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B.S. Computer Engineering, Boğaziçi University, 2007
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ABSTRACT

CAREACT: AN ADAPTIVE AND CONTEXT AWARE

FRAMEWORK FOR ANOMALY DETECTION IN AMBIENT

ASSISTED LIVING

In this thesis, we analyzed current trends and challenges in ambient assisted living

environments and deduced that there is a need for a monitoring system that incorporates

existing telemonitoring concepts to activities of daily living recognition systems in a way

that is easy to integrate, requires little or no maintenance after deployment and is easy to

modify whenever needed. To address this need, we present CAREACT, an ambient assisted

living system which monitors daily lives of inhabitants for anomaly detection in real-time

with a set of features supported by state of the art literature, that have not been combined

in a single system up to date: interoperability, rule based pattern detection, adaptivity and

analyzability. CAREACT is built on complex event processing technology which has built-

in support for rule based pattern detection and interoperability that works in real-time under

heavy load. In this work, we also present a new methodology, called future events, that

changes the paradigm of processing the time windows within patterns in a way that it takes

constant time to process time windows regardless of their size. We implemented CAREACT

and integrated it with one of the existing activities of daily living systems in our testbed

environment to show that the proposed architecture is applicable and indeed it increases the

efficiency of the anomaly detection process.
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ÖZET

CAREACT: ÇEVRE DESTEKLİ YAŞAM ALANLARINDA NORMAL

DIŞI DURUM YAKALAMA İÇİN UYARLANABİLİR VE BAĞLAM

DUYARLI BIR ÇATKI

Bu çalışmada, ortam destekli yaşam çevrelerinde mevcut eğilimler ve zorluklar analiz

edilmiş ve günlük yaşam algılama sistemlerini uzaktan izleme konusundaki kavramlarla

uyumlu çalışacak, çabuk entegre edilebilir, bakımı ve geliştirilmesi kolay bir izleme siste-

mine ihtiyaç duyulduğu sonucuna varılmıştır. Bu gereksinimi karşılayabilmek adına geliştir-

diğimiz, ortam sakinlerinin günlük yaşamlarını izleyip olağandışı gelişmeleri gerçek za-

manlı olarak algılayabilen CAREACT sistemi bu güne kadar bir arada görülmemiş özellikleri

bünyesinde barındırmaktadır. Bu özellikler arasında birlikte çalışabilirlik, kural tabanlı olay

örgüsü algılama, analiz edilebilirlik ve uyarlanabilirlik bulunmaktadır. CAREACT üzerine

inşa edildiği karmaşık olay işleme teknolojisinin kural tabanlı olay örgüsü algılama, gerçek

zamanlı çalışma ve analiz edilebilirlik yeteneklerine tamamıyla sahip olup yoğun yük altında

başarılı bir biçimde çalışabilmektedir. Bu tez çalışmasında ayrıca son derece yenilikçi bir

yaklaşım olan “Gelecek Olaylar” kavramı üzerinde de durulmaktadır. “Gelecek Olaylar”

yaklaşımı zaman kısıtı işleme modelini değiştirmektedir ve bu sayede ilgili kısıtları işleme

süresi sabit zamanlı olarak gerçekleşmektedir. CAREACT sistemini geliştirip test merkez-

imizdeki mevcut izleme sistemlerinden birine entegre ederek, önerilen mimarinin uygulan-

abilir olduğunu ve olağandışı etkinlikleri algılama yetisini kayda değer bir şekilde artırdığını

göstermiş bulunmaktayız.
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1. INTRODUCTION

With the elderly population ratio increasing throughout the world, one of the main

challenges of the developed countries is to reduce healthcare costs while maintaining the

quality of the healthcare [1]. One of the paradigms to address this challenge is called ambi-

ent assisted living (AAL). This approach allows elderly to live independently at home longer

and centralizes the process of caregiving by continuously monitoring the living environ-

ment with sensory systems, for the purpose of detecting and acting on exceptional cases via

anomaly detection systems and finally assisting residents in their regular lives by recognizing

Activities of Daily Living (ADL) [2].

Current AAL literature covers several enabling technologies including telemonitoring

and ADL recognition. In telemonitoring, the main purpose is to monitor inhabitants of an

AAL environment continuously by multi-modality of sensors [3, 4] and detect anomalies

by finding patterns within this data [5–7] to provide services like heartrate monitoring and

reminder generation. Sensor data is also processed by ADL recognition systems to create

higher level information of human activities [8, 9], which enable broader range of applica-

tions like cognitive assistance and human environment interaction as well as anomaly de-

tection. In ADL recognition context, the anomaly detection is either matching a pattern of

activities or detecting a single activity like falling for elderly, which attract significant re-

search effort at present [10, 11] while the former is often overlooked in ADL-centric work.

Another aspect of anomaly detection, that is also overlooked in ADL-centric work and to

some extent in telemonitoring, is the creation of automatic or semi-automatic reactions on

matched patterns. While there is a large variation on the detection, reaction and learning ca-

pabilities of the existing monitoring systems, the current literature lacks a holistic study on

reacting against detected patterns through a generic anomaly detection system which works

on both sensor and activity data (See Figure 1.1). In the following paragraphs, we describe

the current challenges for making AAL environments more efficient from the anomaly de-

tection perspective and present a mapping between the challenges and the existing features
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Figure 1.1. A ”full” monitoring system where a typical monitoring system consists of a

subset of the modules depicted above.

in the literature.

