünya senaryolarına uygu-

lanabilirliği gösterilerek değerlendirilmiştir. Bunun yanısıra bir kişisel mülakat ve bir

çevrim içi anket yürütülerek PriArg sonuçları kullanıcı beklentileri ile karşılaştırılmıştır.

Son olarak, literatürde bulunan benzer çalışmalar ve PriArg karşılaştırılmıştır.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . x

LIST OF SYMBOLS . xii

LIST OF ACRONYMS/ABBREVIATIONS . xiv

1. INTRODUCTION . 1

2. AGENT-BASED REPRESENTATION OF SOCIAL NETWORKS 7

2.1. Social Network Ontology . 9

2.2. Semantic Rules . 10

2.3. Reasoning . 11

3. ARGUMENTATION FOR PRIVACY IN ONLINE SOCIAL NETWORKS . 13

3.1. Assumption-Based Argumentation for Privacy 14

3.2. Semantics for ABA . 18

4. DISTRIBUTED ARGUMENTATION . 22

4.1. Attacking Postrequests . 23

4.2. An Algorithm for Argumentation . 25

5. IMPLEMENTATION . 30

6. EVALUATION . 38

6.1. Testing Real World Scenarios . 38

6.1.1. A Walk-through of PriArg . 38

6.1.2. Additional Scenarios . 40

6.2. User Expectations and PriArg . 50

6.2.1. Personal Interviews . 51

6.2.2. Online Survey . 53

6.2.3. Comparison of User Results with PriArg 54

6.2.4. Qualitative Evaluation . 55

7. DISCUSSION . 58

vii

REFERENCES . 67

APPENDIX A: APPLICATION . 73

viii

LIST OF FIGURES

Figure 3.1. Deduction trees for arguments a3, b5, b2 and b3 in Scenario 1. . . . 16

Figure 3.2. Attacks between arguments for Scenario 1. 18

Figure 4.1. Distributed model of PriArg for Agent A and Agent B. 22

Figure 4.2. PrepareAttack (s) Algorithm. 27

Figure 5.1. Ontology model created with Protégé. Concepts, object properties

and data properties respectively. 31

Figure 5.2. SWRL rules created with Protégé. 31

Figure 5.3. Object model of a post request. 32

Figure 5.4. Web screenshot of PriArg. 33

Figure 5.5. ABA file created by our system for Scenario 1. 36

Figure 6.1. Deduction trees for the arguments b2, a3 and a2 in Scenario 2 re-

spectively. 43

Figure 6.2. Attacks between arguments for Scenario 2. 43

Figure 6.3. Deduction trees for the arguments a2, b3 and a3 in Scenario 3. . . 46

Figure 6.4. Attacks between arguments for Scenario 3. 47

ix

Figure 6.5. Deduction trees for the arguments c2, and b3 in Scenario 4. 50

Figure 6.6. Attacks between arguments for Scenario 4. 50

Figure A.1. Demographic questions for Personal Interview and Online Survey . 73

Figure A.2. Provided scenarios for Personal Interview 74

x

LIST OF TABLES

Table 1.1. Violation categories of current privacy policies. 2

Table 2.1. Semantic rules in Scenario 1 as SWRL rules. 11

Table 3.1. ABA specification of Scenario 1. 15

Table 3.2. Arguments derived from Scenario 1. 17

Table 3.3. Justified arguments in Scenario 1 according to different semantics. 19

Table 6.1. Cumulative iteration steps for Scenario 1. 38

Table 6.2. Semantic rules in Scenario 2 as SWRL rules. 41

Table 6.3. ABA specification of Scenario 2. 42

Table 6.4. Arguments derived from Scenario 2. 42

Table 6.5. Semantic rules in Scenario 3 as SWRL rules. 44

Table 6.6. ABA specification of Scenario 3. 45

Table 6.7. Arguments derived from Scenario 3. 46

Table 6.8. Semantic rules in Scenario 4 as SWRL rules. 47

Table 6.9. ABA specification of Scenario 4. 48

xi

Table 6.10. Arguments derived from Scenario 4. 49

Table 6.11. Personal Interview and Online Survey results. 51

Table 6.12. Dialogue between Alice and Bob for Form 2, Form 3, and Form 4

of Scenario 1. 53

Table 6.13. Comparison of privacy criteria. 56

xii

LIST OF SYMBOLS

a Assumption

A Assumption set

aList List of predefined assumption predicates

asX Xth assumption

C Contrary set

C(a) Contrary of an assumption a

contraryList List of the contraries

cX Xth contrary mapping

fList List of predefined fact predicates

i contrary of predicate p′

I Inference Rules

i Instance

iList List of instances

IAX
Alice’s Xth inference rule

IBX
Bob’s Xth inference rule

ICX
Carol’s Xth inference rule

L Language that is used for Assumption-Based Argumentation

o Ontology

p Predicate

P Privacy Rules

PAX
Alice’s Xth privacy rule

PBX
Bob’s Xth privacy rule

PCX
Carol’s Xth privacy rule

R Rule set

rList List of rules

rX Xth fact

s Received case

s′ Response case

xiii

status Status of a case

xiv

LIST OF ACRONYMS/ABBREVIATIONS

AA Argumentation Framework

ABA Assumption-Based Argumentation

ADF Argumentation Decision Framework

API Application Programming Interface

CoPE Collaborative Privacy Management

JSON JavaScript Object Notation

MCDM Multi Criteria Decision Making

OSNs Online Social Networks

OWL Web Ontology Language

PDP Policy Decision Point

PEP Policy Enforcement Point

PriArg Privacy Argumentation Framework

PriNego Privacy Negotiation Framework

SWRL Semantic Web Rule Language

1

1. INTRODUCTION

Online Social Networks (OSNs) are web-based services, which enable individuals

to express themselves with an identity referred as profile, build connections with other

individuals and view the information of others in the system [1]. OSNs gained a rapid

popularity with the last decade as millions of people easily communicate from all over

the world. The success of these social networks depends heavily on their popularity

and on the amount of user data they have. Therefore, most of them encourage users

to share more information about themselves and to have relations with more people [2]

[3] [4]. Social networks generally enable users to have a profile to express themselves.

A user can share her personal information such as her age, gender, nationality etc.

Additionally, she can share posts such as photographs, videos, personal preferences,

texts and locations. Even though there exists exceptions, users generally reveal their

true identities within these profiles. Therefore, the information that they provide can be

used by online crooks, cyberbullies or stalkers to abuse them [4]. Published information

of users may cause harm even though there are no malicious users. In 2007, Sean Lane

bought a diamond ring for his future wife. Even though he revealed no information

about it, Facebook’s Beacon feature broadcast this information in the social network

and ruined the surprise. As a result, Facebook faced a lawsuit regarding privacy in the

social media. Similar scenarios have caused people to lose their jobs [5] or court cases

because of the information that is revealed unintended users. Moreover, information

in the social networks has been used for job screening [6] and student monitoring [7] as

well as behaviour tracking and even for government funded monitoring [8] [9]. These

examples show how online social networks brought privacy concerns with it. Privacy

is considered as one’s right to control when, where and how her information is revealed

to an audience [10]. A mechanism, which prevents unwanted information exposure is

needed in OSNs to protect the privacy of users.

Privacy violations can occur in different ways. Kokciyan categorizes the privacy

violations in a social network as in Table 1.1 [11]. In a social network, a post related to

a user can be shared either by the user herself or by another user in the social network.

2

Table 1.1. Violation categories of current privacy policies.

No Inference Inference

User

(i) User causes a violation herself, (ii) User shares a post that

since she cannot control the privacy indirectly violates her privacy

settings or the OSNs reveal the user

information without her consent

Others

(iii) Other users in the social network (iv) Other users share a post

share a post of the user that that indirectly violates her

directly violates her privacy privacy

Therefore, the user or another user can cause the violation. Another parameter to

categorize the violation is directly or indirectly revealing the private information. Users

can directly reach the information from a post or can make inferences based on the

direct information. Remember the Beacon feature of Facebook, which revealed the

information without user knowledge. The user himself gave the information into the

system and the OSN revealed it without user confirmation. Audience did not use

inference to reach private information. Hence, violation belongs to the category (i).

Social network sites generally provide users with privacy policies. These policies

describe why the information of a user is collected, how it will be protected and how it

will be shared. However, current privacy policies make it harder for a user to protect

her privacy [12]. There are several reasons for that. Most of the time, it is cumbersome

for a user to completely follow and understand these policies. Therefore, users usually

are not aware of the privacy policies of social networks. In addition to their readability

problem, policies change time to time. Hence, a social network user has to constantly

follow the privacy policies to prevent possible violations. Being not aware of the privacy

policies may cause a user to reveal her information to unintended users as in category

(i).

Imagine a user who is fully aware of the privacy policy of a social network. It

is still not certain that this user’s privacy will be protected. Users need customized

privacy constraints for different contents and audience. For example, a user may not

3

want to share her party pictures with her family, since she thinks they are embarrassing

or she may not want to show her family pictures to her colleagues as she wants to keep

her private life separate. On the contrary, another user may feel okay to share her

pictures with all of the users in the social network. Different requirements of users in

the social network call for customized privacy policies. However, in the current social

networks users are not available to define their own privacy constraints. Instead, they

choose from the privacy constraints that the OSN provides. For example, a user can

set the audience of a post to friends, public, only me etc. These privacy constraints are

static, which means that they cannot be changed automatically. Therefore, each time

that a user wants to make a change, she has to update the settings manually. Further,

she has to make these changes for all of the posts, which are considered by her as of the

same type. For example, if there are two party pictures of a user, she cannot simply

tell the OSN to apply the same constraints for both pictures. Instead, she has to make

the same settings again.

Handling the privacy policies of social networks manually is a frustrating challenge

for users. Considering the number of posts that are shared in the social networks every

day, it is implausible to think that a user can follow and resolve all of the privacy

violations. Therefore, an intelligent system that is aware of the privacy constraints of

the user and can automatically act on behalf of them is needed.

A user’s privacy may also be violated with the indirect information that is inferred

from a post. Imagine a scenario where a user shared her picture in front of the tower

of Pisa. Even though, the user did not put a location tag into the picture, her location

will be understood by the audience (category (ii)). Therefore, privacy policies must

also handle the violations that occur because of the inference mechanisms of users.

Social networks are structured as they enable users to express themselves and

communicate with each other freely. However, most of the times users share posts that

are not only concerning themselves. There may exist information in a post concerning

other users. For example, when a user tags another user in a picture, she reveals the

identity of that user in the social network (category (iii)). Moreover, when another

4

user sees the picture, she infers that these users are friends (category (iv)). For these

reasons, privacy of the other related users also must be taken into account. We refer

all of the users who are somehow related to the post as relevant users. Having more

than one relevant user for a post brings the challenge of satisfying the constraints

of each user. One approach may be applying the constraints of all relevant users to

the post. However, most of the times privacy constraints of different users conflict

with each other. Hence, applying all of the constraints may also cause a privacy

violation. Another approach may be using a simple voting mechanism and applying

the constraints with the most votes. Even though this approach solves the conflict

problem, the less voted constraints will not be satisfied and there will again occur a

privacy violation. For those reasons, users need a mechanism where all of them are

able to contribute to the resulting policy and satisfied with the result. Note that a

user can be satisfied with the resulting policy either when her privacy constraints are

fulfilled or she is somehow convinced that her privacy constraints are unnecessary.

Current social networks do not let users discuss a post before sharing it. Hence,

if a user is somehow related to a post, she does not have a right to express her concerns

about the post before realizing its existence in the social network. Moreover, there is no

mechanism for the user to directly intervene the post after she realizes its existence. The

user can either ask the post owner to remove it or can complain to the social network

administration about it. Even though she manages to remove the post, meanwhile

other users in the social network will be able to see it. Hence, the privacy of the user

will be violated. For this reason, a privacy protection mechanism must enable relevant

agents to come to an agreement before the picture is revealed in an OSN.

A recent study shows that most users would have not share a post if they knew

that it would violate the privacy of their friends [13]. This shows the need of a discussion

where users can exchange their ideas and decide whether to share a post or not. Further,

the discussion has to be conducted before the post is put up online. Several approaches

in the literature follows this idea. Squicciarini et al. propose a collaborative approach

for users to build privacy policies together [14]. However, in OSNs it is not plausible

to expect users to handle the privacy policy of each post manually. Hence, users need

5

an automatic system, which handles the privacy settings for them. Mester et al. [15]

and Such and Rovatsos [16] benefit from agents, which are computational mechanisms

that can perceive, reason and act. Each agent represents a user in the social network

and acts on behalf of the user. They propose negotiation to enable agents to discuss

on a post and come to an agreement. However, agents are not able to question each

other’s claims. They accept the provided information as they are.

We propose an approach, which enables relevant users to discuss a post before it

is revealed in the social network. Users together decide whether to share the post or

not. We represent each user in the social network with an agent to take the burden

of users. Each agent in the system is equipped with an ontology to represent the

knowledge of the user. Moreover, agents use semantic rules to express the privacy

constraints of their user. Agents conduct the discussion by using Assumption-Based

Argumentation (ABA). When an agent wants to share a post, it finds the other

relevant agents and starts an argumentation session. During the argumentation, agents

provide arguments to each other to express their ideas. These arguments are created

based on the information in their ontology. If an agent cannot find the necessary

information in its ontology to create an argument, it can ask other agents in the social

network for that knowledge. When an agent disagrees with another agent, it creates

an argument, which rebuts (i.e., attacks) the arguments of the other agent. In that

way, an agent can convince another agent that its claim is not true. Argumentation

provides different semantics to calculate the justified arguments. Hence, it is able to

handle the inconsistencies between different arguments. Moreover, since arguments

are created based on the information of the agents, argumentation enables agents to

understand why an argument is justified. At the end of the argumentation, we check

if the post can be shared by using an ABA engine, abagraph [17].

Users need to be able to control their privacy policies to prevent any privacy

violations. Current social networks provide users several options as privacy constraints

but do not let them to create their own. Moreover, it is frustrating for users to follow

and understand these policies. In our approach, semantic rules enable agents to create

understandable policies. For example, an agent is able to create a semantic rule, which

6

indicates that a picture should not be shared, if it is taken in a party. In this example,

the agent creates a customized rule for a specific situation. Moreover, the rule is

generalized for all party pictures. Thus, the agent does not need to ask its user for a

privacy setting for each party picture. Users can benefit from the semantic rules also

to prevent the violations that occur because of the inference. For example, a user may

create an inference rule stating that a picture reveals the friendship relation of users if

they are both tagged in it. Then, her agent can reject all of the pictures, which reveal

the friendship relation of the user.

Chapter 2 describes our semantic agent and how we represent the social network.

Chapter 3 explains the Assumption-Based Argumentation and its usage in the privacy

context. Chapter 4 describes our approach PriArg and explains how argumentation

is conducted with our algorithm. Chapter 5 describes the implementation of PriArg.

Chapter 6 evaluates PriArg by following three different approaches. First, it shows

the applicability of PriArg with real world scenarios. Second, it provides an online

survey and a personal interview to compare the PriArg results with user expectations.

