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ABSTRACT

NUMERICAL ANALYSIS OF MULTIPLICITY AND

TRANSITION PHENOMENON IN NATURAL

CONVECTION

This research is devoted to the numerical investigation of the transition and mul-

tiplicity phenomena in natural convection. The numerical simulation is performed for a

2-D closed domain using FLUENT, a commercial computational fluid dynamics pack-

age. In this study, the effects of different parameters such as Rayleigh number (Ra),

aspect ratio (AR), and Prandtl number (Pr) are numerically analyzed. The complex

phenomenon of onset of instability is studied to find the critical Ra numbers and bi-

furcation points. In a specific range of critical Ra numbers, transition and multiple

results are observed using Rayleigh, boundary condition and pseudo-transient continu-

ation methods. This method uses higher order temperature boundary conditions as an

initial value on vertical walls. Multiple steady state results are observed at different Ra

numbers. In a range of Ra numbers, the transition and multiple steady state results

can completely change the convective flow pattern within the domain.
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ÖZET

DOĞAL TAŞINIM GEÇİŞ VE ÇOKLUK OLGUSUNUN

SAYISAL ANALİZİ

Bu araştırmada, doğal taşınım geçiş ve çokluk olguları sayısal olarak incelenmiştir.

Sayısal simülasyon, iki boyutlu kapalı alan içinde ve FLUENT yazılımı kullanılarak

yapılmıştır. Bu çalışmada, Rayleigh sayısı (Ra), en-boy oranı (AR) ve Prandtl sayısı

(Pr) gibi farklı parametrelerin etkisi sayısal yöntemle analiz edilmiştir. Kritik Ra

sayıları ve çatallanma noktalarını bulmak için, istikrarsızlık başlangıç olgusu ince-

lenmiştir. Belirli bir kritik Ra sayı aralığı içinde, Ra ve sınır koşulları sürdürme

yöntemini kullanarak, geçiş ve çokluk sonuçları gözlenmiştir.Bu yöntem yüksek mer-

tebeli sıcaklık sınır koşullarını bir başlangıç değeri olarak dikey duvarlar üzerinde kul-

lanıyor. Çoklu kararlı hal sonuçlari farklı Ra sayılarında gözlenmiştir. Belirli bir Ra

sayı aralığı içinde, geçiş ve çoklu kararlı hal sonuçları, taşınım akış düzenini tamamen

değişmesini göstermektedir.
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1. INTRODUCTION

Heat transfer occurs within a system in the presence of a temperature gradient.

Natural convection is a type of heat transfer, which is induced by buoyancy force,

without any external forcing condition. In other words, the fluid motion originates

from body force when the density gradient is due to the temperature gradient.

Natural convection plays an important role in increasing heat transfer within the

system. In recent years, natural convection received considerable interest in various

fields such as new electronic devices, solar thermal receiver systems, solidification pro-

cess [4], and biomedical [5]. In some systems, on the contrary, natural convection has

drawback effects when it provides resistance to heat transfer or affect the interface of

solid/liquid. It can happen in crystal growth or in fluid flow through the pipe. In order

to better identification of natural convection, it needs be examined profoundly. This

problem reveals a variety of complex behaviors and high sensitivity to small variations

of parameters, such as the aspect ratio (AR), Rayleigh number (Ra), Prandtl num-

ber (Pr), and the thermal boundary conditions (BC). Ra number plays a significant

role in the most of the natural convection investigation. The onset of instability and

bifurcation happen in a range of determined Ra numbers.

Despite the fact that there is a density differences within the domain, by the

Boussinesq approximation as introduced by Joseph Valentin Boussinesq (1842–1929)

[6] a French mathematician and physicist known for advances in fluid dynamics, the

density is assumed to be constant except for the body forces. More than one hundred

years ago, in 1903 Joseph Valentin Boussinesq [7] observed that: “The variations of

density can be ignored except where they are multiplied by the acceleration of gravity

in equation of motion for the vertical component of the velocity vector.”

The transition natural convection was observed in melt flow by Hurle [4]. The

severe effects of natural convection on melt flow have motivated recent studies to ex-

amine convective flow [8]. The natural convection in melt flow affects the process of
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crystallization, and it completely affects the interface and crystal formation, and it

strongly changes the solute and temperature distribution within the melt flow [9].

1.1. Literature Review

At specific Ra number (bifurcation point), the transition from conduction (Nu=1)

to convection (onset of convective instability) occurs. The first observation of transition

and unstable natural convection phenomenon happened in experimental researches by

Hurle(1966) [4, 10]. The unstable natural convection has been specifically studied in

some researches [11–13] for two dimensional (2D) and three dimensional (3D) cavities.

However, these studies were performed for variation of Pr numbers, which are not of

practical use. In addition, the onset of unstable natural convection has been analyzed

in Gelfagt et al. studies [14,15]. Their study focuses on onset of instability phenomena

in convective fluid flow for different AR. They proposed that the Pr number and the

AR play a significant role in steadily transient natural convection. They investigated

at various critical Grashof number and aspect ratios, and drew the graph which showed

the different results by increasing AR.

A recent approach, which studied the natural convection by using ISPH method,

was introduced by Danis et al. [16]. ISPH method was used to simulate natural convec-

tion in a square cavity with Boussinesq approximation at Ra numbers between 103 and

106. Despite the fact that the SPH has been always used to discretize the Lagrangian

equations, in this study the uniform Eulerian grids is discretized using SPH operators.

In other meshless Lagrangian method, the SPH particles are moving inside the domain,

but in this approach SPH particles are kept stationary. Since all particles are station-

ary, the Eulerian form of governing equations is used instead of the Lagrangian form

of equations. In addition, they have used an incompressible approach, which is called

Incompressible SPH (ISPH). Moreover, ISPH method was used to prevent the density

error accumulation and particle disordering. In this method, the incompressibility is

directly imposes an intermediate velocity field, which is obtained without considering

gradient of pressure.
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The analyze of different bifurcation points and multiple solutions was examined

by Ventury et al. [1]. In his study, deterministic analysis was used to capture steady-

state solutions and primary bifurcations, where multiple stable solutions were found

within specific ranges of Ra number. Finally, the stochastic analysis was carried out

on random initial condition flows around bifurcation points to analyze the transient

natural convection behavior.

All probable convective flow patterns were investigated by Puigjaner et al. [2]. All

stable and unstable flow patterns for Rayleigh-Benard convection problem with Pr=0.7

at different Ra numbers were investigated by using parameter continuation techniques.

Multiple convection flow pattern can observe even for moderate Ra numbers. The

different patterns were discussed by streamlines direction and number of convection

rolls and its different shapes.

Sheu et al. [17] discussed the transient convection and the onset of bifurcation

point in a 3D model, which is numerically demonstrated that a unique symmetric

and steady-state solution exists in small Ra number. As the Ra increases beyond

onset of bifurcation point, the symmetric results become asymmetric. After one point

(bifurcation point), two different solutions can be obtained. Analysis of transition to

oscillator convection for 2D and 3D domain with low Pr number was investigated by

Henry et al. (1998) [13]. In this study, different convective flow pattern was observed

for Pr=0 and a non-zero Pr number case.

Various numerical studies have been performed on the instability of steady and

transient natural convective flows. Mercader et al. [18] studied the parametric variation,

BC, and periodic analysis. Firstly, they analyzed the basic state and its primary

bifurcation that has two cases of temperature BCs, which are performed in horizontal

plates with Pr= 0.007 with rectangular cavity of AR=2. Furthermore, periodic analysis

was considered in their research, in which they studied both steady and transient

convective flow. Finally, it was observed that by increasing thermal effects, secondary

bifurcations revealed for both temperature profile cases.
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The oscillatory convection within the liquid phase of two-phase flow was ob-

served [4, 9, 10], and some numerical and experimental studies [14, 19] investigated

the oscillatory natural convection. Although these studies identify the phenomenon,

a complete analysis that can cover the bifurcation points and multiple results is still

lacking. In addition, It was mentioned that at critical Ra number, the transition and

oscillatory natural convection intensively affect the fluid flow within closed domain.

