
EFFICIENT ACTION AND EVENT RECOGNITION IN VIDEOS USING

EXTREME LEARNING MACHINES

by

Gül Varol

B.S., Computer Engineering, Boğaziçi University, 2013

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2015

iii

To my grand-father

iv

ACKNOWLEDGEMENTS

With my deepest gratitude, I would like to thank to my thesis supervisor Albert

Ali Salah for his insight, guidance and endless support during the course of my thesis.

I would like to thank Lale Akarun and Yusuf Sinan Akgül for participating in

my thesis committee and their valuable comments. I also thank my professors Ethem

Alpaydın and Fatih Alagöz for their support throughout my academic life in Boğaziçi.

I would like to thank the members of Perceptual Intelligence Laboratory, Alp

Kındıroğlu, Barış Evrim Demiröz, Barış Kurt, Cihan Camgöz, Doğa Sıylı, Hakan

Güldaş, Heysem Kaya, Orhan Sönmez and Umut Şimşekli for providing a nice working

environment.

I would especially like to express my gratitude to my family for their endless

support throughout my life.

I would like to thank my friends Başak Çaprak, Ece Uslu, İlayda Kalaycı, İlker

İnanç and Ömür Turan for their valuable friendship. Last but not least, I would like

to thank Umut Şimşekli for his encouragement, patience and guidance in all parts of

my life.

v

ABSTRACT

EFFICIENT ACTION AND EVENT RECOGNITION IN

VIDEOS USING EXTREME LEARNING MACHINES

A great deal of research in computer vision community has gone into action

and event recognition studies. Automatic video understanding for actions are crucial

for application areas such as video indexing, surveillance and video summarization.

In this thesis, we explore action and event recognition on RGB videos both in terms

of feature extraction and classification. We propose a novel approach for large-scale

action recognition in a realistic setting. After reviewing the technical background about

recent popular video description methods, we present our approach in which improved

dense trajectory features in combination with Fisher vector encoding are fed to extreme

learning machine classifier. It is shown that extreme learning machine provides a fast

and accurate alternative to other traditional classifiers such as support vector machines.

Additionally, we investigate the usability of some mid-level features that we introduce

to encode information about human part regions. We extensively study each step of

our pipeline in a comparative manner. We evaluate our approach on recently published

benchmarks which were introduced as challenge datasets: UCF101, THUMOS 2014 and

ChaLearn Looking at People 2014 Track 2. Videos in the first dataset contain cropped

actions while the ones in the last two datasets are temporally untrimmed, introducing

more challenge. On 102 action classes of THUMOS 2014 dataset, we achieve 63.37%

mean average precision using the challenge protocol, which has ranked 3rd among other

participants. Our results show that, using extreme learning machine, efficient learning

can be performed in terms of both time and computational complexity while preserving

high performance.

vi

ÖZET

AŞIRI ÖĞRENME MAKİNELERİ İLE VİDEOLARDA

ETKİN HAREKET VE ETKİNLİK TANIMA

Bilgisayarla görme alanında, hareket ve etkinlik tanıma üzerine birçok araştırma

yapılmıştır. Video indeksleme, gözetim ve video özetleme gibi uygulama alanları için

videolarda hareket tanıma oldukça önem taşır. Bu tezde, KYM videolarda hareket ve

etkinlik tanıma, hem öznitelik çıkarma hem de sınıflandırma açısından araştırılmaktadır.

Gerçekçi ortamda büyük ölçekli hareket tanıma problemi için yeni bir yaklaşım ö-

nerilmektedir. Video betimleme yöntemlerinin üzerinden geçildikten sonra, önerilen

yaklaşım tanıtılmaktadır. Bu yaklaşımda, Fisher vektörleri ile tanımlanmış yerel yörünge

öznitelikleri, aşırı öğrenme makinesi (extreme learning machine) sınıflandırıcısına ver-

ilmektedir. Aşırı öğrenme makinesinin, destek vektör makinesi gibi diğer sınıflandı-

rıcılara göre daha hızlı ve başarılı bir alternatif olduğu gösterilmiştir. Ek olarak bu

çalışmada, insan vücudu bölümleri hakkında bilgi içeren bazı orta seviye özniteliklerin

bu problem için kullanılabilirliği araştırılmaktadır. Önerilen yaklaşımın her basamağı

yoğun ve karşılaştırmalı bir şekilde incelenmektedir. Değerlendirmeler yakın zamanda

ilk olarak yarışmalar için yayınlanmış gösterge veri kümeleri üzerinde yapılmaktadır.

Bunlar UCF101, THUMOS 2014 ve ChaLearn Looking at People 2014 Track 2 olarak

sıralanabilir. İlk veri kümesindeki videolar sadece hareket içerecek şekilde kırpılmışken,

diğer iki veri kümesindekiler zamansal olarak kırpılmamıştır ve dolayısıyla daha zor

koşullar içerir. THUMOS 2014 veri kümesindeki 102 hareket sınıfı üzerinde %63.37

ortalama başarı elde edilmiştir. Bu sistem THUMOS yarışmasında üçüncülük almıştır.

Sonuçlarımız aşırı öğrenme makinesinin hem hesaplama açısından etkin, hem de yüksek

başarılı bir sınıflandırıcı olduğunu göstermiştir.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

ÖZET . vi

LIST OF FIGURES . x

LIST OF TABLES . xii

LIST OF SYMBOLS . xiii

LIST OF ACRONYMS/ABBREVIATIONS . xiv

1. INTRODUCTION . 1

1.1. Motivation . 1

1.2. Related Work . 3

1.3. Contributions . 5

1.4. Organization of the Thesis . 6

2. VIDEO DESCRIPTION WITH LOCAL DESCRIPTORS 7

2.1. Detectors . 7

2.1.1. Spatio-Temporal Interest Points 8

2.1.2. Dense Sampling . 9

2.2. Descriptors . 10

2.2.1. Histogram of Oriented Gradients 10

2.2.2. Histogram of Optical Flow . 10

2.2.3. Motion Boundary Histogram . 11

2.3. Trajectories . 11

2.3.1. Point Tracking and Optical Flow 11

2.3.2. Dense Trajectories . 12

2.3.3. Improved Trajectories . 15

2.3.3.1. Homography Matrix 15

2.3.3.2. Feature matching . 16

2.3.3.3. RANSAC . 16

2.4. Local Feature Aggregation . 16

2.4.1. Unsupervised Clustering Methods 17

viii

2.4.1.1. K-means . 17

2.4.1.2. Gaussian Mixture Model 18

2.4.2. Bag of Features . 20

2.4.3. Fisher Vector . 21

2.4.4. Vector of Locally Aggregated Descriptors 24

3. ACTION CLASSIFICATION . 26

3.1. Support Vector Machines . 26

3.2. Extreme Learning Machines . 29

3.2.1. Random projections . 31

3.2.2. Kernels . 32

4. PROPOSED METHODOLOGY . 34

4.1. Motion Features . 34

4.2. Mid-Level Features . 36

4.3. Classification . 38

4.4. Localization . 39

5. EXPERIMENTS . 41

5.1. Datasets . 41

5.1.1. ChaLearn Looking at People 2014 Track 2 41

5.1.2. UCF101 . 43

5.1.3. THUMOS 2014 . 45

5.2. Comparison of Descriptor Types . 47

5.3. Contribution of Mid-Level Features . 48

5.4. Comparison of Different Encodings . 50

5.5. Comparison of ELM and SVM . 51

5.6. Comparison of Frame-Level and Window-Level Classifications 53

5.7. The Effect of Fisher Vector Parameters 55

5.8. Model Selection in Extreme Learning Machine 56

5.9. Results . 59

6. CONCLUSION . 61

6.1. Remarks . 61

6.2. Future Work . 63

ix

REFERENCES . 65

x

LIST OF FIGURES

Figure 1.1. Examples of actions, interactions and events. 1

Figure 1.2. Sample action categories. 2

Figure 2.1. STIP extraction. 9

Figure 2.2. Optical flow visualization. 12

Figure 2.3. Improved dense trajectories pipeline. 14

Figure 2.4. Improved trajectories visualization. 15

Figure 2.5. K-means algorithm. 18

Figure 2.6. Bag of features. 20

Figure 3.1. Single-hidden-layer feed-forward network architecture. 30

Figure 4.1. Proposed pipeline. 35

Figure 4.2. Color histograms for sample video frames. 37

Figure 4.3. Body part detections. 38

Figure 5.1. ChaLearn LAP 2014 Track 2 dataset overview. 42

Figure 5.2. UCF101 and THUMOS 2014 datasets overview. 45

xi

Figure 5.3. Challenge results (THUMOS). 48

Figure 5.4. Contribution of mid-level features (THUMOS) 49

Figure 5.5. Comparison of BOF and FV encodings (THUMOS). 51

Figure 5.6. Comparison of SVM and ELM (ChaLearn). 53

Figure 5.7. Frame-level classification and post-processing (ChaLearn). 54

Figure 5.8. Frame-level classification and FV parameters (ChaLearn). 55

Figure 5.9. Window-level classification and FV parameters (ChaLearn). 56

Figure 5.10. Hyperparameters in ELM with kernels (THUMOS). 57

Figure 5.11. Hyperparameters in ELM with random projections (THUMOS). . 58

Figure 5.12. Confidence scores and predictions (ChaLearn). 58

Figure 5.13. Confusion matrix (ChaLearn). 59

Figure 5.14. Confusion matrices (UCF101, THUMOS). 59

xii

LIST OF TABLES

Table 1.1. Action recognition datasets and benchmarks. 3

Table 2.1. Dense trajectory parameters. 14

Table 2.2. Typical attributes of aggregation methods BOF, VLAD and FV. . 24

Table 5.1. List of classes in UCF101 and THUMOS 2014 datasets. 44

Table 5.2. Comparison of descriptor types MBH, HOF and HOG (THUMOS). 46

Table 5.3. Comparison of descriptor types MBH, HOF and HOG (UCF101). . 47

Table 5.4. Mid-level feature concatenation performance (THUMOS). 50

Table 5.5. Comparison of SVM and ELM (THUMOS). 52

xiii

LIST OF SYMBOLS

CELM Regularization parameter of ELM

CSVM Cost parameter of SVM

D Dimensionality

g(x;u,Σ) Gaussian component

G(w, b, x) Activation function

H Hidden layer matrix

H† Inverse of H

I Identity matrix

I(x, y, t) Optical flow

K Number of cluster components

K(xi, xj) Kernel function

ns Number of spatial divisions

nt Number of temporal divisions

N Number of instances

p(x|λ) Probability of x given λ

Pt Point at frame t

T Training label matrix

yi Class label of instance i

β Hidden layer output weight matrix

L Log-likelihood

µ Mean

π Pi number

σ Variance

Σ Covariance matrix

Ω Kernel matrix

∇λ Gradient vector with respect to parameter λ

xiv

LIST OF ACRONYMS/ABBREVIATIONS

2D Two Dimensional

3D Three Dimensional

BOF Bag of Features

DS Detector Statistics

ELM Extreme Learning Machine

EM Expectation-Maximization

FV Fisher Vector

GMM Gaussian Mixture Model

HOF Histogram of Oriented Gradients

HOG Histogram of Optical Flow

HOG3D Histograms of 3D Gradient Orientations

HSVH Hue-Saturation-Value Histogram

IT Improved Trajectories

JI Jaccard Index

KLT Kanade-Lucas-Tomasi

LAP Looking at People

LDOF Large Displacement Optical Flow

mAP Mean Average Precision

MBH Motion Boundary Histograms

NN Nearest Neighbor

PCA Principal Component Analysis

RAM Random Access Memory

RANSAC Random Sample Consensus

RBF Radial-basis Function

RGB Red-Green-Blue

RGBH Red-Green-Blue Histogram

SLFN Single-hidden-layer Feed-forward Network

STIP Spatio-Temporal Interest Point

xv

SURF Speeded Up Robust Features

SVM Support Vector Machine

UCF101 University of Central Florida 101

VLAD Vector of Locally Aggregated Descriptors

1

1. INTRODUCTION

1.1. Motivation

Automatic video analysis has attracted increasing interest due to the exponential

growth of video data over the recent years. The focus of the research community is

mostly on human activity recognition in videos in consideration of the potential appli-

cation areas such as video surveillance, video indexing/retrieval [1], ambient assisted

living [2], and video summarization [3].

Action is defined as “a semantically defined set of movements of the agent” [4],

such as walking. Activity or event is defined as “an action of the agent in a particular

context” [4], such as parade. The notion of action can be extended to interaction

when two performers have two-way effect. In Figure 1.1, we see examples of an action,

interaction and activity. In this thesis, we refer to all three levels of knowledge when

we mention action recognition.

Action recognition in computer vision domain aims to understand the human

activity in a given image or video. Inferring actions from still images is a widely

studied problem [5–7]. However, it lacks motion information which can be extracted

in the presence of an image sequence. Recognizing actions from image sequences (i.e.

videos) is a broader problem and we address this problem in our work.

(a) Point (b) Shake Hands (c) Military Parade

Figure 1.1. An action category can be performed by one person (a), two people (b) or

more (c).

2

(a) Horse Riding (b) Horse Race (c) Mopping Floor (d) Mopping Floor

Figure 1.2. Low between-class difference (a-b), high within-class difference (c-d).

Despite the great effort that computer vision scientists invested in the action

recognition task, robust inference on actions from image sequences remains a chal-

lenge. Human action is complex due to a variety of reasons such as viewpoint variance,

illumination, background complexity, camera motion, occlusion, and performance dif-

ference among different people. The resolution of videos is another issue when videos

collected from the internet are considered. Low quality compression makes it difficult

to track objects or points in a scene.