At last, it makes a qualitative comparison on PriArg and three most related works

in the literature. Chapter 7 explains the related works in the literature and makes a

comparison.

7

2. AGENT-BASED REPRESENTATION OF SOCIAL

NETWORKS

It is possible for any user in an online social network to share a content relevant to

other users. In this case, the content has more than one owner and privacy constraints

of all users must be taken into account to prevent possible violations. One solution

may be applying privacy constraints of all users to the post. However, each owner may

have a different privacy setting for that post. To handle this issue, a mechanism is

needed for users to express their privacy concerns and to communicate with each other

to come to an agreement.

Consider the following scenarios where Alice wants to share a picture of Bob in a

social network. The picture shows Bob with a wristband, which is obtained from the

Oktoberfest.

Scenario 1. Form 1: Alice shares the post without consulting Bob.

Scenario 1. Form 2: Alice consults Bob about the post. Bob does not want his

attendance to a festival to be known by others. He states that the wristband is given

from the Oktoberfest and thinks that it is a unique object. Thus, he claims that the

wristband will signal his attendance to the Oktoberfest and refuses to share the post.

Scenario 1. Form 3: Following Form 2, Alice claims that the wristband can also be

found in a shop named Gifty. Thus, it is not unique and does not necessarily implies

Bob’s attendance to the Oktoberfest. Therefore, there is no harm to share the post.

Scenario 1. Form 4: Following Form 3, Bob does not have any information to support

his claim. Thus, he consults another friend; Carol in the social network. Carol suggest

Bob to check if the website of Gifty can be reached. Bob checks the website and sees

it cannot be reached. As a result, he comes to conclusion that Gifty is closed. Hence,

8

the post should not be shared.

Most of the current social networks work as in Form 1. Content owners share a

post without consulting relevant users. It is possible for a sensitive user to violate other

users’ privacy just as much as a careless user. Even though sensitive user cares about

other users’ privacy, she may not be aware of the privacy constraints of others and may

not see a harm to share the post. This shows the need for a communication mechanism

between users. Negotiation approaches in the literature [15, 16] can partially handle

Form 2, as they enable requester agent to consult other relevant agents and get their

response. However, these approaches are not sufficient to provide a detailed reason

behind a response. Mester et al. enables relevant agents to give partial reasons such as

the audience or the date of the post etc. Similarly, in the work of Such and Rovatsos

agents only give the audience as their reason. However, agents need to be able to give

more detailed reasons to convince the other agent. Moreover, these approaches mostly

focus on coming to an agreement and do not enable agents to question other agents’

actions. In Form 2, Bob gives a detailed reason for rejecting the post. He explains

why the post is in the Festival context. Thus, Alice can check if the reasons of Bob

are reliable and can be convinced by these reasons instead of directly accepting Bob’s

rejection. Form 3 and Form 4 show the situations where the users do not agree with

each other. Hence, users provide arguments to express themselves and challenge each

other’s arguments to defend their claims. Arguments are created with the users’ own

knowledge or with the knowledge of their friends.

In current online social networks, if a user thinks her privacy is violated, she

can either ask post owner to remove the post or can complain to the social network

administration by providing reasons. Meanwhile her privacy will be already violated.

Thus, it should be possible for users to discuss on a post before putting it up online. In

addition to that, this process should be done automatically, since it is not reasonable

for a user to handle each post in the social network by herself.

We propose an agent-based social network in which we represent each user with

an agent. An agent is an autonomous computer program, which can perceive, reason,

9

act and communicate with other agents [18] [19] [20]. Agents can act on behalf of their

users if they have their users’ knowledge base. We represent the knowledge base of

users with ontologies. Agents are equipped with a common ontology so that they talk

the same language. Each agent personalizes the common ontology with its own privacy

constraints and social network knowledge. Therefore, our agents are fully aware of the

social network knowledge and privacy constraints of their users and can act on behalf

of them.

2.1. Social Network Ontology

A social network consists of users in specific relations and contents that are

shared among the users. We represent the social network using a Web Ontology Lan-

guage (OWL). We benefit from the ontology model developed by Mester et al. [15].

Ontologies consist of concepts, data properties and object properties. Concepts rep-

resent a class of individuals (e.g. wristband :wband is an instance of Object). Data

properties relate data values to individuals (e.g. isOrdinary relates :wband to either

true or false). Object properties relate different individuals with a specific relation

(e.g. includesObject relates a Medium to an Object).

An Agent makes a PostRequest including a Medium or a PostText . hasMedium

and hasText object properties relate Medium and PostText to the PostRequest , re-

spectively. A Medium such as a Video or a Picture may include an Agent , a Location

or an Object . includesPerson, includesLocation and includesObject are used to relate

corresponding concepts, respectively. In addition to that, a person may be mentioned

in a PostText with mentionedPerson property or may be tagged with other people with

withPerson property. A PostRequest is presented to an Audience, which is a group of

users. hasAudience specifies the Audience of a PostRequest and hasMember specifies

which users involved in the Audience.

In a social network, users connected to each other with isConnectedTo property.

Since relationship type between users may vary, we need different relationship types

in the ontology. We benefit from isColleagueOf , isFriendOf and isPartOfFamilyOf

10

subproperties to express the relationship type of users.

An essential concept in our ontology is Context . Each PostRequest is related to

some Context with isInContext property. Context information is useful, since it may

be used to define privacy rules. For example, a user may define a general privacy rule to

not to share a picture in a Party context with her family members. In this case, agent

uses rejects property to reject all post requests in the Party context. However, there

are no strict rules to infer a context, since the same time and same location may mean

different contexts for different people [21]. For example, a picture that is taken in a

restaurant is in the Leisure context for a customer while it is in the Work context for a

waiter. Hence, we enable agents to define their own rules to infer context information.

Imagine both the customer and the waiter do not want to show their pictures that are

in the Leisure context. Since the agents use personalized inference rules to find the

context information, the customer will reject to share the picture that is taken in the

restaurant while the waiter will not.

2.2. Semantic Rules

We benefit from two types of semantic rules in our ontology: (1) inference rules

(I) derive new information from existing knowledge in the ontology, (2) privacy rules

(P) define what type of post requests should be rejected by the agent. Head of each

privacy rule includes rejects property. We use Semantic Web Rule Language (SWRL)

to define semantic rules [22]. Each rule is in the form of Body =⇒ Head. Both body and

head consist of concepts, data properties and object properties that are defined in the

ontology. Thus, a rule can easily be constructed by using different concepts of ontology

such as location, date, context. Further, it is also possible to use the combination of

concepts to construct a rule (e.g. do not share a post taken in a specific time and

location). Head of an SWRL rule is true if and only if its body is true.

Semantic rules can be defined by users themselves with a user friendly interface

[15]. Moreover, they can be automatically learned by using some machine learning

techniques [23] [24]. In our work, we assume that each agent is already aware of its

11

user’s semantic rules.

Table 2.1. Semantic rules in Scenario 1 as SWRL rules.

IA1 : foundAt(?object, ?shop) → isOrdinary(?object, true)

IB1 :

isInContext(?postRequest, ?context),

hasMedium(?postRequest, ?medium), includesObject(?medium, ?object),

Oktoberfest(?location), obtainedFrom(?object, ?location),

isOrdinary(?object, false) → Festival(?context)

IB2 : hasUrl(?shop, ?url), isAccessible(?url, false) → isClosed(?shop, true)

PB1 :
Festival(?context),

isInContext(?postRequest, ?context) → rejects(:bob, ?postRequest)

Table 2.1 shows the semantic rules for Form 4 of Scenario 1. Alice only has one

inference rule (IA1), which states that an object is not ordinary if it can be found at

a shop. Bob has a privacy rule (PB1), which states that a post request in the festival

context violates his privacy. Thus, must be rejected. Bob also has two inference rules.

IB1 states that if a post request has a medium that includes a unique object taken from

Oktoberfest, then the post request is in the Festival context. IB2 states that a shop

is closed if it has an inaccessible url.

2.3. Reasoning

When an agent wants to share a post, it finds all relevant agents to the post and

asks for their permission. Then, the relevant agents use their reasoning mechanisms

to evaluate the post and come to a decision. To evaluate a post, an agent uses the

direct and indirect information it has. Direct information is the information that an

agent already has in its ontology, information that the requester agent provides within

the post and information provided by the friends of the agent. Information that is

provided by the requester agent may express the audience, tagged people, location,

date of the post etc. (e.g. :alice tags :bob and states that there is an object in the

post, which is obtained from the Oktoberfest). An agent can have indirect information

by using its inference rules. Inference rules make it possible to derive new information

from the existing knowledge (e.g. :bob infers that the uniqueness of the wristband

12

makes the post in the Festival context). In OWL ontology, properties may have differ-

ent characteristics. For example, a property may be defined as transitive, symmetric,

functional, equivalent, subproperty etc. These characteristics sometimes yield to find

new information from the existing knowledge. An agent may benefit from these differ-

ent characteristics to find indirect information. For example, imagine a post including

a specific landmark. If an agent is aware of the city that this landmark is located in

and if it is also aware of which country the city is located in, then it will know which

country that the landmark signals even though there is no direct information about

it in its ontology. It is also possible for an agent to obtain new information by using

machine learning techniques. For example, an agent can detect the users in the post

by using image recognition techniques.

An agent uses the information it obtains to decide whether a post violates its

privacy or not. Agents use privacy rules to indicate when they reject a post request. If

a privacy rule holds in an agent’s ontology, then the post request should be rejected.

For example, :bob defines PB1 in Scenario 1. Since it thinks that a post is in the

Festival context, PB1 holds in its ontology and it rejects the post request by creating

arguments.

When an agent is able to represent the social network knowledge and the privacy

constraints of its user, it can use these information to protect the privacy of its user.

Agents can involve in discussions with other agents to come to an agreement about

sharing a post. We benefit from argumentation to enable agents to express themselves

and to come to an agreement.

13

3. ARGUMENTATION FOR PRIVACY IN ONLINE

SOCIAL NETWORKS

Argumentation is a technique to evaluate claims in an argument set by consid-

ering attack and support relations between arguments. In an online social network,

agents can protect their privacy by expressing themselves with arguments. However, it

is most likely to have inconsistencies between different arguments. Argumentation is

able to handle the inconsistencies between arguments [25] [26] [27]. It provides compu-

tation mechanisms to calculate justified argument sets. Dung et al. propose Abstract

Argumentation Framework (AA), which is a pair 〈AR, attacks〉 where AR is a set of

arguments and attacks is the attack relations between arguments [28]. One can resolve

the conflicts between arguments and find the justified argument sets by using the pro-

posed computation mechanisms of AA. However, AA does not give information about

how an argument is constructed and why an attack is made. We benefit from struc-

tured argumentation to have a finer-grained level of representation of arguments as well

as attacks. ABA [29], ASPIC+ [30], DeLP [31], and deductive argumentation [32] are

different frameworks in the literature for structured argumentation. ASPIC+, DeLP,

and deductive argumentation allow to use preferences to resolve attacks. On the other

hand, ABA maps the different forms of reasoning that includes preferences onto ABA

framework, which does not include preferences. In this way, argumentation framework

remains as simple as possible while it also supports the different reasoning forms. Simi-

larly, many structured argumentation approaches allow different types of attacks. ABA

maps these attacks to its standard attack form so that the framework remains as simple

as possible while it allows for different type of attacks. ABA framework also provides

different implementations such as CaSAPI [33], proxdd [34] and abagraph [17] so that

the result of an argumentation can be calculated automatically.

14

3.1. Assumption-Based Argumentation for Privacy

We benefit from ABA framework to build and discuss arguments. ABA frame-

work is a tuple 〈L,R,A,C〉 where L is the language, R is the set of rules, A ⊆ L is the

set of assumptions and C is the total mapping of assumptions with their contraries.

Each rule in R consists of a body σ1,...,σm and a head σ0 where σ1,...,σm → σ0 (m ≥ 0,

σi ∈ L). The assumption set A includes the weak points of arguments that can be

attacked by other arguments. In ABA framework, A should be non-empty. Otherwise,

there is no point of argumentation, since there is no weak point to attack. Each as-

sumption has to have one single contrary, which defines how to rebut the assumption.

The contrary set C involves the contrary of each assumption where a contrary of an

assumption a is represented as C(a).

One can either hypothesise an assumption to construct an argument or may de-

rive it by using rules with other assumptions. If ABA framework does not include

derived assumptions then it is defined as flatt. Since non-flatt ABA frameworks are

computationally demanding, current computation mechanisms for calculating justified

arguments are defined for flatt ABA frameworks. Thus, we also use flatt ABA frame-

works in our work and do not have assumptions in the head of rules.

In current social networks, content owners share a post based on their own privacy

constraints. However, privacy constraints of relevant agents must be also considered to

prevent privacy violations. ABA framework enables agents to discuss over a content by

creating arguments. Hence, we describe each privacy scenario as an ABA specification.

Table 3.1 shows the ABA specification for Scenario 1. L is the language used in the

ontology. R is the set of rules provided by agents in Table 2.1. In ABA framework,

assumptions are questionable whereas facts are not. Thus, one can decide whether

something is an assumption or a fact by considering if it is arguable. In our example

scenario, r1 - r7 are not arguable for agents and are defined as facts. Facts are consid-

ered as rules with an empty body. Thus, r1 - r7 are placed in R in the specification.

A includes four assumptions (as1, as2, as3, as4) that agents made during the argumen-

tation. An argument can attack to an assumption if and only if it can support the

15

Table 3.1. ABA specification of Scenario 1.

R = IA1 ∪ IB1 ∪ IB2 ∪ PB1 ∪7i=1 ri

r1 = {→ isInContext(:pr,:context)}

r2 = {→ hasMedium(:pr,:medium)}

r3 = {→ includesObject(:medium,:wband)}

r4 = {→ Oktoberfest(:location)}

r5 = {→ obtainedFrom(:wband,:location)}

r6 = {→ taggedPerson(:medium,:bob)}

r7 = {→ hasUrl(:Gifty,:url)}

A = {as1,as2,as3,as4}

as1 = foundAt(:wband,:Gifty)

as2 = not(rejects(:alice,:pr))

as3 = isOrdinary(:wband,false)

as4 = isAccessible(:url,false)

C = {c1,c2,c3,c4}

c1 = (foundAt(:wband,:shopX)=isClosed(:Gifty,true))

c2 = (not(rejects(:alice,:pr))=rejects(:bob,:pr))

c3 = (isOrdinary(:wband,false)=isOrdinary(:wband,true))

c4 = (isAccessible(:url,false)=isAccessible(:url,true))

16

contrary of that assumption. C includes the mapping between assumptions and their

contraries. For example, :alice assumes that there is no need to reject the post request

:pr and states that its assumption can be rebutted if :bob rejects the post request.

This mapping specified in c2 with assumption as2 and its contrary. In ABA framework,

defeasibility only comes with assumptions. Thus, rules are not questionable. A rule

has defeasibility if and only if it has one or more assumptions in its body. Otherwise,

it is strict.