The first challenge is becoming aware of the context. A very simple example for the

importance of the context is lying on the bed at midnight vs lying on the kitchen floor at

noon. Without the context information of the place and the time of the lying activity these

two cases are indistinguishable. Furthermore, there might be more than one context in a

smart home. It is inefficient to create anomaly detection systems for each and every of

them while a centralized approach offers not only detecting anomalies that happen within

one context but also detecting those that span over more than one context. An example of

such an anomaly is taking a shower vs. taking a shower after firing the kitchen stove while

preparing the breakfast. Again while the former scenario is perfectly normal, the latter might

be a possible cognitive disorder of an Alzheimer patient and without the context information

from the both contexts they are indistinguishable from one another. An anomaly detection
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system should be able to fuse data from wide variety of computation subsystems including

sensors, smartphone, ADL-recognition systems. An important consideration for this type of

system is that it is expected to work in (soft) real-time to be effective [1] and usually having a

higher quality of contextual information degrades system performance because it is typically

achievable by increasing the number of sensory and/or ADL recognition systems. Moreover,

increasing the number of the monitored AAL environments that is served by one such system

will decrease the service costs of the system, which puts more burden on the performance

requirements of the system.

The second challenge arises from the human factor in the design of the anomaly detec-

tion patterns. The quality of the anomaly detection pattern is prone to mistakes, misleading

assumptions and so on [12]. While some of the problems created by such factors are identifi-

able before the deployment by manual validation, testing or simulation, some of the problems

might be missed due to the infrequency of the problem or the differences between the test-

ing environment and the actual environment. To identify these problems, the performance

of the anomaly detection patterns needs to monitored in the AAL environment, the flawed

patterns needs to be fixed and redeployed until they are performing reasonably well for their

respective anomaly pattern.

The next challenge is handling the inter-personal and intra-personal variations while

executing the same task. While some of the activities are almost universal like sleeping,

some of the activities have high variation that might affect the anomaly detection process

like taking medication via pills or injection. An anomaly detection system should provide

the ability of tailoring the anomaly detection patterns to the monitored individuals. The

differences are not limited to monitored individuals. There is also a high variation in the

layouts of the apartments, in the deployed set of sensors and communication devices in

the monitoring environments [13]. The anomaly detection patterns should be customizable

depending on the capabilities of the smart home instance.

The final challenge is the extensibility of an anomaly detection system. The patterns in

the anomaly detection system should not break when a new recognition capability is added to

the monitoring environment and furthermore the new recognition capabilities should be used
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Figure 1.2. Dependencies of the current challenges to the features proposed by the existing

literature: Rule Based Pattern Detection (RBPD), interoperability, adaptivity, analyzability

for updating the old ones as well as creating the new ones. Assume a new smart pill bottle is

added to the monitoring environment that had pill forgetting detection pattern in place. The

system should continue functioning without any changes and should allow improvements for

the pill forgetting anomaly detection by incorporating the new capability.

We have identified four features that address the challenges described above in the

current literature: rule based pattern detection [14], interoperability [7], adaptivity [10] and

analyzability [15]. We have visualized the relationship of these challenges to the features

in Figure 1.2. While partial combinations of these four features which address a subset of

the mentioned challenges existed in the current literature, there is no single framework that

supports all these features.

Interoperability support enables all modalities of sensory and ADL systems to coexist

in the same environment. System experts, who design anomaly detection patterns, can fuse

data from multiple modalities to express a unified anomaly detection pattern, which is an im-
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provement over using a single modality. Rule based pattern detection gives system experts

the ability to fuse the data from any of the existing subsystems and contextual information

related to that subsystem in designing anomaly detection patterns. Furthermore, this fea-

ture together with interoperability also gives the system experts the flexibility of changing

existing anomaly detection patterns to match the variance of the deployed subsystems in a

given environment as well as creating new ones to extend existing environment with new

subsystems. While rule based pattern detection helps system experts in designing anomaly

detection patterns for different deployment environments, it offers very limited flexibility to

handle parameters of these patterns, like threshold values, that vary from resident to resident

and evolve through time. With such adaptivity, designing anomaly detection patterns that ad-

just to these varying parameters becomes possible. Additionally, one can define the concept

of analyzability as keeping track of data generated by sensory and ADL systems as well as

generated reactions. Such data offers a chance of analysis for the system experts to measure

performance of existing anomaly detection patterns and to find new anomalies that exist in

the context of the system.

In this work, we present CAREACT, a novel AAL framework for monitoring mul-

tiple number of AAL environments that supports all these four core features. CAREACT

is a framework under which various sensory and ADL recognition systems coexist and the

data of those systems are fused by a pattern detection engine to deduce anomalies and to

automatically create appropriate reactions on such anomalies in real-time. To support all

these features with a solid performance while processing massive amounts of data gener-

ated by the subsystems of the CAREACT system, we employ the Complex Event Processing

(CEP) [16] architecture. The CEP architecture supports working in real-time under heavy

load conditions while providing inherent support for interoperability and rule based pattern

detection.

We also make a contribution to the CEP literature in our work by including a novel

mechanism called Future Events, that addresses a well-known challenge within the CEP

architectures. In AAL systems, it is typical to observe anomaly patterns spanning a time

window higher than minutes. Nevertheless, current literature is limited in processing such

time windows under heavy load due to buffering problems [17–21]. With Future Events, it
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becomes possible to process time windows of higher orders.

We implement CAREACT in our testbed laboratory environment [22,23] and show that

it works in a real life setting. We also demonstrate that CAREACT supports both adaptivity

and analyzability with experimental results.

