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ABSTRACT

NATURAL LANGUAGE PROCESSING FOR MINING

NEUROANATOMICAL RELATIONS AMONG BRAIN

REGIONS

Identifying the relations among different regions of the brain is vital for a better

understanding of how the brain functions. While a large number of studies have inves-

tigated the neuroanatomical and neurochemical connections among brain structures,

their specific findings are found in publications scattered over a large number of years

and different types of publications. Text mining techniques have provided the means

to extract specific types of information from a large number of publications with the

aim of presenting a larger, if not necessarily an exhaustive picture. By using natural

language processing techniques, the present study aims to identify relations among

brain regions in general and relations relevant to the paraventricular nucleus of the

thalamus (PVT) in particular.

We introduce a linguistically motivated approach based on patterns defined over

the constituency and dependency parse trees of sentences. Besides the presence of a

relation between a pair of brain regions, the proposed method also identifies the direc-

tionality of the relation, which enables the creation and analysis of a directional brain

region connectivity graph. The approach is evaluated over the manually annotated

data sets of the WhiteText Project. In addition, as a case study, the method is applied

to extract and analyze the connectivity graph of PVT, which is an important brain

region that is considered to influence many functions ranging from arousal, motivation,

and drug-seeking behavior to attention. The results of the PVT connectivity graph

show that PVT may be a new target of research in mood assessment.
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ÖZET

Beynin çalışma şeklini daha iyi anlayabilmek için beynin bölümleri arasındaki

ilişkileri anlamak çok önemlidir. Beynin her bir bölümü birbiri ile kimyasal veya

fonksiyonel etkileşim halindedir ve bu etkileşimleri inceleyen çok fazla sayıda çalışma

bulunmaktadır. Bu çalışmalarda yer alan beyin bölümleri arasındaki ilişkiler, çevrimiçi

erişilebilir yayınlanmış makalelerde yer almaktadır. Metin madenciliği teknikleri kul-

lanılarak özellikli ilişkilerin çıkartılması bize ilişkiler hakkındaki büyük resmi görmemiz

konusunda yardımcı olmaktadır. Biz de bu çalışmamızda, doğal dil işleme (NLP)

teknikleri kullanarak beynin bölümleri arasındaki ilişkileri yayınlanmış makalelerden

çıkartmayı hedeflemekteyiz. Çalışmamızda “Paraventricular Thalamic Nucleus (PVT)”

adı verilen beyin bölümünün ilişkileri üzerinde yoğunlaşıyoruz.

Dilbilimsel bir yaklaşımla, örüntülere bağlı olarak ilişkilerin yer aldığı cümleler

seçilerek, daha sonrasında bu cümleler üzerinde bağlılık ayrıştırıcı ve öğe ayrıştırıcı kul-

lanılarak ilgili beyin bölümleri ve birbirleriyle ilişkileri çıkartılmıştır. Çalışmamızda,

ilişkilerin yanısıra bu ilişkilerin yönü de tayin edilerek beyin bölümlerinin birbiriyle

bağlantılarını gösteren bir bağlantı grafiği sunulmaktadır. Geliştirdiğimiz sistem, White-

text projesinin derlemi üzerinde değerlendirildikten sonra aynı metodlar PVT beyin

bölümünün bağlantı grafiğini çıkartma ve analiz etme konularında kullanılmaktadır.

PVT, uyarılma, isteklendirme, ilaç arama davranışı ve dikkat gibi çok sayıda işlev

üzerinde etkisi olduğu inanılan önemli bir beyin bölümüdür. Çalışmamızın sonuçlarının

göstereceği üzere PVT beyin bölümü davranış değerlendirmesi konusunda yeni bir

araştırma odağı olabilir.
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1. INTRODUCTION

The brain is the most complex organ in a vertebrate’s body and contains numer-

ous interconnected structures. The interactions between these specialized structures

form the substrate for different functions such as arousal, motivation, attention, etc.

These interactions are classified as neuroanatomical, chemical (type of neurotransmit-

ters) and functional (connection method, or attributed cognitive function) types. Many

studies have been conducted to identify the relations among brain regions in various

species and this information is already available in the free text of the biomedical lit-

erature, albeit scattered in a large number of studies published over a sizable time

period. Our aim is to propose a linguistically empowered approach by using natural

language processing (NLP) techniques to automatically extract the relations among

the brain regions from the publications. By doing so, we first target obtaining the

neuroanatomical relations among the brain regions, and then extend these with the

neurochemical and functional relations. After generating a map of connections, we will

be in a position to automatically extract a brain region’s relations and its roles on

many functions.

Extraction of neuroanatomical relations is important to understand the existing

studies on brain regions and it can be used for future guidance in new researches.

For example, it is possible to observe a relation between two brain regions and the

impact of this relation on a specific function. Considering the amount of publications

in neuroscience domain, extracting relations manually from the related publications

and creating a map of brain regions is not an easy task. With a simple search on

just two neuroscience journals on PubMed it can be seen that there are 16,924 papers

in “The Journal of Comparative Neurology” and 32,745 papers in “The Journal of

Neuroscience”, which would need automation for relation extraction.

In this study, we propose a natural language processing based approach for neu-

roanatomical relation extraction from neuroscience publications. Unlike previous stud-

ies that used supervised machine learning methods originally proposed for protein-
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protein interaction extraction, we target developing a high-precision knowledge-based

linguistically motivated approach specifically designed for the neuroscience domain.

Our main motivation with this study is to build the first fully linguistic approach for

extracting directed neuroanatomical relations. Our approach is based on using pre-

defined patterns for selecting the potential neuroanatomical relation describing sen-

tences and leveraging the deeper syntactic analysis for identifying the related brain

region entities. We use specifically the constituency and dependency parse trees for

syntactic analysis of the sentences. Previous studies identified only the relations among

the brain region mentions, which were missing two important aspects: the direction-

ality of the relation and unique brain region entities to obtain the overall interaction

map of a brain region. We believe it is an important asset to identify the inputs and

outputs of a brain region to better understand the impact of that relation on any func-

tionality. For this purpose, we obtain the directionality of the relations directly from

the pattern keywords and secondly we generate a brain region dictionary to be able

to match the brain regions in the publications. The brain region entities are identified

and normalized by utilizing this dictionary. With the directionality information and

the relations of each brain region entity, we create a connectivity graph to show the

connections and directions among the brain regions.

Consider the following sample: It reveals a relation between “dorsal midline tha-

lamus” and “hypothalamus” brain regions with the pattern keyword of “projection

from”. We extract these brain regions using NLP techniques which will be shown in

detail in the following sections. We also identify the direction of the relation directly

from the pattern keyword. This sentence shows the direction of the relation in the

pattern as “from Brain Region A to Brain Region B”, therefore the projection is from

dorsal midline thalamus to hypothalamus for this relation.

“There is a substantial projection from the dorsal midline thalamus to the hy-

pothalamus, which appears from the retrograde tracer labeling to originate primarily in

Pa.” [1]
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As a case study, we focus on a specific brain region, the paraventricular nucleus of

the thalamus (PVT), which belongs to midline and intralaminar group of thalamic nu-

clei and has long been considered to have a non-specific effect on cortical arousal. PVT

is one of the core components in the circadian timing system and receives input from

all major components of this system. There are several studies which investigated the

anatomical and chemical relations of the PVT. We would like to better understand the

role of PVT in the circadian timing system and on a variety of psychological functions

like fear, drug addiction, arousal, attention, motivation, etc. With this motivation,

we aim to extract the anatomical, chemical and functional connections of the PVT

brain region. As a starting point, we focus on the neuroanatomical relations and try

to generate a big picture of the relations among the brain regions. Our main reason

for choosing the PVT in particular is due to recent studies that attribute more specific

functions to this group of thalamic nuclei because of their rich neuroanatomical and

neurochemical projections [1–3].

For system development and evaluation of our study, we use the WhiteText corpus

[4–6] consisting of abstracts from the neuroscience domain. We present our results on

a manually annotated corpus of 14 full text articles relevant to a specific brain region

(PVT). Finally, as a case study, we apply our method to extract neuroanatomical

relations from articles relevant to PVT in PubMed.

This research has made the following contributions to the neuroanatomical rela-

tion extraction domain:

• The first fully linguistic based automated relation extraction system for neu-

roanatomical relation extraction. Previous studies in this domain were based on

machine learning methods with some additional simple linguistic rules.

• A brain region dictionary which is used to recognize the brain region entities in the

publications and is made publicly available for future neuroscience text mining

studies. Since there is no standard use of brain region names in publications, we

gathered the synonyms and the acronyms of the brain regions into a dictionary.

Even though there are ontologies that contain all this information, our dictionary
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is more text-mining oriented as it will be shared in more detail in Discussions

section.

• Directionality of the relations between the brain regions.

• PVT connectivity graph: We automatically extracted the relations from the ex-

isting PVT-specific publications in PubMed and displayed the interactions of the

brain regions in a connectivity graph.

• We have evaluated our system on PVT-specific annotated corpus and obtained

75.78% precision and 37.89% recall with 50.52% F-Measure values. When we

measure the same methodology from the dictionary by matching the extracted

relations directly from the dictionary instead of the annotated corpus, the preci-

sion level increased to 87.58% and recall reached 43.79%.

• We examined full text publications in addition to abstracts and obtained higher

recall values compared to abstracts.

• Manually annotated sentences in the full-text PVT corpus are also made publicly

available for future neuroscience text mining studies.

The rest of the study is organized as follows: Section 2 gives information about

the related work on relation extraction and NLP domains. Details of the our methods

that are used for relation extraction and preparation of the data are shared in Section

3. Within this section, the dictionary creation, the pattern selection are explained

in detail and at the end of the section, the system development steps are introduced

briefly. In Section 4, the evaluation of our linguistic relation extraction system is given

and also compared with the previous studies. PVT Case study results are also shown

in this section. Finally, we conclude with our findings and discussion points in Section

5. In this section we also identify future direction for this work.
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2. RELATED WORK

Most previous studies on text mining in the biomedical domain have focused on

extracting information about proteins and genes from scientific publications. Shared

tasks such as BioCreative [7,8] and BioNLP [9–11] have boosted research in this area.