An argument has the form S `R σ where S ⊆ A, R ⊆ R and σ ∈ L. S is a set

of assumptions, R is a set of rules and σ (the claim) is a derivation. An argument is

supported by both assumptions and rules. A claim is derived using a rule or a chain

of rules (e.g., R1, R2, R3 ∈ R, R3 = R1 ∪ R2). An argument can be supported by an

assumption a and an empty set of rules with the form {a} ` a. Moreover, an argument

can be supported by an empty set of assumptions and a rule r with the form {} `r h.

Consider h as the head of the rule r.

isOrdinary(:wband,true)

foundAt(:wband,:shopX)

Festival(:context)

isOrdinary(:wband,false)

isClosed(:shopX,true)

hasUrl(:shopX,:url)

τ

isAccesible(:url,false)

rejects(:bob,:pr)

isInContext(:pr,:context)

τ

Festival(:context)

isOrdinary(:wband,false)

Figure 3.1. Deduction trees for arguments a3, b5, b2 and b3 in Scenario 1.

The arguments are derived from deduction trees. Figure 3.1 shows the deduction

trees for the arguments a3, b2, b3 and b5. Each deduction tree has the head of a rule as its

root. The leaves can either be τ (true) or an assumption that supports the root. In the

deduction tree for argument a3, assumption foundAt(:wband,:Gifty) supports isOrdi-

nary(:wband,false) with the rule IA1 . The assumption isOrdinary(:wband,false) and the

17

facts ∪5i=1 ri support the Festival(:context) with the rule IB1 . isClosed(:Gifty,true)

derived with the assumption isAccessible(:url,false) and the rules IB2 ∪ r7. PB1 derives

the conclusion rejects(:bob,:pr) with another derivation Festival(:context) and with

the fact isInContext(:pr,:context). Thus, rejects(:bob,:pr) is the root of the tree for

b3. Facts have τ in their leaves, since they are supported by an empty set of assump-

tions (e.g. isInContext(:pr, :context) and hasUrl(:Gifty, :url) has τ in their leaves).

For clarity, we do not show the supporting facts for argument b5.

Table 3.2. Arguments derived from Scenario 1.

f1 : {} `r1 isInContext(:pr,:context)

f2 : {} `r2 hasMedium(:pr,:medium)

f3 : {} `r3 includesObject(:medium,:wband)

f4 : {} `r4 Oktoberfest(:location)

f5 : {} `r5 obtainedFrom(:wband,:location)

f6 : {} `r6 taggedPerson(:medium,:bob)

f7 : {} `r7 hasUrl(:shopX,:url)

a1 : {foundAt(:wband,:shopX)} ` foundAt(:wband,:shopX)

a2 : {not(rejects(:alice,:pr))} ` not(rejects(:alice,:pr))

a3 : {foundAt(:wband,:shopX)} `IA1 isOrdinary(:wband,true)

b1 : {isOrdinary(:wband,false)} ` isOrdinary(:wband, false)

b2 : {isOrdinary(:wband,false)} `IB1
∪5
i=1ri Festival(:context)

b3 : {isOrdinary(:wband,false)} `IB1
∪PB1

∪5
i=1ri rejects(:bob,:pr)

b4 : {isAccessible(:url,false)} ` isAccessible(:url,false)

b5 : {isAccessible(:url,false)} `IB2
∪r7 isClosed(:shopX,true)

Table 3.2 shows the arguments derived from the specification of Scenario 1. fi

represents the fact arguments that are supported by an empty set of assumptions and

a rule ri. a1, a2, b1 and b4 are assumption arguments that are supported with the

corresponding assumption and an empty set of rules.

Attack relations are used to express the disagreement between arguments. In

ABA, an argument S1 ` σ1 can attack another argument S2 ` σ2 if and only if σ1 is

the contrary of one of the assumptions in S2 [29], [35]. Figure 3.2 shows the attack

18

b1 b2 b3 b4b5

a1 a2a3

Figure 3.2. Attacks between arguments for Scenario 1.

relations between arguments from Table 3.2. We do not show the fact arguments

(fi) in the figure, since they do not have weak points and cannot be attacked by

other arguments. b3 attacks a2, since its claim rejects(:bob, :pr) is the contrary of

not(rejects(:alice, :pr)), which supports a2. As a response, a3 attacks b1, b2, and

b3, since isOrdinary(:wband, true) rebuts the assumption of isOrdinary(:wband, false),

which supports b1, b2 and b3. At last, b5 attacks a1 and a3, since isClosed(:Gifty,true)

is the contrary of foundAt(:wband, :Gifty), which supports a1 and a3.

3.2. Semantics for ABA

After having arguments and attack relations between them, one can calculate

justified argument sets by using ABA semantics. A justified argument set can be

credulously justified or sceptically justified. Credulous semantics allow for alternative

winning argument sets while sceptical semantics only allow for a unique winning argu-

ment set. Thus, it depends on the application which one to use. If resulting argument

set is too critical for the application, it is better to use sceptically justified semantics

as it will provide an uncontroversial argument set. However, it may be also critical

to find at least one justified argument set under all circumstances. If this is the case,

credulously justified semantics may be better for the application. For example, when

there is a tie between mutually attacking arguments, sceptical semantics will return an

empty set of winning arguments. On the other hand, credulously justified arguments

will return two result sets for each argument. In our work, we need to return a result

to the agents under all circumstances. Thus, we use credulous semantics to find all

alternatives of justified argument sets. There exists other semantics to find the justified

arguments out of arguments with attack relations. A set of arguments A is

19

• conflictfree iff none of its arguments attack it.

• admissible iff it is conflict free and it can defend itself against all attacks.

• preferred iff it is the maximum admissible set.

• complete iff it is admissible and has all arguments it defends.

• grounded iff it is the minimal complete set.

• ideal iff it is preferred and all preferred sets contain it.

• stable iff it is conflict free and it attacks all arguments outside of it [35].

Table 3.3. Justified arguments in Scenario 1 according to different semantics.

Credulously Justified Sceptically Justified

Admissible {}, {b5}, {b4}, {b4, b5}, {b3, b5},

{b3, b4, b5}, {b2, b5}, {b2, b3, b5},

{b2, b4, b5}, {b2, b3, b4, b5},

{b1, b5}, {b1, b4, b5}, {b1, b3, b5},

{b1, b3, b4, b5}, {b1, b2, b5},

{b1, b2, b4, b5}, {b1, b2, b3, b5},

{b1, b2, b3, b4, b5} ∅

Complete {b1, b2, b3, b4, b5} {b1, b2, b3, b4, b5}

Stable {b1, b2, b3, b4, b5} {b1, b2, b3, b4, b5}

Grounded {b1, b2, b3, b4, b5} {b1, b2, b3, b4, b5}

Preferred {b1, b2, b3, b4, b5} {b1, b2, b3, b4, b5}

Ideal {b1, b2, b3, b4, b5} {b1, b2, b3, b4, b5}

Any of these semantics can be used to find the justified argument sets. Table

3.3 shows the justified argument sets for Scenario 1 according to different semantics.

Notice that there is no argument in a justified argument set that attacks another

argument in the same set. It is because all of the semantics are conflict free. A

set is considered as defending itself, if no argument attacks it or arguments attack

it but at least one of its arguments can attack these arguments back. a1, a2 and

a3 cannot defend themselves against the attacks. Therefore, they cannot be in an

admissible argument set. However, b1, b2 and b3 can be in an admissible set if the

set also contains b5, which defends b1, b2 and b3. Since b4 and b5 is not attacked,

20

they can be in an admissible set. The credulously admissible set with the highest

number of elements is {b1, b2, b3, b4, b5}. Thus, it is considered as a credulously preferred

set. If an argument is not attacked by any other argument, then it is considered to

be defended by an empty set of arguments and by all of the other argument sets.

Therefore, b5 and b4 are defended by other argument sets. Moreover, they defend

each other and both of them have to be included in all complete argument sets. b5

also defends b1, b2 and b3. Therefore, {b1, b2, b3, b4, b5} is considered as a credulously

complete argument set. There is no other credulously complete argument set with

less number of arguments. Thus, {b1, b2, b3, b4, b5} is also the credulously grounded

argument set. Since {b1, b2, b3, b4, b5} is the only credulously preferred argument set,

it contains all of the preferred argument sets. Therefore, it is also the ideal argument

set. {b1, b2, b3, b4, b5} is a conflict free argument set and the arguments inside of it

cannot attack each other. Thus, subsets of {b1, b2, b3, b4, b5} cannot be credulously

stable argument sets. However, {b1, b2, b3, b4, b5} attacks all of the arguments that are

not inside of. Therefore, it is a credulously stable argument set. Notice that only

admissible semantics provide more than one justified set for this example. In other

words, it provides alternative result sets. Sceptically justified semantics do not allow

alternative result sets. Therefore, the sceptically justified admissible result set is ∅. On

the other hand, complete, stable, grounded, preferred and ideal semantics provide only

one result set. Therefore, these result sets are also sceptically justified.

There are two reasons for us to use admissible semantics. First, abagraph only

provides AB-dispute derivations and GB-dispute derivations, which find if a claim is

admissible or grounded respectively. Second, admissible semantics are good enough for

us to give a decision. We do not need further restrictions for our result set.

Definition 1. The requesting agent :agent shares a post :pRequest iff an argument

A ` not(rejects(:agent,:pRequest)) is in the justified admissible argument sets, where

A ⊆ A.

In our work, after having arguments and attack relations between them, we do

not find all of the justified argument sets. Instead, requesting agent queries abagraph

21

with its first assumption (e.g. not(rejects(:alice,:pr)) and abagraph returns if it is

justified or not according to the required semantics. In Figure 3.2, b3 attacks a2. Then,

a3 defends a2 by attacking b3. However, since b5 rebuts a3, a2 cannot defend itself

against attacks and cannot be justified according to credulously admissible semantics.

Definition 1 shows how agents decide to share a post or not. Considering Definition 1,

Alice does not share the post.

abagraph uses dispute derivations to calculate if an input sentence is justified or

not. Dispute derivations can be considered as a zero-sum game between a proponent

and an opponent. Proponent tries to prove that the input sentence is justified while

opponent tries to rebut it. If a dispute derivation is successful, then it returns: (1)

a defence set, which includes the assumptions of the proponent, (2) culprits, which

includes the assumptions of opponent that are attacked by the proponent and (3)

dialectical trees of arguments (e.g., derivation tree at Figure 3.1).

22

4. DISTRIBUTED ARGUMENTATION

In Chapter 3, we explained the ABA framework and showed how it can be used

for privacy. When an ABA specification such as the one shown in Table 3.1 is provided

to an ABA engine, it is possible to find if an input sentence is justified or not. One

may try to create such specification centrally. However, in our domain we try enable

relevant agents to come to an agreement. Therefore, we need the information of all

relevant agents while creating the specification. In Scenario 1, :alice would have put

only its information into a specification, give the specification into the abagraph and

decide whether she should share the post. In this case, :alice would have not consider

the privacy of :bob. In our approach, we adapt a distributed argumentation structure,

where information comes from more than one agent to make a decision. Therefore,

:alice starts an argumentation with :bob to prevent any privacy violations and the

specification is created with the information of both :bob and :alice.

Different agents can provide different rules, facts, assumptions and contraries,

which lead different arguments and attack relations. Moreover, agents do not have to

follow the same strategy. A well-meant agent may only provide relevant information

into the argumentation while another agent provides irrelevant or fictious information

to sabotage the argumentation. Further, an agent may try to contribute in every argu-

mentation that it is involved in while another agent only contributes in argumentations

that are conducted with the agents it trusts. For that reason, two agents may lead

different ABA specifications even though they have the exact same knowledge.

PrepareCase

R
C
 + I

C

Agent A

Agent B
c

c
A’s Post
Request

Dispute A - B

ABA
engine

c

no

Share
Post

Do not
Share Post

R
D

 + I
D

PrepareCase

R
C
 + I

C
R

D
 + I

D

yes

Figure 4.1. Distributed model of PriArg for Agent A and Agent B.

23

We propose PriArg (Privacy Argumentation Framework) to protect the privacy

of users with argumentation. Figure 4.1 shows the distributed model of our approach.

When an agent (AgentA) wants to share a post, it makes a post request to the relevant

agents and starts an argumentation session. Agents communicate by sending a case

(s) to each other (see Definition 2).

Definition 2. A case is a tuple 〈R,A,F , C, status〉 where R is a set of rules, A is

a set of assumptions, F is a set of facts, C is the assumption contrary mapping and

status is either ongoing or stop. A case status specifies if the argumentation should

stop or continue.

When AgentA starts the argumentation, it prepares an initial case with ongoing

status and sends it to the relevant agents. A relevant agent (AgentB) receives the initial

case and evaluates it in its ontology. If the post does not violate the agent’s privacy, it

sends the case back with stop status and ends the argumentation. Otherwise, it tries

to create arguments to oppose the sharing request. Therefore, it extends the initial

case with new facts, assumptions, contraries and rules. Then, it sends the case back

to the requester agent. Agents send the case each other in a turn taking fashion, until

there is no more contribution to the dispute. After argumentation stops, requester

agent gives the case into the ABA engine and queries if its initial assumption (e.g.

not(rejects(:alice,:pr))) to share the post is valid. If the ABA engine returns true,

the post is shared. Otherwise, it is not shared, since the relevant agent convinces the

requester agent to not share the post.

4.1. Attacking Postrequests

An agent creates arguments to attack other agents’ claims and to support its

own. As explained in Chapter 3, an argument consists of assumptions with rules (with

an empty or not empty body). An agent can create arguments by using centralized

rules (RC) and centralized instances (IC) as well as decentralized rules (RD) and de-

centralized instances (ID).

24

Centralized Rules (RC) and Centralized Instances (IC): An agent can create arguments

based on only the knowledge in its ontology. In that case, the agent has all the neces-

sary information in its own ontology so that it does need to ask its friends for informa-

tion. Consider Scenario 1 Form 2. Bob’s agent can provide the necessary assumption

(isOrdinary(: wband, false)), rules (IB1 , PB1) and facts (Oktoberfest(: location),

obtainedFrom(: wband, : location)) from its own ontology to support its claim.

Centralized Rules (RC) and Decentralized Instances (IC): An agent may not be able

to create an argument even though it has the necessary rules. In this case, the agent

should find the instances to fulfill the rule. A possible solution is to ask other agents

in the network for the missing information. It should be up to the agent whom to

ask for that information. We enable each agent to develop its own strategy to ask for

decentralized instances. For example, Alice would have rule IA1 but not assumption

foundAt(:wband,:Gifty) in its ontology. Then, she could have choose a shop owner

friend (e.g. David) to ask for that information instead of choosing her colleague.

Decentralized Rules (RC) and Centralized Instances (IC): An agent attacks an assump-

tion by providing rules that support the contrary of the assumption. It is possible for an

agent to not have a rule to attack its opponent’s assumption. In this case, the agent can

ask other agents in the social network for decentralized rules. For example in Scenario

1 Form 4, Bob does not know how to support isClosed(:Gifty,true)). Then, Carol

suggests rule IB2 . Since Bob already has the assumption isAccessible(: url, false) and

the fact hasUrl(: Gifty, : url) in its ontology, he can attack Alice’s argument. Again,

it is up to Bob to whom to ask for decentralized rules.