Joo-Sik Yoo [20] studied the combined effect of thermal and hydrodynamic instability

natural convection in a narrow horizontal concentric annulus with Pr=0.4. The mul-

tiple natural convection patterns were shown in his investigation within annular gap

between two concentric cylinder. The results represented the complicated multicellular

flow. Increasing Ra number changes the multicellular flow to a nearly monocellular

structure. Periodic steady solutions were observed within higher range of Ra numbers.

According to the literature, it is still uncertain why crystal growth of some ma-

terials is easy and for others it is not [19,21]. It has been neglected that at the low Pr

numbers (Pr < 0.1), the oscillatory natural convection flow occurs at the range of Ra

numbers which are so close to the experimental conditions [21]. The strength of fluid

flow and the unstable transition natural convection can strongly change the interface

of two-phase flow. The effects of multiplicity and transition of natural convection has

been neglected to estimate the shape and movement of the solid/liquid interface of two-

phase flow [19]. The effects of BC and specially temperature gradient are investigated

by Erenburg et al. [22]. Partially heated walls are set up as boundary condition to

analyze the multiplicity and bifurcations of natural convection. In this research, both

continuous and partial temperature gradient on wall are considered. Selver et al. [19]

studied the partial heated vertical walls to simulate the floating-zone crystal growth.

Most of the studies, which discuss oscillatory convection, were considered the

thermocapillary effects for upper BC on fluid flow [23]. The buoyancy force is the

dominant force to carry out the natural convection in closed domain; however, the

influence of thermocapillary forces on buoyancy-driven convection cannot be ignored.

This influences were numerically studied for open cavities with differentially heated

walls [24]. In these studies the Reynolds number (Re) is also important because they
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used the Marangoni stress to solve the stress-free (open) BC. Thermocapillary can

impose intensive effects on buoyancy-driven flow. The results of combination of these

two forces can completely change the stability of natural convection within the domain.

Some studies used the thermal lattice Boltzmann method to study the natural

convection [25–27]. In this method, instead of using finite difference, finite element and

finite volume methods to solve Naiver–Stokes equations, the lattice Boltzmann method

were employed. In addition, there are some new combinations of lattice Boltzmann

method with other methods to create new explicit method [28], which is based on the

lattice Boltzmann method (LBM) combined with Taylor series expansion and the least

squares approach.

Most of natural convection studies were used Boussinesq approximation to simu-

late the convective flow. However, there are several studies which used non-Boussinesq

assumption to model convective flow, Hamimid et al. [29] was used the time dependent

Naiver–Stokes equations under the Low Mach Number approximation (LMN method).

This investigation demonstrated that for large temperature differences, LMN com-

pressible method obtained better results for convective flow. In addition, Vekstein

(2004) [30] investigated natural convection without using Boussinesq approximation,

considered the energy of liquid and gas to investigate the onset of convective instability.

In this study, the onset of natural convection instability is discussed by energy of the

fluid. In other words, a gravitational energy sustains the fluid flow in natural convec-

tion by interchanging a hotter fluid with less density to cooler one with more density.

The distinguish convection instability between fluid and ideal gas was also discussed

in this research. Unlike a gas, a liquid may be considered as almost incompressible

fluid. This means that its density, in the general case, is a function of pressure and

temperature ρ = ρ(P, T ). But since it has a very weak dependence on the pressure,

one may simply consider ρ = ρ(T ).

Szewc et al. [31] discussed the Boussinesq approximation failure by using SPH

method, in which natural convection in a square cavity with a Boussinesq and a non-

Boussinesq formulation was studied. In significant differences of density due to temper-
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ature gradient, the dimensionless Gay-Lussac number is suggested to measure density

gradient in non-isothermal flows. The effect of Gay-Lussac number was investigated

for velocity field and Nusselt number of non-Boussinesq convective flow on their study.

When both heat and mass transfer affect natural convection, the double-diffusive

convective flow is defined to solve the problem [32]. For multi-component mixing

flows, the transport of enthalpy, due to species diffusion, can have a significant effect

on the enthalpy field and should not be neglected. Lewis number (Le = k
ρcpD

) is very

important in these kinds of investigation; when the Le number for any species Le� 1

increase, the thermo-solutal effects become so significant to simulate the convective

flow [33].

The effects of rotating flow on oscillatory natural convection was studied experi-

mentally and numerically [34–36] . For specific range of Gr numbers, thermal oscilla-

tions are detected at several rotation rate. In addition, it is found that the frequency

of oscillation is a function of the Gr number.
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2. MATHEMATICAL MODELING

The fluid motion with temperature effects results in governing equations in which

natural convection plays a major role by buoyancy forces, and the buoyancy forces sus-

tain the fluid flow. The fluid is assumed Newtonian and quasi-incompressible (Boussi-

nesq approximation), and the Navier-Stokes equations coupled with the energy equa-

tion govern the flow with the constant physical properties except in the buoyancy term

where ρ is taken as a linear function of the temperature. The equations for conservation

of mass, momentum, and energy [28,37,38] can be written as follows:

∂u

∂x
+
∂v

∂y
= 0 (2.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= − 1

ρ0

(
∂P

∂x
) + ν(

∂2u

∂x2
+
∂2u

∂y2
) (2.2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= − 1

ρ0

(
∂P

∂y
) + ν(

∂2v

∂x2
+
∂2v

∂y2
)− g (2.3)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= α(

∂2T

∂x2
+
∂2T

∂y2
) (2.4)

2.1. Natural Convection

The natural convection within the closed domain can be modeled in one of the

following ways:

• In small temperature gradient within the domain, the density can be assumed

constant except in buoyancy term of momentum equation (Boussinesq Approxi-

mation). This approach is valid when β∆T � 1.

• For high temperature differences within the domain, a constant density assump-

tion can not be correct, and the fluid flow is considered compressible flow.
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2.1.1. Boussinesq Approximation

In Bossinessq approximation, the fluid density is defined as a function of temper-

ature and thus the temperature-field is coupled with the flow-field. This problem is

assumed the no-slip boundary condition with constant properties except for the body

force term in the momentum Equations 2.3.

In moderate temperature differences, the Taylor series expansion of density (ρ)

is written around the referance density ρ0 :

ρ = ρ0 + (
∂ρ

∂T
)p(T − T0) + (

∂2ρ

∂T 2
)p(T − T0)2 + ... (2.5)

In this temperature gradient the density changes is assumed linear; therefore the

nonlinear part of Taylor series is ignored. The thermal expansion coefficient (isobaric)

β is introduced as:

β = − 1

ρ0

(
∂ρ

∂T
)P (2.6)

Thus as a result the above explanation:

(ρ− ρ0) ≈ ρ0β(T − T0) (2.7)

The natural convection in which both mass and energy is driven by buoyancy due

to simultaneous temperature and concentration gradients, is called double diffusive or

thermo-solutal convection [8] Thermal and solutal gradients cause to complex flow

structures, a thermal expansion coefficient βT is defined:

βT = −1

ρ
(
∂ρ

∂T
) (2.8)
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As we study the behaviour of homogeneous (one-component) fluids, corresponding

to a liquid pure material (small Prandtl number) therefore to define the buoyancy term

in momentum equation ( βT = β is assumed).