Both rule-based [12, 13] and machine learning based methods [14, 15] have been pro-

posed for identifying names of proteins/genes in scientific texts. Several approaches

ranging from entity co-occurrence [16, 17] and pattern matching based methods [18]

to more complex natural language processing and/or machine learning based methods

have been proposed for extracting the relations among proteins [19–24].

Developing text mining methods in the neuroinformatics domain for identifying

brain region entities and mining the neuroanatomical relations among them is a rel-

atively new research topic, compared to the more widely studied areas of biomedical

text mining focusing on genes, proteins, and diseases. Only a handful of studies have

been conducted in neuroscience text mining, most of which adapt and extend the meth-

ods proposed in the well-studied area of protein-protein interaction extraction. In the

context of the Neuroscholar system, which is one of the first studies tackling the use of

advanced natural language processing methods for neuroscience data mining, Burns et

al. [25] extracted neuroanatomical information from tract-tracing experiments with an

F-Measure of 79% on identifying the mentions of five types of neuroscience named en-

tities related to tract-tracing-experiments. They used conditional random fields (CRF)

with a feature set utilizing morphological, lexical, syntactic and semantic information

on a manually annotated corpus of 1047 sentences from 21 documents. French et al. [4]

had a similar CRF based approach with a richer feature set and reported 92% precision

and 86% recall on the task of identifying brain region mentions in text. Particularly for

this purpose, they have created the Whitetext corpus which includes 1,377 abstracts

with the annotated 18,242 brain regions.

Even though Neuroscholar was one of the first attempts to extract neuroanatom-

ical relations, the evaluation results for the connectivities were not reported. The



6

first study with the evaluation results in this domain was conducted by French et al.

(2012) [5]. They have focused on the connectivity between the entities and applied both

co-occurrence based methods and kernel-based supervised machine learning methods,

which have originally been proposed for extracting protein-protein interactions. With

the co-occurrence based methods, they checked the existence of two brain regions in a

sentence, and also in the abstract. Additionally, the presence of one of the connectivity

related keywords (projection, efferent, pathway, etc.) was second checkpoint in their

studies for co-occurrence. French et al. (2012) [5] obtained high recall and low preci-

sion with the co-occurrence based methods. At the abstract level, they obtained 100%

precision and 2.2% recall values. On the other hand, the precision increased to 13.3%

and the recall decreased to 72.4% at the sentence level. For kernel based methodolo-

gies, they used the framework of Tikk et al. [23] which evaluated nine different kernel

based methods on the task of protein-protein interaction extraction. The framework of

Tikk et al. [23] later on became the base evaluation framework in different tasks such

as drug-drug interaction extraction [26]. These kernels are the similarity functions that

are used for pattern analysis by comparing two entities and computing their similar-

ity. French et al. [5] applied seven of these kernel methods and they obtained their

best results with the shallow linguistic kernel by recalling 70.1% of the connectivities

with 50.3% precision. Shallow Linguistic Kernel (SLK) is mainly based on the shal-

low linguistic processing of the sentences such as tokenization, part of speech tagging

and lemmatization. It takes two different entities (brain region entities) and decides

whether there is a relation among them by using the shallow linguistic information

at the local (neighbouring words) and global context (sentence level). They have also

compared their extracted connectivity results with the Brain Architecture Management

System (BAMS) and found that 63.5% of the extracted connectivities exist in BAMS.

Recently, within the scope of WhiteText project, French et al. shared an enhanced

corpus with 1,828 newly annotated abstracts. French et al. [6] tested their approach

on this corpus and obtained similar findings to their previous studies with a precision

of 51% and recall of 67%. Similarly, Richardet et al. [27] built their research on this

approach by using the kernels. In addition to kernels they applied some filters and

lexical rules that are developed according to the sentence structures. The proposed
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filters are mostly applied in order to remove the unlikely brain region connections. The

sentences were skipped if they had more than seven brain region mentions or the count

of characters were more than 500, etc.. On the rule-based extension, they defined

9 basic rules using the Apache UIMA Ruta workbench [28]. These rules are basic

patterns (i.e., projection from Brain Region A to Brain Region B) and mainly depend

on the surface structures of the sentences such as the locations of the brain regions in

the sentences. They have improved the precision values with the filter and the rules

with the cost of reduced recall. Since there are several evaluation values for this study,

the details can be found in the Results section. Finally, Vasques et al. [29] extended

this work to find the targets of a seed in tractography projects. They have selected

3 brain regions, the internal globus pallidus, the subthalamic nucleus and the nucleus

accumbens and made systematic connectivity review in the literature and compared

this with their automated text mining study.

With our knowledge-based approach, we focus on automated neuroanatomical

relation extraction by using NLP techniques. Differently from the previous studies,

it’s fully linguistic based. We leverage constituency and dependency parse trees of

the sentences and extract the relations by using a brain region dictionary. On machine

learning based methodologies, the main approach is to extract the relations, whereas on

our linguistically motivated approach, we also get the directions of the relations by using

pre-defined patterns. The directionality of the relations are used in the connectivity

graph to display the circuits of the brain regions to better understand the interactions

and their impacts on body functions. We also evaluated our results with the Whitetext

corpus to compare with the supervised and semi-supervised previous studies.
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3. MATERIALS AND METHODS

3.1. Data Preparation

3.1.1. Corpus

Two different corpora are used in this research. The first is a corpus of PVT

related publications which contains 558 publications retrieved from PubMed with a

specific query on this brain region. This corpus is mainly used for the PVT case

study to test the system that we have developed. Second corpus contains the articles

from Journal of Comparative Neurology and includes 3,205 abstracts that are manually

annotated for Whitetext Project [4–6]. This corpus includes brain region mentions and

connectivity information among these brain regions.

3.1.1.1. PVT Corpus. The PVT corpus is used in two different ways during the eval-

uation. Abstracts of the 451 publications which are not publicly available and 107

publicly available full text publications constituted the first data set and provided the

basis for our application on PVT Case Study. Secondly, 14 of these full text papers

were selected by domain experts and fully annotated with brain region mentions and

connectivity statements. The evaluation for these two datasets can be found under

Results section. PubMed IDs of the publications, with abstracts and publicly available

full text publications can be found as supplementary data1

The PVT corpus is derived from the publications that are fetched from PubMed.

PubMed2 is a database of citations and abstracts from MEDLINE (Medical Literature

Analysis and Retrieval System Online)3 and life science journals for biomedical litera-

ture. This database is maintained by the US National Library of Medicine. PubMed

also provides an E-Utilies API [30] that allows users to query the database with dif-

1https : //github.com/erincgokdeniz/relation extraction
2http : //www.ncbi.nlm.nih.gov/pubmed
3https : //www.nlm.nih.gov/pubs/factsheets/medline.html
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ferent parameters. This API is mainly a structured interface to Entrez [30] query and

database system which is a search engine on top of health sciences databases at the Na-

tional Center for Biotechnology Information (NCBI). In our research we have leveraged

E-utilies API by using several queries to retrieve the list of PubMed IDs, abstracts of

the publications in xml or json formats.

In our research, we needed to retrieve PVT related publications from PubMed

to be used in the PVT case study. For this purpose, we focused on some keywords for

our search on PubMed. “paraventricular”, “thalamic”, “thalamus” words are the main

keywords on our query and we decided that the results should not include publications

about hypothalamus. Therefore we filtered out “hypothalamus” or “hypothalamic”

keywords. The final query that we used for publication retrieveal on PubMed was:

(“paraventricular”[All Fields] AND (“thalamic”[All Fields] OR “thalamus”[All

Fields]) AND (“nucleus”[All Fields] OR “nuclei”[All Fields]) NOT “hypothalamus”[All

Fields] NOT “hypothalamic”[All Fields]) OR (“Paraventricular Thalamic Nucleus”[All

Fields] OR “paraventricular nucleus of thalamus”[All Fields] OR “paraventricular nu-

cleus of the thalamus”[All Fields] OR “paraventricular thalamus”[All Fields])

PubMed advanced search builder allows users to query particular metadata in-

formation about the publications, such as author, MeSH (Medical Subject Headings),

etc. In our search, we used “All Fields” since we were interested in all publications

that might be related with PVT. In this query, following terms are searched explicitly

in the metadata of the publications:

• “paraventricular” AND “thalamic/thalamus” AND “nuclei/nucleus” which does

not include any “hypothalamic/hypothalamus” field as metadata

• “paraventricular thalamic nucleus”

• “paraventricular nucleus of thalamus”

• “paraventricular nucleus of the thalamus”

By 14th of August 2015, this query on PubMed retrieved 558 publications and
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the PVT case study was built on top of this result set. During the documentation

period of this research, the same query resulted in 569 PVT related publications on

14th of December 2015.

As the first standalone application of our research, we have created a tool to

retrieve the IDs of the publications with a query and fetch the abstracts with the

list of PubMed IDs. As first part of the application, we have used E-Utilies API’s

ESearch functionality with following parameters to retrieve the PubMed IDs of the

related publications:

• Url : http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi

• Database : pubmed

• Return Mode : json

• Return Max : 1000

• UseHistory : y

• WebEnv : gkdnz

• Term : {PVT query explained above}

The response of this Http POST request is a json file with the IDs of the related

publications, which can be seen in Figure 3.1.
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After retrieving the list of ids of the publications, we downloaded the abstracts

by using E-Fetch functionality of the E-Utilies API. This time we passed the PubMed

IDs retrieved from the first step to the API call.

• Url : http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi

• Database : pubmed

• Version : 2.0

• Return Mode : abstract

• Return Type : text

• Return Max : 1000

• WebEnv : gkdnz

• Id : {each PubMed ID that is retrieved from ESearch}

The response of the EFetch Http request is a text which contains publishing

details, abstract, author information and PubMed ID (Figure 3.2) .

Figure 3.2. Http response of the E-Fetch API call
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As part of the PVT Corpus, 14 full text PVT related papers were manually annotated.

This dataset was taken as gold standard for one of our PVT experiments and the

results of evaluation can be found at Section 4.2.1. Several samples of the annotated

brain regions are given in Table 3.1.