Decentralized Rules (RC) and Decentralized Instances (IC): An agent may not have

any rules and instances in its ontology to attack its opponent’s arguments. In this

case, the agent first needs to obtain decentralized rules from the other agents in the

social network. If it manages to obtain decentralized rules, it tries to fulfil them by

providing instances. The agent may not also have assumptions or facts to support the

decentralized rules. In this case, it asks other agents for decentralized instances. In

Scenario 1 Form 4, :bob asks :carol for a decentralized rule and :carol provides IB2 . If

25

:bob could not support IB2 , it would ask other agents for instances hasUrl(:Gifty,:url)

and isAccessible(:url,false).

4.2. An Algorithm for Argumentation

We propose an algorithm, which enables agents to conduct argumentation ses-

sions. Argumentation starts with an initial case created by the requester agent. Re-

quester agent assumes that sharing the post is okay for relevant agents. It also states

that if a relevant agent finds the post harmful, its assumption is rebutted. When cre-

ating the initial case, the requester agent puts its initial assumption in A, assumption

contrary mapping in C and facts about the post in F . It does not add any rules in

R, since it does not need to derive new information in that point. A case status is

ongoing as long as argumentation continues. Thus, the agent sets the case status to

ongoing and sends the case to the relevant agents. We assume that an agent is related

to a post if it is tagged or mentioned in the post. However, one may want her agent to

be more sensitive about finding the relevant agents. For example, an agent may think

that an object in a picture reveals its owner’s presence. Thus, if there is an object in

a post, then the object owner is related to that post. We enable agents to define their

own mechanism to find relevant agents. Below, we describe some auxiliary functions

that we use in PrepareAttack algorithm.

• initCase() creates a case with an empty set of rules R, facts F , assumptions A

and contrary mappings C. status is null.

• updateOntology(F , o) takes the agent’s ontology and the facts as input. Then, up-

dates the agent’s ontology with the facts. It is important to update the ontology

with the new information, since it helps to capture inferences.

• getContrariesToAttack(A, o) takes opponent’s assumption set and the agent’s own

ontology as input. Then, finds all of the contraries that the agent must support

to attack these assumptions.

• prepareCase(R, A, F , C, status) takes a set of rules R, assumptions A, facts F ,

contrary mappings C and status as input. Then, creates a case. The status is

set either to ongoing or stop.

26

• getRelatedRules(contraryList, o) takes a contrary list contraryList and an on-

tology o as input. Then, finds the rules that infer each contrary in the contrary

list. An agent first tries to find the rules in its own ontology. If there are no such

rules, it asks other agents for rules. A rule is related to a contrary if it is used

to infer that contrary. Thus, a semantic rule may still be relevant to a contrary

even though it does not has the contrary in its head. For example, IB1 does not

directly support rejects(:bob, :pr). However, it infers Festival(:context), which

supports rejects(:bob, :pr) with the rule PB1 . Therefore, rule IB1 is related to

the contrary rejects(:bob, :pr).

• getInstantiations(rList, o) takes rules rList and an ontology o as input. Then,

tries to instantiate each rules in the rList with the ontology o. Head of a rule is

true if and only if body of it is true. Therefore, agents must instantiate the body

of a rule to infer the head of it. An agent first try to instantiate rList with its

own knowledge. If it does not have enough information, it asks other agents.

• canRebutA(iList, contraryList) checks whether the instantiations in iList can

support all of the contraries in contraryList (i.e. all of the assumptions of the

opponent is rebutted by the agent’s rules). An agent should be able to rebut

all of the assumptions of its opponent to be able continue the argumentation.

Consider Scenario 1 Form 4. If Bob would be able to ignore Alice’s assumption

foundAt(:wband,:Gifty) and provide an irrelevant argument, Alice’s assumption

would never be rebutted. Thus, the argumentation would not make sense any

more.

• getBody(i) takes a rule instantiation i as input. Then, returns the predicates of

that instantiation’s body.

• getContrary(a) takes an assumption a as input and returns its contrary.

PrepareAttack algorithm takes a case s as input, extends it to another case

s′ and returns s′. At the beginning of the PrepareAttack algorithm, the agent first

initializes the case s′ (line 1). Then, it checks whether the previous agent set the

argumentation status to stop (line 2). If so, the argumentation stops. Otherwise, the

agent takes the rule set, the assumption set, the fact set and the contrary mapping of

s and sets them to R, A, F and C, respectively (line 3). Then, it adds the new facts in

27

Require s, case received from other agent

s′ ← initCase()

if s.status 6= stop then

R← s.R, A← s.A, F ← s.F , C ← s.C

o← updateOntology(F, o)

contraryList← getContrariesToAttack(A,C)

if contraryList.size() = 0 then

s′ ← prepareCase(R,A, F, C, stop), return s′

else

rList← getRelatedRules(contraryList, o)

iList← getInstantiations(rList, o)

if canRebutA(iList, contraryList) = false then

s′ ← prepareCase(R,A, F, C, stop); return s′

else

for each i in iList do

R← R ∪ {i}

for each p in getBody(i) do

if p.name ∈ aList then

A← A ∪ {p}

p′ ← getContrary(p)

C ← C ∪ {p : p′}

else if p.name ∈ fList : then

F ← F ∪ {p}

end if

end for

end for

end if

end if

s′ ← prepareCase(R,A, F, C, ongoing)

else

s′ ← s

end ifreturn s′

Figure 4.2. PrepareAttack (s) Algorithm.

28

its ontology to capture further inferences (line 4). The agent finds all of the contraries

that it should support and puts them into the contraryList (line 5). If there are no

contraries that it should support (line 6), then there are no weak points that the agent

can attack. Therefore, the agent prepares a case with the stop status and returns it

back to its opponent (line 7). If there are contraries that the agent should support (line

8), then it finds all of the rules that infer the contraries in the contraryList (line 9).

The agent has to be able to instantiate a rule to infer its head. Thus, the agent tries to

instantiate all of the rules in rList (line 10). Then, it checks whether it could instantiate

the necessary rules that support the contraries (line 11). If it cannot support all of

the contraries, the assumptions of the opponent will not be rebutted. Thus, the agent

prepares a case with the stop status to end the argumentation (line 12). If it manages

to attack all of the assumptions (line 13), then it takes each instantiation i and adds

it into the rule set R (line 14-15). The agent checks each predicate p in the body of i

and classifies it as an assumption, a fact or a deduction. We benefit from a predefined

fact list (fList) and an assumption list (aList) to specify which predicates should be

considered as a fact or an assumption by the agent. If p is an assumption (in aList),

then it is added into the set A (line 18). Since each assumption in ABA must also have

a contrary, the assumption-contrary pair (p:p′) is added into the C (line 20). If p is a

fact (in fList), then it is added into the set F (line 21-22). At line 23, the agent has

a set of rules, a set of assumptions, a set of facts and the contrary mappings to attack

the opponent’s arguments. The agent prepares the new case s′ with the modified sets

(A, F , C and R), sets the status to ongoing and sends it to the other agent (line 26).

Notice that during the argumentation the agents exchange information by ex-

tending a case. Thus, at the end of the argumentation the case involves all of the

information provided by the agents. In that point, the requester agent can create an

ABA specification from the case and give it to an ABA engine. Then, it queries the

ABA engine to decide if it can share the post or not (see Definition 1).

Definition 3. Consider two cases s = 〈R,A, F, C, status〉 and s′ = 〈R′, A′, F ′, C ′, status′〉

as s is the case produced by an agent, and s′ is the any case that can be produced by

that agent. s is a complete case iff R′ ⊆ R, A′ ⊆ A, F ′ ⊆ F and C ′ ⊆ C.

29

Our agents follow thorough strategy-move by default [36]. In other words, they

provide all of the relevant information they know during the argumentation and could

not provide an improved case. Therefore our agents provide each other complete cases

as described in Definition 3. Following proof proves that PrepareAttack always

produces complete cases.

Proof. Let s be a complete case produced by an agent and s′ be a case that can be

produced by that agent. Assume that s′ is not complete. In other words, s includes

assumptions, contraries, facts or rules that s′ does not have. However, lines 6-22 of

PrepareAttack algorithm makes sure that s′ includes all of the facts, rules, as-

sumptions and contraries the agent provides. The agent can provide these information

from its own ontology as well as the ontologies of its friends. Therefore, our initial

assumption cannot be correct.

30

5. IMPLEMENTATION

We implemented PriArg, which is a system that enables semantic agents to come

to an agreement with assumption-based argumentation. Our implementation is based

on the implementation of Mester et al. [15]. We benefit from ontologies to represent

an agent’s knowledge base, OWL to define the concepts in the ontologies and SWRL

rules to formally represent the rules of agents.

We use the ontology created by Mester et al. by adding new concepts. The

ontology is created with Protégé [37] (see Figure 5.1). Since agents have to speak

the same language to communicate, we define a base ontology with concepts, object

properties and data properties. Then, we personalize it for each agent by adding new

individuals, relations between these individuals and new rules. We create agent rules

using SWRL (see Figure 5.2).

We implemented our work using JAVA and OWL API [38]. Each concept in the

ontology is represented with a Java class. There is a hierarchical relation between the

classes as post request is at the top. You can see the current object model of a post

request in Figure 5.3. A PostRequest includes either a PostText or a Medium. A

Medium is in the type of Picture or V ideo. Each PostRequest is in some Context such

as Work, Leisure and Meeting. A Medium can include an Object and a Location.

Location may be in the type of City, Country, Oktoberfest etc. A PostRequest is

made by an Agent to present the post to an Audience. This hierarchy enables agents

to be more expressive when creating privacy constraints. For example, in Scenario 1

:bob can easily define a rule to reject a post request, if it is in the Festival context.

Moreover, he can state that a post request is in the Festival context, when its medium

includes a unique Object taken from the Okoberfest. Any other ontology compatible

with ours can be used in the system. It is also possible to use a more comprehensive

ontology by adding corresponding Java classes into the system.

31

Figure 5.1. Ontology model created with Protégé. Concepts, object properties and

data properties respectively.

Figure 5.2. SWRL rules created with Protégé.

32

Figure 5.3. Object model of a post request.

33

Figure 5.4. Web screenshot of PriArg.

34

When application first starts a Web screen with a text field and a submit button

is shown to the user (see Figure 5.4). Any scenario in the static folder of the project

can be run by typing the name of it in the text field. Then, PriArg returns the result

of the scenario. Each scenario consists of a post request in the json format. Thus, any

other scenario can be easily created by following the same format. When we run a

scenario, the json format is converted to a post request object including the objects of

other classes (e.g. Post request object includes a post text object) and the post request

object is given into the system. We use Tomcat as our application server.

When a post request is made, the relevant agents need to check if the post violates

their privacy. Thus, they put the request in their ontology and reason with their SWRL

rules. OWL API enables us to perform ontological reasoning from our application.

First, we convert a post request into an ontological individual. For that purpose, we

use class assertion, data property assertion and object property assertion features of

OWL API. Then, we use Pellet [39], a Description Logic reasoner, to reason in the

ontology with the SWRL rules. OWL API cannot show the rules that are initialized

with the reasoning. Thus, we implemented our own method that finds the fired rules

for different instantiations. A rule is fired if its body holds. Thus, we check if each

predicate in the body holds in the ontology. It is also possible for a predicate, which

is in the body of a rule to be the head of another rule and that rule may not be

instantiated by our system yet. For example, consider the two rules IB1 and PB1 of

:bob in Scenario 1. Body of PB1 includes Festival(?context), which is the head of

IB1 . Therefore, :bob must resolve IB1 to resolve PB1 . Similarly, :bob has to find which

object is in the picture to find the place it is obtained from. Therefore, the order of

rules and predicates are important. To prevent the mistakes due to the order of the

rules and predicates, we define the Big-O for a rule to be instantiated in the system

and try to resolve it in that times.

Agents talk by sending a case object to each other in a turn taking fashion.

A case object includes assumption-contrary pairs, rules and facts to create the ABA

instance of the discussion. When a requester agent first starts the argumentation, it

puts an assumption in the initial case claiming that there is no need to reject the

35

current post request. It also puts the contrary of its assumption, which claims that the

relevant agent rejects the post request. After the relevant agent evaluates the post in

its ontology, it provides new rules, new assumptions and their contraries within the case

object. We also enable an agent to ask another agent for decentralized information.

If an agent receives decentralized information from another agent, it updates its post

request object. Then, it uploads the post request in its ontology and reason again. It

is necessary for agents to understand each other and express the knowledge in their

ontology in ABA format. Thus, each assumption and fact is in the ontology triple

format. Further, it is important to decide whether a triple that an agent provides is an

assumption or a fact. Agents decide if a predicate is an assumption or a fact by looking

at the predefined lists in the system. Thus, when a new triple is used in the system, it

should be defined in the assumption or fact list. Similarly, contrary of each assumption

with a specific predicate is predefined, since agents need to know the contrary of an

assumption to rebut it (see Section 4.2).

Since in each turn agents add new information into the case, at the end of argu-

mentation all information provided into the discussion is collected into the case object.

The case object can be evaluated to find a justified conclusion about sharing the post.

We use an open source Prolog program, abagraph [17], to evaluate the output of our

assumption based argumentation. Abagraph runs in SICStus Prolog (4.2+) [40]. When

argumentation ends, we create a document with the information that we get from the

case object (see Figure 5.5). Then, from our Java application we call a shell script that

runs abagraph on SICStus. We load the created document into abagraph and query

whether the post can be shared or not. Result of the argumentation is returned to the

Java project and presented in the web screen of the application. The scenario descrip-

tion, internal representation of the solution, a visualized explanation and the ultimate

result of the argumentation are showed in the web screen. Abagraph needs graphviz [41]

to create the visualized explanation of the solution. Internal representation and the

visualized explanation is produced by abagraph when the queried argument is justi-

fied. Thus, we query both the initial assumption and its contrary in PriArg. The agent

whose assumption is justified is called as proponent while the other agent is called as

opponent. Internal representation of the solution consists of PGRAPH, DEFENCE,

36

OGRAPHS and CULPRITS. PGRAPH is the argument graph of the proponent, OP-

GRAPHS is the argument graph of the opponent, DEFENCE is the assumption set

that supports arguments of the proponent and CULPRITS is the assumption set that

supports arguments of the opponent and counter attacked by the proponent. In the

case where more than one agent are related to the post, argumentation result for each

proponent-opponent pair is presented in the web page. A post cannot be shared if at

least one agent rejects the post request. Figure 5.4 shows an example where :alice

wants to share a photo of both :bob and :carol. :bob is convinced to share the picture

while :alice is not. As a result, the post is not shared.

Figure 5.5. ABA file created by our system for Scenario 1.

We enabled agents to discuss about sharing a post through argumentation. We

benefit from the agent communication structure developed by Mester et al. by updat-

ing it for argumentation. RESTful Web services and JSON format are used in this

structure. JSON is used for exchanging messages between agents. Each agent must

37

provide the same Web service endpoint to run a specific method during the argumenta-

tion. However, implementation of those methods can vary from agent to agent. Thus,

agents may follow different strategies.