The pressure gradient in y-direction consist of hydrostatic pressure (−ρg) and the

dynamic pressure which is the pressure of a fluid motion (−∂pd
∂y

). Thus, the pressure

gradient term in equation 2.4 is rewritten as:

−(
∂P

∂y
) = −(−ρg +

∂pd
∂y

) (2.9)

Consequently, we replace above term instead of pressure term in eq. 2.4 and

obtain the final form of momentum equation in y-direction by assuming Boussinesq

approximation.

ρ0u
∂v

∂x
+ ρ0v

∂v

∂y
= −(−ρg +

∂pd
∂y

) + µ(
∂2v

∂x2
+
∂2v

∂y2
)− ρ0g (2.10)

=⇒ ρ0u
∂v

∂x
+ ρ0v

∂v

∂y
= −∂pd

∂y
+ µ(

∂2v

∂x2
+
∂2v

∂y2
) + (ρ− ρ0)g (2.11)

=⇒ u
∂v

∂x
+ v

∂v

∂y
= − 1

ρ0

∂pd
∂y

+ ν(
∂2v

∂x2
+
∂2v

∂y2
) + gβ(T − T0) (2.12)

where ρ0 is the constant density (reference density) of the flow, T0 is the operating

temperature, and β is the thermal expansion coefficient. In this equation T is the

temperature distribution within the domain which is obtained from energy equation.

Equation 2.12 is obtained by using the Boussinesq approximation ρ = ρ0(1 − β∆T )

to eliminate ρ from the buoyancy term. This approximation is accurate as long as

changes in actual density are small; specifically, the Boussinesq approximation is valid

when β(T − T0)� 1.

In addition, there is no hydrostatic pressure in x-direction; thus the pressure
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gradient is due to fluid motion.

∂P

∂x
=
∂pd
∂x

(2.13)

We elimnate the ’d’ index in both pressure gradient terms to simplify the equations.

Therefore, the final form of equations 2.3 and 2.4 by considering the Boussinesq ap-

proximation and time independent problem are rewritten:

u
∂u

∂x
+ v

∂u

∂y
= − 1

ρ0

(
∂p

∂x
) + ν(

∂2u

∂x2
+
∂2u

∂y2
) (2.14)

u
∂v

∂x
+ v

∂v

∂y
= − 1

ρ0

∂p

∂y
+ ν(

∂2v

∂x2
+
∂2v

∂y2
) + gβ(T − T0) (2.15)

2.1.2. Energy equation

The basic form of Energy equation which is solved in general problems in FLU-

ENT [37] is as follows:

∂(ρE)

∂t
+∇.(~v(ρE + p)) = ∇.(k∇T −

∑
hJ + (τ.~v)) + Sh (2.16)

Energy E per unit mass is defined as:

E = h− P

ρ
+
V 2

2
(2.17)

This problem does not depend on time; therefore the first term is eliminated.

The differences in pressure and kinetic energy are small in incompressible. Thus, for

our case the derivatives of them are assumed zero, and h is refers to sensible enthalpy:

h =

∫ T

Tref

cpdT (2.18)

The reference temperature in sensible enthalpy calculation is set to 298.15 K
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In equation 2.16
∑
hJ is for species diffusion and τ.~v is for viscous dissipation.

Both parts are eliminated. In our natural convection, the material is assumed pure and

therefore the species diffusion is ignored. The Viscous dissipation, also called viscous

heating, is used for high-velocity compressible flows and high shear stress in fluids (e.g.

lubrication). The viscous dissipation plays an important role in energy aquation when

the Brinkman number approaches or exceeds unity.

Br =
µUe

2

k∆T
(2.19)

There is no energy source Sn in our problem; therefore it is negligible in the

equation 2.16. Finally, the 2-D energy equation is derived from 2.16

∇.(~v(ρE) = ∇.(k∇T ) (2.20)

∇.(~v(ρcpT ) = ∇.(k∇T ) (2.21)

ρcp∇.(~v.T ) = k∇.(∇T ) (2.22)

and then,

u
∂T

∂x
+ v

∂T

∂y
= α(

∂2T

∂x2
+
∂2T

∂y2
) (2.23)

2.2. Dimensionless Formulation

In order to non-dimensionalize the governing equations, the dimensionless param-

eters are defined [17,38,39]:

x∗ =
x

L
, y∗ =

y

L

u∗ =
uL

α
, v∗ =

vL

α
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T ∗ =
T − T0

TH − TC

t∗ =
tα

L

p∗ =
pL2

ρα2

By assuming the above dimensionless parameters, we want to derive the dimensionless

form of the following equations.

∂u

∂x
+
∂v

∂y
= 0 (2.24)

u
∂u

∂x
+ v

∂u

∂y
= − 1

ρ0

∂p

∂x
+ ν(

∂2u

∂x2
+
∂2u

∂y2
) (2.25)

u
∂v

∂x
+ v

∂v

∂y
= − 1

ρ0

∂p

∂y
+ ν(

∂2v

∂x2
+
∂2v

∂y2
) + gβ(T − T0) (2.26)

u
∂T

∂x
+ v

∂T

∂y
= α(

∂2T

∂x2
+
∂2T

∂y2
) (2.27)

The Equations 2.24 and 2.25 are written by using the dimensionless parameters:

∂(u
∗α
L

)

∂(x∗L)
+
∂ (v∗α

L
)

∂(y∗L)
=

α

L2
(
∂u∗

∂x∗
+
∂v∗

∂y∗
) =

∂u∗

∂x∗
+
∂v∗

∂y∗
= 0 (2.28)

(
u∗α

L
)
∂(u

∗α
L

)

∂(x∗L)
+ (

v∗α

L
)
∂(u

∗α
L

)

∂(y∗L)
= − 1

ρ0

∂(p
∗ρα2

L2 )

∂(x∗L)
+ ν(

∂2(u
∗α
L

)

∂(x∗L)2
+
∂2(u

∗α
L

)

∂(y∗L2)
)

=⇒ α2

L3
(u∗

∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
) = − ρ

ρ0

(
α2

L3
)
∂p∗

∂x∗
+
να

L3
(
∂2u∗

∂x∗2
+
∂2u∗

∂y∗2
) (2.29)

In Equation 2.29 ρ
ρ0

is non-dimension, and by multiplying both sides by L3

α2 , and di-

mensionless number (Pr number) which is defined as ratio of momentum diffusivity to
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thermal diffusivity is defined as following:

ν =
µ

ρ
(2.30)

α =
k

ρcP
(2.31)

Pr =
ν

α
=
cPµ

k
(2.32)

Therefore, the momentum equation in x-direction is derived:

u∗
∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
= −∂p

∗

∂x∗
+ Pr(

∂2u∗

∂x∗2
+
∂2u∗

∂y∗2
) (2.33)

For momentum equation in y-direction:

(
u∗α

L
)
∂(v

∗α
L

)

∂(x∗L)
+ (

v∗α

L
)
∂(v

∗α
L

)

∂(y∗L)
= − 1

ρ0

∂(p
∗ρα2

L2 )

∂(y∗L)
+ ν(

∂2(v
∗α
L

)

∂(x∗L)2
+
∂2(v

∗α
L

)

∂(y∗L2)
) + gβT ∗∆T

α2

L3
(u∗

∂v∗

∂x∗
+ v∗

∂v∗

∂y∗
) = − ρ

ρ0

(
α2

L3
)
∂p∗

∂y∗
+
να

L3
(
∂2v∗

∂x∗2
+
∂2v∗

∂y∗2
) + gβT ∗∆T

(2.34)

In this equation, ρ
ρ0

is non-dimension and after multiplying both sides to L3

α2 , and

multiply the last term of Equation 2.34 to ν
ν
:

Ra =
gβ∆TL3

να
=
ρ2cPgβ∆TL3

µk
(2.35)

Ra = Gr.Pr (2.36)

u∗
∂v∗

∂x∗
+ v∗

∂v∗

∂y∗
= −∂p

∗

∂y∗
+
ν

α
(
∂2v∗

∂x∗2
+
∂2v∗

∂y∗2
) + (

ν

α
)(
gβ∆TL3

να
)T ∗ (2.37)

the momentum equation in y-direction is derived:

u∗
∂v∗

∂x∗
+ v∗

∂v∗

∂y∗
= −∂p

∗

∂y∗
+ Pr(

∂2v∗

∂x∗2
+
∂2v∗

∂y∗2
) +RaPrT ∗ (2.38)
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The Equations 2.27 is written by using the dimensionless parameters as following:

(
u∗α

L
)
∂T ∗

∂(x∗L)
+ (

v∗α

L
)
∂T ∗

∂(y∗L)
= α(

∂2T ∗

∂(x∗L2)
+

∂2T ∗

∂(y∗L2)
)

=⇒ α

L2
(u∗

∂T ∗

∂x∗
+ v∗

∂T ∗

∂y∗
) =

α

L2
(
∂2T ∗

∂x∗2
+
∂2T ∗

∂y∗2
) (2.39)

By multiplying both sides to L2

α
, the non-dimensionalized energy equation is derived:

u∗
∂T ∗

∂x∗
+ v∗

∂T ∗

∂y∗
= (

∂2T ∗

∂x∗2
+
∂2T ∗

∂y∗2
) (2.40)

Therefore, all non-dimensionized equations are as following:

∂u∗

∂x∗
+
∂v∗

∂y∗
= 0 (2.41)

∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
= −∂p

∗

∂x∗
+ Pr(

∂2u∗

∂x∗2
+
∂2u∗

∂y∗2
) (2.42)

∂v∗

∂t∗
+ u∗

∂v∗

∂x∗
+ v∗

∂v∗

∂y∗
= −∂p

∗

∂y∗
+ Pr(

∂2v∗

∂x∗2
+
∂2u∗

∂y∗2
) +RaPrT ∗ (2.43)

u∗
∂T ∗

∂x∗
+ v∗

∂T ∗

∂y∗
= (

∂2T ∗

∂x∗2
+
∂2T ∗

∂y∗2
) (2.44)

At lower Ra number the behaviour of fluid is steady, but in higher Ra number the fluid

shows turbulence. Onset of transition in natural convection is occurred in a range of

critical Ra numbers.

The importance of buoyancy forces in a mixed convection flow can be measured

by the ratio of the Grashof and Reynolds numbers.

Gr

Re2 =
gβ∆TL

ν2
(2.45)

When this ratio exceeds unity, the buoyancy effect is dominant, and the natural con-

vection is occurred. Conversely, if it is very small, buoyancy forces is weak and can

be ignored. In pure natural convection, the strength of the buoyancy-induced flow is

measured by the Ra number.
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2.3. Problem definition

The Rayleigh-Benard convection occurs in a volume of fluid that is heated from

below. The hotter fluid (at the bottom) get a higher temperature and therefore a lower

density than the rest of the fluid. Gravity tends to draw down the colder and heavier

fluid at the top but this is opposed by the viscous force in the fluid. Rayleigh-Benard

convection is an example of thermal instability where temperature difference between

the top and bottom caused by heating the fluid from below results in formation of rolls.

If the temperature gradient, and thus the density gradient, is large enough the gravita-

tional forces will dominate and instability will occur. Rayleigh-Benard instability has

been a topic for many experimental and numerical studies [40]. The Rayleigh-Benard

convection occurs in a volume of fluid that is heated from below and it is known as the

Rayleigh-Benard instability. The viscous force and gravitational force within the fluid

are in challenging. The balance between these two forces determines that the convec-

tion will occur or not. If the temperature gradient, density gradient, was large enough,

the gravitational forces will dominate and instability will occur. The Rayleigh-Benard

instability develops when Ra number is above a critical value. The Rayleigh-Benard

convection problem domain is shown in Figure 2.1. The effect of domain geometry

is analysed by AR, which is actually the ratio of height to length (AR=H/L), as de-

picted in Figure 2.1. Different aspect ratio( AR=1/4, 1/2, 1, 2, and 4) are considered

in this research. The problem is defined using constant temperature at the top and the

bottom. Insolated BC is defined on sidewalls which is depicted in Figure 2.1.
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Figure 2.1. The Rayleigh-Benard domain geometry and temperature BCs; The

sidewalls are assumed adiabatic and the horizontal walls are set to constant

temperature.
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3. Computational Modeling

3.1. Numerical method to solve the problem

The ANSYS FLUENT 14 [41] is used to solve the problem. This commercial

program is based on finite volume discritization method. The Rayleigh-Benard natural

convection problem is a nonlinear and unstable problem. In this problem, temperature

BC and temperature initial values are very important. First of all, the energy equa-

tion is solved to obtain an initial temperature distribution which is used in momentum

equation as an initial value. It is difficult the convergence of non-linear part of momen-

tum equation because of the intense convective flow. At low Ra numbers, the SIMPLE

method [42] is utilized for all AR.

(i) For low Ra number, the SIMPLE scheme is used for Pressure-Velocity Coupling

(ii) For the problem with the Rayleigh number higher than critical Ra number the

COUPLED scheme combined with pseudo-transient method is applied.

The spatial discretization for all Ra number is the same and it is briefly explained

as follows. To solve governing partial differential equations (PDEs) numerically, which

are defined in previous chapter, the finite volume method is used to discretized the

domain into finite set of control volumes or cells. The Finite volume discretization is

explained briefly as follows.

The natural convection problem in closed domain is solved by steady convection-

diffusion equation which can be derived from the general transport equation. General

transport equation for mass, momentum, and energy is applied to each cell. For a

general property φ by eliminating the unsteady part, the integration over the control

volume is derived as follows.

∫
A

ρφ~vdA =

∫
A

Γgradφ)dA+

∫
CV

SφdV (3.1)
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Figure 3.1. Two-dimensional grid.

This equation is applied to each control volume, or cell, in the computational domain.

The flux balance in control volume is represented in this equation. The left side gives

the net convective flux and the right side derives the net diffusive flux plus the gener-

ation of the property φ.

The equation 3.1 is discretized into algebraic form. For cell p, it is written as

∑
faces

ρf~vfφf ~Af =
∑
faces

Γφ∇φf . ~Af + SφV (3.2)

There are unknown variables in equation 3.2 at the cell center and neighbor cells.

Figure 3.2. Control cell of 2D domain

Then, this equation is non-linear with respect to these variables. A linearized form of
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Equation 3.2 can be written as:

aPφ =
∑
nb

anbφnb + b (3.3)

where the subscript nb refers to neighbor cells, ap and anb are the linearized coefficients

for φ and φnb , and b is the contribution of the constant part of the source term Sφ. To

solve the problem with the Ra number higher than critical Ra number Coupled and

Pseudo-Transient methods are applied.

For convection-diffusion problems, the upwind differencing scheme has better

accuracy in comparison to the central scheme because the upwind schem is able to

identify the flow direction that is practical in a strongly convective flow. FLUENT

stores the value of φ at the cell centers, but for the convection terms the face value φf

is required which must be interpolated from the cell center values. This is accomplished

using an upwind scheme. In this problem, the second-Order Upwind Scheme is used

to discretize the momentum, energy, and pressure values.