Table 3.1. Sample sentences from the annotated PVT corpus.

Sentence Brain Region 1 Brain Region 2

These experiments confirm projections from Pa,

Pt and other midline nuclei to the amygdala. [1]

Pa amygdala

These experiments confirm projections from Pa,

Pt and other midline nuclei to the amygdala. [1]

Pt amygdala

In addition, we found that the aPVT was

strongly innervated by the ventral subiculum

but this projection largely did not involve the

pPVT. [2]

aPVT ventral subiculum

The paraventricular thalamus (PVT) , a mid-

line thalamic nucleus , receives dense innerva-

tions from lateral hypothalamic orexin neurons

(Peyron et al , 1998 ; Kirouac et al , 2005) and is

involved in the regulation ofcognition , anxiety

, emotionality and addiction behaviors (Huang

et al , 2006 ; Li et al , 2009 , 2010a , 2010b and

2011) [31]

PVT hypothalamic

orexin neurons

3.1.1.2. Whitetext Corpus. Whitetext Corpus mainly consists of publications from

Journal of Comparative Neurology which are retrieved from PubMed. French et al.

provided 2 datasets as part of Whitetext corpus. The first data set was provided in 2009

with 1,377 abstracts that contain 3,097 connectivity relations, and the second dataset

was released in 2015 containing 1,828 abstracts with 2,111 interactions. They have

provided annotated data on The General Architecture for Text Engineering (GATE)

tool and also in xml format. In our study, we used the airola xml file which contains

the connectivity information. We parsed the airola xml using Java SAX (the Simple
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API for XML) Parser which is an event-based parser for xml documents.

As can be seen in Figure 3.3, the relations are given in xml format for each

document and sentence. It includes sentences only that have at least two brain regions.

The brain region mentions are tagged as “entity” and the possible relations are tagged

as “pair”. If the interaction attribute of the pair is true, then the entities given in the

pair are considered to be related.

Figure 3.3. Whitetext Corpus : Airola xml file that includes the brain region entities

and connectivity information

In our study, first data set is used during our system development phase and the

second data set is used as test set.

3.1.2. Creation of a Brain Region Dictionary

We used a dictionary-based approach to identify the brain region entities that

participate in neuroanatomical relations and normalized their mentions to canonical

(unique) names. We constructed a dictionary of brain regions including their acronyms

and synonyms, where an acronym is the abbreviation of the brain region entity and a

synonym is a similar word or phrase used for the same brain region entity in text. A

portion of the created dictionary with sample entries is shown in Table 3.2. During

the dictionary creation step, we initially gathered a dictionary of 892 brain regions

and 562 acronyms from the NeuroNames ontology [32] and NeuroLex [33], which is

a dynamic lexicon of neuroscience concepts. Additionally, we investigated a set of
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neuroscience publications to identify and compile the different usages of brain region

mentions in the neuroscience literature. We unified the brain region mentions that we

extracted and chose the most common usages of the brain regions from the ontologies.

The resulting enriched dictionary contains 3,044 brain region entities with their syn-

onyms and acronyms. The created brain region dictionary is made publicly available

as supplementary data for future text mining studies.4

Table 3.2. Brain region dictionary.

Brain Region Acronym Synonym

parietal lobe PL parietal cortex, parietal region, lobus parietalis

suprachiasmatic nucleus SCN suprachiasmatic nuclei

cingulate gyrus CgG cingular gyrus, cingulate area, cingulate region,

gyri cinguli, gyrus cinguli

subthalamus SbTh subthalamic region, ventral thalamus, thalamus

ventralis

superior frontal gyrus SFG marginal gyrus, superior frontal convolution,

gyrus frontalis superior

parabrachial nucleus - parabrachial nuclei,parabrachial

paracentral nucleus PC paracentral thalamic nucleus, nucleus para-

centralis, paracentral nucleus of the thala-

mus,paracentral

central medial nucleus CM central medial thalamic nucleus, nucleus cen-

tralis medialis, centralis medialis,central medial

nucleus of the thalamus,central medial

3.1.3. Defining the Patterns

We manually designed a set of patterns, which are strings of keywords that mostly

reveal a relation, when there are two or more brain region entities in a sentence. Es-

pecially in the neuroanatomical connections, we noticed that there are patterns like

“projection to, innervate, receive input from” which are mostly used when there is

4https : //github.com/erincgokdeniz/relation extraction
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a relation among brain regions. With this approach, we defined the list of patterns

and individually assessed their existence when there is a relation in the sentences. For

example, the following sentence contains a relation between “dorsal midline thalamus”

and “accumbens nucleus” brain regions with the pattern of “projection to”.

“An anterograde tracer injection into the dorsal midline thalamus revealed strong

projections to the accumbens nucleus. ” [1]

As shown in the second sentence, there are two relations connected with “inner-

vate” keyword. The first relation is among pPVT and prelimbic cortex, and the second

one is among pPVT and agranular portions of posterior insular cortex.

“For example, the pPVT was found to be distinctively innervated by the anterior

most aspect of the prelimbic cortex and the agranular portions of the posterior insular

cortex . ” [2]

Neuroanatomical relations are in general signaled by pattern keywords. Since

each keyword can have different prepositional suffixes (e.g. projection from, projection

of, projection to) and different tenses (e.g. projects to, projecting to, projected to),

regular expressions are used to cover the different usages of the patterns. As shown in

the below regular expression for the pattern “project to”, the patterns are considered

to be case insensitive and are likely to contain additional words between their original

keywords (i.e., between “project” and “to”).

(?i)project(ing|s|ed){0,1} ((\w)* ){0,2}to

This sample regular expression matches sentences that contain the word “project”,

“projecting”, “projects”, or “projected”, followed by zero, one, or two additional words,

followed by the word “to”. The following sentence is an example of a sentence that

matches this regular expression. With this regular expression we match the sentences

that have a structure of “Brain Region A projects to Brain Region B”.
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“Taken together, these cases confirm the anterograde data that Pa projects strongly

to the accumbens nucleus and the rostromedial caudate nucleus. ” [1]

For each pattern, while defining the regular expression, there has been an inves-

tigation phase to understand how they are used in the sentences and how they are

related with the neuroanatomical relations. We started by creating the simple version

of the regular expression, and then extended it according to the generic structure that

patterns are used in the sentences of the publications. The steps below illustrates how

the “receive input from” pattern was extended:

1. We created a basic regular expression for “receive input from”.

Regex: (?i)receiv(e|es){0,1} input(s){0,1} from

Sentence: “The spinal cerebellum (anterior lobe, paramedian lobule and pyramis)

receives input from several separate regions in the dorsal accessory nucleus, the medial

accessory nucleus and portions of the principal nucleus. ” [34]

2. We extended the regex since there were different tenses of the receive word.

Regex: (?i)receiv(e|es|ing|ed){0,1} input(s){0,1} from

Sentence: “The results revealed that the pretectal nucleus of the optic tract received

inputs from medial prestriate cortex, dorsomedial part of area 19, OAa, and PGa. ” [35]

3. Finally, we also noticed that in some sentences there were also additional

words between the original keywords of the pattern. Considering the different usages,

we limited the number of words between “receive” and “input” to 4 and between

“input” and “from” to 3.
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Regex:

(?i)receiv(e|es|ing|ed){0,1} ((\w)* ){0,4}input(s)

{0,1} ((\w)* ){0,3}(from)

Sentence: “The PVT receives large and distinct inputs from several areas of the

hypothalamus, including the suprachiasmatic , arcuate , dorsomedial and ventromedial

nuclei and preoptic and lateral hypothalamic areas ” [36]

Sentence: “The lateral ventral striatum receives input primarily from areas 24b,

24b’ and 23b and medial portion of area 24c. ” [37]

The list of defined patterns and their corresponding regular expressions are shown

in Table 3.3.

3.2. Neuroanatomical Relation Extraction

We developed a linguistically motivated knowledge-based approach for neuroanatom-

ical relation extraction. The workflow of the proposed approach is shown in Figure 3.4.

Automated relation extraction in general relies on finding the correct sentences that

describe an interaction between brain regions. For this purpose, as a first step, the

publications (abstracts or full text) are split into sentences. Next, these sentences are

fed into our system and by using pre-defined patterns a list of candidate sentences,

which might contain relations are selected. Then, NLP techniques are used to identify

the brain regions that are described as being related in these sentences. We use the de-

pendency and constituency parse trees of the sentences and apply linguistic rules over

these parse trees to extract the portions of the sentences that are likely to contain brain

region entities participating in a neuroanatomical relation, i.e., the candidate brain re-

gion entities. Based on predefined patterns, we also identify relation directionality

by labeling the candidate brain region entities as “agents” or “targets”. For example,

from a sentence like “X receives input from Y”, we obtain the information that Y is the

agent and X is the target of the relation, i.e., the directionality of the relation is Y→X.