38

6. EVALUATION

We evaluate our work by following three different approaches. First, we test

PriArg against the real world scenarios. We provide a walk through for the four

Forms of Scenario 1. Moreover, we provide three new real world scenarios to show

the capability of PriArg. Second, we conduct two different surveys to understand

whether the results of the PriArg overlap with the expectations of users. At last, we

compare PriArg with other works in the literature through constraints of a privacy

protection model.

6.1. Testing Real World Scenarios

6.1.1. A Walk-through of PriArg

Consider the 4 scenario forms that we provide in Chapter 2. Agents execute the

scenarios as in Table 6.1.

Table 6.1. Cumulative iteration steps for Scenario 1.

Case Rules Instances

Form Turn R A F C status RC RD IC ID Shared?

1 :alice {} {} - {} - - - - - 3

2 :alice {} {as2} ∪6i=1ri {c2} ongoing - - as2, - -

PB1 ∪6i=1ri

:bob {IB1 ,PB1} A∪{as3} F C∪{c3} ongoing IB1 , - as3 - -

PB1

:alice R A F C stop - - - - 7

3 :alice R∪{IA1} A∪{as1} F C∪{c1} ongoing IA1 - as1 - -

:bob R A F C stop - - - - 3

4 :bob R∪{IB2} A∪{as4} F∪{r7} C∪{c4} ongoing - IB2 r7, - -

- as4

:alice R A F C stop - - - - 7

In each iteration an agent receives a case, evaluates it in its ontology, extends it

with the new information and sends it back. The new information is obtained either

from the agent itself (centralized rules RC , centralized instances IC) or from the other

39

agents in the social network (decentralized rules RC , decentralized instances IC). If

the agent cannot provide further information, it sets the case status to stop and ends

the argumentation. At this point, the requester agent creates a specification from the

case, which involves all of the facts F , assumptions A, contrary mappings C and rules

R provided by the agents. Then, it puts the specification into abagraph to decide

whether to share the post or not.

Scenario 1. Form 1: Alice’s agent (:alice) wants to share the post without consulting

Bob’s agent (:bob). Thus, it does not start an argumentation. Instead, it directly

shares the post.

Scenario 1. Form 2: :alice wants to consult :bob before sharing a post :pr. It starts an

argumentation by creating a case with the assumption as2 (not(rejects(:alice,:pr))).

It also specifies the contrary of its assumption to show how :bob can dissuade it. Then,

it adds the facts about the post into the case. :alice uses its own ontology to provide

assumptions and facts. Since it adds new information and wants an answer, it sets

the case status to ongoing and sends the case to :bob. :bob receives the case and

executes it as in the PrepareAttack algorithm. First, it checks the status of the

case and decides to continue the argumentation. Then, it updates its ontology with the

facts that :alice provided in the previous iteration. Contrary of :alice’s assumption

(rejects(:bob,:pr)) holds in :bob’s ontology. Thus, it provides the rules (IB1 , PB1) and

the instance as3 (isOrdinary(:wband,false)), which leads to that contrary. :bob also

uses the information from its own ontology. It sets the case status to ongoing and

sends the case back to :alice. :alice evaluates the post in its ontology and cannot

find any information to attack :bob’s argument. Hence, it sets the case status to stop

and terminates the argumentation. As a result, the post cannot be shared.

Scenario 1. Form 3: Following Form 2, :alice has a rule IA1 to support the contrary of

as3 (isOrdinary(:wband,true)) and the necessary instance as1 (foundAt(:wband,:Gifty))

to instantiate its rule. It checks if as1 is an assumption or a fact. It finds the predicate

in aList. Thus, it adds as1 into A and its contrary (isClosed(:Gifty,true)) into C.

:alice sets the case status to ongoing and sends the case to :bob. Since :bob cannot

40

find any information to attack :alice’s argument, the argumentation stops and :alice

shares the post.

Scenario 1. Form 4: Following Form 3, :alice tries to support the contrary of as1

(isClosed(:Gifty,true)). Since it cannot manage this with the information in its own

ontology, it asks another agent for decentralized rules. :carol provides rule IB2 . :bob

instantiates the rule with the assumption as4 (isAccessible(:url,false)) and the fact

r7 (hasUrl(:Gifty,:url)). :bob adds the new information into the case, sets the case

status to ongoing and sends it to :alice. :alice evaluates the case and cannot find

any information to attack :bob’s assumption. As a result, :bob convinces :alice to

not share the post. Table 3.1 shows the specification for Form 4.

6.1.2. Additional Scenarios

We provide three additional scenarios to show the capability of PriArg. Agents

follow PrepareAttack Algorithm to conduct an argumentation. PriArg creates a

specification from the rules and the instances that the agents provide (i.e., Table 6.3,

Table 6.6, Table 6.9). Then the requester agent puts the specification into abagraph.

abagraph finds the arguments from the specifications (i.e., Table 6.4, Table 6.7 and

Table 6.10). Then, it calculates if the initial assumption of the requester agent is

justified.

Scenario 2: Alice wants to share a picture of Bob in a social network. She consults Bob

before sharing the picture. Bob has a privacy constraint to not share any picture that

is taken abroad. Since he thinks that the picture is taken abroad, he rejects Alice’s

request. On the other hand, Alice knows which city Bob was born in. Therefore she

has information about the home country of Bob. Moreover, she knows the place that

the photo is taken. As a result, she comes to the conclusion that the photo is taken at

Bob’s home country. Bob cannot rebut Alice’s argument.

Table 6.2 shows the SWRL rules of Alice and Bob. Alice knows that Bob was

born in Nice, which is a city located in France. Alice uses IA2 to infer that France is

41

Table 6.2. Semantic rules in Scenario 2 as SWRL rules.

IA1 :
hasHomeCountry(?agent, ?country),

hasGeoTag(?medium, ?location),

locatedIn(?location, ?country) → takenHomeCountryOf (?medium, ?agent)

A medium indicates a user’s home country if it has a location,

which is in her home country.

IA2 :
locatedIn(?city, ?country),

isBornIn(?agent, ?city) → hasHomeCountry(?agent, ?country)

A country is a user’s home country if the city she was born is

located in that country.

PB1 :
hasMedium(?postRequest, ?medium),

takenAbroadOf (?medium, :bob) → rejects(:bob, ?postRequest)

A medium within a post request violates Alice’s privacy

if the medium signals abroad as its location.

Bob’s home country. The picture has a geotag indicating Eiffel Tower. Alice knows

that Eiffel is located in Paris and Paris is located in France, which is the home country

of Bob. Alice comes to conclusion that the picture is taken at Bob’s home country by

following IA1 .

Table 6.3 shows the specification of Scenario 2. Notice the fact r5. Normally

there is no direct information in Alice’s knowledge base about Eiffel being located in

France. However, since she knows that Eiffel is located in Paris and Paris is located in

France she comes to the conclusion that Eiffel is located in France. Alice does not have

an additional rule to make this inference. Instead, she benefits from the power of OWL

ontology. locatedIn property is defined as a transitive property. Therefore, if locate-

dIn(:eiffel,:paris) and locatedIn(:paris,:france), then locatedIn(:eiffel,:france).

Figure 6.1 shows the derivation trees for the arguments b2, a3 and a2 respec-

tively. The only assumption argument is b2, since it contains the assumption as2

(takenAbroadOf (:medium,:bob)) in its body. Remaining ones are the fact arguments,

since they only have facts in their body.

42

Table 6.3. ABA specification of Scenario 2.

R = IA1 ∪ IA2 ∪ PB1 ∪5
i=1 ri

r1 = {→ hasMedium(:pr,:medium)}

r2 = {→ locatedIn(:nice,:france)}

r3 = {→ isBornIn(:bob,:nice)}

r4 = {→ hasGeoTag(:medium,:eiffel)}

r5 = {→ locatedIn(:eiffel,:france)}

A = {as1,as2}

as1 = not(rejects(:alice,:pr))

as2 = takenAbroadOf (:medium,:bob)

C = {c1,c2}

c1 = (not(rejects(:alice,:pr))=rejects(:bob,:pr))

c2 = (takenAbroadOf (:medium,:bob)=takenHomeCountryOf (:medium,:bob))

Table 6.4. Arguments derived from Scenario 2.

f1 : {} `r1 hasMedium(:pr,:medium)

f2 : {} `r2 locatedIn(:nice,:france)

f3 : {} `r3 isBornIn(:bob,:nice)

f4 : {} `r4 hasGeoTag(:medium,:eiffel)

f5 : {} `r5 locatedIn(:eiffel,:france)

a1 : {not(rejects(:alice,:pr))} ` not(rejects(:alice,:pr))

b1 : {takenAbroadOf (:medium,:bob)} ` takenAbroadOf (:medium,:bob)

b2 : {takenAbroadOf (:medium,:bob)} `PB1
∪r1 rejects(:bob,:pr)

a2 : {} `IA1
∪IA2

∪5
i=2ri takenHomeCountryOf (:medium,:bob)

a3 : {} `IA2
∪3
i=2ri hasHomeCountry(:bob,:france)

43

rejects(:bob,:pr)

hasMedium(:pr,:medium)

τ

takenAbroadOf (:medium,:bob)

hasHomeCountry(:bob,:france)

isBornIn(:bob,:nice)

τ

locatedIn(:nice,:france)

τ

takenHomeCountryOf (:medium,:bob)

locatedIn(:eiffel,:france)

τ

hasGeoTag(:medium,:eiffel)

τ

hasHomeCountry(:bob,:france)

Figure 6.1. Deduction trees for the arguments b2, a3 and a2 in Scenario 2 respectively.

b1 b2

a2 a1 a3

Figure 6.2. Attacks between arguments for Scenario 2.

44

Figure 6.2 represents the attack relations between arguments. b2 attacks a1,

since it is the contrary of as1 (not(rejects(:alice,:pr))), which supports a1. In return,

a2 attacks b1 and b2, since it is the contrary of as2 (takenAbroadOf (:medium,:bob)),

which supports both b1 and b2. In this point, we can find the credulously justi-

fied admissible argument sets based on the attack relations (i.e., {}, {a3}, {a2},

{a2, a3}, {a1, a2}, {a1, a2, a3}). :alice queries abagraph with its initial assumption

as1 (not(rejects(:alice,:pr))). as1 creates the argument a1, which is a justified argu-

ment with the argument a2. Therefore, abagraph returns that the assumption is valid.

Since the assumption claims that the request should not be rejected, the post is shared.

Scenario 3: Bob wants to share a picture of Alice in the social network. Alice does not

want to share any picture in the leisure context and she thinks that the picture is in

the leisure context. However, Bob believes that it is taken in a conference location at

a conference date. Thus, he claims that the picture is in the conference context. Alice

opposes Bob by showing the geotag of the picture.

Table 6.5. Semantic rules in Scenario 3 as SWRL rules.

IB1 :

isInContext(?postRequest, ?context), hasMedium(?postRequest, ?medium),

includesLocation(?medium, Antalya), City(Antalya),

hasDateTaken(?medium, ?date), dateTime(date),

equal(?date, “2016-03-01T00:00:00Z”) → Conference(?context)

A post is in the conference context,

if its medium is taken at 3rd of January in Ankara.

IA1 :
differFrom(?location1, ?location2),

hasGeoTag(?medium, ?location1) → notIncludeLocation(?medium, ?location2)

A medium does not include a location, if its geotag shows another location.

PA1 :
Leisure(?context),

isInContext(?postRequest, ?context) → rejects(:alice, ?postRequest)

Alice rejects a post request, if it is in the leisure context.

Table 6.5 shows the SWRL rules of Alice and Bob. Alice thinks that the post is

in the Leisure context. He rejects the request by following PA1 . On the other hand,

Bob knows the date the picture is taken and thinks it is taken in Antalya. Following

45

IB1 , he comes to conclusion that the post is in the Conference context. Alice knows

the geotag of the picture, which is not Antalya. She uses IA1 to oppose Bob’s claim.

Table 6.6 represents the specification of Scenario 3.

Table 6.6. ABA specification of Scenario 3.

R = IA1 ∪ IB1 ∪ PA1 ∪8
i=1 ri

r1 = {→ isInContext(:pr,:context)}

r2 = {→ hasGeoTag(:medium,:izmir)}

r3 = {→ differFrom(:izmir,:antalya)}

r4 = {→ hasMedium(:pr,:medium)}

r5 = {→ City(:antalya)}

r6 = {→ hasDateTaken(:medium,:date)}

r7 = {→ dateTime(:date)}

r8 = {→ equal(:date,“2016-03-01T00:00:00Z”)}

A = {as1,as2,as3}

as1 = not(rejects(:bob,:pr))

as2 = Leisure(:context)}

as3 = includesLocation(:medium,:antalya)

C = {c1,c2,c3}

c1 = (not(rejects(:bob,:pr))=rejects(:alice,:pr))

c2 = (Leisure(:context)=Conference(:context))

c3 = (includesLocation(:medium,:antalya)=notIncludeLocation(:medium,:antalya))

Figure 6.3 shows the derivation trees for arguments a2, b3 and a3 respectively.

a2 and b3 are assumption arguments, since they contains assumptions in their body.

a3 is a fact argument, since it has only facts (hasGeoTag(:medium,:izmir), differ-

From(:izmir,:antalya)) in its body.

Figure 6.4 represents the attack relations between arguments. a2 attacks b1,

since it is the contrary of as1 (not(rejects(:bob,:pr))), which supports b1. Then, b3

attacks a1 and a2, since it is the contrary of as2 (Leisure(:context)), which supports

both a1 and a2. At last, a3 attacks b3, since it is the contrary of as3 (includesLo-

46

rejects(:bob,:pr)

isInContext(:pr,:context)

τ

Leisure(:context)

Conference(:context)

includesLocation(:medium,:antalya)equal(:date,“2016-03-01T00:00:00Z”)

τ

notIncludeLocation(:medium,:antalya)

differFrom(:izmir,:antalya)

τ

hasGeoTag(:medium,:izmir)

τ

Figure 6.3. Deduction trees for the arguments a2, b3 and a3 in Scenario 3.

Table 6.7. Arguments derived from Scenario 3.

f1 : {} `r1 isInContext(:pr,:context)

f2 : {} `r2 hasGeoTag(:medium,:antalya)

f3 : {} `r3 differFrom(:izmir,:antalya)

f4 : {} `r4 hasMedium(:pr,:medium)

f5 : {} `r5 City(:antalya)

f6 : {} `r6 hasDateTaken(:medium,:date)

f7 : {} `r7 dateTime(:date)

f8 : {} `r8 equal(:date,“2016-03-01T00:00:00Z”)

b1 : {not(rejects(:bob,:pr))} ` not(rejects(:bob,:pr))

a1 : {Leisure(:context)} ` Leisure(:context)}

b2 : {includesLocation(:medium,:antalya)} ` includesLocation(:medium,:antalya)

a2 : {Leisure(:context)} `PA1
∪r1 rejects(:alice, :pr)

a3 : {} `IA1
∪3
i=2ri notIncludeLocation(:medium, :antalya)

b3 : {includesLocation(:medium,:antalya)} `IB1
∪8
i=4ri∪r1 Conference(:context)

47

b1 b2b3

a1a2 a3

Figure 6.4. Attacks between arguments for Scenario 3.

cation(:medium,:antalya)), which supports b3. The calculated credulously justified

admissible sets of this attack relations are {}, {a3}, {a2, a3}, {a1, a3}, {a1, a2, a3}.