Designing robust, informative and discriminative features for video representa-

tion is essential to overcome the difficulties listed above. Such features should take

into account the within-class differences (such as fast walking and slow walking) and

between-class similarities (such as walking and jogging). Figure 1.2 illustrates this

issue. Although “horse riding” and “horse race” denote two different action cate-

gories, they have high similarity in terms of motion and context. On the other hand,

two distinct “mopping floor” examples may demonstrate dissimilar performances when

performed by an adult and a child.

Besides the difficulty of action classification, there exists the action spotting prob-

lem which is less addressed by the research community [8–10]. However, in some ap-

plications such as surveillance and summarization, it is a natural requirement to seg-

ment large videos automatically. Most of the standard human action datasets involve

pre-segmented clips of single actions [11] although real-world video streams involve un-

controlled action sequences. In this study, we propose a novel approach for recognizing

actions in such a setting, from a single camera.

3

Table 1.1. Action recognition datasets and benchmarks.

Dataset # Videos # Actions Source Year

KTH [12] 600 6 recorded 2004

Weizmann [13] 90 10 recorded 2005

UCF Sports [14] 200 9 stock footage websites 2008

Hollywood [1] 663 8 32 movies 2008

UCF11(Youtube) [15] 800 11 Youtube 2009

Hollywood 2 [16] 3669 12 69 movies 2009

UCF50 [17] 6676 50 Youtube 2010

HMDB51 [18] 6849 51 mostly from movies 2011

ASLAN [19] 3697 432 Youtube 2012

UCF101 [20] 13320 101 Youtube 2012

TRECVID HAVIC [21] 8000 hours 20 internet 2012

THUMOS 2014 [22] 18404 102 Youtube 2014

1.2. Related Work

The progress in action and event recognition research is evolving with the devel-

opment in video datasets. Chaquet et al. [23] recently published a survey on human

event datasets. Table 1.1 summarizes some benchmark datasets for action recognition

in videos with up-to-date entries. Schuldt et al. [12] introduced KTH dataset in 2004

for studying human action from videos. This database contains grayscale videos of

six human actions, namely walking, jogging, running, boxing, hand waving and hand

clapping. The background in these videos is uniform and stable. In each video, there

is one performer. Weizmann dataset [13] is similar in terms of simplicity because it is

also considered as recordings in lab conditions.

The datasets published each year are growing in terms of number of video content

as well as the action class variety. Recently published datasets, such as HMDB51 [18]

and UCF101 [20], have over 50 action categories and over 5000 videos. These videos

are sourced usually from the internet. Therefore, they have large complexity.

4

Below, we briefly review the well-known techniques in the literature that are used

to treat action recognition problem. These techniques will be detailed in Chapter 2.

In computer vision, the action recognition pipeline typically involves feature sam-

pling, description, aggregation and classification steps. Various approaches have been

proposed for sampling feature points. Laptev [24] introduced space-time interest point

(STIP) detectors. Wang et al. [25] showed that dense sampling outperforms sparse

sampling. In a follow up study [26], they introduced improved trajectories by camera

motion calibration, which further improved recognition performance in unconstrained

videos.

A key problem for a successful recognition is how to treat the temporal motion

information and spatial gradient information to extract informative and robust fea-

tures. Some of the popular low-level descriptors are histograms of 3D gradient orien-

tations (HOG3D) [27,28], oriented histograms of flow (HOF) [1] and motion boundary

histograms (MBH) [25, 29]. Action banks [8], action attributes [30], actons [31] and

motionlets [32] are proposed as mid-level features, while recently higher-level represen-

tations are being investigated. Wang and Schmid [26] recently proposed an approach

based on MBH, HOG, HOF descriptors sampled along improved dense trajectories,

which yields state-of-the-art results on most action datasets.

Pooling local descriptors with bag of features (BOF) technique has been widely

used [33,34] and has been previously adopted as the main paradigm for video represen-

tation [1]. The pipeline for traditional BOF consists of local feature extraction, visual

dictionary construction with a clustering algorithm such as k-means and feature en-

coding in an aggregated manner. A recent study demonstrated that a better encoding,

namely Fisher vector (FV) representation, significantly increases recognition perfor-

mance [35]. Other recent encoding methods, such as stacked Fisher vectors [36] and

super sparse coding vectors [37] are introduced to embed some structure information.

The last step in the pipeline is classification, where most studies use the popular

support vector machine (SVM) approach, with single or multiple kernel learning [11,

5

26,35,38,39]. In our study, we propose the extreme learning machine (ELM) approach,

which is recently gaining popularity, and which tends to have better generalization

performance for multiclass classification with much shortened learning times [40].

1.3. Contributions

One of the most common learning algorithms for action recognition is the sup-

port vector machine. SVM is a powerful tool for the classification task; however,

it requires iterative learning and extensive parameter tuning. Therefore the training

might be very slow depending on the feature dimensionality and the number of in-

stances. Hyperparameter optimization, while using SVM, plays a key role in obtaining

high performance. Thus, searching over a parameter grid for optimization purposes

might take a long time.

In this thesis, we propose to use extreme learning machines which is suitable

for large-scale action recognition. It is effective because there is no iterative tuning

required. The training time is reduced compared to SVM. We contrast several SVM

approaches with ELM, and illustrate the strengths and weaknesses of these classifiers

for this problem. Our results show that more accurate performances are obtained with

ELM. To the best of our knowledge, we are the first to apply ELM on a large-scale

problem of action recognition with a large number of classes.

Low-level features perform well in action recognition problems. Higher level repre-

sentations are less addressed by the research community. We introduce some mid-level

features which carry information about the color and the regions occupied by body

part regions in a given video. In realistic videos, these types of mid-level representa-

tions may help reducing the problem from 101-classes to 101-class problem to several

smaller problems, which are easier to deal with. Although we start with the motivation

of breaking down the large-scale problem into smaller problems, we end up using the

designed mid-level features for early-fusion with the motion features extracted from

improved dense trajectories.

6

In 2014, the THUMOS Challenge1 at the European Conference on Computer

Vision (ECCV) addressed large-scale action recognition with large number of classes

from open source videos in a realistic setting [22]. Many algorithms competed in this

challenge. We have implemented an entry to this contest, using ELM as the classifier,

and Fisher vectors as the main feature representation, and took the 3rd place among 11

groups [41]. We have also submitted a journal paper as an extension to this study [42].

In this thesis, we describe our approach in detail, and then extend it, using the formal

challenge protocol to report comparative results.

1.4. Organization of the Thesis

The rest of this thesis is organized as follows. We review technical background

of action recognition in videos in Chapters 2 and 3. In Chapter 2, we present popular

techniques for video description with local descriptors. The notions of interest points,

and local motion descriptors in space-time volumes are detailed. The evolution of

trajectory-based methods are described, and finally, the local feature aggregation meth-

ods are explained. In Chapter 3, two classification methods, support vector machines

and extreme learning machines are presented. We detail our proposed methodology

in terms of feature extraction and classification in Chapter 4. We report and discuss

our results in Chapter 5, where we extensively study the effects of certain parameters.

Finally, we conclude our work and state some possible future work in Chapter 6.

1http://crcv.ucf.edu/THUMOS14/home.html

7

2. VIDEO DESCRIPTION WITH LOCAL DESCRIPTORS

Given a video clip, we need to represent the raw data of pixels into a compact

form, which is informative in terms of action content. This representation needs to

be distinctive, low-dimensional, interpretable and with a fixed size. Distinctive repre-

sentations are more successfully recognized by classifiers. Low-dimensional vectors are

favorable because they require less storage and do not suffer from curse of dimension-

ality. Interpretability can be important, for instance when one needs to know which

information is encoded in which part of the feature vector or what type of distance

measure should be used. Finally, a global representation for a video clip should be

fixed size for each instance to be able to use a classification algorithm.

Bottom-up approaches are frequently used for video description in action recog-

nition and they are based on low-level features [4]. In this chapter, we review several

methods for encoding local motion and structure information into compact forms. A

typical low-level representation involves detecting feature points, describing them in a

local neighborhood and summarizing them with some statistics.

2.1. Detectors

Sampling is the first step for determining which feature points to describe. There

are sparse and dense approaches for feature sampling. Sparse methods assume that

sampling only the interest points is sufficient for describing the video content. Interest

points, known also as keypoints or corners, have rich local information because they

have high variation in space and/or time. Dense methods simply sample points from a

regular grid with or without multiscale pyramid. The motivation is that dense coverage

of the video domain ensures that the context information is also captured. There are

also methods which use random sampling strategies [43], but we do not address these

approaches in this work.

8

2.1.1. Spatio-Temporal Interest Points

Local neighborhood of interest points are believed to be informative regions.

Similar to the spatial domain, interest point detection can be applied to the spatio-

temporal domain. Laptev [24] introduced spatio-temporal interest points (STIP) (also

called Harris3D detector) which extends the local image features into the video domain

integrating temporal information. Corners in a spatio-temporal volume correspond to

points where local variations occur in space as well as in time. Spatio-temporal interest

points are expected to have non-constant motion in their local neighborhood. Descrip-

tors extracted along these keypoints enable to compactly represent image sequences.

STIP detection is based on Harris corner function [44] which is defined for the

spatial domain. An image sequence is defined as a function f : R2 × R → R. Let g

be an anisotropic Gaussian kernel (i.e. different variance in different dimensions) with

spatial variance σ2 and temporal variance τ 2. Then, the convolution

L = g ∗ f, (2.1)

becomes the linear scale-space representation of f . Averaging the first-order spatial

and temporal derivatives by the weighting function g gives the second-moment matrix

µ, which is defined as

µ = g ∗

L2
x LxLy LxLt

LxLy L2
y LyLt

LxLt LyLt L2
t

 . (2.2)

Here, Lx, Ly and Lt denote the first-order derivatives of L. Significant eigenvalues of

µ correspond to interest points in f . Let H be

H = detµ− k trace3(µ) (2.3)

= λ1λ2λ3 − k(λ1 + λ2 + λ3)
3, (2.4)

9

(a) Wave (b) Jump (c) Fight (d) Point

Figure 2.1. STIP extraction on ChaLearn dataset.

where λ1, λ2, and λ3 are eigenvalues of µ. Spatio-temporal interest points can be found

in positive local maxima of H.

Schuldt et al. [12] used STIP for action recognition by extracting local descriptors

along the computed interest points. Laptev et al. [1] improved STIP performance for

action recognition by dense scale sampling instead of scale selection as in [24]. In

Section 2.2, we will review the types of several local descriptors.

2.1.2. Dense Sampling

In dense sampling, the feature points are extracted at a multi-scale regular grid.

The video blocks are sampled from 5 dimensions (x, y, t, σ, τ). That means a feature

point p is positioned at (x, y, t) in the space-time volume and the video patch centered

at p has size determined by the scale (σ, τ).

In an evaluation by Wang et al. [33], we see that dense sampling outperforms

the space-time interest point detection. The explanation is related to the importance

of context information in recognition. In real-world datasets, background may involve

cues about the performed action (e.g. basketball player next to the basketball hoop).

Moreover, some actions cannot be recognized by motion but with appearance (e.g.

playing flute).

10

2.2. Descriptors

Space-time volumes extracted around sampled points are commonly used for ac-

tion recognition. Most of the local descriptors rely on gradient information; that is, the

change in spatial and/or temporal space. Depending on the definition of the descriptor,

it may capture appearance and/or motion information.

2.2.1. Histogram of Oriented Gradients

Computing a histogram for the gradient orientations (HOG) for the image domain

was first proposed by [45] for human detection problem. Laptev et al. [1] introduced

an application of a similar approach to spatio-temporal space.

The idea is to divide the space-time volume to be described into nx×ny×nt cells

and for each cell to count the quantized gradient orientations into a number of bins.

For the case of [1], 4 orientations are considered whereas in [25], all 8 orientations are

used. These histograms are normalized and concatenated to form HOG descriptor.

HOG encodes local appearance features since it uses structure information. Ac-

tion categories, which are recognized better with appearance information, benefit from

this descriptor.

2.2.2. Histogram of Optical Flow

Similar to HOG, in histogram of optical flow (HOF) [1] we divide the volume into

regular cells and compute histograms for each of these cuboids. Instead of gradient

vectors, we count the optical flow vectors (See Section 2.3.1 for optical flow). These

motion vectors are quantized into 5 bins in [1] and 9 bins (8 orientations + zero bin)

in [25]. Normalized histograms for each cell are concatenated to form HOF descriptor.

HOF captures first order local motion information since it uses absolute motion.

Actions which involve characteristic motion information benefit from this descriptor.

11

2.2.3. Motion Boundary Histogram

Motion boundary histograms (MBH) are first proposed by Dalal et al. [29] for

human detection problem and were later successfully used by Wang et al. [25] for action

recognition.

Instead of the optical flow vectors, the derivatives of the optical flow are counted

for each spatio-temporal cell. The spatial derivatives of optical flow Iw = (Ix, Iy) are

computed for both x and y components. The rest is similar to HOF. The orientations

are quantized into 8 bins for each components and the normalized histograms are

concatenated.

MBH captures second order local motion information since it uses the derivative

of the motion. It is robust to camera motion because constant motion is suppressed.

Therefore; the motion information on the boundaries of moving objects is encoded.

2.3. Trajectories

2.3.1. Point Tracking and Optical Flow

Point tracking problem is the basis of many computer vision applications. Given

a video and the initial position of a certain point, we want to estimate the position of

this point in the next frame(s).

Point tracking is directly related to estimating optical flow in which a distribution

of velocities in an image are determined. Figure 2.2 is a visualization of optical flow,

where we can see the magnitudes of velocity vectors. Optical flow is described in terms

of intensity I(x, y, t), by introducing brightness constancy constraint:

I(x, y, t) = I(x+ ∆x, y + ∆y, t+ ∆t), (2.5)

where ∆x,∆y and ∆t denote the displacement of point (x, y, t) between two frames.

12

50100150200250300

50

100

150

200

Figure 2.2. Optical flow visualization on a “hula hoop” instance on UCF101 dataset.