In the relation decision step, the candidate brain region entities are searched in the
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Table 3.3. List of the patterns and their corresponding regular expressions

Pattern Regular Expression

innervate (?i)innervat(e|es|ing){1}

innervation of (?i)innervation(s){0,1} of

projection to (?i)projection(s){0,1} to

projection to from (?i)projection(s){0,1} to ((\\w+)\\s){0,8} from

projection of (?i)projection(s){0,1} of

projection target of (?i)projection target(s){0,1} of

projection from (?i)(the ){0,1}projection(s){0,1} from

projection from to (?i)projection(s){0,1} from ((\\w+)\\s){0,8} to

project to (?i)project(ing|s|ed){0,1} ((\w)* ){0,2}to

project into (?i)project(ing|s|ed){0,1} ((\w)* ){0,2}into

project from (?i)project(ing|s|ed){0,1} from

project from to (?i)project(s|ed|ing){0,1} from ((\\w+)\\s){0,8} to

receive input from (?i)receiv(e|es|ing|ed){0,1} ((\w)* ){0,4}

input(s){0,1} ((\w)* ){0,3}(from)

receive fiber from (?i)receiv(e|es|ing|ed){0,1} ((\w)* ){0,4}

fiber(s){0,1} ((\w)* ){0,3}(from)

receive innervation from (?i)receiv(e|es|ing|ed){0,1} ((\w)* ){0,4}

innervation(s){0,1} ((\w)* ){0,3}(from)

receive [ae]fferent from (?i)receiv(e|es|ing|ed){0,1} ((\w)* ){0,4}

[ae]fferent(s){0,1} ((\w)* ){0,3}(from)

send via to (?i)(((sen(d|ds|ding|t)) ((\w)* )*via ((\w)* )*to))

send from (?i)(((sen(d|ds|ding|t)) from ((\w)* )*to))

send to (?i)(sen(d|ds|ding|t)) ((\w)* ){0,2}to

travelling from to (?i)travel(s|ling){0,1} ((\w)* ){0,2}from

((\w)* ){0,5}to

travel through (?i)travel(s|ling){0,1} ((\w)* )*through

exit through (?i)exit(s|ing){0,1} ((\w)* )*through

exit from (?i)exit(s|ing){0,1} ((\w)* )*from
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brain region dictionary, and a neuroanatomical relation is identified if the candidate

agent and target are matched in the dictionary. Finally, the agents and targets of the

identified neuroanatomical relations are normalized to their canonical names using the

brain region dictionary and a directional brain region connectivity graph is created.

The graph can be further analyzed to generate new scientific hypothesis. The details

of each step in our method are described in the following sub-sections.

3.2.1. Sentence Splitting

The Stanford Core NLP tool [38] is used for splitting the publications into their

sentences. In order to have a unified structure in the sentences, some post processing

is applied to the output of the Stanford Parser. For example, the Stanford Parser

has a special syntax for the parenthesis (left bracket is represented as“–LRB-” and

right bracket is represented as “–RRB-”). Therefore, we replaced these strings with

the corresponding parenthesis signs in order to be able to match the sentences with

the publication text. Additionally, specific to WhiteText corpus, Schwartz and Hearst

Abbreviation Expansion algorithm [39] is applied for each sentence. This algorithm

requires the replacement of short forms of the abbreviations with long forms and the

addition of short form after the long form. Therefore, for each abstract, we also applied

abbreviation expansion algorithm and mainly we needed this enhancement for the

accurate evaluation of our findings with the Whitetext corpus.

3.2.2. Pattern-based Sentence Selection

After preparing the data, the first phase of the relation extraction is to scan the

publications and extract the sentences which contain the predefined patterns. The

extracted sentences at this step are the first candidates that might include the brain

regions and the relations. We use the regular expressions to match the patterns in the

sentences as described in Section 3.1.3. A sample sentence with a pattern can be found

below:

“The NAc receives a strong dopaminergic projection from the ventral tegmental
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Figure 3.4. Steps to extract the neuroanatomical relations
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area , and dopamine released from these projections acts upon dopamine receptors of

the D1 and D2 families located on postsynaptic targets.” [40]

The sentences in the publications that match these patterns (regular expressions)

are selected as candidate sentences and provided as input to the relation extraction

component described in the next sub-section.

3.2.3. Candidate Generation Using NLP Techniques

After generating the list of sentences which are candidates for hosting brain re-

gion relations, a detailed syntactic analysis of each sentence is done. There are two

dependents of the patterns: agents and targets. If both of these dependents include

brain region entities, then we consider that there is a relation between these entities.

There can be more than one relation within a given sentence if dependents include

more than one brain region. To be able to identify whether a dependent is an agent

or target, we need the directionality of the relation and this information is gathered

directly from the patterns. For example, for the patterns like “receive input from,

projection from, efferent from”, it is likely that the text string that follows the pattern

is agent. On the other hand, for the “project into, innervate, terminate in” patterns,

the same text reveals the target.

Table 3.4. Directionality of the relation is decided by the pattern and this

information helps to identify the agent and the target in the sentences.

Sentence Agent Target

The suprachiasmatic nucleus is well known to

project densely to Pa in rats [1]

suprachiasmatic nucleus Pa

These experiments confirm projections from Pa,

Pt and other midline nuclei to the amygdala [1]

Pa, Pt amygdala

The Stanford Parser is used to syntactically parse the sentences and obtain their

constituent elements [41]. One of the dependents (agent or target) in general occurs

right after the pattern keyword. The constituency (phrase structure) parse tree is
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traced until we reach the pattern and then we select the first Noun Phrase (NP)

following the pattern in the bracketed notation of the parse tree. After finding the NP,

all the leaves under this NP are used to generate the candidate dependent. In Figure

3.5, a bracketed notation of the parse tree for the “The suprachiasmatic nucleus is well

known to project densely to Pa in rats” [1] sentence is presented and in Figure 3.6 the

tree representation of the same sentence is shown. The identified NP is enclosed in a

box in these figures.

Figure 3.5. Bracketed notation of parse tree for the sentence: “The suprachiasmatic

nucleus is well known to project densely to Pa in rats ” [1]. First noun phrase after

the pattern(project to) is selected.

In some sentences, the prepositional phrase (PP) following the detected NP mod-

ifies the NP and may contain candidate dependents for the relation. Therefore, if a

detected NP is followed by a PP, which contains the keyword “including”, then it is also

added as part of the candidate brain region text (dependent). An example sentence is

provided below.

“Studies in rats show that the caudal DR projects strongly to limbic structures

including the amygdala and hippocampus.” [1]

In this sentence, “limbic structures” is the NP following the pattern. Applying

the above rule, we select “amygdala and hippocampus” as candidate dependents since
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Figure 3.6. Parse Tree for the sentence: “The suprachiasmatic nucleus is well known

to project densely to Pa in rats” [1]. Selected dependent is “Pa in rats”

they are also part of the affected brain regions, but knowing that this decision may

also bring false-positives.

To find the first dependent (brain region candidate) that follows the pattern key-

word, we used the constituency parser. On the other hand, for the second dependent,

the text extraction phase was more complex. The second dependent can be found in

different locations of the sentence. It can be at the beginning, right before the pattern,

or close to the end of the sentence after the pattern. The dependency tree of a sentence

can capture the long-distance relations among its words. We used the Stanford De-

pendency Parser [42] to analyze the dependency structures of the sentences and obtain

the second candidate dependent, which does not necessarily occur close to the pattern.

The output of the Stanford Dependency Parser is the Stanford Dependencies rep-

resentation , which is a description of the grammatical relationships among the words

in a sentence [42]. There was also a work in progress for Universal Dependencies repre-

sentation when we started to work with Stanford Parser. The version of the Stanford

Parser libraries that we used in our study only supports Stanford Dependencies. And
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as the representation of these dependencies we used Propagated Collapsed Dependency

Tree representation in which the dependencies are collapsed into one relation in case

there are prepositions, conjunctions in the relations.

A dependency is given as relation(governor-pos1, dependent-pos2) where the gov-

ernor and the dependent are words in the sentence and pos1 and pos2 indicate the posi-

tions of the two words in the sentence. “relation” is one of the 50 grammatical relations

defined in the Stanford Parser [42]. A sample dependency tree with SD representation

can be found below:

Figure 3.7. Stanford dependencies representation for the sentence : “The AP

projected heavily to the dorsal vagal complex, especially in the commissural and medial

subnuclei of the NTS , and the dorsal motor nucleus of the vagus” [43]

As the starting point of identifying the second dependent, when a pattern is

found in a sentence, one of the dependency types below is searched in the dependency

tree. The pattern keyword in these types can be either governor or dependent. The
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descriptions of all the dependency types, including the ones briefly described below,

can be found in the Stanford Parser dependencies manual with sample sentences and

dependency trees.

(1) Direct Object (dobj): A noun phrase which is the object of the verb

“Orx/Hcrt neurons receive projections from the medial prefrontal cortex. . . ” [36]

dobj(receive, projections)

(2) Nominal Subject (nsubj): A noun phrase which is the syntactic subject of a

clause

“Studies in rats show that the caudal DR projects strongly to limbic structures

including the amygdala and hippocampus. . . ” [1]

nsubj(show, studies)

(3) Passive Nominal Subject (nsubjpass): A noun phrase which is the syntactic

subject of a passive clause

“The pPVT was found to be distinctively innervated by the prelimbic cortex.” [2]

nsubjpass(found, pPVT)

(4) Controlling Subject (xsubj): A controlling subject is the relation between the

head of an open clausal complement (xcomp) and the external subject of that clause

“The PBN is reported to project directly to the NAcc.” [44]

xsubj(project, PBN)
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(5) Noun compound modifier (nn): Any noun that serves to modify the head

noun in an NP

“Also, many of the projection targets of PVT neurons, including PFC and amyg-

dala, show strong stress responses” [45]

nn(targets, projection)

(6) Reduced non-finite verbal modifier (vmod): These are used to modify the

meaning of an NP or another verb

“The fifth major region projecting to the BSTvl was the brainstem.” [46]

vmod(region, projecting)

3.2.3.1. Relations where the pattern keyword is in nsubj/ nsubjpass/ xsubj/nn relations.

This rule set is applied for the pattern keywords that contain nsubj, nsubjpass, xsubj,

or nn type of relations. In these cases, the governor/dependent that is found in this

relation is directly considered as a candidate brain region. Additionally, two different

rules are applied when the pattern keyword is found in these relations.

1. If the pattern keyword is found as a dependent, then the Prepositional Modifier

(prep) of the governor is retrieved. The dependent of the prep relation is selected as

a candidate brain region. Then the Adjectival Modifier (amod) or Noun Compound

Modifier (nn) relations are also gathered as parts of the candidate brain region. A

sample sentence specific to nsubj for the extended version of this scenario will be given

in the next subsection.

2. If the pattern keyword is found as a governor, all the relations that contain the

dependent as a governor are selected. The dependents of these relations are retrieved

as candidate brain regions. A portion of the dependency tree for a sample sentence,
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for which this rule applies, is presented in Figure 3.8. The extraction steps of the

candidate brain regions from this sentence are presented below.