When :bob queries abagraph with its initial assumption as1 (not(rejects(:bob,:pr))),

abagraph returns that the assumption is not valid. Therefore, the post is not shared.

Scenario 4: Bob wants to share a picture of Carol. He consults Carol before sharing

it. Carol does not want any picture of her in the Politics context to be shared in

the social network. Since she believes that the picture is in the Politics context, she

rejects Bob’s request. However, Bob thinks that the picture is unrelated with the

politic events. Thus, it is in the Unpolitic context. Carol proves that a politic event

time and location matches with the time and location that the picture indicates.

Table 6.8. Semantic rules in Scenario 4 as SWRL rules.

IB1 :

isInContext(?postRequest, ?context),

hasMedium(?postRequest, ?medium), PoliticsEvent(:p2013),

unrelatedTo(?medium, :p2013) → Unpolitic(?context)

A post is in Unpolitic context,

if it is not related to the politic event :p2013

IC1 :

hasDateTaken(?medium, ?date1), hasEventDate(?event, ?date2),

equal(?date1, ?date2), dateTime(?date1), dateTime(?date2),

hasGeoTag(?medium, ?location1), hasEventLocation(?event, ?location2),

SameAs(?location1, ?location2) → relatedTo(?medium, ?event)

A medium is related to an event,

if they indicate the same date and location

PC1 :
Politics(?context),

isInContext(?postRequest, ?context) → rejects(:carol, ?postRequest)

Carol rejects a post request, if the post is in the Politics context

48

Table 6.9. ABA specification of Scenario 4.

R = IB1 ∪ IC1 ∪ PC1 ∪11i=1 ri

r1 = {→ isInContext(:pr,:c)}

r2 = {→ hasMedium(:pr,:m)}

r3 = {→ PoliticsEvent(:p2013)}

r4 = {→ hasDateTaken(:m,:date1)}

r5 = {→ hasEventDate(:p2013,:date2)}

r6 = {→ equal(:date1,:date2)}

r7 = {→ dateTime(:date1)}

r8 = {→ dateTime(:date2)}

r9 = {→ hasGeoTag(:m,:taksim)}

r10 = {→ hasEventLocation(:p2013,:taksim)}

r11 = {→ SameAs(:taksim,:taksim)}

A = {as1,as2,as3}

as1 = not(rejects(:bob,:pr))

as2 = Politics(:c)

as3 = unrelatedTo(:m,:p2013)

C = {c1,c2,c3}

c1 = (not(rejects(:bob,:pr))=rejects(:carol,:pr))

c2 = (Politics(:c)=Unpolitic(:c))

c3 = (unrelatedTo(:m,:p2013)=relatedTo(:m,:p2013))

49

Table 6.8 shows the SWRL rules of Bob and Carol. Carol thinks that the post is

in the Politics context. She rejects the request by following PC1 . Bob is aware of only

one politic event, which is :p2013. He thinks that the picture is unrelated with the

:p2013. By following IB1 , he claims that the post is in the Unpolitic context. Carol

knows that the date and the location of the medium and :p2013 matches. Thus, she

follows IC1 and comes to the conclusion that the medium is related to a politic event.

Table 6.9 represents the specification of Scenario 4. In Bob’s ontology, :p2013

is actually defined as an instance of ProtestEvent content. ProtestEvent content is

a subclass of the PoliticsEvent content. Bob does not have the direct information

about :p2013 being a political event or he does not have an additional rule to infer

this. Instead, he benefits from the ontological structure and infers that the :p2013 is a

political event.

Table 6.10. Arguments derived from Scenario 4.

f1 : {} `r1 isInContext(:pr,:c)

f2 : {} `r2 hasMedium(:pr,:m)

f3 : {} `r3 PoliticsEvent(:p2013)

f4 : {} `r4 hasDateTaken(:m,:date1)

f5 : {} `r5 hasEventDate(:p2013,:date2)

f6 : {} `r6 equal(:date1,:date2)

f7 : {} `r7 dateTime(:date1)

f8 : {} `r8 dateTime(:date2)

f9 : {} `r9 hasGeoTag(:m,:taksim)

f10 : {} `r10 hasEventLocation(:p2013, :taksim)

f11 : {} `r11 SameAs(:taksim,:taksim)

b1 : {not(rejects(:bob,:pr))} ` not(rejects(:bob,:pr))

c1 : {Politics(:c)} ` Politics(:c)

b2 : {unrelatedTo(:m,:p2013)} ` unrelatedTo(:m,:p2013)

c2 : {Politics(:c)} `PC1
∪r1 rejects(:bob,:pr)

b3 : {unrelatedTo(:m,:p2013)} `IB1
∪3
i=1ri Unpolitic(:c)

c3 : {} `IC1
∪11
i=4ri relatedTo(:m,:p2013)

50

Figure 6.5 shows the derivation trees for arguments c2 and b3 respectively. Both of

them are assumption arguments, since c2 contains as2 (Politics(:c)) and b3 contains

as3 (unrelatedTo(:m,:p2013)) in its body. For clarity, we do not present the derivation

three of c3. It is a fact argument, since it only contains the facts in its body.

rejects(:carol,:pr)

isInContext(:pr,:c)

τ

Politics(:c)

Unpolitic(:c)

unrelatedTo(:m,:p2013)PoliticsEvent(:p2013)

τ

hasMedium(:pr,:m)

τ

isInContext(:pr,:c)

τ

Figure 6.5. Deduction trees for the arguments c2, and b3 in Scenario 4.

b1 b3 b2

c1 c2 c3

Figure 6.6. Attacks between arguments for Scenario 4.

Figure 6.6 represents the attack relations between arguments. c2 attacks b1, since

it is the contrary of as1 (not(rejects(:bob,:pr))), which supports b1. Then, b3 attacks

c1 and c2, since it is the contrary of as2 (Protest(:c)), which supports both a1 and a2.

At last, c3 attacks b3 and b2, since it is the contrary of as3 (unrelatedTo(:m,:p2013)),

which supports b3. The credulously justified admissible sets for this argumentation

are {}, {c3}, {c2, c3}, {c1, c3} and {c1, c2, c3}. :bob queries abagraph with its initial

assumption as1 (not(rejects(:bob,:pr))) and abagraph returns that the assumption is

not valid. Therefore, the post is not shared.

6.2. User Expectations and PriArg

We implemented PriArg to help users to manage their privacy in online social

networks (see Chapter 5). To make this possible, its results should be overlapped with

the expectations of users. We have conducted a personal interview and a survey to

51

evaluate the output of PriArg. We first asked subjects for their personal information

such as their age, gender, frequency to use a social network and if they have privacy

concerns in online social networks. Then, we provided them Form 1, Form 2 and Form

3 of Scenario 1, which are described in Chapter 2. We omitted the Form 1 as it does

not involve argumentation and cannot be compared with PriArg. We asked subjects

what do they think about sharing the post. Note that users do not consider themselves

as Alice or Bob, but answer the questions objectively. At the end of the surveys, we

compared the user results with PriArg.

6.2.1. Personal Interviews

In the personal interviews, we worked with 36 subjects (9 females and 27 males)

from the Bogazici University. 33 of these subjects (91.6%) are aged between 18 and 35

while remaining 3 subjects are aged between 35 and 55. 30 of the subjects (83.3%) use

the social networks at least once in a day and are familiar with the concepts. 28 of the

subjects (77.8%) express that they have privacy concerns in online social networks. We

have conducted the survey in person. Thus, participants had chance to ask questions

whenever they felt necessary.

Table 6.11. Personal Interview and Online Survey results.

Form
Personal Interviews (36 participants) Online Survey (68 participants)

Share Not Share Share Not Share

2 5.55% 94.44% 7.35% 92.65%

3 52.77% 47.22% 20.59% 79.41%

4 2.77% 97.22% 7.35% 92.65%

In the second part of the survey, we explain the subjects the privacy constraints

and the knowledge of both Alice and Bob. We use either “think” or “know” while

giving the new information. In that way, we emphasize the difference between an

assumption and a fact. After explaining a scenario, we ask participants to decide

whether to share the post or not. During the experiment, participants were warned

several times to only use the provided information in the scenarios. However, we

saw a great tendency for subjects to come to the conclusions based on unavailable

52

information. These unavailable information were mostly their hypotheses about the

scenarios, own experiences in the social networks or personal privacy rules. We also

ask them follow-up questions to understand the reasons behind their decision. Thus,

we were able to warn them to only use the provided information. Table 6.11 shows the

personal interview results.

For Scenario 1 Form 2, 34 subjects (94.44%) claimed that the picture should not

be shared considering Bob’s rules and information. One subject used her own inference

rule and claimed that a wristband is not a strong evidence to relate the picture with a

festival. This exemplifies how users can include their own ideas instead of following the

presented information. Another subject emphasized that Bob does not know that the

wristband is unique. Instead, he thinks so. Thus his argument is not strong enough

and the picture can be shared. Form 3 provided really interesting and valuable results.

When subjects asked for a decision, 8 of them focused on the difference between the

words “know” and “think”. They told that if Alice’s information is not absolute, then

her argument is not strong even though she can rebut Bob’s argument. When they

were asked whether their thoughts would change if Alice’s information would have been

absolute, they said yes. On the other hand, 28 of people did not care the distinction

between an assumption and a fact. This is an important result, since it shows the

attitude of people regarding privacy and the assumption based argumentation. In real

life, we do not also have all of the facts to make a decision. Instead, we come to

conclusions based on our assumptions and absolute knowledge (i.e., facts). We make

these assumptions based on our experience and knowledge about the world. Hence,

even though assumptions can be rebutted, they differ from a random proposition. 19

(52.77%) of the remaining 28 subjects claimed that the picture can be shared with

the new information while 8 of them claimed it should not be shared and one of them

claimed it cannot be decided. Note that none of these eight subjects did strictly follow

Alice’s and Bob’s rules to come to this decision. They made their own inferences and

assumptions based on their experience. They claimed that the ordinariness of the

wristband is not important, Bob’s friends may have been in this concert etc. The

same problem occurred with the subject who could not decide. In Form 4, 35 subjects

(97.22%) claimed that the picture should not be shared. Only one subject claimed the

53

opposite. When she asked for the reason, she claimed Bob’s rule is not strong enough

to relate the picture with a festival.

6.2.2. Online Survey

We have created an online survey to reach more participants with different back-

grounds. The online survey is created using QuestionPro [42] and stayed online for

three days. We announced the survey on Facebook. In the first part of the survey,

we obtained the personal information of the participants as in the personal interview.

According to these information, 50 of the 68 participants are females while 18 of them

are males. 6 of them (8.82%) are aged between 18 and 25, 53 of them (77.94%) has

an age from 25 to 45 and 9 of them (13.23%) are older than 45. 64 of the participants

(91.18%) use the online social networks at least once in a day. Thus, they are famil-

iar with the concept. 62 of the participants (91.18%) express that they have privacy

concerns in social networking sites.

Table 6.12. Dialogue between Alice and Bob for Form 2, Form 3, and Form 4 of

Scenario 1.

A: I want to share this picture. Would it be ok for you?

B: There is a wristband, which was given at Oktoberfest. I do not think that this

wristband would be found somewhere else. I do not want my festival pictures to

be shared.

A: This wristband might not be given at the Oktoberfest. One might find such a

wristband in Gifty. In another words, one might not be able to understand that

you are in the Oktoberfest.

B: I am not able to access the web site of Gifty. I think the shop is closed. So, I

do not think that the wristband would be purchased from there.

In the second part of the survey, we provide participants a dialogue between Alice

and Bob for each form of Scenario 1. Then, we ask them to decide whether to share the

post or not. Again, participants do not consider themselves as neither Alice nor Bob

but answer the questions objectively. Table 6.12 shows the dialogues for each form.

54

The first line of the scenario shows the dialogue between Alice and Bob for Scenario 1

Form 2. First and the second line together shows the dialogue for Scenario 1 Form 3.

At last, the complete dialogue shows the Scenario 1 Form 4.

Table 6.11 shows the results for online survey. In Form 2 and Form 4, participants

show strong consensus to not to share the post. 63 of them (92.65%) decide to not

to share it in both forms. Form 3 shows interesting results. 54 of the participants

(79.41%) still do not want the picture to be shared even though Alice could rebut

Bob’s argument.

6.2.3. Comparison of User Results with PriArg

Both the personal interview and the survey results shows us how user attitude

can change with the new information. In PriArg, we also enable agents to change

their idea with the new information. This is a valuable result, since it shows us the

importance of a fine grained discussion. We believe Assumption-based Argumentation

is a good fit to mimic this behaviour.

Our second observation is that the user results are mostly in line with the PriArg

results. In Form 2 and Form 4, both the personal interview and the online survey

results have a consensus on not to share the picture. PriArg also gives the same result,

since Bob can provide arguments to convince Alice. However, there is a contradiction

between the personal interviews and the online survey for Form 3. Personal interview

results show that the picture can be shared while online survey results tell otherwise.

Remember that during the personal interviews, even though participants are warned

several times, they insist to use unavailable information. We believe that we face the

same situation in online surveys. Participants have a tendency to not share the picture

to make sure that nobody gets harmed. Thus, they put more restrictions to the post

than Bob does. However, when a participant accepts Bob’s constraints as they are and

only follows them, she comes to conclusion that Bob’s claim is not valid any more.

Therefore the post can be shared. PriArg returns the same result.

55

6.2.4. Qualitative Evaluation

There are different approaches in the literature to protect the privacy of users in

online social networks. However, there are no public data sets or reported results for us

to compare PriArg with these approaches. Hence, we define the necessary qualifications

for a privacy protection mechanism. Then, we compare PriArg with other approaches

through these qualifications. We focus on three approaches from the literature as we

find them the most related ones to PriArg.

PriNego is an agent-based negotiation system where users are represented with

agents [15]. When an agent wants to share a post, it makes a post request to the

relevant agents. Relevant agents either accept the request or reject it by providing

reasons. If a post is rejected, the post owner tries to modify the post according to the

rejection reasons or provide an alternative medium. For Scenario 1, when :bob tells

:alice to not the share the post, :alice would immediately accept it or propose an

alternative medium to share.

CoPE is a privacy management system, which enables all relevant users to put

restrictions on a post [4]. It is implemented as a Facebook application. Each relevant

user is identified as a co-owner. Co-owners put restrictions for each post and result is

found based on a voting mechanism. For Scenario 1, Bob and Alice would have resolve

the conflict manually. Bob would choose the co-owners and Alice would choose her

friends as the audience of the post. Then, the tie between the votes would be broken

in the favour of the user who originally start the discussion (i.e., Alice).