3.1.1. Second-Order Upwind Scheme

Considering the first-order upwind is selected the face value φf equal to the cell-

center value of φ in the upstream cell [41]. The second-Order upwinding is added to the

second part of Taylor series expansion to compute the face value φf using the following

expression:

φf = φ+∇φ.~r (3.4)

Therefore, the face value is calculated by the cell-centered value φ and its gradient∇φ

and the distance vector ~r between cell center and the face.

The determination of gradient of the scaler value φ needs a method to calculate

the derivation. The Least Squares Cell-Based method is used in all calculations.
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3.1.2. Least Squares Cell-Based Method

Gradients are needed not only for obtaining the value of φ at the face, but also

for computing secondary diffusion terms and velocity derivatives. To calculate the cell

value between c0 and ci with the distance vector δri and the direction from c0 to ci can

be represented as

(∇φ)c0 =
(φci − φc0)

∆ri
(3.5)

3.2. Discretization of the Governing Equations

The three main governing equations (steady-state continuity, momentum, and

energy) are written in integral form:

∮
ρ~v.d ~A = 0 (3.6)∮

ρ~v~v.d ~A =

∮
(µ∇~v).d ~A−

∫
ρ0β~g(~T − T0)dV (3.7)

By setting φ = v in equation 3.3, the discretized form for y-momentum equation

is obtained:

aPv =
∑
nb

anbvnb +
∑

PfA (3.8)

The pressure field and face mass fluxes are unknown. There are different methods to

obtain the pressure field; these are explained in next section.

Pressure and velocity are both stored in cell centers. However, Equation 3.8

requires the value of the pressure at the face between cells c0 and c1. Therefore, an

interpolation scheme is required to compute the face values of pressure from the cell

values.
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3.2.1. Pressure Interpolation Schemes

The second-order scheme reconstructs the face pressure in the manner used for

second-order accurate convection terms (see 3.1.1). This scheme may provide some

improvement over the standard and linear schemes, but it may cause some trouble if

it is used at the start of a calculation and/or with a bad mesh.

For high Ra numbers, the body Force Weighted method is applied as a pressure

solver. The body-force-weighted scheme computes the face pressure by assuming that

the normal gradient of the difference between pressure and body forces is constant.

In very-high-Rayleigh-number natural convection flows where density or momen-

tum equations is strongly coupled with temperature, it is recommended to use the

under-relaxation factor for the energy equation less than 1.0.
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3.3. Mesh sensitivity

To examine the mesh sensitivity, the average mesh size, h, is defined to represent

cell mesh size. Different rectangular meshes (h=1, 0.5, 0.25,...) are used to investigate

the effect of mesh refinement. Simulations are performed to obtain velocity magnitude

and temperature contours at critical Ra number and critical positions (half-width,

half-height and diagonal lines). The mesh size of h=1 is selected as a coarse mesh and

then in every refinement step it is divided by two as the finer mesh. Mesh sensitivity

analysis is carried out in AR=2, Ra = 1×105 and Pr=1 since these values are the most

critical ones. The no-slip velocity boundary condition on walls results in zero velocity

on walls. In addition, the velocity magnitude values are mostly constant for half-width

line. Therefore, the half-height and diagonal lines of domain are selected to compare

the velocity magnitude values.

Velocity magnitude at half-height and on diagonal line are plotted for different

mesh sizes as shown in Figure 3.3 (a) and (b). By comparing the results, one can

notice that the shape of velocity magnitudes are the same for different mesh sizes but

the amplitude of them varies for the first three mesh sizes. There is no significant

change in results when the mesh is refined further after h=0.25.

Although, the temperature values are not so sensitive to selected mesh sizes, the

half-width and half-height positions are selected to represent the temperature contours

for various mesh sizes. Results are plotted in Figure 3.4 (a) and (b). It can be seen

that the temperature contours are not so sensitive to mesh size and for the mesh sizes

finer than h=0.5, the temperature contours don’t change.
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Figure 3.3. Velocity magnitude for AR=2, Ra = 1× 105 and Pr=1 for different mesh

sizes; a) in x-direction at half-height; b) on the diagonal of the domain.
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Figure 3.4. Temperature plots for AR=2, Ra = 1× 105 and Pr=1 for different mesh

sizes; a) in y-direction at half-width; b) in x-direction at half-height.
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3.4. Pseudo Transient Continuation

The pseudo transient method or pseudo-transient continuation is a practical tech-

nique of solving steady-state nonlinear differential equations [41]. In other words, it

is a technique for solving the steady-state problem of time-evolving partial differential

equations by setting an initial guess and using a time-stepper to evolve the solution

forward. This algorithm effectively adds an unsteady term to the solution equations

in order to improve stability and convergence behavior. Use of this option is recom-

mended for general fluid flow problems. The technique is common to solve nonlinear

equations when the initial iterate is far from a solution or can converge to nonphysical

solutions or local minima of the norm of the steady-state residual. This is particularly

the case when the solution has complex features, such as shocks or discontinuities,

that are not present in the initial iterate. This method is useful in Transition Natural

Convection i.e the Ra number is higher than critical Ra number.

The pseudo transient method is a form of implicit under-relaxation which is

applied to the Equation 3.3. Here, the under-relaxation is controlled through the

pseudo time step size. By using the pseudo transient under-relaxation, the linearized

Equation 3.3 becomes:

ρP∆V
φP − φoldP

∆t
+ aPφP =

∑
nb

anbφnb + b (3.9)

where ∆t is the pseudo time step. There are two kind of pseudo transient time step:

automatic and fix. The automatic time step is calculated using the minimum of the

different timescales:

∆t = Min(∆tu,∆tp,∆tg) (3.10)

Each time scale is obtained by dividing length scale Lscale over an appropriate velocity

scale which depends on the physics present in the flow domain.
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For solving the natural convection, the gravitational time scale ∆tg plays impor-

tant role and is defined by the following equation:

∆tg =

√
Lscale
g

(3.11)

where g = |~g| is the magnitude of the gravitational vector, and for natural convection

(the Boussinesq approximation) g is modified as follows:

g = |~g|β(Tmax − Tmin) (3.12)

The convective time scale ∆tu is defined as:

∆tu =
0.3Lscale

Max(Ubc, Udomain)
(3.13)

The velocity Ubc is the maximum of the arithmetic average of the velocity at the domain

boundary faces, and Udomain is the arithmetic average of the velocity over the cells in

the domain. The dynamic time scale ∆tp is defined as:

∆tp =
0.3Lscale
U∆P

(3.14)

The velocity scale U∆P is based on the pressure difference at open boundaries,

such as pressure inlet, pressure outlet or velocity inlet, and is defined by the following:

U∆P =

√
(
Pbc,max − Pbc,min

ρ̄cells
) (3.15)

where Pbc,max is the maximum pressure value at the open boundary. Pbc,min is the

minimum pressure value at the open boundary, and ρ̄cells is the average density over

the domain.
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To represent this, the length scale Lscale should be defined. Two length scale

calculation methods are available: aggressive and conservative. If the aggressive length

scale method is applied, then the length scale in all of the equations shown above are

defined as:

Lscale = MAX(Lvol, Lext) (3.16)

On the other hand, if the conservative length scale method is applied, then the length

scale is defined as

Lscale = MIN(Lvol, Lext) (3.17)

where the volume length scale is defined as:

Lvol =
3
√
V (3.18)

and the domain length scale is defined as

Lext = MAX(Lx, Ly, Lz) (3.19)

where V is the volume of the domain and (Lx, Ly, Lz) are the domain lengths in the

x,y,z direction.
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3.4.1. Application of pseudo transient continuation at critical Ra number

regions

Pseudo transient continuation helps the convergence, and stabilize unstable or

periodic residuals. Here, the utilization of SIMPLE scheme and Coupled scheme with

using pseudo-transient method is compared. At critical or high Ra numbers, the

Pseudo-transient method is very helpful to converge gradually the momentum and

energy equations. Given that in unstable and critical Ra number region the conver-

gence of momentum and energy equation is difficult, this method is useful to help them

converge gradually. The Pseudo transient continuation is used to help convergence for

both divergence in residuals and periodic residuals as shown in Figures 3.5 (a) and 3.6

(a), respectively.