The rest of the thesis is organized as follows. In Chapter 2, we discuss the state-

of-the-art AAL systems and CEP engines in more detail. We present the architecture of

CAREACT, details on the CAREACT engine and Future Events on Chapter 3. In Chapter 4,

we present our implementation in a real life setting as well as the validation of adaptivity

and analyzability of CAREACT. Finally, the conclusion, discussions and future directions

are presented in Chapter 5.
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2. Related Work

2.1. Ambient Assisted Living

There are many studies on telemonitoring in the context of AAL. We classified these

works into four groups on their support for interoperability and rule based pattern detection:

• without interoperability or rule based pattern detection support

• with rule based pattern detection support, without interoperability support

• with interoperability support, without rule based pattern detection support

• with both interoperability and rule based pattern detection support

In the first group of studies, data integration model and rule based pattern detection

decision capability are either omitted or the details are not supplied. Lubrin et al. [15] and

Jiang et al. [24] propose a WSN based monitoring system where data is transferred to a

central station and written to a database. However, they do not present a way to act on

detected patterns. Zhang et al. [5] propose WSN based monitoring system where monitoring

information is presented to doctors for reviewing to decide on alerts. One of main goals

of monitoring in ambient assisted living environments is to detect emergencies and one of

these emergencies is fall incidents. In [11], Doukas et al. propose a system that uses a

multimodality of motion, audio and visual sensors on fall detection process. Naranjo et

al. [10] propose a telemonitoring system that also focuses on fall detection. Their work

supports adaptation by learning system parameters from working deployments and pushing

these parameters to all deployments via firmware updates.

In the second group of studies rule based pattern detection is addressed but interop-

erability is not. Lu et al. [25] proposes a middleware for telemonitoring applications that

have a standard interfaces in the sensor level up to the application layer. They propose two

approaches for reporting in sensor level: periodic or event based. Pattern detection is left to

developers to generate code customized to telemonitoring on top of their middleware where

each new case has to be coded from scratch. Huo et al. [26], propose a system that monitors
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elderly inhabitants in indoor and outdoor settings for activity and health state decisioning,

for emergency decisioning and alert generation purposes. In this work, sensor data are trans-

ferred using publicly available protocols such as GSM and Wi-Fi but no details on data

modeling are presented. They employ a decision making engine which does not have any

implementation or specification details. Ungureanu et al. [27], focus on fetal monitoring on

their work and they leave pattern detection process to telemedicine systems by integrating to

those systems.

In the third group of studies, data integration models are addressed, however rule based

pattern detection capabilities are either omitted or details are not presented. Corchado et

al. [7] describes a telemonitoring system built on top of SLYPH, a framework for light phys-

ical devices on service oriented architecture. This enables them to standardize interfaces

between heterogeneous sensors. In their architecture, human monitoring operators are the

main decisioning units. When a sensor detects an anomaly like falling, video/voice link is

set up between home and monitoring center and operators decide on the case. Liu et al. [4],

proposes a healthcare system, HealthKiosk, where they address data integration between data

centers and biomedical sensors. They propose a sensor proxy which collects sensor data and

correlates it with semantic information, like social security number, through a standard in-

terface called topic interface. Sensor proxy also employs event driven messaging engine and

a micro processing engine which supports simple operations like aggregation and transfor-

mation. Resulting pre-aggregated data is transferred to KioskKontroller, where the data is

monitored. Anomaly decision making is left to the human operators.

In the last group of studies, data integration models and rule based pattern detection

capabilities are both addressed. Mouttham et al. [14] propose an event driven data integration

model for telemonitoing purposes which employs a CEP based decision engine. With this

architecture they are able to flexibly integrate all building blocks, achieve context awareness,

real-time alert generations over application based architectures. They do not include an

analyzabiltiy capability or adaptivity capability in their system. Storf et al. [13] also present

an event driven approach, mainly for activity detection that has built-in anomaly detection

and alert generation capabilities. Their system focuses on adaptivity and real-time detection

of anomalies. They employ different types of approaches in activity recognition including
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Table 2.1. Summary of existing telemonitoring systems from interoperability, rule based

pattern detection, adaptivity and analyzability aspects

Interoperability
Rule Based

Adaptivity Analyzability
Pattern Detection

Huo [26] # !* # #

Ungureanu [27] # !* # #

Lubrin [15] # # # !***

Jiang [24] # # # !***

Zhang [5] # # # #

Doukas [11] ! # # #

Naranjo [10] # # ! #

Lu [25] # !** # #

Corchado [7] ! # # #

Liu [4] ! # # #

Mouttham [14] ! ! # #

Storf [13] ! ! !* #

Catarinucci [28] !** ! # !

CEP. They support adaptability by a trend calculator but do not specify the details, nor have

an analyzability capability. In [28], Catarinucci propose a context-aware and rule based

healthcare monitoring system for anomaly detection. Their system support interoperability

which is limited to sensory systems, rule based pattern detection and analyzability.

In Table 2.1, we summarized the existing telemonitoring systems. While every feature

is used by at least one existing telemonitoring system, there is no single telemonitoring

system that supports all four features. Furthermore, the works marked with * do not present

the details on how they support a given feature, the works marked with ** are either task or

system specific and hence are not suitable for generic usage. The works marked with ***

have a central database for analyzability support which can be thought as the simple version

of a knowledge base.

There are other studies that are also related to the monitoring in AAL environments.

In one of these studies, Szucs et al. [29] overview the importance of the data modeling in

remote monitoring environments. They compare the problem specific data model to the
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generic model and come to the conclusion that the former favors simplicity, integrity and the

performance whereas the latter favors reusability, integration and flexibility.