Sentence: “This topography is consistent with findings in rats , in which the

external lateral parabrachial subnucleus projects strongly to the anterior Pa, and less

so to the middle and posterior Pa (Krout and Loewy, 2000a).” [1]

Step 1: The pattern keyword “projects” is found in a nsubj relation.

nsubj(projects-17, subnucleus-16)

Step 2: The dependent of the first step “subnucleus” is searched as a governor in

all dependencies. The dependents of the identified relations are retrieved as candidate

brain regions.

det(subnucleus-16, the-12)

amod(subnucleus-16, external-13)

amod(subnucleus-16, lateral-14)

nn(subnucleus-16, parabrachial-15)

Step 3: The candidate brain regions retrieved in the previous steps are returned

in sorted order by their positions in the sentence.

the-12, external-13, lateral-14, parabrachial-15, subnucleus-16

3.2.3.2. Special case for nsubj where the pattern keyword is in dobj. This specific case

is an extension of the rule set described in the previous subsection for nsubj relations

that have a pattern keyword in a Direct Object (dobj) relation. Our candidate brain re-

gion detection algorithm starts by finding the pattern keyword in a dobj relation type.
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Figure 3.8. Dependency Tree for the sentence : “This topography is consistent with

findings in rats , in which the external lateral parabrachial subnucleus projects

strongly to the anterior Pa, and less so to the middle and posterior Pa (Krout and

Loewy, 2000a).” [1]

Then, the governor of the dobj relation is searched as the governor of a Nominal Sub-

ject (nsubj) relation. The dependent of the nsubj relation is taken as a candidate brain

region. Differently from the other nsubj cases (described in the previous subsection),

in this case, the nsubj relation does not need to contain the pattern keyword.

Additionally, this rule is extended to consider the modifiers of the nominal sub-

ject. Each dependent retrieved from a nsubj relation, is searched in the Adjectival

Modifier (amod), Noun Compound Modifier (nn), and Prepositional Modifier (prep)

relations as a governor. If such a relation is identified, the dependent of the relation is

selected as a candidate brain region. Lastly, all identified candidate brain region words

are returned in sorted order based on their sentence position information.

A portion of the dependency tree of the following sample sentence is shown in

Figure 3.9.

Sentence: “An anterograde tracer injection into the dorsal midline thalamus re-

vealed strong projections to the accumbens nucleus, basal amygdala, lateral septum, and

hypothalamus.” [1]
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The extraction steps of the candidate brain regions from this sentence are pre-

sented below.

Step 1: The pattern keyword “projections” is found in a dobj relation.

dobj(revealed-10, projections-12)

Step 2: The governor of the first step “revealed” is searched in the dependencies

as the governor of a nsubj relation. The dependent “injection” of the identified nsubj

relation is retrieved as a candidate brain region.

nsubj(revealed-10, injection-4)

Step 3: The dependent of the second step “injection” is searched in the amod,

nn and prep relations as a governor. The dependents (i.e., “anterograde, tracer, and

thalamus”) of the identified relations are retrieved as candidate brain regions.

amod(injection-4, anterograde-2)

nn(injection-4, tracer-3)

prep into(injection-4, thalamus-9)

Step 4: Additionally for the prepositional modifier of the third step “thalamus”,

the amod and nn relations are gathered. The dependents of the identified relations are

selected as candidate brain regions.

amod(thalamus-9, dorsal-7)

amod(thalamus-9, midline-8)

Step 5: The candidate brain regions retrieved in the previous steps are returned
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in sorted order by their positions in the sentence.

anterograde-2, tracer-3, injection-4, dorsal-7, midline-8, thalamus-9

Figure 3.9. Dependency tree for the sentence: “An anterograde tracer injection into

the dorsal midline thalamus revealed strong projections to the accumbens nucleus,

basal amygdala, lateral septum, and hypothalamus.” [1]

3.2.3.3. Relations where the pattern keyword is a vmod. This group of rules first finds

the Reduced non-finite verbal modifier (vmod) relations where the pattern keyword is a

dependent. In the next step, the complementary relations Adjectival Modifier (amod)

or Noun Compound Modifier (nn) involving the governor of the identified vmod rela-

tion are retrieved. If any relation is found in this step, the dependent of the relation is

retrieved as a candidate brain region. A sample sentence with the steps for retrieving

the candidate brain regions from this sentence are outlined below.

Sentence: “Here, we combined neuronal tract-tracing using the retrograde tracer

cholera toxin b (CTb) with Fos expression to examine the effect of acute nicotine ad-

ministration on orexin neurons projecting to the basal forebrain or PVT.” [47]

Step 1: The pattern keyword (i.e., projecting) is found in a vmod relation as a

dependent, the governor (i.e., neurons) is selected as a candidate brain region.

vmod(neurons-30, projecting-31)

Step 2: The governor of Step 1 (i.e., neurons) is searched as a governor in amod

and nn dependencies and the corresponding dependents (i.e., orexin) are collected.
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nn(neurons-30, orexin-29)

Step 3: The candidate brain regions retrieved in the previous steps are returned

in sorted order by their positions in the sentence.

orexin-29, neurons-30

3.2.4. Relation Decision

After the candidate generation phase (Section 3.2.3), the identified candidates

are searched in the Brain Region Dictionary, in which a brain region is represented

with its name, acronyms, and synonyms. A neuroanatomical relation is extracted, if

at least two different brain region entities are matched in the dictionary, and one of

them has the role of agent, whereas the other has the role of target. For the success of

the dictionary matching process, we applied several steps as described below.

First we checked whether there was a full match between the agent/target and

the dictionary entity (Step 1 in Figure 3.10). If there is no match, this might mean

that the agent/target consists of more than one brain region. Therefore, we split the

text into strings from the conjunctions “and” and “or”, and the punctuation marks

“comma” and “semicolon” (Step 2 and Step 3.a in Figure 3.10) (i.e., “the NAS, PFC,

and amygdala” text is split as “NAS”, “PFC”, and “amygdala”). In addition, for each

text string, there is a post-processing step, which removes some commonly used words

like “of”, “the”, “area”, “part”, and “pole”. If there is still no match for that text

string, two more steps are applied. First, a substring search for this text string is done

in all dictionary entities and the candidates are retrieved and secondly this text string

is split into tokens from the spaces and then, each token is searched in the brain region

dictionary separately (Step 3.b in Figure 3.10).

After finding the brain regions from the dictionary, only the longest version of

the overlapping brain regions are selected. For example, if we retrieve “thalamus”,

“midline thalamus”, and “amygdala” as candidates for one of the dependents (i.e.,
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Figure 3.10. Extraction of agent/target and dictionary matching
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target or agent), then we select “midline thalamus” and “amygdala” as the extracted

brain regions. “thalamus” is not selected, since it overlaps with “midline thalamus”,

which is a longer match.

As the last step of relation extraction we define whether the extracted brain re-

gions are “full match” or “partial match” when compared with the annotated data

set. If an extracted brain region matches only a part of the brain region in the anno-

tated sentence, this is considered as a partial match. For example, assume that the

application retrieves “thalamus” as a brain region and the manually annotated brain

region text in the sentence is “dorsal midline thalamus. In this case, the extracted

brain region is considered as a partial match and the evaluation results are shown as

‘Lenient’ in Section 4, which means that the extracted brain region might be equal to

or part of the annotated brain region.

The roles of agent and target are determined based on the pattern of the sentence.

For each pattern in Table 3.3, we define a rule that determines the direction of the

relation. For example, in the sentence “The present study found a projection from the

lateral portion of parabrachial nucleus to the anterior PVT” [1], a relation between

“parabrachial nucleus” and “anterior PVT” is identified and the directionality is from

“parabrachial nucleus” to “anterior PVT”, i.e., “parabrachial nucleus” is the agent and

“anterior PVT” is the target.

Let us summarize the steps of our relation extraction approach with a sample

sentence.

First, sentences matching at least one of the patterns in Table 3.3 are retrieved as

candidate neuroanatomical relation describing sentences. For example, the “projection

to” pattern is matched with the sample sentence below.

“An anterograde tracer injection into the dorsal midline thalamus revealed strong

projections to the accumbens nucleus, basal amygdala, lateral septum, and hypothalamus

.” [1]
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The defined pattern also provides the directionality of the relation. Therefore,

the candidate relation is in the form of “[agent] projection to [target]”.

After matching the pattern in the sentence, by using the constituency parser,

the closest NP following the pattern is retrieved as the first candidate dependent (i.e.,

agent or target).

Candidate target: “the accumbens nucleus, basal amygdala, lateral septum, and

hypothalamus”

The second candidate dependent is retrieved by using the dependency parser.

The pattern keyword is found in a dobj relation (dobj(revealed-10, projections-12))

and the second dependent is extracted as described in Section 3.2.3.2.

Candidate agent: “anterograde tracer injection dorsal midline thalamus”.

The brain region dictionary is used to extract the relations among the candidate

agents and targets. For the candidate target, there is no exact match for “antero-

grade tracer injection dorsal midline thalamus”. “thalamus”, “midline thalamus” and

“dorsal midline thalamus” is matched from the entities of the dictionary. Since dorsal

midline thalamus is more specific, we retrieve the longest version possible as target

brain region: “dorsal midline thalamus”. For the candidate agent, we tokenize the

“the accumbens nucleus, basal amygdala, lateral septum, and hypothalamus” by using

“comma”, “semicolon”, “and”, and “or” as separators. As a result of this step, “lat-

eral septum”, “basal amygdala”, “hypothalamus”, “accumbens nucleus” are retrieved

as brain regions. In the last step, we pair the brain regions and return the relations as

follows.

• dorsal midline thalamus-lateral septum

• dorsal midline thalamus-basal amygdala

• dorsal midline thalamus-hypothalamus

• dorsal midline thalamus-accumbens nucleus
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3.3. System Development and Evaluation

We use the precision [48], recall [48], and F-Measure [48] metrics to evaluate our

relation extraction approach.The automatically extracted neuroanatomical relations

(i.e., pairs of brain region entities) are compared with the manually annotated (gold

standard) pairwise neuroanatomical relations. Precision is defined as the proportion of

correctly retrieved neuroanatomical relations (i.e., related pairs of brain regions) to all

the relations that the application retrieves, whereas recall is defined as the proportion

of correctly retrieved neuroanatomical relations to all the neuroanatomical relations in

the gold standard annotation. F-Measure is the harmonic mean of the precision and

recall values. The harmonic mean is always less than either the arithmetic or geometric

mean, and often quite close to the minimum of the two numbers. This makes sense

especially in the case that one of the values are very high and the other is low.