Figure 3.5. Residual-iteration plot at Ra = 2× 105 and Pr=0.5; a) utilizing SIMPLE

scheme for pressure-velocity coupling; b) using Coupled scheme for pressure-velocity

coupling with Pseudo transient.
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Figure 3.6. Residual-iteration plot at Ra = 1× 106, Pr=5; a) utilizing SIMPLE

scheme for pressure-velocity coupling; b) using Coupled scheme for pressure-velocity

coupling with Pseudo transient.
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3.5. Monitoring Residuals

At the end of each solver iteration, the residual sum for each of the conserved

variables is computed and stored, thus recording the convergence history. This history

is also saved in the data file. On a computer with infinite precision, these residuals

will go to zero as the solution converges. On an actual computer, the residuals decay

to some small value (“round-off”) and then stop changing (“level out”). For single-

precision computations (the default for workstations and most computers), residuals

can drop as many as six orders of magnitude before hitting round-off. Double-precision

residuals can drop up to twelve orders of magnitude. Guidelines for judging convergence

can be found in Judging Convergence section.

3.5.1. Definition of Residuals

The conservation equation for a general variable φ at a cell P is linearized in

Equation 3.3 . The residual Rφ in Equation 3.3 is summed over all the computational

cells P . This is referred to as the ”unscaled” residual.

Rφ =
∑
cellsP

|
∑
nb

anbφnb + b− aPφP | (3.20)

In general, it is difficult to judge convergence by examining the residuals defined

by Equation 3.20 since no scaling is employed. This is especially true in enclosed

domains such as natural convection where there is no inlet flow rate of φ to compare

the residual. There are two kinds of scaling factors to scale the residuals. The factors

are termed global scaling and local scaling. The “globally scaled” residual is defined as

Rφ =

∑
cellsP |

∑
nb anbφnb + b− aPφP |∑
cellsP |aPφP |

(3.21)
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The “locally scaled” residual is defined as

Rφ =

√∑n
cellsP ( 1

n
)(

∑
nb anbφnb+b−aPφP

aP
)2

(φmax − φmin)domain
(3.22)

For both residual scale in momentum equation the φ is replaced by velocity magnitude

at the cell P .

3.5.2. Judging Convergence

There are no universal metrics for judging convergence. Residual definitions

that are useful for one class of problem are sometimes misleading for other classes

of problems. Some convergence criterion is defined for most problems. This criterion

requires that the globally scaled residuals, defined by Equation 3.21 decrease to 10−3 for

all equations except the energy, for which the criterion is 10−6 . Locally scaled residuals

defined by Equation 3.22 decrease to 10−5 for all equations. Sometimes, however, this

criterion may not be appropriate. Typical situations are listed below.

• In cases with a good initial guess of the flow field, the initial continuity residual

may be converged quickly leading to a large scaled residual for the continuity

equation. In such situations, it is useful to examine the unscaled residual for

continuity equation.

• In non-linear problems such as natural convection, is used for continuity and

momentum equations with a poor initial guess result in divergence (high scale

factors). In such cases, scaled residuals will start to diverge, increase as non-linear

sources build up, and eventually decrease. The first convergence is due to a local

minima and therefore it is not the right results for the problem. Hence, setting

the scaled residual to 10−5 and increasing the number of iterations, ensures that

the residual continues to decrease (or remain low) before concluding that the

solution has converged.
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In this thesis, for convergence criterion, the global scaled residual is used with

10−5 for continuity and momentum equations, and 10−8 for energy equation. In Figures

3.7, 3.8, and 3.9 , the converged residuals are shown for a range of Ra number with

constant AR and Pr. The Ra continuation is used in these figures.

Figure 3.7. Residuals for constant AR=1/2, Pr=5; Ra continuation from Ra = 2000

to Ra = 5× 104 and boundary condition continuation from BC1 to BCI ( insulated

boundary condition on side walls).
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Figure 3.8. Residuals for constant AR=4, Pr=1; Ra number continuation from

Ra = 1× 104 to Ra = 8× 104 and boundary condition continuation from BC1 to BCI

( insulated boundary condition on side walls).
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Figure 3.9. Residuals for constant Ra = 2× 105, Pr=0.5, and AR=2; Ra number

continuation from Ra = 5× 104 to Ra = 2× 105 and boundary condition

continuation from BC1 to BCI ( insulated boundary condition on side walls).
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4. RESULTS AND DISCUSSIONS

In this part, the results of transition and multiplicity phenomena on different cases

are represented. A combination of thermal and hydrodynamic effects yield complex

multiple flow patterns. First part of the results is devoted to the parametric investi-

gation of Rayleigh-Benard Instability. The effects of Ra, Pr and BC are investigated

in this part by varying one parameter and keeping the others constant. Second part

of the results is devoted to show the transition natural convection for different AR.

The continuation methods play fundamental role to follow the result path to show the

transition phenomenon in this part. Finally, multiplicity phenomenon for different ARs

is shown and compared with literatures. The BC continuation method helps to obtain

multiple convective patterns in fix parameters. Indeed, the BC and Ra continuation

methods support to follow the various path of flow patterns after bifurcation points.

The Ra continuation is a useful method to find critical Ra numbers and bifurcation

points. At critical or high Ra numbers which the convergence of equation is not satis-

fied, a pseudo-transient method is used where time is an iteration parameter until the

solution is obtained.

4.1. Rayleigh Benard Instability

In this section, a parametric analyse for various Ra, Pr and AR is carried out.

In every case, the BC continuation method is utilized on vertical walls. In this study,

the boundary condition of Rayleigh-Benard problem is applied to all cases as shown

in Figure 2.1. The Rayleigh-Benard instability develops when Ra number is above a

critical value. The rectangular cavity has been studied for different ARs (1/4, 1/2,

2, and 4). Different Ra number effects is examined for constant AR=1/2 and Pr=5.

The velocity magnitude and Nu number are shown in Table 4.1 for six cases with Ra

numbers between 2000 and 1× 106.
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Rayleigh Velocity magnitude Nusselt

2000 4.28× 10−8 0.4

5000 2.1× 10−4 2.59

1× 104 4.02× 10−4 7.63

1× 105 3.5× 10−3 15.37

5× 105 4.27× 10−3 17.01

1× 106 8.5× 10−3 21.25

Table 4.1. Parametric analysis at different Ra numbers for constant AR = 1/2 and

Pr = 5.

The results show that by increasing the Ra number, velocity magnitude and Nu

number increase in a non-linear manner as shown in Figure 4.1. The increase in both

velocity and Nu can be described in three stages: at the first stage (2000 < Ra <

1 × 105), it increases drastically; the second stage (1 × 105 < Ra < 5 × 105) is more

like a plateau at which the increase in the velocity or Nu is negligible compared to the

increase in Ra; at the third stage (5×105 < Ra < 1×106) , the curve starts to increase

but the slope is smaller compared to the slope of the first stage. The second stage

is indeed the transition region from two symmetric velocity cells to four symmetric

velocity cells.
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Figure 4.1. Plots showing the variation of velocity magnitude and Nu number with

respect to Ra numbers for constant AR = 1/2 and Pr=5; a) Ra-velocity magnitude;

b) Ra-Nu.
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The velocity magnitude vectors and temperature contours for different Ra num-

bers are shown in Figures 4.2 and 4.3. In fact, the transition phenomenon for AR=1/2

is depicted in these figures. By increasing the Ra number, convective flow within the

domain is altered from two symmetric cells to four symmetric cells.