A well-known method for optical flow estimation is Lucas-Kanade method [46]

which makes the assumption of constant flow under local neighborhood. By building on

this method, Shi and Tomasi developed the frequently-used KLT tracking method [47].

KLT tracker considers cornerness values of tracked points, so it is a sparse tracking

technique.

A more recent optical flow method is introduced by Farnebäck [48] and its im-

plementation is integrated in OpenCV [49]. In contrast to KLT tracker, this algorithm

produces dense optical flow. It approximates each neighborhood of two frames by

quadratic polynomials and the global displacement vector is computed by using the

coefficients in these quadratic polynomials.

A state-of-the-art dense optical flow algorithm is large displacement optical flow

(LDOF) by Brox and Malik [50]. This method is able to capture the movement of

small structures such as hands; however, it is computationally extensive.

2.3.2. Dense Trajectories

Action recognition with dense trajectories is proposed by Wang et al. [25] and

has recently been widely used in the literature [51, 52]. Following the success of dense

sampling over sparse sampling methods in the image domain, in this method, points

are sampled densely from multiscale pyramid from each frame of the video. These

points are then tracked for a certain time window. The tracking is based on dense

13

optical field computation [48] and is applied on each spatial scale separately. Local de-

scriptors, which are aligned with the trajectories, are extracted to encode local motion

information. Dense trajectories method is illustrated in Figure 2.3, which is a re-drawn

illustration from the original paper [25].

A trajectory is defined as the concatenation of {Pt, Pt+1, Pt+2, ...} in [25], where

Pt+1 = (xt+1, yt+1) (2.6)

= (xt, yt) + (M ∗ ω)|(x̂t,ŷt). (2.7)

Here, (x̂t, ŷt) denotes the rounded position of (xt, yt). The optical flow field ω is con-

volved with median filtering kernel M to track point Pt to the next frame.

In order to remove false trajectories, some additional processes are applied. To

avoid large jumps between consecutive frames, points with displacement larger than

a threshold are removed. The points which lie in uniform regions are unlikely to be

tracked. These points are not tracked if their cornerness value is below a certain

threshold. To avoid drifting in tracking, the points are tracked up to a certain time

window of length L frames. Trajectories which do not involve any motion are also

removed once the tracking is completed. Lastly, to ensure there are tracked points in

each W ×W neighborhood, in every frame, a new feature point is sampled if there

aren’t any.

The parameters to be defined are listed in Table 2.1. The effect of each of these

parameters are extensively studied [25] and in the original implementation2 , the default

values for these parameters are set as stated in Table 2.1.

2http://lear.inrialpes.fr/people/wang/dense trajectories

14

Table 2.1. Dense trajectory parameters.

Parameter Definition Default

W sampling step of the regular grid 5 pixels

Σ height of the multiscale pyramid for sampling 8

s factor between spatial scales 1/
√

2

L tracking time 15 frames

N size of the volume for computing descriptors 32 pixels

ns number of divisions of the descriptor volume in spatial space 2

nt number of divisions of the descriptor volume in temporal space 3

Figure 2.3. Re-drawn figure of the original illustration in [25]. Points are densely

sampled from multiple scales and tracked separately. N ×N neighborhood of each

trajectory is divided into ns× ns× nt blocks from which the descriptors are extracted.

15

Figure 2.4. Original video frame and corresponding improved trajectories

visualization for “tennis swing” and “still rings” classes of UCF101 dataset.

2.3.3. Improved Trajectories

The improvement over the dense trajectory features is achieved by compensating

the camera motion effect with homography matrix computation between consecutive

frames. These warped features, proposed by Wang et al. [26], are shown to perform

better than many local descriptors on several benchmark action recognition datasets.

Figure 2.4 illustrates the trajectories computed on two UCF101 videos. This visual-

ization provided by authors’ software3 means that red points in the current frame have

moved with trajectories denoted by green points.

The motivation behind the improvement is to get rid of the spurious trajectories

created by camera motion in realistic videos and to improve the motion descriptors’

performance. Once the camera motion is known, the optical field can be re-computed

to correct for such motion. Let us revisit homography matrix estimation from feature

matching in order to predict camera motion.

2.3.3.1. Homography Matrix. Homographies are 3×3 matrices which define projective

transformations. Homography matrix relates two images x and x′ on the same planar

surface. Two consecutive frames of a video are assumed to have a homography relation

3http://lear.inrialpes.fr/people/wang/improved trajectories

16

since they usually cover tiny motion. If the camera rotates between views with rotation

matrices R1 and R2, the relation between 3D world coordinates X and the 2D image

plane becomes as follows:

x = K[R1 0]X and x′ = K[R2 0]X

x′ = KR2R
−1
1 Kx

x′ = Hx,

(2.8)

where H is the homography and K is the camera intrinsic matrix which depends on

the focal length and camera center. In Equation (2.8), x and x′ are in homogeneous

coordinates.

2.3.3.2. Feature matching. Correspondence between two images is the key to com-

pute a transformation. A selected descriptor type is chosen and extracted from both

images. Then, these are matched according to a similarity measure using a matching

algorithm. In improved trajectories [26], authors use both Speeded Up Robust Features

(SURF) [53] matches and motion vector matches.

2.3.3.3. RANSAC. Random Sample Consensus (RANSAC) [54] is a popular algorithm

for robustly estimating homography matrix avoiding the effect of outlier matches. It is

an iterative method in which a random sample of feature correspondences is selected

at each iteration. The homography matrix is computed, then each correspondence

is assigned as inlier or outlier depending on the current homography. At the end of

iterations, the homography with the largest number of inliers is selected as the estimate.

2.4. Local Feature Aggregation

The set of local descriptors sampled from the spatio-temporal volume should be

represented compactly in a fixed size vector. For this purpose, traditional approaches

learn a codebook from the training descriptors and use this codebook as a visual vocab-

ulary. The descriptors are then encoded according to their distribution with respect

17

to the visual vocabulary. Three encoding techniques are well-known and frequently

used: bag of features [1, 25], vector of locally aggregated descriptors [55] and Fisher

vectors [35,36,56].

2.4.1. Unsupervised Clustering Methods

In computer vision, unsupervised clustering methods are widely used for learning

visual vocabularies of local descriptors [5, 25, 33, 35, 57]. In this section, we review

two most frequently used clustering methods, namely k-means and Gaussian mixture

models. The choice of clustering method is done depending on the encoding technique

to be used.

2.4.1.1. K-means. First proposed by Macqueen in 1967 [58], k-means clustering is

an unsupervised vector quantization method. A set of features are assumed to be

partitioned into groups of data. Our aim is to find such a grouping so that the within-

group sum of squares is minimized.

Mathematically speaking, the objective function to be minimized for having op-

timum clusters C = {c1, ...cK} is defined as follows:

arg min
C

K∑
i=1

∑
x∈ci

‖x− µi‖2, (2.9)

where µi is the cluster mean of ci and x are data points. The algorithm to solve this

optimization is described in Figure 2.5.

Since k-means algorithm finds a local optimum, commonly it is ran multiple times.

Another drawback is that one may not know the number of data groups beforehand.

Hence, the choice of K can be made depending on the application and multiple K

candidates can be experimentally evaluated for the task at hand.

18

initialize cluster centers µj, j = 1, 2, . . . , K randomly

repeat

for all i do

ci := arg min
j
‖xi − µj‖2

end for

for all j do

µj :=

∑m
i=1 1{ci = j}xi∑m
i=1 1{ci = j}

end for

until convergence

Figure 2.5. K-means algorithm.

2.4.1.2. Gaussian Mixture Model. Gaussian mixture model (GMM), when used for

clustering, can be seen as a more general version of k-means. K-means is a special case,

where the covariances are spherical, the priors are equal, and the cluster memberships

are hard, rather than probabilistic. GMM is a generative model which tries to fit a

number of Gaussian components on the data. GMM clustering is convenient when

data groups have different sizes and different covariance structure between feature

dimensions. Different than k-means, the data points do not belong to cluster centers

by hard assignment, but the probability of belonging to each cluster is considered.

A Gaussian mixture model is defined by three parameters λ = {ωi, µi,Σi}; mixing

weights, means and variances, respectively. K is the number of components and i =

1, ..., K. A GMM for D-dimensional x vectors is defined as:

f(x) =
K∑
i=1

ωig(x;µi,Σi), with
K∑
i=1

wi = 1, (2.10)

where g(x;µi,Σi) is a Gaussian component of the form,

g(x;µ,Σ) = (2π)−D/2 det (Σ)−1/2 exp {−1

2
(x− µ)>Σ−1(x− µ)}. (2.11)

19

Depending on assumptions about the data, GMM can be constrained to have

specific forms. For example, Σi can be full rank or diagonal. Moreover, parameters

within λ can be shared among components. If all components are equally likely, there is

no need to have ωi parameters. The number of parameters to estimate depend heavily

on these assumptions.

A common method to estimate Gaussian mixture model parameters is Expectation-

Maximization (EM) algorithm [59]. It is an iterative algorithm alternating between

expectation and maximization steps. In expectation step, the log-likelihood is com-

puted using the current values of parameters. In maximization step, the parameters

are computed maximizing the expected log-likelihood.

For the context of Gaussian mixture models, EM algorithm is used to learn the

parameters λ of a mixture given data {x1, ..., xN}. For each component i, the following

updates are applied on the parameters:

P (i|xj) := ωig(xi;µi,Σi)/f(xi) (2.12)

ωi :=
N∑
j=1

P (i|xj)/N, (2.13)

µi :=
N∑
j=1

P (i|xj)xj/(Nωi), (2.14)

Σi :=
N∑
j=1

P (i|xj)(xj − µi)(xj − µi)>/(Nωi). (2.15)

The above re-estimation equations guarantee a monotonic increase in the Gaus-

sian mixture model’s likelihood on each EM iteration. However, EM finds a local

optimum so the initialization is crucial to reach the global optimum. Initialization by

k-means is a common choice for GMM learning.

Among various methods to learn GMM parameters, the standard EM algorithm

is the best if the number of components is known. For real-world datasets, however,

20

Figure 2.6. Bag of features.

that is usually not the case. Greedy EM method by Verbeek et al. [60] and the method

by Figueiredo et al. [61] are two popular methods for GMM estimation.

2.4.2. Bag of Features

Bag of features (BOF) (or bag of visual words) model, originally called bag of

words is a technique originally developed for text retrieval problem [62]. In computer

vision, this technique is widely used [63] and in image domain the term “word” is

replaced by “visual word”.

The idea is to represent an instance with a distribution of local features. To do

this, a procedure as illustrated in Figure 2.6 is followed. First, features are sampled

from the training set and the feature space is divided into a number of clusters. K-

means is a typical choice as the clustering method. The cluster centers then form

a codebook referred as the “vocabulary”. Once a new instance of data arrives, the

local features are extracted and each feature is assigned to the closest cluster center

in the codebook. By counting the number of occurrences of each codebook element, a

histogram is computed for the input instance.

BOF modeling is extended to the video domain by using motion features ex-

tracted from the spatio-temporal volume as local descriptors. Typically, descriptors

such as HOG, HOF and MBH are clustered separately and different histograms for

each modality is calculated. The resulting histogram vectors are normalized so that

21

they are comparable in classification. `1 normalization is widely used since probability

distributions add up to one; however, `2 normalization is also an option.

`1 normalization is achieved by dividing every element of a vector by its `1-

norm (i.e. sum of the absolute values of vector elements). On the other hand, in `2

normalization, we divide every element of a vector by its `2-norm (i.e. the distance

of the vector from origin). The formal definitions of `1- and `2-norms are done in

Equations 2.16 and 2.17, respectively.

‖z‖1 :=
n∑
i=1

|zi| (2.16)

‖z‖2 :=

√√√√ n∑
i=1

|zi|2 (2.17)

When used in classifiers such as support vector machines, which will be detailed

in Section 3.1, complex kernels suitable for histogram-based features give higher per-

formance. χ2 or histogram intersection kernels are examples for such kernels.

2.4.3. Fisher Vector

The notion of Fisher kernel [64] is not new, but applying Fisher vector (FV)

encoding on visual vocabularies is proposed recently by Perronnin and Dance [56].

Fisher vector framework is analogous to the traditional bag of features represen-

tation. Instead of k-means clustering, Gaussian mixture models are used for quantizing

local descriptors to be able to capture other statistics such as means and variances about

the visual word distribution. BOF representation considers only 0-th order statistics,

i.e. word frequencies. The FV encodes both first and second order statistics.

Given a generative visual word vocabulary, FV considers the direction in param-

eter space into which the vocabulary should be modified to better fit the data [55].

22

For this purpose, the gradient of the likelihood is encoded by applying derivative op-

erations with respect to the distribution parameters of the vocabulary. FV stores the

differences between pooled local features and dictionary items.

There are many advantages of using FV over other descriptor aggregation meth-

ods. Its power lies in combining both generative and discriminative approaches. Com-

bined with simple linear classifiers, FV encoding yields significant performance.

An important advantage of FV over BOF is that much fewer vocabulary compo-

nents are needed for satisfactory performance. Table 2.2 summarizes various aggrega-

tion methods mentioned in this section. It can easily be observed that the comparison

between BOF and FV shows the superiority of FV.

In order to obtain the Fisher vector representation for a set of descriptors, we first

train a K component GMM to learn the parameters λ = {ωi, µi,Σi}|Ki=1
over training

features. The covariance matrices are assumed to be diagonal.

In order both to decrease the size of the resulting FV and to decorrelate features

(to support diagonal covariance assumption), one can apply principal components anal-

ysis (PCA) prior to building the dictionary.