Human tracking is an important aspect of the AAL monitoring environments. On this

subject Ngai et al. [30] propose a prototype RFID based healthcare management system that

is tested by potential users of the system and confirmed the practical viability of the system.

On a related work, Toplan et al. [31], show that RFID based systems can track inhabitants of

an ambient assisted living environment when privacy is a concern.

Another aspect of the monitoring in AAL environments is recognizing activities of

daily living. To accomplish such goal, Quintas et al. propose an HMM based approach [32]

to detect human behaviours in the context of smart homes. Their approach employs hier-

chical models to detect human behaviours from low level sensor data. Chen at al., on the

other hand, propose a knowledge-driven approach [9], that is based on ontological mod-

elling and semantic reasoning which is orthogonal to statistical modelling. Tracking undis-

covered activities, is an important extension to activity recognition domain where current

literature primarily focuses on identifying preselected activities. To this end, Rashidi et al.

propose an automated approach [33], that track frequently repeated activities in daily living

by statistically clustering sequences of sensor events, using a voting multi Hidden Markov

Model(HMM) as the boosting mechanism.

2.2. Complex Event Processing Engines

CEP technology finds complex relations of events, time and historic/semantic informa-

tion while employing an event driven integration model [16]. It has advantages over database

driven pattern mining methodologies which has many conventional use cases in the litera-

ture [34]. The most important feature of CEP is that it performs well in real-time under

heavy load. Furthermore, CEP on top of an event driven architecture allows various different

sources of information on multiple modalities, including RFID readings, sensor readings,

detected activities and time, to be integrated as event sources and to be fused in the same

rule pattern. Such a feature hinders the creation of a more meaningful context information

and hence more accurate reactions. There are numerous use cases of CEP in the context of
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healthcare, like smart hospitals [35, 36], activity recognition [13] and e-health [14].

In order to present CEP literature in detail, initially we will present CEP terminology

that will be used in the context of this thesis. An event, also called as primitive event, is an

occurrence of change of data within a system. The event type is the semantic name of the

change. A parameter of an event is a component in the structure of an event that specifies the

properties of the change. A pattern is the correlation of events, time and semantic/historic

information. These patterns might include value based or temporal constraints. Value based

constraints are related to values of event parameters, whereas temporal constraints are related

to occurrence/non-occurrence of events within certain time windows. Matched patterns are

complex events. Decisions taken on these complex events are called actions. Finally, patterns

together with action(s) are called a scenario.

In this section, we will mainly focus on the aspect of processing temporal constraints

in CEP engines. Temporal constraints are implied by correlation operators. While there are

two main approaches, query based and GUI based, for defining patterns, we will stick to

naming convention of operators defined by the query based approach. These operators are

SEQ, AND, OR and NEGATION. All of the state-of-the-art engines support time window

based execution. While time windowed version of these operators might vary depending on

the engines, we will use the same name for both windowed and non-windowed version of

the same operator.

These operators create complex events within patterns. While primitive events have

only one value as the timestamp, namely the occurrence timestamp, complex events have

at least two time stamps associated with them, which are the start timestamp and the end

timestamp. Start and end timestamps hold first and last matched primitive event times re-

spectively. If the matched events are also complex events, the process of holding timestamp

information becomes much more complicated [37]. In their work, White et al. tackle with

the problem of event ordering. If events are successfully ordered, then time window process-

ing and negation are almost simple boundary comparisons. However, they state that in order

to successfully achieve real ordering of events one must store complete history of events.



12

State-of-the-art CEP engines have different solutions, petri nets, trees, NFAs to handle

scenarios with temporal constraints but they all employ some kind of buffering of events.

In their work [20], Adaikkalavan et al. propose the SnoopIB, which is a CEP engine that

differentiates point based semantics, which assumes an event has only occurrence time, from

interval based semantics, in which events have both a start time and end time, for temporal

constraint management and shows how these different semantics can yield different results.

They use event detection graph based execution where events are stored and different corre-

lation operators are applied on them using interval based semantics.

Wu et al. present SASE [17], which is a nondeterministic finite automaton (NFA)

based CEP engine that has five layers of processing in pattern matching: sequence scan and

construction (SSC), selection, windows, negation and transformation. In SSC layer, an NFA

based pattern matcher is applied to the event stream to find event sequences. These sequences

are intermediate results that are filtered by consequent processing layers. Selection layer

filters event sequences with parameter based constraints, whereas window layer applies its

filtering using temporal constraints. Finally negation layer filters sequences that include

negated events. Remaining sequences are converted to complex events by the transformation

layer. They also present a result where throughput decreases linearly with increasing window

size in temporal constraints.

In a more recent work, Demers et al. present Cayuga [21], a CEP engine that mainly

targets real-time stock trading. In Cayuga pattern detection rules are represented with a query

language, Cayuga Event Language, and transformed into an automaton at the time of exe-

cution. While there is no support for event negation, temporal constraints are resolved with

an operator called FOLD. The underlying processing mechanism stores a new state machine

instance for every event that do not change state of an existing state machine instance.

Another event processing language is EventScript [38]. The EventScript is an event

processing language that has reaction capabilities on matched patterns. They use regular ex-

pressions as the main computation paradigm to be more programmer friendly for the pattern

detection process. They do not present a way to tackle with the temporal constraints and

event negation.
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In a more specialized problem domain of managing RFID events, Welbourne et al.

present Cascadia [39], which uses a probabilistic model for processing events to handle noisy

data of RFID streams. They aim to decouple low-level RFID data from end user applications

by enabling developers to specify high-level events. They do not present a way to handle

temporal constraints or event negation in real-time.