Figure 4.2. Temperature contours (right) and velocity magnitude vectors (left) for

AR=1/2, Pr=5; a) Ra=2000; b) Ra=5000; c) Ra = 1× 104.
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Figure 4.3. Temperature contours (right) and velocity magnitude vectors (left) for

AR=1/2, Pr=5; a) Ra = 1× 105; b) Ra = 5× 105; c) Ra = 1× 106.
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Five cases with AR=2 and Pr number between 0.1 and 10 were investigated as

shown in Table 4.2. For all cases, the Nu number is bigger than 1 and heat trans-

fer occurs by convection. By decreasing the Pr number from 10 to 0.1, the velocity

magnitude is increased except for Pr=0.5 in which the magnitude of two kidney shape

velocity cells is divided to four velocity cells that leads to a decrease in the velocity

magnitude. At Pr=0.1, the velocity magnitude increases again. It can also be con-

cluded that the critical Ra number increases with decreasing Pr number. Hence, at

Pr=0.1 and Pr=0.5, four symmetric velocity cell exist (Figure 4.5). Indeed, the bifur-

cation point for transition from two-rolls to four-rolls for low Pr numbers(lower than

one) occurs at low Ra number values in these cases as shown in Figure 4.5.

Pr Velocity magnitude Nusselt

0.1 0.00222 2.23

0.5 0.00176 3.43

1 0.00325 8.07

5 0.000835 12.647

10 0.000418 12.665

Table 4.2. Parametric analysis for a range of Pr numbers between 0.1 and 10 at

constant Ra = 2× 105 and AR = 2 ; maximum value of the Nu number and velocity

magnitude is obtained for each case.

The velocity magnitude is decreased except for Pr=0.5 in which the transition

from two-rolls to four-rolls happens. In Figure 4.6, two kidney shape convective cells

are observed for Pr numbers above the unity. The velocity magnitude decreased in

this figure although the Pr number increased. The critical Ra number results in this

observation. The higher velocity values are obtained for the cases which are in critical

Ra number region.
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Figure 4.4. Plots showing the variation of velocity magnitude and Nu number with

respect to constant Ra number and AR (Ra = 2× 105 and AR = 2); a) Pr-velocity

magnitude; b) Pr-Nu.
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Figure 4.5. Temperature contours (right) and velocity vectors (left) at constant

Ra = 2× 105andAR = 2; a) Pr=0.1; b) Pr=0.5.
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Figure 4.6. Temperature contours (right) and velocity vectors (left) at constant

Ra = 2× 105andAR = 2; a) Pr=1; b) Pr=5 ; c) Pr=10.
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Table 4.3 shows the results for velocity magnitude and Nu number at Ra = 8×104

and Pr=1 with ARs varying from 1/4 to 4.

AR Velocity magnitude Nusselt

1/4 0.0068 17.29

1/2 0.0065 16.08

1 0.00297 9.27

2 0.00118 3.93

4 0.00001 2

Table 4.3. Parametric analysis for different aspect ratio at constant Ra = 8× 104 and

Pr=1 ; maximum value of the Nu number and velocity magnitude is obtained for

each case.

Figure 4.7 shows the change in velocity and Nu for different ARs. One can see

that both velocity and Nu have a reverse relation with respect to AR i.e. increasing

the AR results in decreasing both parameters.

For AR=1/4, four symmetric convective cells are observed at Ra = 8 × 104 as

shown in Figure 4.8. The results are stable for cases with AR=1/2 and 1/4 (Figure

4.8 (a) and (b)). The transition from two-cells to four-cells patterns occurs in AR=1

as shown in Figure 4.8 (c). This is explained in details in Section 4.3. It should be

noted that the critical Ra number occurs in higher ordes (105 and 106) for AR=2 and 4.

Hence, two stable kidney shape cells are observed for these cases as shown in Figure 4.9

and 4.10. Comparing Figures 4.8, 4.9 and 4.10, it can be interpreted that the critical

Ra number increases with decreasing AR.
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Figure 4.7. Plots showing the variation of velocity magnitude and Nu number with

respect to constant Ra and Pr numbers (Ra = 8× 104 and Pr = 1); AR-velocity

magnitude; b) AR-Nu.
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Figure 4.8. Temperature contours (right) and velocity vectors (left) at constant

Ra = 8× 104 and Pr=1; a) AR=1/4; b) AR=1/2 ; c) AR=1.
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Figure 4.9. Temperature contours (right) and velocity vectors (left) at constant

Ra = 8× 104 and Pr=1, and AR=2.

Figure 4.10. Temperature contours (right) and velocity vectors (left) at constant

Ra = 8× 104 and Pr=1, and AR=4.



48

4.2. Transition phenomenon

The convective flow for high Pr number forms two symmetric kidney-shaped or

crescent-shaped cells in which fluid rises and sinks in different flow patterns. Higher

order temperature gradients (Figure 4.11) are used on walls as an initial values to

investigate the transition and multiplicity phenomenon for different ARs. The bottom

(hotter) wall set to 400ok and top wall temperature is 300ok. The linear BC is called

BCL, and the BCs with odd numbers (BC1, 3, 5, ..) are above BCL, and the even

numbers are below it (BC2, 4, 6). The final Rayleigh-Benard BC is used for all cases

which is an insulated BC (BCI).
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Figure 4.11. Higher order temperature boundary conditions on walls.

For the first observation of transition phenomenon the AR=1 is selected in Figure

4.12. In this case (Pr=1), the critical Ra (for bifurcation from 2-cells to 4-cells) is

happened within the range of 4 × 104 − 5 × 104. However, the multiple results are

observed for this case at low Ra number by using BC continuation (Figure 4.15),

at higher Ra number (bigger than critical Ra) the direction of velocity cells are the
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same. In four-rolls pattern results, the pair of cells at the bottom are always sink

down from the middle of domain. It shows that at the bottom half of domain, the

gravity force imposes bouncy force. In Figure 4.12 (top), convective flow is stable at

Ra = 3× 104 and two symmetric kidney-shaped cell is obtained. At Ra = 6× 104 two

cells appears at the bottom Figure 4.12 (in second row, the first one from left).Then by

using the Ra continuation, transition to four symmetric cells is obtained atRa = 7×104,

Ra = 8×104. In Figure 4.13, the transition results are shown for Ra = 5×105, AR=2,

and Pr=1. Here, the various BC initial values change the shape of convective flow

patterns.

Figure 4.12. Transition results by using Ra and BC continuation methods.

Transition of convective flow from four symmetric cells to six-rolls is shown in

Figure 4.14 . The results show that the flow patterns are separated from the middle of

domain by two small cells.
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Figure 4.13. Transition results Ra = 5× 105, AR=2, and Pr=1; by using odd number

BCs (top) and even number BCs (bottom).
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Figure 4.14. Temperature contours and velocity stream-function vectors at

Ra = 5× 105 (first row) and Ra = 2× 106 (second row).
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4.3. Multiple results in natural convection

The multiple results are discussed in this section for different ARs. The results

can be multiple considering the direction of velocity stream line vectors, the number

of convective cells, and the shape of flow patterns.

In Figure 4.15, the even number BCs are used as initial values (left), and the odd

number BCs are used as initial values (right). In both cases, the boundary condition on

side wall is insolated as Rayleigh-Benard problem. The multiple results are obtained

in completely same parameters and conditions. The direction of velocity streamlines

is opposite in this case.