Precision =
CorrectlyRetrievedRelations

AllRetrievedRelations
(3.1)

Recall =
CorrectlyRetrievedRelations

AllAnnotatedRelations
(3.2)

F−Measure = 2 ∗ Precision ∗Recall

Precision + Recall
(3.3)

For system development, we used the 1,377 abstracts of the WhiteText corpus as

the gold standard with their manually annotated brain region entities and interactions

[5]. The refinements that we performed during system development and the results

obtained are summarized in Table 3.7. Initially, our application found 543 interactions

correctly and retrieved 221 false-positive interactions, whereas the total number of

true interactions in the corpus is given as 3,097. The precision of our pattern-based
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approach was 71.07% and the recall value was 17.53%, which led to an F-Measure of

28.13% (Step 1 in Table 3.7).

We improved these initial values by removing some of the conjunctions and arti-

cles (i.e., “or”, “the”, “and”) from the candidate agents and targets prior to the brain

region dictionary matching phase. We also removed some words such as “part” and

“area”, which are sometimes used in brain regions names in the publications, but are

not always included in the names of the brain regions in the dictionary. As can be

seen in sample sentence below, annotated brain region mention is “anterior part of the

basal nucleus”, and the candidate agent extracted by the application is “anterior basal

nucleus”. Here, we remove the “part, of, the” words from the mention and make the

comparison of these two strings to decide whether they match or not. This increased

the recall value by %1.5, which also led to an improved F-score (Step 2 in Table 3.7).

Sentence : “All of area 13 also sends efferents to the anterior part of the basal

nucleus.” [49]

Entity in corpus: “anterior part of the basal nucleus”

Removed terms: part, of, the

Candidate agent found by application: anterior basal nucleus

After this step, the success of each pattern is evaluated separately and patterns

that achieve high precision are selected. By creating a knowledge-based system, our

aim was to obtain higher precision on relation extraction than the machine learning

based methodologies that have been applied in the neuroscience domain. We experi-

mented with different precision thresholds for pattern selection and observed that when

we preferred only very high precision patterns (i.e., patterns with precision above 90%),

only a few patterns were selected to extract relations. This resulted in very high preci-

sion, but in very low recall. On the other hand, when we used infrequent patterns with

lower precision values, this increased the total number of relations that we extracted,
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but the precision of the predictions was lower. Therefore, we targeted at least 60%

precision for each pattern. It’s important to have a higher value than 50% since it can

be even defined as coincidence if it’s 50%. We also tried higher success levels (i.e.,

Table 3.5. Success level of each pattern during the system development. This table is

a snaphot of the patterns at Step 3 of Table 3.7 and it does not include the patterns

that are matching with the acronyms. Acronyms are added later with Abbreviation

Expansion Algorithm.

Patterns True False Total Precision

innervate 26 10 36 72.22%

project from 1 1

project to 155 50 205 75.61%

projection from 120 65 185 64.86%

projection of 2 1 3 66.67%

projection to 63 27 90 70.00%

receive [ae]fferent from 5 5 100.00%

receive innervation from 3 1 4 75.00%

receive input from 32 9 41 78.05%

terminate in 13 10 23 56.52%

One of the main observations during the system development phase was that

a pattern could have different semantic meanings depending on the sentence struc-

ture. For example, both “amygdala’s projections to PVT” and “Efferent projection to

forebrain from lateral septum” match the pattern “projection to”. However, the direc-

tionality of the relations is different. The first phrase can be semantically represented

as “agent’s projections to target”, whereas the second phrase can be represented as

“projection to target from agent”. Therefore, we split the existing pattern “projection

to” into two patterns “projection to” and “projection to from”. (Step 3 in Table 3.7).

Following new pattern types were generated during this phase. The relation

extraction method was also different for these new patterns. For regular patterns, we
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obtained the closest noun phrase coming after the pattern and the other dependent

is obtained by dependency tree. In these new patterns, the text string between two

prepositions (from, to) was picked as candidate brain region text instead of using

dependency tree for extraction.

Table 3.6. New patterns that are extended from the existing patterns during the

system development phase.

Existing pattern New pattern

Projection from Projection from X to Y

Projection to Projection to X from Y

Project to Project from X to Y

Travel to Travel from X to Y

The following sentence shows that the pattern “projection from” directly reveals

the relation with a “from X to Y” notation.

“There is a substantial projection from the dorsal midline thalamus to the hy-

pothalamus , which appears from the retrograde tracer labeling to originate primarily

in Pa.” [1]

With this improvement of the patterns, we retrieved the related brain region pairs

with a recall of 18.44% and an increased precision of 76.44%, which is 5% higher than

the initial value.

As the last phase of the pattern evaluation we introduced one new pattern (receive

fiber from) and some infrequent and unlikely patterns (‘terminate in’, ‘innervate in’)

were removed from the list of patterns (Step 4 in Table 3.7).

received fiber from : “Both the amygdaloid nucleus (AC) and the lateral amyg-

daloid nucleus (AL) receive fibers from the prelimbic and infralimbic areas.” [50] (There

is a relation)
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terminate in: “Fibers from the ventral half of the dentate nucleus terminate in

the lateral bend and ventral lamina of the principal olive..” [51] (There is a relation)

“The DAB reaction was terminated by rinsing in PBS before sections were mounted

onto gelatincoated slides and coverslipped” [52] (No relation)

Until this stage, all the acronyms were manually evaluated in the sentences. Fi-

nally, by applying abbreviation expansion algorithm on the corpus, we obtained 536

true-positive and 173 false-positive results as highest precision from the training set

with 75.60% precision and 17.31% recall and 28.17% F-Measure value (Step 4 in Table

3.7)

Table 3.7. Progress of the evaluation during the system development phase for

WhiteText Corpus.

Precision Recall F-Measure

Step 1.Pattern-based Approach (Initial) 71.07% 17.53% 28.13%

Step 2.Removal of Conjunctions and Articles 71.00% 18.89% 29.84%

Step 3.Extraction of New Patterns 76.44% 18.44% 29.71%

Step 4.Automated Acronym Addition 75.60% 17.31% 28.17%

In the system development phase, after observing the results, we focused on two

major questions: how to improve the accuracy of our findings, and how to catch the

missing relations. We intensified our research on the patterns and dependency parsing

rules.

By using the patterns, we faced several limitations of a rule based system. During

the relation candidate generation phase, the very first step is to find the matching

sentences that include one of the predefined patterns, which means that only if we

find the pattern then we look for the relation in that sentence. In the light of this

information, our maximum recall is limited with the maximum number of sentences

that the patterns can match. As a consequence, even though we find all the interactions
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correctly that the list of patterns provide (1,787 out of 3,097), the maximum recall value

that we can reach is 57.7%. To be able to catch missing relations, we have analyzed

some new patterns. Some new candidates like “input to”, “arise from” were added

as patterns and their individual precision and recall values were evaluated. Both of

the patterns supported less than 55% precision and did not provide consistent output.

Therefore we eliminated these patterns with the approval of our domain experts.

To improve the accuracy, we investigated parse trees of the different sentences and

came up with new rules/structures. For example, in some rare cases, we noticed that

controlling subject (xsubj) is used as part of the relation. In addition to that, usage of

complementary relations helped us to return partial matches to the full matches.
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4. RESULTS

With our linguistically motivated approach, we present three different set of re-

sults. Firstly, we provide a comparison with the present studies which have applied

kernel-based machine learning methods to a manually annotated corpus, i.e., the White-

Text corpus (French et al., 2012; 2015). We show how the knowledge-based approach

can introduce a different point of view on the topic by using NLP techniques. Secondly,

the case study on paraventricular nucleus of the thalamus (PVT) and its interactions

with other brain regions are presented. For the PVT case study, we have two different

evaluation sets. First, evaluation results are given for 14 full text publications, which

are manually annotated by domain experts. Second, to provide automated extraction

results on the PVT corpus, which consists of 558 publications, we executed our appli-

cation on the abstracts of the 451 publications (the full text of which are not publicly

available) and 107 full text publications (which are publicly available). We further used

the output of this evaluation on connectivity graph generation. Lastly we evaluate the

success of our approach on finding the directionality of the relations.

4.1. Comparison with Previous Related Work

After making improvements on the system during the training phase, we use the

second set of abstracts from the WhiteText corpus to execute the testing phase. The

evaluation results are gathered from 1,828 abstracts which included a total number of

2,111 true interactions (relations).

To be able to compare our results with the existing studies, we adapted our

approach during the corpus creation and dictionary usage phases as follows. Firstly,

the abbreviation expansion algorithm of Schwartz and Hearst [39] is applied to each

sentence to obtain the abbreviations of the brain regions . This algorithm requires the

replacement of short forms of the abbreviations with long forms and the addition of

short form after the long form. First it gathers the candidate abbreviations and their

full forms and then applies it to the abstract wherever a match of an abbreviation
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is obtained. A sample sentence is given both in original structure as written in the

abstract and with the structure the abbreviation expansion algorithm applied below:

Sentence in the abstract : “In contrast, the projections of PAG neurons to the

A5 cell group and the locus coeruleus may mediate the cardiovascular and motor effects

produced by stimulation of sites in the ventrolateral PAG.” [53]

Sentence with algorithm applied : “In contrast, the projections of periaqueduc-

tal gray(PAG) neurons to the A5 cell group and the locus coeruleus may mediate the

cardiovascular and motor effects produced by stimulation of sites in the ventrolateral

periaqueductal gray(PAG).” [53]

Secondly, French et al. [4–6] flag the brain region mentions from the publications

as entities. In addition, most previous studies evaluate the relation extraction step by

assuming that the brain region mentions are given. As can be seen in Figure 4.1, one

of the brain region mentions is “entopeduncular nucleus and/or subthalamus”. This

does not match with our brain region dictionary structure since we only have one brain

region for each entity. In our evaluation on the WhiteText corpus, instead of using our

brain region dictionary, we evaluated our findings with the brain region mentions that

were defined in the interactions for each sentence in the WhiteText corpus.