On the same topic, Nie et al. [40], present a declerative Cleansing Language for Un-

reliable RFID Event Streams (CLUES) that enables RFID streams to be processed by CEP

engines directly. They propose a complex event processing paradigm that extends NFA based

CEP arhitectures. Like Cascadia, both temporal constraints and event negation are out of the

scope of this work.

Agrawal et al. present a query based event stream processing language [41] that sup-

ports event negation. They focus on defining a query evaluation model, related NFA and

analyzing its expressibility. They also do not present a way to process temporal constraints

in event streams.

Mei and Madden propose the ZStream [18], a tree based cep engine that supports

temporal constraints and event negation. In the tree, every leaf corresponds to events storage

areas whereas internal nodes correspond to operations. Events are stored in leaf nodes if

they satisfy value based constraints and are advanced to intermediate nodes if they satisfy

operator relations with the other connected leaf nodes. Temporal constraints are applied at

this stage by removing events that are outside the range of time windows. Such an evaluation

is done in rounds to decrease memory consumption.

In their three related works [19,42,43], Liu et al concentrate on processing nested pat-

tern queries. They support temporal constraints and event negation and search for patterns

on stored events with a mechanism to purge events that are outdated due to temporal con-

straints. The effect of increasing time window sizes on the performance of the system is not

presented in their work.

We present a summary of existing event processing techniques in Table 2.2. It should
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Table 2.2. Summary of existing CEP systems from the perspective of temporal constraint

and event negation support, the methodology to handle events and finally whether or not

they store events.

Temporal Constraint Event Negation Methodology Buffering

Adaikkalavan [20] ! ! Event Detection Graph !

Wu [17] ! ! NFA !

Demers [21] ! # NFA !

Cohen [38] # # Regular Expression #

Welbourne [39] # # Probabilistic Event Extractor #

Nie [40] # # Probabilistic Event Extractor #

Agrawal [41] # ! NFA #

Mei [18] ! ! Tree-based !

Liu [19, 42, 43] ! ! Nested Query Plan !

be noted that every engine that supports temporal constraints require events to be stored in

some manner before patterns are matched. However, storing the entire event history costs un-

bounded memory, whereas processing this history on every relevant event costs unbounded

CPU time. While unbounded CPU time is not acceptable for many application domains, the

real value of complex events lies on their availability in (near) real-time [44]. There is a

trade off between achieving full time window based execution or negation, which are actu-

ally temporal constraints, and working in (near) real-time. Because full time window based

execution requires complete history of events to be stored and processed which contradicts

with bounded execution time requirements of real-time processing.

In its essence, buffering creates two problems: memory management of finite but un-

bounded number of events to match a pattern and supporting (near) real-time execution.

There are also side problems that might come up depending on the execution strategy on the

CEP engine, namely, creating intermediate result sets that do not produce complex events.

These intermediate result sets are the complex events that are matched within a pattern, that

might or might not match the entire pattern. The problem with these intermediate result sets

are that they cost CPU time to calculate, eliminate, garbage collect and memory to store.

The engines that support full a spectrum of temporal constraint management, perform
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this task at the cost of additional CPU and memory usage. The negative consequence of these

costs is that they grow larger as the time window of temporal constraint gets larger. Buffered

events or aggregated intermediate results increase over time since they are not available for

purging due to increasing window size. This type of execution might work in real-time

under light load conditions or with relatively smaller time windows, typically in the order of

milliseconds or seconds. But in the AAL domain, there are cases where we are interested in

correlations of events that are minutes, hours or days apart. One of the challenges of using

CEP engines in telemonitoring scenarios is the lack of a more light-weight mechanism that

enables processing of simpler temporal constraints.

Other than temporal constraint approaches, Wu et al. [45] focus on reacting to matched

patterns. Their proposal employ a semantic repository where events are enriched with se-

mantic level information. This semantic repository is also used for changing semantic infor-

mation while reacting to events. This concept is a key milestone for achieving self adaptivity

on CEP engines.

In [12], Coffi and Marsala, present an adaptive framework for generic harmful situation

detection to mitigate errors created by the evolution of monitored environment over time.

They employ relational association rule mining and inductive logic programming together to

extract new knowledge from monitored environment, which in turn is used to adapt system

to the monitored environment. This study achieves adaptation to environmental changes over

time.
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3. CAREACT

In this chapter, we present CAREACT, a novel anomaly detection and ambient assis-

tance framework that incorporates telemonitoring concepts on multimodality of sensory and

ADL recognition systems with the additional support for interoperability, rule based pattern

detection, adaptivity and analyzability. Our main contribution arises from two facts where

the former is that no existing system in the literature supports such features in an all-in-one

manner, and the latter is that CAREACT applies telemonitoring concepts to multimodality

of both sensory and ADL recognition systems.

We will describe the architecture of CAREACT in Section 3.1 and the details of the

CAREACT Engine and its anomaly detection methodology in Section 3.2. Future Events,

our proposed mechanism to handle huge time windows, is presented in Section 3.2.1. Section

3.3 is dedicated to how CAREACT supports interoperability, rule based pattern detection,

adaptivity and analyzability.