Given a set of descriptors X = {x1...xN}, the following gradient vector can be

defined in terms of a distribution p with parameters λ,

∇λ log p(X|λ). (2.18)

In the case of visual vocabularies for action recognition, X can be a set of MBH

descriptors or other. The distribution p is GMM. Hence, each component keeps in-

formation about frequency, mean and variation of a visual word. Under independence

23

assumption,

L(X|λ) =
N∑
j=1

log p(xj|λ) (2.19)

=
N∑
j=1

log

(
N∑
i=1

ωipi(xj|λ)

)
, (2.20)

where pi(xj|λ) is given by Equation 2.11.

The gradient of L with respect to µ and Σ parameters constitutes the Fisher

vector encoding. The gradient with respect to ω is discarded since it brings little

additional information. Normalized partial derivatives of means and deviations are

approximated (see [56] for derivations) as follows:

ui =
1

N
√
ωi

N∑
j=1

γij

(
xj − µi
σi

)
, (2.21)

vi =
1

N
√

2ωi

N∑
j=1

γij

[(
xj − µk
σi

)2

− 1

]
, (2.22)

where γij denotes the posterior probability associating each vector xj with a component

i in the GMM and σ2
i = diag(Σi). The FV becomes the concatenation of the vectors

ui and vi.

Since the covariances are diagonal, the final dimension of the FV becomes 2DK,

where D is the dimension of descriptors.

Perronnin et al. [38] proposed an improvement over the Fisher kernel and intro-

duced power normalization on Fisher vectors. The vectors are first power-normalized

and `2-normalized, so that linear classifiers can be used more successfully. Power nor-

24

Table 2.2. Typical attributes of aggregation methods. Note that some fields are not

mandatory. (e.g. `2 normalization can be done on BOF; GMM can also be used for

BOF; however, k-means is not sufficient for FV etc.)

BOF VLAD FV

clustering k-means k-means GMM(diag. cov.)

statistics 0th order 1st order 1st, 2nd order

basis frequency difference difference

number of components 1000,...,4000 64,...,256 64,...,256

normalization `-1 power, `-2 power, `-2

dimensionality K D×K 2×D×K

kernel χ2, hist. intersection linear linear

preprocessing - PCA PCA

malization is defined as follows:

f(z) = sign(z)|z|α, (2.23)

where the parameter α is in the range [0, 1]. When α = 0.5, which is a typical choice

in most studies, the normalization becomes signed square-rooting.

2.4.4. Vector of Locally Aggregated Descriptors

A simplified version of the Fisher kernel is proposed by Jégou et al. [55] for effi-

cient image search. In vector of locally aggregated descriptors (VLAD) representation,

memory and computation requirements are less compared to BOF and FV. According

to an evaluation [57], it is observed that, in terms of performance, FV and VLAD yield

competitive results while both are outperforming BOF.

The mathematical formulation of a VLAD descriptor vi,j is as follows:

vi,j =
∑

x such that NN(x)=ci

xj − ci,j, i = 1...K and j = 1...D, (2.24)

25

where K is the number of clusters in k-means and D is the dimensionality of the

local descriptor x. The vocabulary consists of cluster centers {c1, ...cK}. Each local

descriptor x is assigned to its nearest neighbor (NN) cluster center. Different from BOF,

instead of accumulating the frequencies of visual words, the differences between x and

its nearest cluster center are kept. The resulting VLAD descriptor is the linearized

version of vi,j and thus has dimensionality K ×D. In [57], `2 normalization is applied

on VLAD descriptors.

The advantage of VLAD descriptors is their efficiency when used in large-scale

image searches. The authors of [57] propose a joint optimization for dimensionality re-

duction and indexing. Their results show that compact representation can be achieved

(i.e. low time complexity) with VLAD vectors while preserving high accuracy.

Having reviewed the technical background on video description using local visual

features, we can now see how we use representative vectors for action classification in

the next chapter.

26

3. ACTION CLASSIFICATION

Given video features and their corresponding action category labels for some

training data, we can run a machine learning algorithm for the classification task.

Among various classification algorithms, support vector machines (SVM) are widely

used in the problem of action recognition from video. Extreme learning machine (ELM)

is a much less popular method for action recognition. In this chapter, we will provide

an overview of SVM and explore the basics of ELM.

3.1. Support Vector Machines

Support vector machines are first proposed by Cortes and Vapnik in 1995 [65] as a

supervised learning algorithm used for classification and regression. The idea is to find

a discriminant-based method without modeling densities generatively. This approach

originates from Vapnik’s principle to never solve a more complex problem as a first

step before the actual problem [66].

In general, training instances of two classes are not linearly separable in their

original finite dimensional space. Therefore, the idea in SVM is to map the vectors

into a higher dimensional space to be able to simplify discrimination function. SVM

model parameters are defined in terms of “support vectors”. This term represents

training data points which lie close to class boundaries.

The goal of SVM is to find a hyperplane in a high-dimensional space which

maximizes the margin that separates two classes. Although SVM was first designed to

be a two-class problem, now there are many variants in which multi-class classification

can be achieved.

Non-linear classification can be performed with SVM by using the “kernel trick”.

Kernel functions enable to represent data points in high-dimensional feature spaces by

using similarity measures.

27

SVM is a kernel-based algorithm. These algorithms are formulated as convex

optimization problems; therefore there is a single optimum to be solved [67].

The formulation of the optimal hyperplane that separates two classes is as follows:

wxi + w0 ≥ +1 if yi = 1,

wxi + w0 ≤ −1 if yi = −1,
(3.1)

where X = {xi, yi}|Ni=1
defines the training features and labels correspondence. yi takes

the value {−1,+1} depending on the class label.

We want to find w and w0 such that the inequalities 3.1 hold for all X. These

inequalities can be compactly written in the form:

yi(wxi + w0) ≥ 1. (3.2)

The optimal hyperplane has maximum distance from the discriminant function to

the closest instances. This distance defines the margin yi(wxi+w0)
‖w‖ . We want to minimize

‖w‖ in order to maximize this margin. Hence, the optimization becomes:

min
1

2
‖w‖2 s.t. yi(wxi + w0) ≥ 1, ∀i. (3.3)

w and w0 can be found directly with a standard quadratic optimization solution.

The complexity depends on the dimensionality D of the point x.

When the points are not linearly separable, which is generally the case, a so-called

soft margin is defined:

yi(wxi + w0) ≥ 1− εi. (3.4)

28

In this case, some of the support vectors may fall within the margin. The soft error∑
i εi is added to the objective function as a penalty term:

min
1

2
‖w‖2 + CSVM

∑
i

εi, (3.5)

where CSVM is a hyperparameter of the model serving as a complexity parameter.

It can be shown that, using Lagrange multipliers αi, the dual of this problem

becomes:

max
αi

∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyjx
>
i xj,

subject to
∑
i

αiyi = 0 and 0 ≤ αi ≤ CSVM , ∀i.
(3.6)

When the dual is used instead of the primal, the complexity depends on the

number of instances N instead of D.

If we define a mapping φ(x), the factor x>i xj in Equation 3.6 is replaced by

φ(xi)
>φ(xj). This dot product can be defined as a kernel function K(xi,xj) in the D-

dimensional space without actually going to the mapped space of φ. Thus, non-linear

kernel functions can be integrated to solve more complex problems. Usually, kernel

functions are considered to measure similarity; therefore, any valid kernel function can

be defined specific to the application.

Some commonly used kernels are:

(i) Linear kernel (i.e. no kernel)

K(xi,xj) = x>i xj. (3.7)

29

(ii) Gaussian radial basis function (RBF) kernel

K(xi,xj) = exp(−‖xi − xj‖2/σ2). (3.8)

(iii) χ2 kernel

K(xi,xj) = 1−
D∑
d=1

(x
(d)
i − x

(d)
j)2

1
2
(x

(d)
i + x

(d)
j)

. (3.9)

Many algorithms have been proposed to solve the optimization in Equation 3.6.

Some popular implementations include liblinear [68] and libsvm [69]. The former de-

creases time complexity for the linear SVM by using an approximation. The latter has

the option to use kernels. Both are iterative algorithms.

3.2. Extreme Learning Machines

Extreme learning machine is a classification and regression method proposed by

Huang et al. [40, 70] as an extremely fast alternative to other conventional popular

learning algorithms. In the literature, [71] and [72] used ELM for action classification

from visual vocabularies (experimenting with 13- to 16-class problems), but the usage

of ELM in this area is novel, and this study is the first application of ELM to large-scale

action recognition with over 100 action classes.

In this section, we present methods based on ELM. The proposed algorithm

works for the generalized single-hidden-layer feed-forward networks (SLFN), but the

main difference is that the hidden layer in ELM need not be tuned, but is assumed to

be known.

Figure 3.1 illustrates a SLFN. The mapping from the input layer to the hidden

layer in traditional artificial neural networks is not known and tuned with backpropa-

gation algorithms. In ELM, this mapping is known. Hence, the weights β which map

hidden nodes to the output nodes can be solved analytically by least-squares solution.

30

Figure 3.1. A single-hidden-layer feed-forward network. In Extreme Learning

Machine, the mapping from input layer to hidden layer is known; therefore, the

output weights β are solved without iterative tuning.

The formulation of C-class ELM classifier relies on an optimization problem with

two objectives: minimizing the training error and minimizing the norm of the out-

put weights for better generalization. Let h(x) be the feature mapping from the D-

dimensional input node x to the L-dimensional hidden-layer feature space, and β(L×C)

be the output weight matrix between the hidden layer of L nodes and the output nodes.

Then, the optimization takes the form:

min
β
‖Hβ −T‖2 and ‖β‖, (3.10)

where T(N×C) is the training label matrix of N training instances, and H(N×L) is the

hidden-layer output matrix as follows:

H =

h(x1)

...

h(xN)

 =

h1(x1) · · · hL(x1)

...
. . .

...

h1(xN) . . . hL(xN)

 . (3.11)

31

Assuming H is known, the solution to this problem becomes:

β = H†T, (3.12)

where H† is the Moore-Penrose generalized inverse of H. The reader is referred to [70]

for more detail.

3.2.1. Random projections

The initial version of ELM [70] assumes random projections for mapping to the

hidden space. The motivation relies on the following theorems which are proven in [70]:

Theorem 3.1. Given a standard SLFN with N hidden nodes and an activation func-

tion G which is infinitely differentiable in any interval, for N instances, for any wi

and bi randomly chosen from any intervals according to any probability distribution,

then the hidden layer output matrix H is invertible and ‖Hβ −T‖ = 0.

Theorem 3.2. Given a small value ε > 0 and an activation function G which is

infinitely differentiable in any interval, there exists N̂ ≤ N such that for N instances,

for any wi and bi randomly chosen from any intervals according to any continuous

probability distribution, then with probability one, ‖HN×N̂βN̂×C −TN×C‖ < ε.

We randomly generate w and b from any continuous probability distribution so

that the hidden layer output becomes,

h(x) = [G(w1, b1,x), ..., G(wL, bL,x)], (3.13)

where G(w, b,x) is a nonlinear piecewise continuous activation function such as:

(i) Sigmoid function

G(w, b,x) =
1

1 + exp (−(wx+ b))
. (3.14)

32

(ii) Sine function

G(w, b,x) = sin (wx+ b). (3.15)

(iii) Hard-limit function

G(w, b,x) =

1, if wx− b ≥ 0,

0, otherwise.

(3.16)

(iv) Gaussian function

G(w, b,x) = exp (−b‖x−w‖2). (3.17)

(v) Multiquadric function

G(w, b,x) = (‖x−w‖2 + b2)1/2. (3.18)

In feedforward neural networks, sigmoid and Gaussian functions are commonly

used. In ELM, hard-limit and multiquadric functions also perform with good general-

ization [40].

3.2.2. Kernels

Similar to support vector machines, we can integrate kernels in extreme learning

machines. Applying Mercer’s condition on extreme learning machine, a kernel function

can be defined as,

Ω = HH>, (3.19)

where Ωi,j = h(xi).h(xj) = K(xi,xj).

33

We go to the kernel space directly without computing the feature mapping h(x).

Hence, the hidden-layer output computation becomes a kernel operation. During train-

ing, we add a regularization coefficient CELM to the kernel matrix calculated with

training data X(N×D) = [x1 . . .xN]T as follows:

H =

(
I

CELM
+ Ω

)
. (3.20)

One can plug in any valid kernel for Ω. For the case of linear kernel, feature

mapping weights become the input features X themselves. Hence, the output of the

kernel ELM classifier becomes:

f(x) = K(x,X)>β

= K(x,X)>
(

I

CELM
+ Ω

)†
T.

(3.21)

In order to obtain probability values or confidence scores for a classification out-

put, we can use the inverse of sigmoid function to have the value between 0 and 1.

ELM implicitly allows training with multi-labels and multi-class classification. In

our problem, we have datasets where an instance can be labeled with multiple actions.

We can successfully use ELM without additional treatment for such cases.

34

4. PROPOSED METHODOLOGY

4.1. Motion Features

Our feature extraction, encoding and classification pipeline is illustrated in Fig-

ure 4.1. During training, we learn the coefficients of PCA, the parameters of GMM and

the ELM model. Given a test video, we extract improved dense trajectory features and

apply PCA projection on them. We employ Fisher vector encoding using the GMM for

a global video description. Then, we concatenate some additional mid-level features.

The final feature vector is given to ELM, and a confidence score for each action class

is obtained.

The improved trajectory features are extracted using the software provided by

Wang et al. [26]. These features include four aspects of video representation, namely

motion boundary histograms (MBH), oriented histograms of flow (HOF), histogram

of oriented gradients (HOG) and trajectory descriptors. With the default parameters,

192-dimensional MBH, 108-dimensional HOF and 96-dimensional HOG descriptors are

extracted for each trajectory.

We use three local descriptors (MBH, HOF, HOG) and discard trajectory de-

scriptors because of their inconsistent performance. Trajectory descriptors seem to

help improving the performance in some datasets, but in our experiments they both

lower the performance and their presence increases time complexity.