FaceBlock protects the privacy of users when their picture is taken by a Google

Glass [43]. It uses SWRL rules to define the privacy policies of users. If a Google Glass

is detected in the environment, FaceBlock checks whether any of the privacy rules are

fired. If so, it sends a disallow message to the Google Glass. Then, the Glass obscures

the face of the user in all of its pictures. For Scenario 1, :bob would send :alice a

disallow message. Then, :alice would obscure the face of :bob.

56

Table 6.13. Comparison of privacy criteria.

PriArg CoPE PriNego FaceBlock

Automation 3 7 3 3

Concealment 7 3 3 3

Persuasion 3 7 7 7

External consultation 3 7 7 7

Automation expresses the ability of an application to run without human inter-

vention. We believe that automation is an important constraint for privacy, since the

number of contents to deal with can be extremely high. In our application, users are

represented via agents that act on behalf of them. Thus, we meet the automation

constraint. PriNego is also an automated system, since it enables agents to act on

behalf of their users. FaceBlock uses its SWRL rules and a reasoner to automatically

detect a fired privacy rule. It prevents the privacy violation by sending a message to

Google Glass. However in CoPE, users themselves evaluate each related post in the

social network. Hence, there is no automatic mechanism in the CoPE to protect the

privacy of users.

Concealment refers to the ability of the system to keep the privacy constraints

of users private. Hence, a user cannot be aware of the privacy constraints of another

user. In PriArg, users have to provide their SWRL rules to each other to express their

argument. Consider Form 3 of Scenario 1, :alice can attack :bob’s argument, since

:bob provided its rules and explained what are the reasons behind its argument. :alice

would have not know how to convince :bob, if :bob would not provide its reasons. In

PriNego, agents do not challenge each other’s claims. Thus, they do not need to know

the structure of a claim. Agents do not reveal their privacy constraints but provide

reasons behind their decision. A specific audience, date or location can be the rejection

reason. When FaceBlock detects a Google Glass, it reasons in its ontology. If a user

has a concern, FaceBlock sends a simple allow or disallow message instead of sending

the complete rules. In CoPE, users define whom to show the content directly instead

of providing any reasons. Therefore, privacy constraints of users are not revealed.

57

Persuasion refers to whether an agent can change another agent’s decision in the

system. An agent’s decision, which is taken in the lack of knowledge or incorrect infor-

mation can change when rebutting information arrives. Thus, an agent can persuade

another agent by questioning and attacking its claims. We believe that persuasion is an

important constraint, since it helps agents to come to an agreement. In PriArg, agents

provide each other counter arguments with new information. Hence, they are able to

persuade each other. In PriNego, requesting agent does not try to persuade the other

agents that its claim is true. Instead, it modifies the post, proposes an alternative one

or shares it anyway. FaceBlock or CoPE do not have a persuasion mechanism. They

simply follow the constraints of relevant users.

External Consultation expresses the ability of an agent to obtain information

from outside. Users need information to support their claims and to rebut the claims

of other users. Therefore, it is useful to be able to obtain external information when

necessary. PriArg enables agents to obtain external rules and instances. There is no

such system in PriNego, CoPE and FaceBlock.

58

7. DISCUSSION

We propose an approach to protect privacy of users in OSNs. Each user is repre-

sented by an agent, which is fully aware of its user’s privacy constraints and knowledge

about the social network through its ontology. When a post wants to be shared, an

argumentation process starts between agents to decide whether the post can be shared

or not. If sharing the post does not violate any user’s privacy, the post is shared.

Otherwise, there occurs a conflict between agents and each agent tries to provide argu-

ments to persuade the other agent that its claim is true. PriArg also enables agents to

ask for external knowledge when they do not have enough information in their ontol-

ogy. Thus, agents can benefit from other agents’ information to protect their privacy.

When argumentation ends, we calculate the justified argument sets to decide whether

the post can be shared or not.

Detecting conflicts between different parties, resolving them and coming to an

agreement is an important concern in various domains. In the literature, there are

different methods to resolve conflicts. Wishart et al. propose PRİMMA-Viewer, a

collaborative approach for users to create a privacy policy in OSNs [3]. A user who

uploads a post into a social network defined as the owner of the post. Owner specifies

the initial privacy policy of the post and actions that the audience of the post can

perform. The owner can also nominate another user as a co-owner. Owner and co-

owners collaboratively create the privacy policy. A privacy policy consists of a resource,

possible actions that can be performed with the resource, strong and weak conditions

proposed by users. Strong conditions cannot be touched while weak conditions can

be deleted by other users. If a conflict arises because of a strong condition, either

co-owners respect the strong condition or alter the post as the condition owner is not

related to the post. Each user is able to create new weak or strong conditions. When a

user makes a request, Facebook directs the request to PRİMMA-Viewer. Then, Policy

Decision Point (PDP) in the PRİMMA-Viewer evaluates the request by using the IRIS

reasoner. PDP sends its decision to the Policy Enforcement Point (PEP) and Facebook

displays views that is decided by the PRİMMA-Viewer. PRİMMA-Viewer enables all

59

related users to manage their content. Even though it enables users to resolve conflicts,

it cannot be done automatically which is a burden for users. In addition, authors do

not mention a system that automatically proposes policies. Thus, users have to create

a policy from the scratch for each post. A co-owner can only be assigned by the owner

of the post. It is not possible for a user to request to be a co-owner. Another issue is

that a privacy policy of a user become known by all of the users.

Another method to resolve conflicts between different parties is majority voting.

Squicciarini et al. [4] developed a collaborative privacy management system (CoPE)

for Facebook. There are two stakeholders in CoPE as content-owner and co-owner. A

content-owner is the user who uploads the post into the social network. A co-owner is

the user whose information is revealed by the post of the content-owner. As opposed

to the most current OSNs, CoPE enables co-owners to control the privacy settings of

the content. Authors call the shared content as privacy-content and audience of the

post as content-viewers. The requirements for a collaborative privacy management

system that CoPE provides are following: (1) A content-owner can assign other users

as co-owners; (2) a co-owner gets warned for a related privacy-content; (3) a privacy-

content related user should be able to make a request to be a co-owner; (4) A co-owner

should be able to manage the privacy settings of a privacy-content. CoPE has two

main contributions. First, it prevents privacy leakages by following privacy settings.

Second, it provides all stakeholders to collaboratively manage the settings by using a

simple voting system. Each stakeholder can set the audience as some-friends, public or

co-owner only. The privacy preference for the content is set according to the majority

of votes. If the majority voted for co-owner only, no content-viewers apart from co-

owners can see the content. Otherwise, the content-viewers are computed by joining

the preferred audience and by removing the not preferred audience of each stakeholder.

In this way, it is guaranteed that each stakeholder contributed to the privacy settings

even though their preferences might be restricted. If viewers set is empty, only the

stakeholders can see the content. CoPE has a user interface with several features. In

addition to the aforementioned features, CoPE enables users to set default privacy

settings for all pictures. It also enables co-owners to track the content-viewers who has

seen their privacy-contents. A drawback of CoPE is, during the calculation of joint

60

preferences, co-owners become aware of each other’s audience preferences. In addition

to that, managing the privacy settings of post is not automatic. Thus, users handle

it by themselves. Authors conducted a survey-based user study to evaluate CoPE.

Results showed them OSN users like the idea of collaborative privacy management and

they can adapt such a tool such as CoPE to manage their privacy.

Apart from majority voting, negotiation is a useful method to handle conflicts

and come to an agreement. Such and Rovatsos developed a system that automatically

detects and resolves conflicts between different policies [16]. Agents’ privacy policies

consist of a set of exceptions and intimacy thresholds for specific relationship types.

Agent intimacies are considered to be the relationship strengths between agents. Only

users who have a higher intimacy value than a predefined intimacy threshold can access

the posts. Authors assumed that intimacies between users are available, since there

exists tools that accurately estimate them [44] [45] [46]. Agents indicate the users

who are able to access to the posts with action vectors. The system takes the privacy

policy of agents and their intimacies with other agents. Then, it checks whether the

agents’ action vectors are equal. If they are not equal, a conflict is detected. Thus,

a negotiation process starts between agents to come to an agreement. Authors use a

one-step negotiation protocol that is proven to be stable and efficient in the literature.

During the negotiation, each agent calculates the utility for each possible action vector

that induced by a policy. A vector utility for an agent is calculated by using the

number of exceptions its policy involves and its policy’s distance to the agent’s preferred

policy. At the end, each agent propose an action vector and the one that maximizes

the product of the utilities is chosen. Authors also studied the performance of such

negotiation mechanisms and proposed heuristics to decrease their cost.

Mester et al. also developed a negotiation system to protect the privacy of users

in OSNs [15]. Each user is represented with an agent and each agent has an ontology

that describes the user’s constraints and knowledge. When an agent wants to share a

post in an OSN, it sends a post request to the other relevant agents. Receiver agents

evaluate the post in their ontology. If the post does not violate the privacy of any

relevant agents, the post is shared. Otherwise, rejecting agents provide reasons to

61

not to share the post. Thus, the requester agent can modify the post as it complies

with all privacy constraints or it can propose an alternative post to share. Negotiation

continues until the post is shared or the limited number of iterations is reached. This

work is similar to ours as we also use agents to represent users in OSNs and we benefit

from ontologies. However, in both works of Such and Rovatsos and Mester et al. agents

are not able to question the arguments of the other users. Agents may have incorrect

or missing information in their ontology. Thus, their arguments may lead to an unfair

decision or even to a privacy violation. Agents need to be able to question and persuade

the other agents to prevent this situation.

It is also possible to solve privacy conflicts for images by modifying the images.

FaceBlock is developed to protect the privacy of users when their picture is captured

by a Google Glass [43]. FaceBlock users share their privacy policy with the FaceBlock

application in the Glass to express whether they want to be seen in a picture or not.

First, FaceBlock creates an eigenface of the user by using her photo. An eigenface

is the mathematical representation of a user’s face [47]. Then, whenever a Glass is

detected by the user’s device, FaceBlock sends the user’s eigenface and her policy

to the Glass. FaceBlock in the Glass checks every picture it takes and obscures the

matching faces. FaceBlock benefits from Semantic Web Technologies to be able to

create more fine-grained privacy policies. It benefits from five types of context-aware

semantic policies. Location-aware policies enable users to define privacy rules based on

locations. Similarly, identity-aware policies make it possible for users to define rules for

specific users or user groups and time-aware policies enable users to define rules based

on time. Currently some smart devices are able to detect activities. This feature make

it possible for users to create activity-aware policies. At last, composite policies include

a combination of aforementioned context-aware policies. Users define privacy policies

with Semantic Web Rule Language (SWRL) rules and FaceBlock’s context ontology.

Then, a Description Logics reasoner is used to infer if a privacy policy is triggered with

the current context. Privacy policies are shared among users via peer-to-peer networks.

Glass only receives a policy including an allow or disallow message. Thus, there is no

privacy leakage that reveals the identity and the context model of the user. However,

FaceBlock has no mechanism for users to discuss their privacy policies in case of having

62

conflicting policies. Thus, it is also not possible to persuade the other agent.

Another powerful method to make decisions and handle inconsistencies is argu-

mentation. Muller and Hunter propose an argumentation-based approach for decision

making [48]. Their system is able to generate decisions. It uses argumentation to

analyse and document decisions. The system uses formal logic to create arguments.

Decision making process takes place in a structured way by using arguments, rules and

counter arguments. This structured information can be transformed into a decision

document. Thus, it is also possible to see the reasons behind the decisions. In the cur-

rent approaches, a mathematical value is calculated for each decision by considering

different criteria. Then, the most favourable decision is chosen. In addition, docu-

mentation is made in an unstructured way. However, there are several problems with

these current approaches. First, multi criteria decision making (MCDM) only gives an

output instead of showing the reasoning process. Second, MCDM provides the best de-

cision among only the predefined decisions. Thus, it gives the local optimum. Another

problem is, there is no standard for documentation which prevents to develop tools that

supports decision documentation. This also prevents the analyses of decisions that are

made before. Another downside of having unstructured documentation is the com-

plexity of finding a particular information in the document. To solve these problems,

authors propose an argumentation decision framework (ADF). Arguments support or

attack a given set of decisions to find the best decision. ADF meets the aforementioned

requirements that MCDM cannot meet. First, the preferred decisions are supported

by arguments. Thus, it is possible to see the reasoning process. Since ADF is able

to recommend decisions, the decision maker does not need to enumerate possible deci-

sions manually. In addition, it is also possible to automatically analyse decisions with

ADF, since rules in the argumentation provide domain knowledge. ADF also enables

standardization, since it uses a formal language, which can be easily converted to an

ontology and vice versa.

Kakas and Moraitis proposed an argumentation based decision making system

for agents [49]. They created a modular agent architecture as each module represents

a capability of an agent. These modules have their own deliberation processes and

63

they reason independently. The behaviour of an agent is decided by intersecting the

decisions of these modules. Different roles of an agent in an environment and the

context of its interactions may change its decisions. Thus, argumentation theory of

the agent consists of three levels. In the first level, object-level decision rules are

defined. In the second and third level, the object-level decision rules are used for

different roles and contexts. This structure gives modularity to the argumentation

theory so that when a rule wants to be modified, making a change in the associated

level is enough. Authors also consider the situation when an agent does not have

enough information in its knowledge base to produce an argument. In this case, agents

produce arguments with abducible predicates. This supporting information can be

acquired by the environment observer agent itself or as a result of interactions with

other agents. Modularity of the architecture enables agents to be adaptable. One of

the modules is personality, which creates a decision policy based on the motivations

and needs of an agent. Authors benefit from five main classes that are categorized

in Cognitive Psychology to show the needs and motivations of an individual. These

classes are Psychology, Safety, Affiliation, Achievement and Learning. Authors assume

that there is an ordering between these needs and agents make a decision by considering

them. Each goal of an agent is linked to one of the five motivations. Thus, agents also

check if a motivation is critical while choosing a goal. In this way the personality and

the behaviour of the agents can be designed. Personality module plays an important

role as it can change the overall decisions of the agent by influencing the other modules.

However, personality module also can lead to dilemmas, since an agent’s personal goals

may be different from its professional goals. Authors proposed three ways to handle

these dilemmas. First, the agent can suspend the decision. Second, the agent can try

to find supporting information to strengthen or weaken the goals. At last, the agent

can try to evaluate the supporting information in the external environment. There

exist an implementation of this framework. PriArg is different from the work of Kakas

and Moraitis as it is different from the work of Muller and Hunter. PriArg enables

distributed argumentation where more than one agents uses argumentation to come a

decision. On the other hand, both of these works uses a central argumentation system

where an agent makes a decision by itself. Further, agents in both work do not use

64

decision making for privacy domain.

Another work that benefits from both ontology and argumentation is OAF (Ontology-

based Argumentation Framework), which is an extension of DeLP(Defeasible Extended

Logic Programming) [50]. OAF enables a decision making system for breast cancer.

Authors use real clinical trials to export defeasible rules and to create an ontology.