Figure 4.1. Brain region mentions in the Whitetext corpus

In these relations, there are also some interactions that include the same entities
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more than once in a sentence. Since we provide one pair for each sentence with the

same entities in our application, we removed the redundant records from the evalua-

tion. Additionally, when the entities of a pair in the given interaction were the same,

we discarded that interaction as well. In the final evaluation, total number of true-

interactions that were used as gold standard was 1,898 and we achieved to retrieve 277

relations correctly whereas we misinterpreted 83 of these relations.

The WhiteText corpus has been provided as two different datasets in time. In

French et al. [4, 5], the first dataset with 1,377 annotated abstracts were shared, and

then 1,828 more abstracts were provided as the second dataset of the WhiteText corpus

(French et al. [6]). Richardet et al. [27] also used the first dataset during their research.

In our approach (Linguistically Motivated Approach) we used the first dataset while

developing our system to improve the patterns and the NLP techniques that we applied

(Table 3.7) and the evaluation is mainly done on the second dataset with 1,828 ab-

stracts. Table 4.1 summarizes the results of our linguistically motivated approach and

the results of the previous studies obtained on the WhiteText corpus. The correspond-

ing data set information used by each study for evaluation is also shown. Table 4.1

shows the best results obtained by French et al. [5, 6] by using the Shallow Linguistic

Kernel and the results of Richardet et al. [27], who extend the study by French et al. [5]

with filters and Ruta rules [28]. These filters include discarding the sentences longer

than 500 characters or containing more than 7 brain regions; discarding the sentences

that do not contain specific trigger words such as project; and keeping only the nearest

neighbors co-occurrences. In Table 4.1, Kernel represents the machine learning model

(i.e., the Shallow Linguistic Kernel) and the Ruta rules are the ones that are manually

crafted on the Apache UIMA Ruta workbench [28], according to the structures of the

sentences, which is an approach similar to our approach for defining the patterns.

Using a knowledge-based approach comes with more accurate results with the cost

of missed relations when it is compared with the semi-automated or fully automated

machine learning techniques. Therefore, if we compare our approach with the Kernel

results of French et al. [5, 6] and Richardet et al. [27], the precision that we obtain is

higher, whereas the recall is lower. On the other hand, comparing with Richardet et al.’s
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rule based approach [27]; we achieve higher recall since we have more fine-grained rules

at the linguistic level. Finding an optimum level for combining these three different

approaches could be the next challenge to improve the automated neuroanatomical

relation extraction task.

Table 4.1. Evaluation results for WhiteText corpus.

Precision Recall F-Measure

2nd Dataset (1828 abstracts)

Linguistically Motivated Approach 76.94% 14.59% 24.53%

French et al.,2015, Shallow Linguistic Kernel 51.00% 67.00% 57.92%

1st Dataset (1377 abstracts)

Linguistically Motivated Approach 75.60% 17.31% 28.17%

French et al.,2012, Shallow Linguistic Kernel 50.30% 70.10% 58.30%

Richardet et al.,2015, Kernel 60.00% 68.00% 64.00%

Richardet et al.,2015, Ruta Rules 72.00% 12.00% 21.00%

Richardet et al.,2015, Filter-Kernel 66.00% 19.00% 29.00%

Richardet et al.,2015, Filter-Kernel-Rules 82.00% 7.00% 12.00%

4.2. PVT Case Study

A particular point of interest and a motivating factor in our undertaking the

present study is due to a bottom-up view of depression proposed by one of us [54,55].

Briefly, it is proposed that mood and depressive symptoms can be modulated by vary-

ing the intensity, duration and quality of stimulation by means of sensory input via

visual, auditory, taste and olfactory systems, among others, as well as physical exer-

cise. This bottom-up approach, in contradistinction to the more established account of

depression and its therapies by top-down processes, is able to integrate a large body of

evidence from studies that have manipulated depression by sensorimotor modulation in

animal models of mood and depression and offers a new avenue of potential treatments

for depression in humans. Canbeyli [55] proposed a circuitry for the integration of

bottom-up sensorimotor peripheral input to the neurocircuitry underlying depression
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in humans and animals with ‘top-down’ - potentially more cognitive influences - from

the neocortex. The amygdala in particular was proposed as a key element in the nexus

of the top-down and bottom-up processes. While the amygdaloid complex is a critical

component of the neurocircuitry of depression, it is remarkable that the PVT, par-

ticularly with its connections to lower brainstem structures involved in visceromotor

input and its connections to the amygdala, the infra- and prelimbic cortices as well as

the subgenual cingulated gyrus area, is also in a position to integrate the bottom-up

sensorimotor influences. As the PVT connectivity graph and the following discussion

will show, the PVT may be a new target of research in mood assessment.

4.2.1. Evaluation on the Annotated PVT Corpus

For the evaluation of the PVT Case Study, we have used the 14 manually anno-

tated full texts which are PVT specific publications.

As the output of the Relation Extraction phase (Section 3.2), we generate the

candidate relation pairs which are constructed of the agents and the targets. The

brain region dictionary that we created is used to validate the existence of brain region

entities in the texts of the agents and targets. Therefore, the impact of a comprehensive

dictionary is very high on the accuracy of the evaluation results.

The manually annotated data set of PVT from the 14 publications used in the

present study contains 322 relations; 97 of them do not have one of our pre-defined

patterns in their corresponding sentences. Therefore, they are already missed since the

corresponding sentences are not selected as candidates for further processing. In the

light of this information, the maximum level of recall that our approach can reach is

69.88%. Using NLP techniques, our application extracted 161 relation candidates out of

225 “pattern-including” relations. When we compare each relation candidate with the

annotated dataset, the number of full matches is 107 and the number of partial matches

is 15, whereas the number of incorrect predictions is 20. For the remaining 19 relation

candidates, we have evaluated the results in two different ways. These 19 candidates

included the agents and the targets and were matching with the brain region entities in
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the brain region dictionary. This meant that we hit a relation with correct brain regions;

therefore we evaluated these values as full or partial matches. We shared these results

as NLP-based results in Table 4.2. On the other hand, during the annotation process,

these relations are found to be too generic or ambiguous and eliminated depending

on the sentence structure. In this second approach they are considered as incorrect

predictions and are given as part of Strict and Lenient evaluations.

The following sentence contains three of these 19 relations. Our application

retrieved the relation candidates “PVT”-“PFC”, “PVT”-“NAS”, and “PVT”-“AMG”

and they are likely to refer to a relation. However, these relations were considered

either too generic or ambiguous, and therefore, have not been manually annotated in

the data set.

“..., it appears likely that there are no substantial differences in the degree to

which stress activates PVT neurons that innervate the PFC, NAS and AMG.” [56]

Actually, this is one of the core points that we would like to highlight with

automated relation extraction. Using different techniques, we can automatically extract

brain region relations, but this is still an input for further evaluation and the domain

knowledge is crucial to turn this input to valuable information. We consider this NLP-

based evaluation as valuable and share it in addition to the Strict and Lenient results.

Table 4.2 shows these evaluation results by classifying them as Strict Comparison,

which is the full-match of brain regions from the dictionary, Lenient Comparison, which

is the full matches and partial matches of the brain regions, and lastly NLP-based

comparison, which additionally includes the true-positive relations that the application

finds but not annotated by domain experts.

When we compare and evaluate the WhiteText and PVT corpora, we can reach

two conclusions. Firstly, recall value is higher with the PVT corpus, and the main

reason for that is the percentage of the sentences that we can match with the patterns.

For the WhiteText corpus, the maximum recall that we can reach is 57.7%, whereas for

PVT annotated corpus, it is 69.88%. Thus, the PVT corpus contains more relations
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Table 4.2. Evaluation results of the PVT case study.

Precision Recall F-Measure

Strict (Full Match) 66.43% 33.23% 44.30%

Lenient (Full Match + Partial Match) 75.78% 37.89% 50.52%

NLP-based 87.58% 43.79% 58.39%

aligned with the patterns. Secondly, the precision values of the patterns are similar

across the two data sets. Although the patterns were tuned based on the WhiteText

corpus, they can effectively be applied to other data sets in this domain with precision

levels of at least 70-75%.

Lastly, out of 322 relations in the 14 publications, only 7 of the annotated relations

were in the abstract part of the publications which means that only 2% of the relations

are available in the abstracts within this corpus. Using full text publications instead

of abstracts mostly assures to obtain more relations to be extracted. A strength of our

system is that it obtained the same success level on full text documents as well as on

abstracts.

The PubMed IDs of the 14 annotated PVT papers and the annotated sentences

are shared as supplementary data. Considering that some of the publications are not

publicly available, the publications are not fully provided.

4.2.2. Full PVT Corpus and Connectivity Graph

We have run our application for the dataset which consists of 558 publications

(451 abstracts and 107 full text publications) and 811 relations have been extracted

from this corpus including 343 different brain regions. Further analysis on the relations

shows that PVT is the target of 75 relations, and the source of 92 relations. Table 4.3

shows the top five brain regions with the highest number of total relations and Table

4.4 shows the ten most frequent relations that are extracted from the PVT dataset.
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Table 4.3. Top 5 brain regions as agent or target in a relation.

Brain Region Agent Target Total

pvt 92 75 167

locus coeruleus 39 23 62

nucleus accumbens 8 47 55

suprachiasmatic nucleus 30 18 48

amygdala 10 29 39

Table 4.4. Top 10 Relations that are automatically extracted from PVT Corpus.

Agent Target Number of Relations

pvt nucleus accumbens 23

pvt prefrontal cortex 13

suprachiasmatic nucleus pvt 10

pvt amygdala 8

pvt medial prefrontal cortex 6

pedunculopontine nucleus thalamus 6

paratenial nuclei nucleus accumbens 4

lateral hypothalamus pvt 4

brainstem pvt 4

ventral tegmental area nucleus accumbens 3
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In Figure 4.2, we apply these 811 relations to a connectivity network graph. The

brain regions are defined as nodes and the edges between them represent the relations.