For training, we take a random subset of the local descriptors extracted from

training videos. This procedure is a common practice because using all the descriptors

for generating a codebook is computationally expensive and requires large amounts

of memory. Moreover, most of these local descriptors are similar, especially the ones

extracted from the same video. Random uniform sampling should not change the

distribution we want to learn. Hence, training a GMM over a random subset of the

training features is convenient.

35

Figure 4.1. Proposed pipeline. Training part is ran once to get the PCA projection

coefficients P= {PMBH, PHOF, PHOG}, GMM vocabularies V= {VMBH, VHOF, VHOG}

and ELM model.

36

Although MBH, HOF and HOG are all histogram based descriptors, they carry

different information. Therefore; we learn a separate GMM for each aspect.

In order to both decrease FV size and to decorrelate the descriptors for diagonal

covariance assumption, we apply PCA prior to building GMM vocabularies. Unless

stated otherwise, we reduce each descriptor to 64 dimensions and learn a GMM with

64 components.

Given a video clip with a set of descriptors, we apply FV encoding for a global

representation. Three different aspects yield three different Fisher vectors. We apply

early fusion, but each FV is normalized separately before concatenation. The normal-

ization is performed as in [38] by sign square-rooting (power normalization) followed

by `2 normalization, so that linear classifiers can be used more successfully.

Besides local motion information, we extract some mid-level representations to

obtain composite features to be used in classification. These mid-level features are

explained in detail in the next section.

4.2. Mid-Level Features

We use semantic information about the actions in form of mid-level features, by

considering several assumptions. The first assumption is that the area occupied by

human body parts in a video frame provides complementary information for action

recognition. For instance, UCF101 actions such as applying eye makeup, drying hair,

brushing teeth and playing flute are much more likely to cover a close-up face com-

pared to playing voleyball, rowing or skiing. Second, we assume that the color of the

environment helps recognition of the action being performed. The dominant color in

skiing and ice dancing videos is white, whereas soccer penalty videos show a lot of

green pixels. These intermediate features can be used to bolster the classifiers based

on low-level features. In Figure 4.2, the difference in color distributions between skiing

and soccer penalty actions is illustrated. The results of several off-the-shelf body parts

detectors are shown in Figure 4.3.

37

Figure 4.2. Sample frames from UCF101 dataset, and average RGB histograms for

“skiing” and “soccer penalty” classes.

We apply seven object detectors on frames sampled from the videos. For each

detector, ten equidistant frames of each video are used, and the detections are summa-

rized with their statistics. Those detectors are the pre-trained face, upper body, eye

pair, left eye, right eye and profile cascade object detectors [73], as well as a person

detector [45]. We use minimum, maximum and mean area of the detected regions

throughout the video. Additionally, we compute the frequency of the detections. We

normalize each detection area by dividing it to the total frame area. Thus, we obtain

four features per detector, which makes a mid-level feature vector of 28 dimensions.

We then compute normalized color histograms from ten frames on both RGB and

HSV color spaces from each video. The histograms are then averaged over the frames

to get a global feature vector of size 288 (2× 48× 3).

The final feature vector for a video becomes the concatenation of MBH, HOG

and HOF Fisher vectors; the detector statistics (DS), and the two color histograms

(RGBH, HSVH). Each feature dimension is centered on zero by subtracting the mean

of the training features for data standardization purposes.

The mid-level features mentioned are not used in ChaLearn dataset, because

38

(a) (b)

(c) (d)

Figure 4.3. Body part detections on “apply eye makeup” (a)(b) and “jumping jack”

(c)(d) classes of UCF101 dataset, with face (red), eye pair (green), left eye (blue),

right eye (cyan), upper body (yellow), and people (magenta) detectors.

those videos are recorded in lab conditions, where the background is the same and

stable. The context information provided with such mid-level features will not help

discriminating actions.

4.3. Classification

Given the feature vector of a video clip, the multi-class ELM outputs the con-

fidence scores for each action class depending on whether the video belongs to that

category. The video is assigned to the action class with the highest confidence score.

Among other versions, we use ELM with linear kernel for its simplicity and high

performance with Fisher vectors. The only hyperparameter is the regularization pa-

rameter CELM , which is optimized using a search over the validation set. The high

speed of ELM training enables a quick search for a large number of possible CELM

candidates.

39

It is possible to have multiple labels for an instance in ELM training. The label

vector for each instance contains +1 for the presence and −1 for the absence of an ac-

tion. In ChaLearn, two actions may occur at the same time such as “walk” and “clap”.

In these cases, we put +1 for both of these classes. Similarly, the validation set of THU-

MOS may have secondary action labels besides primary action labels. We observe that

using secondary actions as positive actions helps increasing the performance.

In our experiments, we show why we have chosen kernel ELM over commonly

used SVM. We also show empirically why we prefer linear kernels for Fisher vectors.

4.4. Localization

Temporal localization of actions, also referred as action detection or spotting,

is the problem of predicting the boundaries of the action categories within a longer

sequence of video. The task is more challenging than classifying a temporally trimmed

video because it involves both action spotting and spotting.

The simplest possible approach for action localization is making frame-level de-

cisions. In our case, that is to aggregate motion features into one FV for each frame.

Frame-level decisions are usually noisy; therefore, the performance can easily be im-

proved by post-processing such as smoothing, with the assumptions that neighbor

frames have similar action categories and one cannot jump from an action to the other

very rapidly. The problem with frame-level classification is that some actions can only

be recognized when viewed within an interval.

A more clever alternative is to use window-level classification. Traditional de-

tection methods use sliding window approach. In our work, we use fixed size sliding

window for the action localization task. The window size is determined by computing

the average duration of actions in the dataset. The stride of each window is one third

of the window size. For instance in ChaLearn, we use a window size of 15 frames and

a stride of 5 frames. Therefore; the windows have an overlap of 66%. We compute one

FV for each window and pool their decisions for the final predictions.

40

The only dataset where we study localization is ChaLearn. In UCF101, the videos

are already temporally trimmed. In THUMOS 2014, it is possible to trim the videos to

better classify a video in an action category; however, it is computationally expensive

and classifying the whole clip is already possible without localization.

In ChaLearn, the action performances contain pauses or irrelevant movements

in between predefined action categories. Therefore; there is a need for an additional

category, which we call “none”. We train the classifier as if the problem was 12-

class classification instead of 11 and sample from unannotated intervals to get training

instances for this additional class.

41

5. EXPERIMENTS

5.1. Datasets

In this section, we present three datasets on which we carried experiments. These

are ChaLearn LAP 2014 Track 2, UCF101 and THUMOS 2014 datasets. Action recog-

nition challenges have been organized for all three datasets in ChaLearn LAP 2014,

THUMOS 2013 and THUMOS 2014 workshops, respectively. The dataset for ChaLearn

LAP 2015 Track 2 remained the same as in 2014, since the top performance is expected

to improve.

5.1.1. ChaLearn Looking at People 2014 Track 2

ChaLearn Looking at People (LAP) 2014 Track 2 dataset [74,75] includes 9 RGB

sequences divided into 5 training, 2 validation and 2 test videos. In total, there are 235

performances (135 in training, 44 in validation, 46 in test sets) of 11 action/interaction

categories. Those are: wave, point, clap, crouch, jump, walk, run, shake hands, hug,

kiss and fight. An overview of the dataset can be seen in Figure 5.1.

The resolution of the videos is 480×360 pixels and they are recorded at 15 frames

per second. However, the dataset has a problem that one frame repeats itself once every

five frames. We had to deal with fixing the videos and ground truth labels so that we

don’t have repeating frames. Each video lasts around 1 minute which makes a total of

around 8,000 frames in the dataset.

The background of the recordings is not uniform but stable except a couple of

times when the camera moves slightly. 17 subjects take part in the recordings of natural

isolated and collaborative actions. The uncertainty of the number of performers in the

scene makes the action recognition task more difficult. In order to introduce more

challenge, a couple of occlusions are taking place while a subject is performing an

action. A stranger may enter the scene and pass by in front of the performer.

42

(a) Wave (b) Point (c) Clap

(d) Crouch (e) Jump (f) Walk

(g) Run (h) Shake hands (i) Hug

(j) Kiss (k) Fight (l) NONE

Figure 5.1. Overview of the action classes in ChaLearn LAP 2014 Track 2 dataset.

43

The videos are recorded continuously while the actions are being performed one

after the other without much pause in between. This requires a more complex action

spotting system since there are not obvious boundaries between consecutive actions.

The standard evaluation protocol of the dataset is to report average Jaccard index

(JI) over two test sequences: Sequence 5 and Sequence 7. Jaccard index is defined as,

JIs,c(Ys,c, Ŷs,c) =
Ys,c ∩ Ŷs,c
Ys,c ∪ Ŷs,c

, (5.1)

where Ys,c is the ground truth label for sequence s and action class c. Ŷs,c is the

corresponding prediction labels. Ys,c and Ŷs,c are binary vectors. The performance is

reported as the mean over all Jaccard indices:

1

sc

∑
s

∑
c

JIs,c. (5.2)

The best scoring methods in the challenge are summarized in [74]. The win-

ner achieves 50.72% performance [76]. The first three ranking teams use improved

trajectory features and support vector machines.

5.1.2. UCF101

UCF101 dataset is released in 2012 [20]. Since then, it is a widely adopted action

and event recognition benchmark. In total, there are 13320 realistic action videos

collected from Youtube, which correspond to 27 hours of video. The resolution of the

videos is 25 frames per second and 320 × 240 pixels which can be considered as low

resolution. The dataset consists of 101 action categories ranging from daily-life actions

(e.g. “blow dry hair”) to sports actions (e.g. “diving”). An overview of the large

number of classes can be seen in Figure 5.2. The list of classes is given in Table 5.1.

The 101 classes are divided into five types:

44

Table 5.1. List of classes in UCF101 and THUMOS 2014 datasets.

Apply Eye Makeup Cliff Diving Horse Riding Playing Cello Soccer Juggling

Apply Lipstick Cricket Bowling Hula Hoop Playing Daf Soccer Penalty

Archery Cricket Shot Ice Dancing Playing Dhol Still Rings

Baby Crawling Cutting In Kitchen Javelin Throw Playing Flute Sumo Wrestling

Balance Beam Diving Juggling Balls Playing Sitar Surfing

Band Marching Drumming Jump Rope Pole Vault Swing

Baseball Pitch Fencing Jumping Jack Pommel Horse Table Tennis Shot

Basketball Shooting Field Hockey Kayaking Pull Ups Tai Chi

Basketball Dunk Penalty Knitting Punch Tennis Swing

Bench Press Floor Gymnastics Long Jump Push Ups Throw Discus

Biking Frisbee Catch Lunges Rafting Trampoline Jumping

Billiards Shot Front Crawl Military Parade Rock Climbing Indoor Typing

Blow Dry Hair Golf Swing Mixing Batter Rope Climbing Uneven Bars

Blowing Candles Haircut Mopping Floor Rowing Volleyball Spiking

Body Weight Squats Hammer Throw Nun chucks Salsa Spins Walking with a dog

Bowling Hammering Parallel Bars Shaving Beard Wall Pushups

Boxing Punching Bag Handstand Pushups Pizza Tossing Shotput Writing On Board

Boxing Speed Bag Handstand Walking Playing Guitar Skate Boarding Yo Yo

Breaststroke Head Massage Playing Piano Skiing

Brushing Teeth High Jump Playing Tabla Skijet

Clean and Jerk Horse Race Playing Violin Sky Diving

(i) Human-object interaction

(ii) Body-motion only

(iii) Human-human interaction

(iv) Playing musical instruments

(v) Sports

All the videos in the dataset are temporally trimmed (i.e. a video starts and ends

with the same action without any irrelevant frames in between). For each category,

there are 25 groups of video which may be similar in terms of background, viewpoint

and performer. In each group, there are 4-7 videos.

The standard evaluation protocol on UCF101 is to report the mean accuracy over

three different splits, which are provided by the dataset organizers.

45

Figure 5.2. Overview of UCF101 and THUMOS 2014 action classes. Figure adapted

from [20].

The best score in the challenge was 85.9% [39]. They use improved trajectory

features and support vector machines.

5.1.3. THUMOS 2014

The THUMOS 2014 dataset [22] is an extension to UCF101. The training set is

based on the temporally trimmed videos from UCF101. Therefore, there are the same

101 action categories as in UCF101; plus a special “background” class that does not

include any of the defined actions. In addition, new temporally untrimmed videos are

collected again from Youtube. There are 1010 validation, 2500 background and 1574

test videos.

With a total of around 254 hours of video (25M frames), this dataset is currently

one of the largest action recognition benchmarks. These open source videos typically

involve low resolution samples with cluttered background and camera motion. Different

from other benchmarks, the action performances are untrimmed, which makes the

problem challenging.

In our study, we use the combination of training and validation sets as the training

data and evaluate our performance on the test set, for which the labels have been

sequestered during the challenge participation. In a given test video, our goal is to

predict the presence of a target action class, together with a confidence score.

The standard evaluation protocol on THUMOS 2014 is to report the mean average

46

Table 5.2. Performances of descriptor types with mean average precision values and

standard deviations among classes (THUMOS).