3.1. Architecture of CAREACT

In this section, we present the architecture and the logical data flow indexed with their

transition sequence numbers in the CAREACT system (See Figure 3.1). In this architecture,

a sensor network constantly monitors daily lives of inhabitants (i) and transfers this raw

sensor data to ADL systems (ii). The details of how the data is collected and transferred to

ADL systems depend on the design of the integrated sensory systems and are out of the scope

of this work. Subsequently; activities including sitting, standing and cooking and abnormal

activities like falling are transformed into events (iii) and sent to the CAREACT engine (iv).

In case of communication failures, events that describe an emergency by itself, like falling,

are sent to an emergency center (v).

After successful delivery of events from a monitored home to the CAREACT engine

(iv), events are processed to find anomaly patterns and to create reactions for these patterns.

There are three types of external alert actions in our system. Most urgent and low false-
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Figure 3.1. The architecture of the CAREACT system and transition sequence table for the

logical data flow.
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positive rated alerts are Level 3 alerts and these are directly sent to emergency centers without

any human intervention (vi). Level 2 alerts are where human intervention is required to

double check the anomaly (vii). Operators decide on the type of these alerts, namely false-

positive, Level 3 or Level 1. The decision is also passed as an event to the CAREACT engine

(viii). Internal scenarios are created to handle this type of feedback events to update semantic

information store and/or generate Level 3 and Level 1 alert actions.

Level 1 actions are reminders and sanity checks. These type of actions generate an alert

to be sent back to the monitored inhabitant (ix). Typically a cell phone or a medical device

receives these alerts and notify the inhabitant (x). In case of sanity checks, the inhabitant is

asked for his/her response on the occured event (xi) and if exists (xii), inhabitant’s feedback

is sent back to the CAREACT engine again as an event (xiii,xiv). Both the presence and the

absence of the feedback event are processed in the CAREACT engine in internal scenarios

to update the semantic information store.

Throughout execution, events, feedback events and actions are logged into the knowl-

edge base after the identity information is anonymized (xv). This knowledge base is crucial

in the sense that system experts can evaluate the performance of the existing anomaly detec-

tion patterns (xvi) in order to generate novel and better fitting rules via data mining activities

(xvii).

3.2. CAREACT Engine

The CAREACT engine is a nondeterministic finite automaton (NFA) based CEP en-

gine that supports actions. Each scenario is a definition of a state machine where state tran-

sitions are triggered with incoming events, controlled with value based constraints and may

result in actions. Events are drawn from a queue to be executed against every state ma-

chine definition. A new state machine instance is created for an inhabitant from the state

machine definition whenever neccessary. If the type of the event does not exist in any of

the state transitions of the state machine instance, that event is skipped for that specific in-

stance. Otherwise, value based constraints of the outgoing transitions from the current state

are validated and if all validations of a transition are satisfied, then actions related to that
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transition are executed and the state information is updated. The action interface allows the

CAREACT engine to interact with both systems outside the engine and components inside

the engine. Examples of interacting with systems outside the CAREACT engine may include

calling a web service, running a relational operation on a database and creating a record in a

file system. An example of an internal action is creating a future event.
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Figure 3.2. The architecture of the CAREACT engine.

At this point, we will discuss the important design decision for the event processing

mechanism of the CAREACT engine and then we will continue describing the architecture

of the CAREACT engine. With current model, the only means of processing an event is

executing the event on the corresponding state machine instance or creating a new state ma-

chine instance if a corresponding one does not exist. There are no higher levels of processing

mechanisms or no intermediate results of any sort as opposed to the state of the art CEP en-

gines. Such an approach results in constant processing time for every event for every scenario

regardless of the complexity of the scenario or the history events executed earlier. While this

is clearly an advantage over the state of the art cep engines, such a performance gain comes

with a tradeoff. The approach increases memory consumption due to storing a state machine

instance for every inhabitant if they ever produce an event. As the second trade off, this

approach is not able to cope with the time based constraints without any additional layer

of processing. In a sense, this design separates time based constraints from the processing
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mechanism to provide constant time event processing performance. In this work we provide

a new mechanism to support time based constraint, called future events, that does not in-

crease complexity of processing events depending on the value of the time based constraint.

The methodology of handling time based constraints will be discussed shortly whereas the

implementation of future events will be discussed in detail in the next section.

The CAREACT engine utilizes a semantic information store which is proposed by

Wang et al. [36]. There are two interfaces of this semantic repository: Query, Update. Update

interface is implemented as an internal action in the CAREACT engine. Query interface is

integrated to be used in the validation of the value based constraints. Semantic data are

labeled within the engine. Whenever that label is used in a value based constraint, the engine

uses query interface to read the value of semantic data. Then the value based constraint is

executed with the queried value (Figure 3.2).

The CAREACT engine supports event negation and time window based execution with

a combination of future events and explicit scenario design. In Figure 3.3, implementation

of the scenario “Generate a Level 3 Alert if an inhabitant falls in stairs or falls elsewhere and

does not get back in the next inhabitant-specific time threshold” is presented. The scenario

starts with matching an instance of event type fall. If an event of the event type fall has

happened in stairs, the transition (fall,isStairs,Alert) will be executed, a Level 3 alert will be

generated and state information of this inhabitant will be updated as EMERGENCY. If the

fall event is not in the stairs then the transition (fall,~isStairs, FE) and as a result, a future

event action FE will be executed.

These relations are three tuples, such as the transition relation of (fall,~isStairs,FE).

The first component of the three tuple is the name of the event type to match, the second and

the third components are the name of the validation and the name of the action respectively.

Validation and action parameters are specified in the charts in Figure 3.3. ’~’ is used for

marking a negation in validation.