We use a color map where the green and yellow represent low edge counts for a node

whereas the orange and red are used for higher edge counts for a node. The nodes

of the graph get larger according to the edge count. Similarly, for the edge color

mapping we used edge betweenness. The edge betweenness of an edge is defined as

the number of the shortest paths between pairs of vertices that run along it [57]. High

edge betweenness score means that if this edge is removed it will have a high impact

on the connections between the nodes.

While creating the graph, the agents and the targets are matched with the unique

entities in the dictionary. Directional connectivity graph (with the arrows showing the

direction) can be found in Appendix A.

4.3. Directionality of The Relations

One of the contributions of our research to existing works is to define the direction

of the relations.

During the evaluation phase, the accuracy of the directions of the extracted direc-

tions, in the WhiteText corpus is calculated as 100.00%, which is also validated by one

of the authors (RC). The accuracy of the directions that we extracted for the relations

in the PVT corpus is 97.54%. These results are shown at Table 4.5.

Table 4.5. Accuracy of the direction prediction for each corpus.

Corpus Accuracy

WhiteText corpus 100.00%

PVT Corpus (14 annotated publications) 97.54%
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5. CONCLUSION

A major aim of the present study was to provide a new approach in text mining

to chart out neuroanatomical connections of a specific brain structure. We have pre-

sented a linguistically motivated approach to extract neuroanatomical relations from

the scientific publications by using NLP techniques. Compared to the previously re-

ported semi-automated and automated machine learning based approaches, our ap-

proach leverages the constituency and dependency parse trees of the sentences and

defines the agents and the targets by also providing the directionality of the relation.

Our motivation was to create a linguistically empowered approach and we tar-

geted to build a high precision system which provides more accuracy than the semi-

automated or fully-automated relation extraction systems. We managed to extract the

neuroanatomical relations from the annotated Whitetext Corpus with higher precision

compared to kernel-based methods (French et al., 2015), and with higher recall com-

pared with the studies that have both kernel based methods and some linguistic rules

and filters on top of it (Richardet et al., 2015). Particularly for PVT case study, we

obtained higher recall in comparison with the results that we obtained from Whitetext

corpus and the F-Measure value was more than 50% both for the Lenient and the

NLP-based evaluations on PVT case study. On NLP-based approach we also obtained

the brain region connectivities with 87.58% precision.

The strength of our approach comes from the patterns and rules that are defined

over the parse trees of the sentences. The selection criteria for the patterns heavily

depend on the individual success of each pattern to lead to a relation. We use the pat-

terns to identify the candidate sentences for further processing and relation extraction.

A limitation of our approach is that only relations from sentences that match one of

our pre-defined patterns can be extracted. On the other hand, whenever a pattern is

found in a sentence, it is very likely that a relation extracted after further processing is

correct. Therefore, our expectation from the present study was to obtain high precision

and low recall values.We preferred to have a target of at least 60% precision level for



53

each pattern, and as a consequence, the maximum recall value that our application

could reach was approximately 70% (on the PVT data set). It is up to the researchers

to define the optimum level for their evaluations. In this study, our goal was to design

a high precision system so that many false positive relations are not included in the

brain region connectivity graph, which could lead to incorrect interpretations.

Additionally, by using the predefined patterns to find the agent and the target,

we were able to contribute on a missing feature of prior work on relation extraction:

directionality of the relation. According to the grammatical structure of the sentences

and the pattern usages, we identified the relation directionality between the brain

regions and overall accuracy of extracted directions was more than 97%.

An additional aim of the present study was to provide by means of a connectivity

graph an overview of the neuroanatomical relations of PVT that may suggest poten-

tially new functions for the midline thalamic structure. As demonstrated in Figure

4.2, PVT has a far reaching direct connectivity with a large number of brainstem,

subcortical and cortical structures. These neuroanatomical connections have yet to be

adequately interpreted in terms of potential functions that may be served by subcir-

cuits involving a more restricted number of PVT connections. Nevertheless, there is a

growing realization that the PVT is not merely a component of a general behavioral

arousal mechanism or a stress circuitry [3, 56], but is likely to be critically involved

in more specific functions. For example, presence of connections with hypothalamic

structures such as the SCN, dorsomedial hypothalamus and the fact that it is the recip-

ient of strong orexinergic hypothalamic projections have suggested to researchers that

the PVT may be an important factor in sleep/waking cycle [58]. Furthermore, due to

its prominent connection with the nucleus accumbens, PVT has been investigated in

connection with reward mechanisms and drug addiction [36].

In the light of the vast connectivity uncovered by our present study, we hope

that there may be more interest in delineating neuroanatomical subcircuits involving

the PVT as potential substrates for various functions. Towards that goal, we hereby

propose in outline form a PVT circuitry that we hope to elucidate in a future article
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that may be underlying a mood modulatory mechanism. Briefly, our analysis of PVT

connections have uncovered a strong connectivity between the PVT and several struc-

tures known to be involved in mood and depression in both humans and animals. As

demonstrated in Tables 4.3 and 4.4 and Figure 4.2, PVT has its strongest connection

with the SCN. It is also connected with the nucleus accumbens, the amygdaloid com-

plex and the extended amygdala that includes the bed nucleus of the stria terminalis

(BNST) and the ventromedial prefrontal cortex. Along with other functions that they

may share, these structures are also involved in mood and depression especially as

indicated by studies on animal models of depression. Thus, depression as measured

by forced swimming in rats is reduced with SCN [59] or amygdala lesions (Avlar and

Canbeyli, manuscript in preparation), aggravated by BNST lesions [60,61], while stim-

ulation of the ventromedial prefrontal cortex reduces depression in both humans [62]

and rats [63]. Animal studies also indicate that disruption of the nucleus accumbens

results in anhedonia which is a major symptom of depression in both humans and

animals [64,65]. Despite such evidence, there is a paucity of studies that have directly

addressed the issue of PVT involvement in depression. In the only relevant study so

far, Zhu et al. (2011) [66] have shown that co-increase in c-fos positive neurons in

the PVT and the central nucleus of the amygdala (CE) in rats subsequent to forced

swimming rats may indicate that PVT neurons are engaged in acute depressive events.

5.1. Discussions

In the PVT case study, we preferred to have a dictionary-based approach while

extracting the brain regions from publications. It is known that in the neuroscience

literature brain region entities are not used in a unique and standardized way. There

are several different names of each brain region and the corresponding abbreviations

may vary. By using a dictionary, we accepted the possible loss on finding all the brain

regions from the texts, but on the other hand we leveraged the dictionary usage on

the connectivity graph by providing unique identifiers for each brain region. Most of

the present text mining studies on neuroscience domain use the brain region mentions

directly without normalizing them to canonical brain region names. We did not prefer
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to use these mentions since it would cause to have redundant entities (nodes) that refer

to the same brain region in the connectivity graph.

Another decision point for us was whether to use the existing ontologies or to

create our own dictionary. Before constructing the dictionary, we investigated the

existing brain ontologies. Brain Architecture Management System (BAMS) [67] was

one of ontologies that includes brain regions and their relations for rats. Neuroscience

Information Framework Standard Ontology [68] and Textpresso [69] were also compre-

hensive resources on neuroscience domain. These ontologies are very helpful to have

a standard consistent terminology of the brain regions with their acronyms and syn-

onyms. The missing part of these ontologies is that they are not defined for text mining

purposes. The authors of the publications do not commonly use the brain regions as

they are referred to in these ontologies. For example, most of the brain regions are

given with “nucleus” in the ontologies, on the other hand, in the publications the au-

thors can omit “nucleus” (i.e. dorsomedial is used instead of dorsomedial nucleus).

Secondly, authors may prefer to use different acronyms instead of the known acronyms

of the brain regions. For example, BrainInfo portal5 , which contains NeuroNames

knowledgebase, uses “PV” and “PVT” as acronyms of paraventricular nucleus of the

thalamus, whereas Hsu et al. (2009) [1] used “Pa” acronym for the same brain region.

Lastly, we needed to obtain the anatomical directions during the text mining process.

For this purpose, we created the brain region entities in the dictionary with the direc-

tion information like anterior, posterior, ventral, dorsal, rostral, caudal, etc. Therefore

we had both anterior PVT and PVT as separate brain region entities in our dictionary.

As a result of our investigation, we decided to create our own brain region dictionary

and use it for relation extraction.

During the relation extraction phase, we faced several difficulties. One was re-

lated to the WhiteText corpus. This manually annotated corpus is considered as gold

standard for the first evaluation phase of our research. Since this corpus is enhanced

with the abbreviation expansion algorithm, we also needed to use the same approach.

Schwartz and Hearst Abbreviation Expansion Algorithm [39] is used for this purpose

5http : //braininfo.org
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and it requires the replacement of the short forms of the abbreviations with their long

forms. The short form is also added right after the long form. We skipped this step

on the PVT Case study since the abbreviations are already included as part of the

brain region dictionary under the name of acronyms. The second challenge was the

ambiguity on the brain regions which are given with conjunctions (i.e. “dorsal and

ventral cortex” or “basolateral and basomedial nuclei of the amygdala”). We initially

decided to evaluate these phrases as one brain region entity since the WhiteText cor-

pus considered such phrases as one brain region mention. For the PVT corpus, we

needed to remove the conjunction and create two different brain region entities from

these mentions. After the implementation of this phase, we noticed that the overall

precision was reduced due to false-positives, hence, we kept ambiguity resolution as a

project for future work.

5.2. Future Work

In our study, we have focused on automated relation extraction of brain regions

on neuroscience domain. Hence, our defined patterns and rules might not be generic

enough to be used in Protein-Protein and Gene-Disease interactions. This is considered

as a possible future work. Additionally, the current research identifies only the neu-

roanatomical relations of the brain regions (circuitry). As future work, the chemical

connections between brain regions (neurotransmitters) and the functional connections

(by the attributed cognitive function of the relation) will be our focus of interest.
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APPENDIX A: Connectivity Graph - with directions
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