Feature set mAP(%) s.d.(%) Worst and best recognized action classes(recognition rate)

HOG 47.78 23.88 Hammering(2.8) Archery(4.5) Haircut(4.7)

Rowing(89.5) StillRings(90.1) MilitaryParade(96.5)

HOF 50.59 23.59 Haircut(4.2) SoccerPenalty(6.0) BaseballPitch(6.8)

UnevenBars(88.1) MilitaryParade(96.5) StillRings(100)

MBH 53.17 22.54 SoccerPenalty(6.8) Haircut(8.4) BaseballPitch(8.5)

HammerThrow(91.4) MilitaryParade(94.4) StillRings(100)

MBH+HOF 58.04 21.35 Haircut(6.3) SoccerPenalty(9.2) BaseballPitch(14.7)

HammerThrow(93.2) MilitaryParade(95.9) StillRings(100)

HOG+HOF 60.04 21.37 Haircut(7.8) Archery(9.0) Hammering(12.7)

BoxingSpeedBag(93.4) MilitaryParade(97.5) StillRings(100)

MBH+HOG 60.35 21.27 Haircut(9.5) SoccerPenalty(11.5) Archery(14.9)

Skiing(91.6) MilitaryParade(98.42) StillRings(100)

MBH+HOG+HOF 63.17 20.02 Haircut(10.1) SoccerPenalty(12.8) Archery(14.9)

HammerThrow(92.9) MilitaryParade(97.5) StillRings(100)

precision (mAP) over 102 classes.

mAP =
1

C

C∑
c=1

AP (c), (5.3)

where C is the number of classes. And average precision for each class is defined as:

AP (c) =

∑n
k=1 (P (k)× rel(k))∑n

k=1 rel(k)
. (5.4)

Here, n test videos are sorted with descending scores and P (k) is the precision at cut-

off k of the list. rel(k) equals to 1 if the video ranked k is a true positive and zero

otherwise.

The best score in the challenge was 71% [77]. They use improved trajectory

features, convolutional neural network features and support vector machines.

47

Table 5.3. Accuracy measures for descriptor types for each data split and their

average (UCF101).

Feature set Split 1 (%) Split 2 (%) Split 3 (%) Overall (%)

Traj 51.92 53.05 54.22 53.06

HOG 70.08 69.63 69.97 69.89

HOF 71.35 73.78 74.70 73.28

MBH 76.16 77.00 76.22 76.46

MBH+HOF 79.17 80.88 81.01 80.35

HOG+HOF 81.13 82.54 82.25 81.97

MBH+HOG 82.34 82.91 81.98 82.41

MBH+HOG+HOF 83.45 84.79 84.47 84.24

MBH+HOG+HOF + Traj 83.61 85.59 84.28 84.49

5.2. Comparison of Descriptor Types

We performed several experiments to evaluate the effect of different steps of our

pipeline. First, we examine the contribution of the individual aspects of the improved

trajectory features MBH, HOG and HOF. The results on UCF101 and THUMOS 2014

datasets are presented in Tables 5.2 and 5.3, respectively. The best performances are

obtained with the combination of the three aspects. As expected, the combination

of a motion-based feature (MBH or HOF) and a spatio-based feature (HOG) yields

higher performance than joining two motion-based features. Moreover, MBH is the

most successful individual feature type in discriminating the action classes on these

datasets due to its informativeness and robustness to camera motion.

In THUMOS 2014 dataset, among 102 categories, “haircut” appears to be the

most difficult and “still rings” the easiest actions to recognize. The standard deviations

are generally high, because of the difficult-to-distinguish classes (given in Table 5.2).

These rates were among the lowest reported standard deviations in the challenge (See

Figure 5.3). The two higher performances by Jain et al. [77] and by Oneata et al. [78]

both used convolutional neural networks for additional features.

48

Figure 5.3. Challenge results (THUMOS).

In UCF101, the highest performance of THUMOS 2013 challenge was 85.9% by

Wang and Schmid [39]. They used FV for MBH, HOG and HOF which were extracted

with K = 256 number of GMM components. In addition, they divide the video into

temporal and spatial blocks to later fuse the separate Fisher vectors from each block.

In their paper [39], it is reported that if there is no division into blocks, the performance

with SVM is 84.9% and the usage of trajectory descriptor even reduces the performance.

In contrast, in our results the trajectory descriptor slightly improves the performance

and it is very close to that of SVM with only K = 64.

5.3. Contribution of Mid-Level Features

In this section, we examine the use of the simple mid-level features described

previously in Section 4.2, on THUMOS 2014 dataset. Obviously, these features are

not sufficient alone to discriminate 102 classes, but they can provide complementary

information, especially for some action classes. Table 5.4 summarizes the overall per-

formance after the addition of several combinations from the mid-level features.

The concatenation of DS features to the Fisher vector did not result in a sig-

49

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

23

class indices

di
ffe

re
nc

e
in

 A
P

 (
%

)

IT+DS
IT

~

Hammering

Bowling Typing

~ ApplyLipstick

ApplyEyeMakeUp

HeadMassage
ParallelBars

PlayingFlute

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

class indices

di
ffe

re
nc

e
in

 A
P

 (
%

)

IT+RGBH+HSVH
IT

JavelinThrow

FrontCrawl
Haircut

BlowingCandles

ApplyLipstick MoppingFloor
PlayingViolin

PlayingFlute
Lunges

Skiing

0 10 20 30 40 50 60 70 80 90 100
0

5

10

21

class indices

di
ffe

re
nc

e
in

 A
P

 (
%

)

IT+DS+RGBH+HSVH
IT

~~
ApplyLipstick

BlowingCandles

JavelinThrow

Figure 5.4. Contribution of mid-level features to improved trajectory features

(MBH+HOG+HOF=IT). Green bars indicate improvement and yellow bars indicate

decrease in performance after concatenation (THUMOS).

50

Table 5.4. Overall performances after mid-level feature concatenation (THUMOS).

Features IT+DS IT+RGB IT+HSV IT+HSVH+RGBH IT+DS+RGBH+HSVH

mAP(%) 62.95 63.31 63.25 63.37 63.11

nificant increase or decrease in the overall performance; however, it can be seen from

Figure 5.4 that the improvement on some classes are promising. We plot the difference

in average precision for each class with and without concatenating mid-level feature

sets to improved trajectory features. “Apply eye makeup” (index 1) is the action class

where DS helped the most with a 5% increase, followed by “head massage” (index 39)

with 2.6% and “playing flute” (index 62) with 2%. The mid-level attribute detects a

face close-up, which helps identifying these classes.

One possible explanation of not having a significant difference in overall perfor-

mance is that DS features have much lower dimensionality (28) than FV dimensionality

(2DK × 3 = 2× 64× 64× 3 = 24576). Moreover, these features are not guaranteed to

be linearly separable. Separate kernels for each modalities can be summed up to solve

this problem, but this remains as a future work.

The addition of RGBH and HSVH seems to consistently improve the performance.

Although these two modalities are highly correlated, the combination is slightly higher

than the invidual performances.

With the addition of color features, “skiing” (index 82) improves by 4%, the most

difficult class “haircut” (index 34) by 5% and one of the two most confused classes “front

crawl” (index 32) by 6%. All these improvements are absolute, for instance “javelin

throw” (index 45) is improved from 32% to 42%.

5.4. Comparison of Different Encodings

We further made experiments with the BOF encoding and compared the results

with FV representation. For BOF encoding, we use the codebook provided by the

THUMOS 2014 challenge organizers. 4000 visual words are used for each modality

51

1 2 3 2+3 1+2 1+3 1+2+3
0

10

20

30

40

50

60

70

m
A

P
 (

%
)

BOF
FV

Figure 5.5. BOF and FV comparison on different combinations of descriptors from

improved trajectory features (1: HOG, 2: HOF, 3: MBH), (THUMOS).

MBH, HOG, HOF separately. Each BOF vector is separately normalized first with

`1, and then power normalization. The concatenation of the BOF vectors are used in

ELM with RBF kernel. We use the RBF kernel since linear kernel results in much

worse performance with histogram-based features.

With BOF representation, mean average precision of 55.41% is reached on THU-

MOS 2014 dataset. FV encoding with much fewer number of visual words (64) outper-

forms BOF encoding (4000 words) by 7.76% absolute. Figure 5.5 shows the consistent

improvement of FV over BOF in different feature combinations.

Except for HOG descriptor, BOF encoding performances of different descriptor

types and their combinations perform similarly as in FV encoding. The combination

of MBH, HOF and HOG has the highest performance followed by the same order as

in FV.

5.5. Comparison of ELM and SVM

We have compared ELM and SVM in terms of both training time and perfor-

mance. It is clearly seen that using ELM is faster and more accurate.

The results on THUMOS 2014 are summarized in Table 5.5. These results are

52

Table 5.5. ELM and SVM comparison in terms of time and performance (THUMOS).

Algorithm mAP(%) Training time (sec) Testing time (sec)

with 14330 samples per sample

SVM (libsvm) 54.38 68064 (18.9 h) 0.917

SVM (liblinear) 54.02 4136 (1.2 h) 0.008

ELM 63.17 104 0.011

obtained by using the concatenation of Fisher vectors of MBH, HOF and HOG modal-

ities. The experiments are carried out on a machine with two 2.26 GHz quad-core Intel

Xeon processor and 32 GB of RAM. ELM yields a mean average precision of 63.17%

with 104 seconds of training time whereas SVM performs 54.38% and 54.02% with 19

and 1.2 hours of training time when the algorithms of libsvm [69] and liblinear [68] are

used, respectively. ELM outperforms SVM significantly in both aspects in this task.

The results on ChaLearn are similar. Since this is a smaller dataset, we are able

to perform more extensive hyperparameter search with both SVM and ELM. As can

be seen from Figure 5.6, although we span a large range for the cost parameter CSVM

of SVM, the highest performance of SVM (33.48%) remains below ELM’s performance.

ELM with linear kernel gives 35.18% Jaccard index at the highest point, but unless

the regularization parameter CELM of ELM is too high, ELM is already above SVM’s

highest point for most of the points. It can be also observed that the variance of the

ELM model is lower than that of SVM.

These performances on ChaLearn dataset are obtained when window-level clas-

sification is used with FV encoding of MBH, HOF and HOG. The number of GMM

components was 128 and the dimensionality of each descriptor was reduced to 64 by

PCA. In the next sections, we investigate the usage of frame-level and window-level

classification and analyze the effects of FV parameters in more detail.

53

10
−5

10
0

10
5

0.29

0.3

0.31

0.32

0.33

0.34

0.35

0.36

cost parameter

JI

SVM

10
−4

10
−2

10
0

10
2

10
4

0.29

0.3

0.31

0.32

0.33

0.34

0.35

0.36

regularization parameter

JI

ELM

Figure 5.6. Left: The effect of cost parameter CSVM in linear SVM. Right: The effect

of regularization parameter CELM in linear ELM. Both x-axes are in logscale

(ChaLearn).

5.6. Comparison of Frame-Level and Window-Level Classifications

We conducted some experiments to see the effect of frame-level and window-level

classification for action spotting problem. The results reported in this section are on

ChaLearn dataset.

Using improved trajectory features, we first apply frame-level aggregation to have

one FV per frame. Given the action category for each frame, we train an ELM classifier

using all the frames of the training and validation sets. Since there is a kernel operation

involved, the memory requirements increase exponentially with the number of instances

and are much higher than training a window-level classifier.

Figure 5.7 shows the classification outputs of the frame-level approach on the test

set (Sequences 5 and 7) before and after post-processing. The classification outputs are

very noisy and some filtering is required. The outputs are post-processed with median

filtering operation of kernel size 11. The resulting classifications are much smoother,

but the true positives of some rare classes are lost because of this operation.

The mean Jaccard index values for frame-level classification on both validation

and test sets are examined with different FV parameters. Figure 5.8 presents the

54

F
ra

m
e

20
0

40
0

60
0

80
0

10
00

12
00

W
av

e

P
oi

nt

C
la

p

C
ro

uc
h

Ju
m

p

W
al

k

R
un

S
ha

ke
 H

an
ds

H
ug

K
is

s

F
ig

ht

N
O

N
E

S
eq

 7
S

eq
 5

P
r

 P
r−

m

 G
T

Figure 5.7. The effect of smoothing frame-level decisions. Predictions (Pr),

median-filtered predictions (Pr-m), and ground truth (GT) are depicted for each

frame in test set (ChaLearn).

55

Half 64 Full
0

0.05

0.1

0.15

0.2

0.25

D

JI

K=32
K=64
K=128
K=256

32 64 128 256
0.15

0.2

0.25

0.3

0.35

0.4

0.45

K

JI

Validation−m
Validation
Test−m
Test

Figure 5.8. Left: The effect of dimensionality reduction by PCA. Right: The effect of

number of Gaussian components K in FV encoding on validation and test sets, when

median-filtered (denoted with -m) and not (ChaLearn).

results. Experiments on both sets show that post-processing provides a significant

improvement for frame-level classifications. However; the performance on test set is

nowhere close to the performance obtained by window-level classification. Validation

performance is much higher than that of test set in general because the test set is more

difficult. The effects of FV parameters will be discussed in the next section.

5.7. The Effect of Fisher Vector Parameters

We evaluated the FV representation by using different parameters for both D and

K, which are descriptor dimensionality and the number of GMM components, respec-

tively. Since UCF101 and THUMOS 2014 are large datasets, their feature extraction

takes long time. Because of the limited resources, we conducted these experiments only

on ChaLearn dataset.

We experimented with three different configurations for the dimensionality reduc-

tion. We either decrease each descriptor size to half (MBH=96, HOF=54, HOG=48),

to 64 or keep the original dimensionality, but in all cases we project the descriptors in

the decorrelated space computed by PCA.

Different than the experiments with K on the frame-level classification, we were

56

Half 64 Full
0

0.1

0.2

0.3

0.4

D

JI

K=32
K=64
K=128
K=256
K=512

Figure 5.9. The effect of dimensionality reduction by PCA and the number of GMM

components K (ChaLearn).

able to experiment with K = 512. The reason is that as the resulting dimensionality

of FV rises, the memory requirements increase linearly. We were not able to perform

frame-level classification on those Fisher vectors since the number of instances is already

much higher than window-level approach. By going to K = 512, we expect to see a

decrease on the performance due to high complexity.

Figure 5.9 summarizes the effect of D and K parameters in FV. Although there

is no significant behavior in all values of D, there seems to be an increase in the

performance while increasing K up to a point. The increase effect is more clear in

Figure 5.8 (left) and the high complexity effect can be seen for K = 512 in Figure 5.9

as expected.