Then, they create arguments by using the ontology, facts and rules. Since some ar-

guments may conflict each other, they try to find the warranted and unwarranted

arguments. In this point, they also take the power of the arguments into account

by considering the preference order. As in this work, we also use both ontology and

argumentation in our research. However, our agents make decisions in privacy domain.

In addition to decision making approaches for one agent, there are other works

that using argumentation for decision making with multiple agents. Fan et al. propose

a multi-agent decision framework [36]. The framework uses argumentation-based dia-

logue so the agents can exchange information, discuss on decisions, goals and attributes

and choose decision. An ABA-dialogue consist of utterances whose content can be a

claim, a rule, an assumption or a contrary. Each agent has a decision framework, which

involves a set of decisions, a set of attributes, a set of goals, a goal-attribute table and

a decision-attribute table. A decision-attribute table shows if a decision has an at-

tribute and a goal-attribute table shows if a goal is satisfied by an attribute. Decision

frameworks are combined to create the joint decision framework. Since there are two

different parties, conflicts between the decision frameworks may occur. These conflicts

can be resolved in two ways. First, if the public trustworthiness of the agents exist,

the conflict is resolved in the support of more trusted agent. Otherwise, the conflict is

resolved by using three different joint decision frameworks. In sceptical joint decision

framework, both agents must believe that a decision-attribute pair or a goal-attribute

pair must be true to make the same pair true in the joint decision framework table. In

credulous joint decision framework, it is enough for one agent to say that a decision-

attribute pair or a goal-attribute pair is true to make the same pair true in the joint

decision framework table. In the fair joint decision framework, a decision-attribute

pair or a goal-attribute pair is true if and only if one agent believes that it is true and

65

the other agent either believes the same thing or does not have a knowledge about

it. After having a decision framework, each agent can construct its own ABA frame-

work. Then, union of the two agents’ frameworks are used to compute the selected

decision. Authors implemented a dialogue system with JADE and Grapharg. This

works differs from ours as we benefit from ontologies to represent the knowledge base

of agents. Agents can infer new information from the existing knowledge by following

SWRL rules. Further, they use decision making for medical domain whereas we use it

for privacy domain.

Fogues et al. propose to use a privacy recommendation tool that would help

users to set privacy constraints to a post considering all of the related users’ privacy

constraints [51]. For that aim, agents that acts on behalf of the users, negotiate through

arguments and try to convince each other that their privacy constraints are necessary

and should be taken into account. This work is similar to ours, since they also try to

find the optimal privacy settings for a post by letting agents negotiate each other by

using arguments. However, they do not define how an agent decide what is suitable

for it. We propose every agent to have an ontology so they can reason and decide

to the privacy constraints of a post and provide arguments to support their claim.

Furthermore, we also provided an algorithm for agents to carry the argumentation

process and decide. Note that none of the aforementioned works above except the

work of Kakas et al. enable agents to ask for external knowledge as PriArg does. Thus

it is not possible for an agent to learn new information from other agents.

In our future work, we would like improve PriArg as it satisfies the concealment

aspect. One approach may be revealing the privacy constraints partially as the reasons

behind the rules are hidden from the others. Another future work would be explaining

users the reasons behind a decision of a discussion. Currently, the explanation that

PriArg provides may not be easily understandable for users. One approach may be

extracting information from the dialectical trees of arguments and providing a plain text

for a more understandable explanation. At last, it would be interesting to bring PriArg

a trust aspect. In personal interviews, we find out how users consider the difference

between an assumption and a fact for privacy. The result presents the importance of

66

absolute information for users. It would be interesting to study how an agent’s attitude

changes when it obtains uncertain information from other agents that are trusted in

different levels.

67

REFERENCES

1. Ellison, N. B. et al., “Social network sites: Definition, history, and scholarship”,

Journal of Computer-Mediated Communication, Vol. 13, No. 1, pp. 210–230, 2007.

2. Maleewong, K., C. Anutariya and V. Wuwongse, “A collective intelligence ap-

proach to collaborative knowledge creation”, Semantics, Knowledge and Grid,

2008. SKG’08. Fourth International Conference on, pp. 64–70, IEEE, 2008.

3. Wishart, R., D. Corapi, S. Marinovic and M. Sloman, “Collaborative Privacy Policy

Authoring in a Social Networking Context”, Proceedings of the IEEE International

Symposium on Policies for Distributed Systems and Networks (POLICY), pp. 1–8,

Washington, DC, USA, 2010.

4. Squicciarini, A. C., H. Xu and X. L. Zhang, “CoPE: Enabling Collaborative Privacy

Management in Online Social Networks”, Journal of the American Society for

Information Science and Technology , Vol. 62, No. 3, pp. 521–534, 2011.

5. Stross, R., “How to lose your job on your own time”, http://www.nytimes.com/

2007/12/30/business/30digi.html?ex=1356670800&en=55ef6410d3cac28e&

ei=5088&partner=rssnyt&emc=rss, 2007, accessed at May, 2016.

6. Grasz, J., “Forty-five Percent of Employers Use Social Network-

ing Sites to Research Job Candidates, CareerBuilder Survey Finds”,

http://www.careerbuilder.com/share/aboutus/pressreleasesdetail.

aspx?id=pr691&sd=4/18/2012&ed=4/18/2099, 2012, accessed at May, 2016.

7. Maternowski, K., “Campus police use Facebook”, https://badgerherald.com/

news/2006/01/25/campus-police-use-fa/, 2006, accessed at May, 2016.

8. Shachtman, N., “Exclusive: U.S. Spies Buy Stake in Firm

That Monitors Blogs, Tweets”, https://www.wired.com/2009/10/

68

exclusive-us-spies-buy-stake-in-twitter-blog-monitoring-firm/, 2009,

accessed at May, 2016.

9. Thomas, K., C. Grier and D. M. Nicol, “unfriendly: Multi-party privacy risks in

social networks”, Privacy Enhancing Technologies , pp. 236–252, Springer, 2010.

10. Westin, A. F., “Privacy and freedom”, Washington and Lee Law Review , Vol. 25,

No. 1, p. 166, 1968.

11. Kökciyan, N., “Privacy Management in Agent-Based Social Networks:(Doctoral

Consortium)”, Proceedings of the 2015 International Conference on Autonomous

Agents and Multiagent Systems , pp. 2019–2020, International Foundation for Au-

tonomous Agents and Multiagent Systems, 2015.

12. Eecke, P. V. and M. Truyens, “Privacy and social networks”, Computer Law &

Security Review , Vol. 26, No. 5, pp. 535 – 546, 2010, http://www.sciencedirect.

com/science/article/pii/S0267364910001093, accessed at May, 2016.

13. Stewart, M. G., “How giant websites design for you (and a billion oth-

ers, too)”, https://www.ted.com/talks/margaret_gould_stewart_how_giant_

websites_design_for_you_and_a_billion_others_too, accessed at January,

2016.

14. Squicciarini, A. C., F. Paci and S. Sundareswaran, “PriMa: a comprehensive ap-

proach to privacy protection in social network sites”, Annals of Telecommunica-

tions/Annales des Télécommunications , pp. 1–16, 2013.

15. Mester, Y., N. Kökciyan and P. Yolum, “Negotiating Privacy Constraints in Online

Social Networks”, F. Koch, C. Guttmann and D. Busquets (Editors), Advances in

Social Computing and Multiagent Systems , Vol. 541 of Communications in Com-

puter and Information Science, pp. 112–129, Springer International Publishing,

2015.

69

16. Such, J. M. and M. Rovatsos, “Privacy Policy Negotiation in Social Media”, CoRR,

Vol. abs/1412.5278, 2014, http://arxiv.org/abs/1412.5278, accessed at May,

2016.

17. “Abagraph”, http://www.doc.ic.ac.uk/~rac101/proarg/abagraph.html, ac-

cessed at May, 2016.

18. Wooldridge, M. and N. R. Jennings, Intelligent Agents: ECAI-94 Workshop on

Agent Theories, Architectures, and Languages Amsterdam, The Netherlands Au-

gust 8–9, 1994 Proceedings , chap. Agent theories, architectures, and languages: A

survey, pp. 1–39, Springer Berlin Heidelberg, Berlin, Heidelberg, 1995.

19. Franklin, S. and A. Graesser, “Is it an Agent, or just a Program?: A Taxonomy

for Autonomous Agents”, Intelligent agents III agent theories, architectures, and

languages , pp. 21–35, Springer, 1996.

20. Jennings, N. R., K. Sycara and M. Wooldridge, “A roadmap of agent research

and development”, Autonomous agents and multi-agent systems , Vol. 1, No. 1, pp.

7–38, 1998.

21. Schmidt, A., M. Beigl and H.-W. Gellersen, “There is more to context than loca-

tion”, Computers & Graphics , Vol. 23, No. 6, pp. 893–901, 1999.

22. Horrocks, I., P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M. Dean et al.,

“SWRL: A semantic web rule language combining OWL and RuleML”, World

Wide Web Consortium Member submission, Vol. 21, p. 79, 2004.

23. Fang, L. and K. LeFevre, “Privacy wizards for social networking sites”, Proceedings

of the 19th international conference on World wide web, pp. 351–360, ACM, 2010.

24. Mugan, J., T. Sharma and N. Sadeh, Understandable learning of privacy prefer-

ences through default personas and suggestions , Institute for Software Research

Technical Report CMU-ISR-11-112, Carnegie Mellon University, Pittsburgh, PA,

70

2011.

25. Amgoud, L. and C. Cayrol, “Inferring from inconsistency in preference-based ar-

gumentation frameworks”, Journal of Automated Reasoning , Vol. 29, No. 2, pp.

125–169, 2002.

26. Dunne, P. E., A. Hunter, P. McBurney, S. Parsons and M. Wooldridge, “Weighted

argument systems: Basic definitions, algorithms, and complexity results”, Artificial

Intelligence, Vol. 175, No. 2, pp. 457–486, 2011.

27. Amgoud, L. and H. Prade, “Using arguments for making and explaining decisions”,

Artificial Intelligence, Vol. 173, No. 3, pp. 413–436, 2009.

28. Dung, P. M., “On the acceptability of arguments and its fundamental role in

nonmonotonic reasoning, logic programming and n-person games”, Artificial intel-

ligence, Vol. 77, No. 2, pp. 321–357, 1995.

29. Dung, P. M., R. A. Kowalski and F. Toni, “Assumption-based argumentation”,

Argumentation in Artificial Intelligence, pp. 199–218, Springer, 2009.

30. Modgil, S. and H. Prakken, “The ASPIC+ framework for structured argumenta-

tion: a tutorial”, Argument & Computation, Vol. 5, No. 1, pp. 31–62, 2014.

31. Garćıa, A. J. and G. R. Simari, “Defeasible logic programming: Delp-servers, con-

textual queries, and explanations for answers”, Argument & Computation, Vol. 5,

No. 1, pp. 63–88, 2014.

32. Besnard, P. and A. Hunter, “Constructing argument graphs with deductive argu-

ments: a tutorial”, Argument & Computation, Vol. 5, No. 1, pp. 5–30, 2014.

33. “CaSAPI,”, http://www.doc.ic.ac.uk/~ft/CaSAPI/, accessed at May, 2016.

34. “Proxdd”, http://www.doc.ic.ac.uk/~rac101/proarg/proxdd.html, accessed

at May, 2016.

71

35. Toni, F., “A tutorial on assumption-based argumentation”, Argument & Compu-

tation, Vol. 5, No. 1, pp. 89–117, 2014.

36. Fan, X., F. Toni, A. Mocanu and M. Williams, “Dialogical Two-agent Decision

Making with Assumption-based Argumentation”, Proceedings of the 2014 Interna-

tional Conference on Autonomous Agents and Multi-agent Systems , pp. 533–540,

International Foundation for Autonomous Agents and Multiagent Systems, Rich-

land, SC, 2014.

37. “Protege”, http://protege.stanford.edu/, accessed at April, 2016.

38. Horridge, M. and S. Bechhofer, “The OWL API: A Java API for OWL Ontologies”,

Semantic Web, Vol. 2, No. 1, pp. 11–21, 2011.

39. Sirin, E., B. Parsia, B. C. Grau, A. Kalyanpur and Y. Katz, “Pellet: A practical

OWL-DL reasoner”, Web Semantics: Science, Services and Agents on the World

Wide Web, Vol. 5, No. 2, pp. 51–53, 2007.

40. “SICStus”, https://sicstus.sics.se/, accessed at April, 2016.

41. Gansner, E. R. and S. C. North, “An open graph visualization system and its

applications to software engineering”, SOFTWARE - PRACTICE AND EXPERI-

ENCE , Vol. 30, No. 11, pp. 1203–1233, 2000.

42. “QuestionPro”, http://www.questionpro.com/, 2005, accessed at May, 2016.

43. Pappachan, P., R. Yus, P. K. Das, T. Finin, E. Mena and A. Joshi, “A Semantic

Context-aware Privacy Model for Faceblock”, Proceedings of the 2nd International

Conference on Society, Privacy and the Semantic Web - Policy and Technology ,

PrivOn, pp. 64–72, 2014.

44. Fogués, R. L., J. M. Such, A. Espinosa and A. Garcia-Fornes, “BFF: A tool for elic-

iting tie strength and user communities in social networking services”, Information

72

Systems Frontiers , Vol. 16, No. 2, pp. 225–237, 2014.

45. Gilbert, E., “Predicting tie strength in a new medium”, Proceedings of the ACM

2012 conference on Computer Supported Cooperative Work , pp. 1047–1056, ACM,

2012.

46. Gilbert, E. and K. Karahalios, “Predicting Tie Strength with Social Media”, Pro-

ceedings of the SIGCHI Conference on Human Factors in Computing Systems , CHI

’09, pp. 211–220, ACM, New York, NY, USA, 2009.

47. Sirovich, L. and M. Kirby, “Low-dimensional procedure for the characterization of

human faces”, Josa a, Vol. 4, No. 3, pp. 519–524, 1987.

48. Muller, J. and A. Hunter, “An argumentation-based approach for decision making”,

IEEE 24th International Conference on Tools with Artificial Intelligence (ICTAI),

Vol. 1, pp. 564–571, 2012.

49. Kakas, A. and P. Moraitis, “Argumentation based decision making for autonomous

agents”, Proceedings of the second international joint conference on Autonomous

agents and multiagent systems , pp. 883–890, ACM, 2003.

50. Williams, M. and A. Hunter, “Harnessing Ontologies for Argument-Based Decision-

Making in Breast Cancer”, 19th IEEE International Conference on Tools with

Artificial Intelligence (ICTAI), Vol. 2, pp. 254–261, Oct 2007.

51. Fogues, R., P. Murukanniah, J. Such, A. Espinosa, A. Garcia-Fornes and M. Singh,

“Argumentation for multi-party privacy management”, The Second International

Workshop on Agents and CyberSecurity (ACySe), pp. 3–6, 5 2015.

73

APPENDIX A: APPLICATION

Figure A.1. Demographic questions for Personal Interview and Online Survey

74

Figure A.2. Provided scenarios for Personal Interview