At critical Ra number Ra = 8×104 which is depicted in Figure 4.16, multiple re-

sults could be observed. By using Ra and BC continuation, the multiplicity phenomena

in natural convection is observed.

Figure 4.15. Velocity streamlines at Ra = 1× 104, P r = 1, and same insulated BC.

In Figure 4.16 the even number BCs are used as initial value (top), and the odd

number BCs are used as initial value (bottom). Here, the various BC initial values

change the direction of velocity streamlines.
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Figure 4.16. Temperature contours (left) and velocity streamlines (right); at

Ra = 8× 104and Pr=1. In upper figures BC1 is performed on walls, and for the other

ones the BC2 is used.
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By increasing the iteration numbers, one result shifted to other result in which

the direction of streamlines is changed as shown in Figure 4.17. In this figure, the

first case from the left, the streamlines rise up from side walls and sink down from the

middle of domain. However, the streamlines of right one is opposite of the left one.

This phenomenon can be interpreted as a transition phenomenon between multiple

results.

Figure 4.17. Change in the direction of the cells from left to right.
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4.4. Comparison

Venturi et al. (2010) [1] observed the onset of instability i.e. transition from

conduction to convection at Ra=2585. The one-roll convection pattern can be obtained

at this Ra number in both directions (clockwise and counterclockwise) as shown in

Figure 4.18(a). In this thesis, the onset of instability is observed at Ra=2700 and the

one convection cell in both directions is shown in Figure 4.19 (a) and (b).

Figure 4.18. Velocity streamlines (first row) and temperature contours (second row)

which are obtained by Venturi et al. (2010) [1]; a) one-roll convection pattern defined

as S±1 (+ clockwise roll, − anticlockwise roll) at Ra = 15000 ; b) two-roll at

Ra=15000 ; c) unstable three-roll convection pattern at Ra=21000.

The two-cell convection patterns are obtained using initial values at side-walls

boundaries and the steady-state results in both direction are obtained in Figure 4.20.

Venturi et al. [1] observed the secondary branch point as shown in Figure 4.18(b). This

is in agreement with the results obtained in present study.

In this investigation, the third bifurcation point is happened at Ra = 4× 104 as

shown in Figure 4.21 (a) and (b) in both directions. Two small cells appear at top
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corners (Figure 4.21 (a)) and at bottom corners (Figure 4.21 (b)). The three-cell result

obtained by Venturi et al. [1] at Ra=21000 is an unstable result. This is shown in

Figure 4.18 (c). The result in the present work, however, is stable as shown in Figure

4.21 (a) and (b). By increasing Ra to Ra = 8×104, four symmetric stable cells appear

as illustrated in Figure 4.21 (c).

Figure 4.19. Velocity magnitude vectors and temperature contours AR=1, Ra=5000

and Pr=0.7 ; a) counterclockwise ; b) clockwise .
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Figure 4.20. Velocity magnitude vectors and temperature contours for AR=1,

Ra = 1× 104 and Pr=0.7; two-roll convection pattern in opposite directions.
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Figure 4.21. Velocity magnitude vectors and temperature contours; a) and b)

four-roll stable patterns in opposite directions Ra = 4× 104; c) four symmetric stable

cells at Ra = 8× 104.
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Figure 4.22 shows the two unstable convection cells from the study by Puigjaner

et al. (2004) [2]. This pattern is shown as S2 in their work. Similar simulations have

been carried out here. The results are illustrated in Figure 4.22 which shows a good

agreement with those obtained by Puigjaner et al. (2004) [2].

Figure 4.22. Unstable pattern of velocity stream-function; a) Puigjaner et al.

(2004) [2] ; b) present study .
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Figure 4.23 illustrates the variation of Nu number with Ra number for Ra =

1700− 104. For comparison purposes, Figure 4.23 also presents the simulation results

obtained by Bhattacharya [3] and those derived from the empirical formulation Nu =

1.56×(Ra)1/4 [43]. In all 3 cases, AR=1/2, Pr=3 and the material properties are equal

to material properties of water at 60◦C.

Figure 4.23. Comparison of Nu number between the present numerical results and the

numerical results by Bhattacharya [3] and empirical results for Pr=3 and AR=1/2.

According to this plot, all three cases follow the same trend i.e. Nu increases

by increasing Ra. Except for Ra = 104, the results are relatively close. In this Ra,

however, Bhattacharya [3] predicts much higher Nu.
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5. CONCLUSIONS

In this study, the transition and multiple results phenomena for natural convec-

tion are investigated. The BC and Ra continuation methods are implemented to find

the onset of bifurcation and critical Ra numbers. Moreover, for large Ra numbers

i.e. larger than first critical value, the pseudo-transient method is utilized to help the

residuals to converge and stabilize unstable results.

First, a parametric analysis at different Ra numbers is carried out for constant

AR = 1/2 and Pr = 5. The outcome reveals a range of critical Ra numbers for which

transition phenomenon occurs. It is observed that increasing the Ra number causes the

velocity magnitude and Nu number to increase. However, the rate of this increase is not

significant in transition region. Then, more cases are investigated for the convection

flow patterns at critical Ra numbers.

In second case, maximum value of the Nu number and velocity magnitude is

obtained for a range of Pr numbers between 0.1 and 10 and at constant Ra = 2× 105

and AR = 2. According to the results, by decreasing the Pr number from 10 to 0.1,

the velocity magnitude is increased except for Pr=0.5 in which the magnitude of two

kidney shape velocity cells is divided to four velocity cells that leads to a decrease in

the velocity magnitude. At Pr=0.1, the velocity magnitude increases again. It can also

be concluded that the critical Ra number increases with decreasing Pr number. Hence,

at Pr=0.1 and Pr=0.5, four symmetric velocity cell exist (Figure 4.5). Indeed, the

bifurcation point for transition from two-rolls to four-rolls for low Pr numbers(lower

than one) occurs at low Ra number values in these cases as shown in Figure 4.5.

In third case, different ARs are considered with Ra = 8×104 and Pr=1. Maximum

value of the Nu number and velocity magnitude are then obtained in each AR. Looking

at Figure 4.7, one can notice that increasing the AR results in decreasing both velocity

and Nu. It is concluded that increasing the AR results in decreasing both velocity and

Nu. Four symmetric convective cells are observed at AR=1/4 and Ra = 8 × 104 as
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shown in Figure 4.8. The results are stable for cases with AR=1/2 and 1/4 (Figure

4.8 (a) and (b)). According to the results, the transition from two-cells to four-cells

patterns occurs in AR=1 as shown in Figure 4.8 (c). It should be noted that the critical

Ra number occurs in higher orders (105 and 106) for AR=2 and 4. Hence, two stable

kidney shape cells are observed for these cases as shown in Figure 4.9 and 4.10. Finally,

comparing Figures 4.8, 4.9 and 4.10, it can be interpreted that the critical Ra number

increases with decreasing AR.

In all of the cases, behavior of convective flow changes significantly within the

transition region. This can be explained by energy balance within the enclosure as

studied in experimental research by Mishra et al. [40].

Multiple convection flow patterns are obtained. The multiple results are investi-

gated considering the direction of velocity streamline vectors and the number and shape

of convection flow patterns. In addition, the transition phenomenon between multiple

results for the same parameters shows that one unstable result can be converted to

other result.

The results in this thesis provide new areas of study for future work since it is con-

cluded that the transition and multiplicity effects play a significant role in convection

flow patterns within the closed domain.
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view”, Comptes Rendus Mécanique, Vol. 331, No. 8, pp. 575–586, Aug. 2003.
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