In terms of dimensionality reduction, reducing to half seems to perform slightly

better than the other two. In total, reducing to half yields the lowest feature dimen-

sionality among the three.

5.8. Model Selection in Extreme Learning Machine

In this section, we justify why we use linear ELM among other versions. We

perform our experiments on the validation and test sets of THUMOS 2014. The effect

of hyperparameters for ELM with linear kernel, RBF kernel and random projections

57

10
−2

10
0

10
2

10
4

0.3

0.35

0.4

0.45

0.5

0.55

0.6

regularization parameter

m
A

P

Test
Validation

10
−1

10
0

10
1

10
2

0.3

0.35

0.4

0.45

0.5

0.55

0.6

G

m
A

P

Test
Validation

Figure 5.10. Kernel ELM. Left: The effect of regularization parameter CELM in linear

ELM. Right: The effect of G parameter in RBF kernel ELM. Both x-axes are in

logscale (THUMOS).

are examined.

Two kernel functions are selected for comparison. Those are linear kernel, which

is expected to yield higher performance in combination with Fisher vector, and RBF

kernel. The effect of regularization parameter CELM and the effect of RBF kernel

parameter G can be seen in Figure 5.10.

The performances on validation and test sets move together, which shows the sim-

ilarity between two sets. The mean average precision on the test set is higher because

both training and validation videos are used for training and temporally untrimmed

validation videos are more representative for the test set. However; training only on

temporally trimmed videos is insufficient for validation performance.

The upper bound on RBF kernel ELM is still lower than mean average precision

of linear ELM. Here, we see that linear ELM is both computationally efficient and

more successful with FV features.

Besides kernels, we evaluated random projections, which were introduced with

the initial version of ELM. The most crucial hyperparameter of random ELM is the

number of hidden nodes L. This parameter determines the dimensionality of the space

58

0 0.5 1 1.5 2

x 10
4

0.3

0.35

0.4

0.45

0.5

0.55

0.6

number of hidden nodes

m
A

P

Test
Validation

sig sin hardlim tribas radbas
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 activation function

m
A

P

Validation
Test

Figure 5.11. Random ELM. Left: The effect of number of hidden nodes L. Right:

The effect of activation function (sigmoid, sine, hard-limit, triangular basis function,

radial basis function) (THUMOS).

where the feature vectors are projected. We see from Figure 5.11 that the performance

increases with the number of hidden nodes up to a point. It is surprising to see an

increase after a certain point, but limitation of the memory resources made it impossible

to test further points.

Another setting for the random ELM is the activation function option. We test

with 5 different activation functions and see that sigmoid is suitable for our problem.

When Figures 5.10 and 5.11 are viewed, it can be seen that ELM with kernels

outperform random projections consistently.

Window

50 100 150 200 250

Wave
Point
Clap

Crouch
Jump
Walk
Run

Shake Hands
Hug
Kiss

Fight
NONE 0.07

0.075

0.08

0.085

0.09

0.095

0.1

0.105

Seq 7Seq 5

Frame
200 400 600 800 1000 1200

Wave
Point
Clap

Crouch
Jump
Walk
Run

Shake Hands
Hug
Kiss

Fight
NONE

Seq 7Seq 5

Figure 5.12. Left: Confidence scores. Right: Predictions (yellow) and ground truth

(brown) (ChaLearn).

59

predicted label

tr
ue

 la
be

l

Wave
Point
Clap

Crouch
Jump
Walk
Run

Shake Hands
Hug
Kiss

Fight
NONE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 5.13. Left: Confusion matrix (ChaLearn).

5.9. Results

On ChaLearn LAP 2014 Track 2 dataset, we obtain 36.86% Jaccard index by using

window-level classification and linear ELM with regularization parameter CELM = 0.3.

We reduce each descriptor to half the size by PCA and use a GMM with 256 compo-

nents. The normalized Fisher vectors for MBH, HOG and HOF are concatenated. The

predictions and confidence scores are shown in Figure 5.12. Apparently, the second

test video is much harder than the first.

The confusion matrix for ChaLearn dataset is presented in Figure 5.13. The

null class is both hard to learn and it creates unbalance in the number of instances.

Many false negatives are assigned to “walk” class and it is the other class which creates

unbalance. Run class is relatively more successful.

predicted label

tr
ue

 la
be

l

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

predicted label

tr
ue

 la
be

l

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.14. Confusion matrices for THUMOS 2014 (left) and UCF101 (right).

60

On THUMOS 2014 dataset, concatenating MBH, HOG, HOF, RGBH and HSVH

features, we get our best result on the test set, which is 63.37% mean average precision.

The confusion matrix for the classification with linear ELM is presented in Figure 5.14.

Two most confused class pairs are “front crawling” and “breast stroke”, which are two

different swimming styles; and “drumming” and “playing tabla”, which are two similar

instruments.

On UCF101 dataset, we get an overall accuracy of 84.49% by using FV represen-

tation of MBH, HOG, HOF and trajectory descriptors. The confusion matrix for the

classification with linear ELM is presented in Figure 5.14. This performance is much

higher than that of THUMOS 2014 because the problem is easier. Training set is more

representative of the test set since all the videos are pre-segmented in UCF. There are

no irrelevant frames within a video.

Our results show that our pipeline yields competitive performances in recent

challenging datasets. In the next chapter, we conclude our work and state possible

improvements that would help increase the performance in action and event recognition

from video.

61

6. CONCLUSION

In this study, we applied a novel methodology to recent and very challenging

action recognition datasets. We extract improved trajectory features and MBH, HOG,

HOF descriptors along trajectories. We apply separate Fisher vector encoding for each

descriptor type and use extreme learning machines with linear kernel for multi-class

classification.

We achieve 84.49% and 63.37% recognition performances with our approach on

101- and 102- class action classification problems, and 36.86% on an 11-class action de-

tection problem on UCF101, THUMOS 2014 and ChaLearn LAP 2014 Track 2 datasets,

respectively.

Our experiments involve analysis of various model parameters and methods, as

well as comparative investigations with well-known approaches. Each building block

of our pipeline is examined in detail with explanations to the results.

6.1. Remarks

Among descriptor types in improved trajectory features, motion boundary his-

tograms are more successful in action representation, since they are more robust to

camera motion. The combination of all descriptor types yields the best results, cover-

ing both motion and appearance information.

Mid-level features that we propose are not usable alone, but they carry comple-

mentary information. We apply some pre-trained detectors for face, upper body, eye

pair, left eye, right eye and profile, as well as HOG person detector on several frames of

each video. This feature extraction about body parts is simple and should be improved

to contribute to the overall performance. Colors histograms averaged over a video can

help action recognition by providing context-related information of the scene.

62

Fisher vector encoding consistently outperforms bag of features encoding for all

three types of improved trajectory descriptors. Since FV uses Gaussian mixture model

clustering, it encodes first and second order statistics of the set of descriptors. On the

other hand, BOF uses k-means; therefore, considers only zero-order statistics. Fisher

vector representation can be successfully used with extreme learning machines with

linear kernels.

Extreme learning machines outperform support vector machines in our experi-

ments. Our results show that ELM is a viable alternative to the commonly used SVM,

especially with respect to the reduced training times. For limited training resources,

ELM makes it possible to evaluate more feature combinations compared to SVM, which

typically requires extensive parameter optimization [79].

In the context of action spotting, window-level action classification is more fa-

vorable than frame-level classification in terms of both reduced number of instances

and performance. Window-level classification provides implicit incorporation of tem-

poral information, whereas if frame-level classification is used, one should apply post-

processing on the predictions to improve the results. A post-processing step, such as

median filtering, takes into account the assumption that the actions in neighboring

frames would not have abrupt changes.

In Fisher vector encoding, the reduced dimensionality D of local descriptors and

the number of Gaussian mixture model components K both determine the complexity

of the system. Increasing these parameters after a certain value results in suffering from

curse of dimensionality. Hence, these parameters should be determined depending on

the scale of the problem. However, our experiments show that the performance does not

change significantly provided these parameters are set in a reasonable range, because

Fisher vector encoding, the improvement of the estimation of the underlying dictionary

is not crucial.

Extreme learning machines with kernels outperform random projections on our

task. Sigmoid is a convenient choice for nonlinear activation function in ELM with

63

random projections. The regularization parameter in kernel ELM and the number of

hidden nodes in random ELM are complexity parameters, which should be optimized

upon validation.

6.2. Future Work

Possible improvements include a more sophisticated body parts tracker and ad-

ditional treatment of the mid-level features before simple concatenation to the FV.

These features are different in nature and may not be directly compatible with FV for

feature-level fusion.

In a future work, recently popular convolutional neural network features can be

used as appearance features and can be combined with the motion features. Ima-

geNet [80] dataset has also some classes in common with UCF101. These data can be

used for cross-dataset experiments.

The THUMOS 2014 challenge setup contains background videos, which are not

from any of the 101 classes. In a later study, such videos can be used to train an

improved garbage class detector, as well as for temporal segmentation of actions.

To deal with the rare classes, the number of training instances can be increased

by sampling sub-windows from training intervals. ChaLearn is an unbalanced dataset

in terms of class distributions; therefore, it is important to avoid one class dominating

others. A way to achieve this is to increase the training samples of the rare classes.

One problem with ChaLearn dataset may be that some action classes may have a

performance duration less than the tracking time for trajectories. In this case, actions

represented by shorter trajectories cannot be learned properly. This is observed when

predictions are visualized over the test videos. To solve this issue, the number of frames

to track each point should be set upon optimization on validation videos.

Compared to UCF101 and THUMOS 2014, ChaLearn is simpler in terms of the

64

video content. We should be able to successfully detect and track humans in ChaLearn.

A possible future direction would be modeling the background and capturing fore-

ground objects. Hence, more specific features, which may not generalize for large-scale

problems, can be extracted for this problem.

We conclude with the remark that ELM classifier can be improved by ensem-

ble methods such as using multiple subsets of training in order to avoid over-fitting.

Additionally, instead of minimizing the squared loss over the whole training set, a re-

laxation of the cost function that utilizes a soft-margin like support vector machines

can be explored.

65

REFERENCES

1. Laptev, I., M. Marszalek, C. Schmid and B. Rozenfeld, “Learning Realistic Hu-

man Actions from Movies”, IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 1–8, 2008.

2. Chaaraoui, A. A., P. Climent-Pérez and F. Flórez-Revuelta, “A Review on Vision

Techniques Applied to Human Behaviour Analysis for Ambient-assisted Living”,

Expert Systems with Applications , Vol. 39, No. 12, pp. 10873–10888, 2012.

3. Khosla, A., R. Hamid, C.-J. Lin and N. Sundaresan, “Large-Scale Video Sum-

marization Using Web-Image Priors”, IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2013.

4. Shapovalova, N., C. Fernández, F. Roca and J. Gonzàlez, “Semantics of Human

Behavior in Image Sequences”, A. A. Salah and T. Gevers (Editors), Computer

Analysis of Human Behavior , pp. 151–182, Springer London, 2011.

5. Delaitre, V., I. Laptev and J. Sivic, “Recognizing Human Actions in Still Images:

A Study of Bag-of-Features and Part-based Representations”, British Machine

Vision Conference (BMVC), 2010.

6. Yao, B., X. Jiang, A. Khosla, A. L. Lin, L. J. Guibas and L. Fei-Fei, “Action Recog-

nition by Learning Bases of Action Attributes and Parts”, International Conference

on Computer Vision (ICCV), 2011.

7. Raja, K., I. Laptev, P. Pérez and L. Oisel, “Joint Pose Estimation and Action

Recognition in Image Graphs.”, ICIP , pp. 25–28, IEEE, 2011.

8. Sadanand, S. and J. J. Corso, “Action Bank: A High-Level Representation of

Activity in Video”, IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2012.

66

9. Park, A.-Y. and S.-W. Lee, “Gesture Spotting in Continuous Whole Body Action

Sequences Using Discrete Hidden Markov Models”, Gesture in Human-Computer

Interaction and Simulation, Vol. 3881 of Lecture Notes in Computer Science, pp.

100–111, Springer Berlin Heidelberg, 2006.

10. Derpanis, K., M. Sizintsev, K. Cannons and R. Wildes, “Efficient Action Spotting

Based on a Spacetime Oriented Structure Representation”, IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 1990–1997, 2010.

11. Yoon, S. M. and A. Kuijper, “Human Action Recognition Based on Skeleton Split-

ting”, Expert Systems with Applications , Vol. 40, No. 17, pp. 6848–6855, 2013.

12. Schuldt, C., I. Laptev and B. Caputo, “Recognizing Human Actions: A Local

SVM Approach”, International Conference on Pattern Recognition (ICPR), Vol. 3

of ICPR ’04 , pp. 32–36, IEEE Computer Society, 2004.

13. Blank, M., L. Gorelick, E. Shechtman, M. Irani and R. Basri, “Actions as Space-

Time Shapes”, IEEE International Conference on Computer Vision (ICCV), pp.

1395–1402, 2005.

14. Rodriguez, M., J. Ahmed and M. Shah, “Action MACH A Spatio-Temporal Maxi-

mum Average Correlation Height Filter for Action Recognition”, IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pp. 1–8, 2008.

15. Liu, J., Y. Yang and M. Shah, “Learning Semantic Visual Vocabularies Using Dif-

fusion Distance”, IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 461–468, 2009.

16. Marszalek, M., I. Laptev and C. Schmid, “Actions in Context”, IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pp. 2929–2936, 2009.

17. Reddy, K. and M. Shah, “Recognizing 50 Human Action Categories of Web

Videos”, Machine Vision and Applications , Vol. 24, No. 5, pp. 971–981, 2013.