Validation is composed of three components called left value, compare operator and

right value. In this instance, left value is location parameter of the event type fall denoted by
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Figure 3.3. Event Negation with the CAREACT engine.

fall.location whereas right value is the string “stairs” which is deduced from the integrated

ADL system. Validation isStairs is defined as location parameter of the event fall to be in

“stairs”.

Action is composed of an action type and variable number of action parameters. In this

instance, action type is Future Event and parameters of the future event are ~standing and

inhabitantTime which is a label for inhabitant specific getting back time. These parameters

define the name and offset time of the event that will be scheduled respectively. Future time

of the event is calculated by adding an offset time to the current time relative to the time of

the executed action. Therefore, the resulting action is the creation of a future event that will

be scheduled after inhabitant specific time has elapsed after the execution of action with the

name ~standing.

Subsequently in the execution of the transition, the state of the inhabitant is updated to

FALL. The created future event action enqueues an instance of event ~standing to be executed
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after the duration of inhabitantTime into event queues by future event scheduler. Within that

time window, if an instance of event type standing is matched, the state machine will return to

state START. If the event ~standing is executed while the state is FALL, ~standing is matched

and the state information is updated as EMERGENCY after a Level 3 alert is generated.

3.2.1. Future Events

To address the challenge of processing temporal constraints with large time window

sizes, we present a new mechanism called Future Events. Future events use the action in-

frastructure of a CEP engine to mark a future point in time, which we refer as the ‘future

event time’. When the ’future event time’ arrives, a special type of event is created and fed

to the event queues of the CEP engine. The type and parameters of this event are specified

during the action configuration. When the action is triggered, an event instance is registered

in the future event store. We designed this mechanism to support only one event with the

same type and parameters. Multiple events with the same parameters and type are overwrit-

ten with a new future event time. We achieve this by storing events in key-value based hash

maps where a unique key is created from parameters and the type of the event to be created.

This design decision allows the CEP engine to bound the number of future events. After

being created, events are registered to future event registrar. This component is responsible

for managing uniqueness and staleness of events. The last component in the architecture is

the future event scheduler which creates events and enqueues them to event queues once the

future event time has been reached.

There are two main approaches for handling events that are registered to the future

event scheduler. The first one is maintaining a fully ordered list of events. Then the scheduler

can simply wait until the smallest future event time. When the time arrives, the event is

dequeued from the list and the corresponding event is enqueued into the event queues of the

CEP engine. Registering a new event corresponds to searching the right spot with binary

search and inserting the event in the correct queue position. The other approach is putting

all events into a pool and maintaining the smallest future event time. When the smallest

future event time arrives, the events scheduled to that time are removed from the pool and

are enqueued into queues of the CEP engine. Afterwards, the smallest future event time
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is recalculated. In other words, the event with the smallest future time is always searched.

Registering an event is equivalent to adding one more item to the pool.

Future Event
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Future Event
Schedular

Store FE

Poll FE

R
egister FE

Schedule FE

Future Event
Store

Figure 3.4. The components of the Future Events.

In our implementation, we have chosen a strategy in between these two approaches.

We defined time slices of fixed size and registered events to those time slices. We maintain

an ordered list of time slices. Within time slices, we search for the event with the smallest

future time. There are two reasons for selecting such strategy. The first one is for enabling

the CEP engine to relax the time that future event is created. By this relaxation, events from

the same time slice are created in the same execution cycle rather than waiting for the exact

time each event needs to be created. This is especially useful for scenarios where the time

constraints are on a higher order (e.g., days or longer) than the time slices. Such a feature

gives rise to the relief that the exact time within a time slice does not affect the logic of the

scenario. The other reason lies in the subtleties of wait mechanisms. There are two types of

wait mechanisms available. High resolution CPU intensive waits (i.e., busy waits) and lower

resolution non CPU intensive waits (i.e., sleep waits). This strategy allows the option of high

resolution waits within time slices for scenarios with hard real-time constraints.

Integration of Future Events with the CAREACT engine has two interfaces. The first

one is the registration of future events. This interface is integrated as an action to the CARE-

ACT engine. The second one is the scheduling of future events. This interface is integrated

with the event queue of the CAREACT engine. Whenever a new event is scheduled from the

Future Event Scheduler, it is directly enqueued in the CAREACT engine event queue. (See
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Figure 3.2).

3.3. Features supported by CAREACT

In this section, we will describe how the CAREACT supports the features that are

introduced in Section 1, namely: interoperability, rule based decision making, adaptivity and

analyzability, in more detail. We also discuss, factors that affect overall system performance

in related sections.

3.3.1. Interoperability

The architecture of CAREACT is built on the CEP technology over an event driven

architecture. This allows every submodule of the sensory system or the activity recognition

system to be integrated to our CAREACT architecture by implementing just one interface:

Event interface. Thus every submodule that implements an event interface are able to co-exist

in this framework and may be able to increase their accuracy by using the data generated by

other submodules.

In this type of interoperability where every submodule formats its data and sends it

to a central decisioning module, concurrency is an important factor that affects the overall

performance in monitoring systems. It might take different amounts of time to form an event

out of a real world phenomenon for different systems since each system might use different

mechanisms to observe, transmit and process real world data. Such a difference in the event

creation time means that the order of events in the real world can be different from the order

of events received by the CEP engine. On the other hand, performance of the anomaly

detection patterns that use more than one event source in the decision making process are

vulnerable to such factors because the CAREACT engine assumes in order delivery of events

for sequence calculation. One solution to avoid this problem is to buffer events before using

in the decision making process within the CEP engine, effectively resulting in a latency that

is equal to the maximum latency of all submodules.
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3.3.2. Rule Based Pattern Detection

The CAREACT engine is a rule based engine that supports creation of new rules or

modification of existing rules through a user interface. All rules are designed as state ma-

chines and deployed to the CAREACT engine where they start executing until a specified

end date is reached or indefinitely. An important aspect of this type of architecture is that it

supports forward compatibility. Integration of a new submodule does not affect the existing

rules and new rules can be generated for a new submodule after it is integrated.