67

18. Kuehne, H., H. Jhuang, E. Garrote, T. Poggio and T. Serre, “HMDB: A Large

Video Database for Human Motion Recognition”, IEEE International Conference

on Computer Vision (ICCV), 2011.

19. Kliper-Gross, O., T. Hassner and L. Wolf, “The Action Similarity Labeling Chal-

lenge”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 34,

No. 3, pp. 615–621, 2012.

20. Soomro, K., A. Roshan Zamir and M. Shah, “UCF101: A Dataset of 101 Human

Actions Classes From Videos in The Wild”, CRCV-TR-12-01 , 2012.

21. Strassel, S., A. Morris, J. Fiscus, C. Caruso, H. Lee, P. Over, J. Fiumara, B. Shaw,

B. Antonishek and M. Michel, “Creating HAVIC: Heterogeneous Audio Visual In-

ternet Collection”, Proceedings of the Eight International Conference on Language

Resources and Evaluation (LREC’12), European Language Resources Association

(ELRA), 2012.

22. Jiang, Y.-G., J. Liu, A. Roshan Zamir, G. Toderici, I. Laptev, M. Shah and

R. Sukthankar, “THUMOS Challenge: Action Recognition with a Large Number

of Classes”, http://crcv.ucf.edu/THUMOS14/, 2014.

23. Chaquet, J. M., E. J. Carmona and A. Fernández-Caballero, “A Survey of Video

Datasets for Human Action and Activity Recognition”, Computer Vision and Im-

age Understanding , Vol. 117, No. 6, pp. 633 – 659, 2013.

24. Laptev, I., “On Space-Time Interest Points”, International Journal of Computer

Vision, Vol. 64, No. 2-3, pp. 107–123, 2005.

25. Wang, H., A. Kläser, C. Schmid and C.-L. Liu, “Dense Trajectories and Motion

Boundary Descriptors for Action Recognition”, International Journal of Computer

Vision, Vol. 103, No. 1, pp. 60–79, 2013.

26. Wang, H. and C. Schmid, “Action Recognition with Improved Trajectories”, IEEE

68

International Conference on Computer Vision (ICCV), 2013.

27. Kläser, A., M. Marsza lek and C. Schmid, “A Spatio-Temporal Descriptor Based on

3D-Gradients”, British Machine Vision Conference (BMVC), pp. 995–1004, 2008.

28. Scovanner, P., S. Ali and M. Shah, “A 3-Dimensional SIFT Descriptor and Its Ap-

plication to Action Recognition”, ACM International Conference on Multimedia,

pp. 357–360, 2007.

29. Dalal, N., B. Triggs and C. Schmid, “Human Detection Using Oriented Histograms

of Flow and Appearance”, European Conference on Computer Vision (ECCV),

Vol. 3952 of Lecture Notes in Computer Science, pp. 428–441, Springer Berlin

Heidelberg, 2006.

30. Liu, J., B. Kuipers and S. Savarese, “Recognizing Human Actions by Attributes”,

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3337–

3344, 2011.

31. Zhu, J., B. Wang, X. Yang, W. Zhang and Z. Tu, “Action Recognition with Ac-

tons”, IEEE International Conference on Computer Vision (ICCV), 2013.

32. Wang, L., Y. Qiao and X. Tang, “Motionlets: Mid-level 3D Parts for Human Mo-

tion Recognition”, IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 2674–2681, 2013.

33. Wang, H., M. M. Ullah, A. Kläser, I. Laptev and C. Schmid, “Evaluation of Local

Spatio-Temporal Features for Action Recognition”, British Machine Vision Con-

ference (BMVC), 2009.

34. Shugao Ma, N. I.-C., Jianming Zhang and S. Sclaroff, “Action Recognition and Lo-

calization by Hierarchical Space-Time Segments”, IEEE International Conference

on Computer Vision (ICCV), 2013.

69

35. Oneata, D., J. Verbeek and C. Schmid, “Action and Event Recognition with Fisher

Vectors on a Compact Feature Set”, IEEE International Conference on Computer

Vision (ICCV), pp. 1817–1824, 2013.

36. Peng, X., C. Zou, Y. Qiao and Q. Peng, “Action Recognition with Stacked Fisher

Vectors”, European Conference on Computer Vision (ECCV), Vol. 8693 of Lecture

Notes in Computer Science, pp. 581–595, Springer International Publishing, 2014.

37. Yang, X. and Y. Tian, “Action Recognition Using Super Sparse Coding Vector with

Spatio-Temporal Awareness”, Europen Conference on Computer Vision (ECCV),

Vol. 8690 of Lecture Notes in Computer Science, pp. 727–741, Springer Interna-

tional Publishing, 2014.

38. Perronnin, F., J. Sánchez and T. Mensink, “Improving the Fisher Kernel for Large-

Scale Image Classification”, European Conference on Computer Vision (ECCV),

2010.

39. Wang, H. and C. Schmid, “LEAR-INRIA Submission for the THUMOS Work-

shop”, ICCV Workshop on Action Recognition with a Large Number of Classes ,

2013.

40. Huang, G.-B., H. Zhou, X. Ding and R. Zhang, “Extreme Learning Machine for

Regression and Multiclass Classification”, IEEE Transactions on Systems, Man,

and Cybernetics, Part B , Vol. 42, No. 2, pp. 513–529, 2012.

41. Varol, G. and A. A. Salah, “Extreme Learning Machine for Large-Scale Action

Recognition”, ECCV Workshop on Action Recognition with a Large Number of

Classes , 2014.

42. Varol, G. and A. A. Salah, “Extreme Learning Machine for Large-Scale Action

Recognition on Temporally Untrimmed Videos”, submitted for publication.

43. Shi, F., E. Petriu and R. Laganiere, “Sampling Strategies for Real-Time Action

70

Recognition”, IEEE Computer Vision and Pattern Recognition (CVPR), pp. 2595–

2602, 2013.

44. Isard, M. and A. Blake, “CONDENSATION—Conditional Density Propagation

for Visual Tracking”, International Journal of Computer Vision, Vol. 29, No. 1,

pp. 5–28, 1998.

45. Dalal, N. and B. Triggs, “Histograms of Oriented Gradients for Human Detection”,

IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR), Vol. 2, pp. 886–893, 2005.

46. Lucas, B. D. and T. Kanade, “An Iterative Image Registration Technique with an

Application to Stereo Vision”, Proceedings of the 7th International Joint Confer-

ence on Artificial Intelligence, Vol. 2, pp. 674–679, Morgan Kaufmann Publishers

Inc., 1981.

47. Shi, J. and C. Tomasi, “Good Features to Track”, IEEE Computer Society Con-

ference on Computer Vision and Pattern Recognition (CVPR), pp. 593–600, 1994.

48. Farnebäck, G., “Two-Frame Motion Estimation Based on Polynomial Expansion”,

Image Analysis , Vol. 2749 of Lecture Notes in Computer Science, pp. 363–370,

Springer Berlin Heidelberg, 2003.

49. Bradski, G., “The OpenCV Library”, Dr. Dobb’s Journal of Software Tools , 2000.

50. Brox, T. and J. Malik, “Large Displacement Optical Flow: Descriptor Matching

in Variational Motion Estimation”, IEEE Transactions on Pattern Analysis and

Machine Intelligence, Vol. 33, No. 3, pp. 500–513, 2011.

51. Jiang, Y.-G., Q. Dai, X. Xue, W. Liu and C.-W. Ngo, “Trajectory-Based Mod-

eling of Human Actions with Motion Reference Points”, European Conference on

Computer Vision (ECCV), Vol. 7576 of Lecture Notes in Computer Science, pp.

425–438, 2012.

71

52. Tamrakar, A., S. Ali, Q. Yu, J. Liu, O. Javed, A. Divakaran, H. Cheng and H. Sawh-

ney, “Evaluation of Low-Level Features and Their Combinations for Complex Event

Detection in Open Source Videos”, IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), pp. 3681–3688, 2012.

53. Bay, H., A. Ess, T. Tuytelaars and L. V. Gool, “Speeded-Up Robust Features

(SURF)”, Computer Vision and Image Understanding , Vol. 110, No. 3, pp. 346 –

359, 2008.

54. Fischler, M. A. and R. C. Bolles, “Random Sample Consensus: A Paradigm for

Model Fitting with Applications to Image Analysis and Automated Cartography”,

Commun. ACM , Vol. 24, No. 6, pp. 381–395, 1981.

55. Jégou, H., M. Douze, C. Schmid and P. Pérez, “Aggregating Local Descriptors

into a Compact Image Representation”, IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pp. 3304–3311, 2010.

56. Perronnin, F. and C. Dance, “Fisher Kernels on Visual Vocabularies for Image

Categorization”, IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 1–8, 2007.

57. Jégou, H., F. Perronnin, M. Douze, J. Sánchez, P. Pérez and C. Schmid, “Ag-

gregating Local Image Descriptors into Compact Codes”, IEEE Transactions on

Pattern Analysis and Machine Intelligence, Vol. 34, No. 9, pp. 1704–1716, 2012.

58. Macqueen, J., “Some Methods for Classification and Analysis of Multivariate Ob-

servations”, In 5-th Berkeley Symposium on Mathematical Statistics and Probabil-

ity , pp. 281–297, 1967.

59. Dempster, A. P., N. M. Laird and D. B. Rubin, “Maximum Likelihood from In-

complete Data via the EM Algorithm”, Journal of the Royal Statistical Society,

Series B , Vol. 39, No. 1, pp. 1–38, 1977.

72

60. Verbeek, J. J., N. Vlassis and B. Kröse, “Efficient Greedy Learning of Gaussian

Mixture Models”, Neural Computation, Vol. 15, pp. 469–485, 2003.

61. Figueiredo, M. A. and A. Jain, “Unsupervised Learning of Finite Mixture Models”,

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 3,

pp. 381–396, 2002.

62. Joachims, T., “Text Categorization with Suport Vector Machines: Learning with

Many Relevant Features”, European Conference on Machine Learning (ECML),

pp. 137–142, Springer-Verlag, 1998.

63. Csurka, G., C. R. Dance, L. Fan, J. Willamowski and C. Bray, “Visual Catego-

rization with Bags of Keypoints”, Workshop on Statistical Learning in Computer

Vision, ECCV , pp. 1–22, 2004.

64. Jaakkola, T. and D. Haussler, “Exploiting Generative Models in Discriminative

Classifiers”, In Advances in Neural Information Processing Systems 11 , pp. 487–

493, MIT Press, 1998.

65. Cortes, C. and V. Vapnik, “Support-Vector Networks”, Machine Learning , Vol. 20,

No. 3, pp. 273–297, 1995.

66. Vapnik, V. N., The Nature of Statistical Learning Theory , Springer-Verlag New

York, Inc., 1995.

67. Alpaydin, E., Introduction to Machine Learning , The MIT Press, 2014.

68. Fan, R.-E., K.-W. Chang, C.-J. Hsieh, X.-R. Wang and C.-J. Lin, “LIBLINEAR:

A Library for Large Linear Classification”, Journal of Machine Learning Research,

Vol. 9, pp. 1871–1874, 2008.

69. Chang, C.-C. and C.-J. Lin, “LIBSVM: A Library for Support Vector Machines”,

ACM Transactions on Intelligent Systems and Technology , Vol. 2, pp. 27:1–27:27,

73

2011.

70. Huang, G.-B., Q.-Y. Zhu and C.-K. Siew, “Extreme Learning Machine: Theory

and Applications”, Neurocomputing , Vol. 70, No. 1–3, pp. 489 – 501, 2006.

71. Minhas, R., A. Baradarani, S. Seifzadeh and Q. J. Wu, “Human Action Recognition

Using Extreme Learning Machine Based on Visual Vocabularies”, Neurocomputing ,

Vol. 73, No. 10–12, pp. 1906 – 1917, 2010.

72. Iosifidis, A., A. Tefas and I. Pitas, “Regularized Extreme Learning Machine

for Multi-View Semi-Supervised Action Recognition”, Neurocomputing , Vol. 145,

No. 0, pp. 250 – 262, 2014.

73. Viola, P. and M. Jones, “Rapid Object Detection Using a Boosted Cascade of

Simple Features”, IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR), Vol. 1, pp. I–511–I–518, 2001.

74. Escalera, S., X. Baro, J. Gonzalez, M. A. Bautista, M. Madadi, M. Reyes, V. Ponce,

H. J. Escalante, J. Shotton and I. Guyon, “ChaLearn Looking at People Challenge

2014: Dataset and Results”, ChaLearn Looking at People Workshop, 2014.

75. Sanchez, D., M. A. Bautista and S. Escalera, “HuPBA 8k+: Dataset and ECOC-

GraphCut Based Segmentation of Human Limbs”, Neurocomputing , Vol. 150,

No. A, pp. 173–188, 2015.

76. Peng, X., L. Wang, Z. Cai and Y. Qiao, “Action and Gesture Temporal Spot-

ting with Super Vector Representation”, ChaLearn Looking at People Workshop,

ECCV , Vol. 8925 of Lecture Notes in Computer Science, pp. 518–527, 2014.

77. Jain, M., J. van Gemert and C. G. M. Snoek, “University of Amsterdam at THU-

MOS Challenge 2014”, ECCV Workshop on Action Recognition with a Large Num-

ber of Classes , 2014.

74

78. Oneata, D., J. Verbeek and C. Schmid, “The LEAR Submission at THUMOS

2014”, ECCV Workshop on Action Recognition with a Large Number of Classes ,

2014.

79. Van de Sande, K., T. Gevers and C. Snoek, “Accelerating Visual Categorization

with the GPU”, K. Kutulakos (Editor), Trends and Topics in Computer Vision,

Vol. 6554 of Lecture Notes in Computer Science, pp. 436–449, Springer Berlin

Heidelberg, 2012.

80. Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg and L. Fei-Fei, “ImageNet

Large Scale Visual Recognition Challenge”, arXiv:1409.0575, 2014.