Interoperability and rule based pattern detection collaboratively help us increase the

system efficiency by extending current system through adding other subsystems and chang-

ing the patterns that detect emergencies without modifying the behavior of the fall detection

system. For instance, if we integrate an RFID powered location service, we are able to use

locations of the inhabitants in anomaly detection pattern and skip the waiting time before

informing the emergency center if the location of fall is stairs.

3.3.3. Adaptivity

Our system employs two types of adaptivity: adaptation to differences between inhab-

itants and adaptation to changes through time. To achieve adaptivity, we store inhabitant

specific data in the semantic information store and use this data in the enrichment process.

This effectively results in executing the same rule but with different values.

We update adaptive data using feedback loops. A feedback event is an event generated

as a response to sanity checks by inhabitants. Existence/non-existence, timing or parameter

values of feedback events are used to adjust adaptive data via algorithms including binary

search, running median calculation and direct assignment.

Consider the scenario, where an inhabitant needs to take a pill nightly at 8 pm, and the

CAREACT system tries to remind her to take her pills in case she forgets about it. For every

individual, the amount of time to make sure that the individual remember her medication may

be highly variable. The CAREACT system can adapt to this type of variance by adjusting
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the value of the threshold time with user feedback, and hence a single anomaly detection

pattern is applicable to every inhabitant in the monitoring environment.

3.3.4. Analyzability

In CAREACT, events, feedback events and actions are logged into the knowledge base

with their relationship with each other. This information is the primary source for possible

future analysis. While basic reports, like performance of an existing anomaly detection

patterns, are built-in within the knowledge base, the information present in the knowledge

base can be used for different purposes like finding new anomaly patterns.

To give an example, consider the drug reminder scenario again. This scenario might

still perform poorly, due to full stomach requirement of some pills. Namely, the CAREACT

system might send the reminder to an inhabitant who is having a meal and did not forget

about the medication. This type of false alarm is in fact visible in the knowledge base and

can be fetched by querying the percentage of false alarms that do not have a preceding

eating event. If a system expert finds out that this is the case, then he/she can change the

anomaly detection pattern that detects forgetting medication, by adding an eating event as a

prerequisite.

A very important factor that affects analyzability is privacy and security. Because of

their importance, we discuss them in a separate section.

3.3.5. Privacy and Security

In a monitoring system where virtually everything is logged to increase the overall

system performance, privacy is an important factor. While anonymity and usefulness almost

contradict with each other [46], in our design, we employ two mechanisms that increase the

level of privacy.

The first mechanism is logging inhabitant data after anonymization and the second one

is the separation of powers. The knowledge base is only open to system experts for their
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analysis and the data residing here are totally anonymous. On the other hand, the operational

data are not anonymous and are not logged. An instance of this data is only accessible by

operators where a Level 2 emergency has occurred. Operator has access to the operational

data of that specific emergency to make a decision. Hence, the open data is accessible only

case by case and when the case occurs effectively hiding the rest of the user data.

3.4. Architectural Benefits

The architecture of the CAREACT has several distinguished benefits which will be

described in this section with solid examples where possible.

First benefit of using the CAREACT system is that it centralizes the anomaly detection

logic. This means that whenever a sensory or ADL recognition system is designed, the

designer do not have to add any logic that attempts to detect anomalies. They just need to

create relevant events for the environment changes and the recognized activities respectively.

The system experts will use the CAREACT engine to create anomaly detection patterns by

using the activity events and sensor reading events as the building blocks. This type of

architecture creates a layered approach to the ambient assisted living, where each submodule

is expected to provide the functionality it excels. For instance, in this layered approach, an

ADL recognition system that focuses on detecting activities in the kitchen is not responsible

for detecting a cognitive disorder of an Alzheimer patient, in case she fires up the kitchen

stove during breakfast but leaves the kitchen to take a shower. In the layered approach

which is dictated by the CAREACT system, the role of a kitchen ADL recognition system

is defined as reporting the recognized activities as events. The CAREACT engine fuses this

information with other subsystems to detect anomalies in a context-aware manner which is

not possible to accomplish by any submodule itself. Centralizing the logic both increases the

efficiency of the overall system and decreases the amount of code that must be written by

any submodule.

Even for a centralized anomaly detection process, designing detection patterns that

perfectly describe a real world anomaly is not a trivial task and is prone to semantical errors.

Some of these errors are usually observable after they are deployed in an AAL environment.
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Thus the nature of designing anomaly detection patterns is usually includes an exploration

process where anomaly detection patterns are monitored and improved in iterations. For

identified errors, the anomaly detection pattern is improved by removing rules that produce

false alerts and adding rules for handling previously undetected anomalies of the same type.

The exploration process of finding better fitting anomaly detection patterns against real

world anomaly patterns is supported by the CAREACT system which is another benefit of

using the proposed system. Rule based pattern detection enables system experts to improve

their patterns by adding new rules, removing or changing existing rules within anomaly

detection patterns, effectively resulting in better tuned anomaly detection patterns for real life

anomaly patterns. Analyzability helps system experts to monitor the affect of the changes

they made in the existing anomaly detection pattern in terms of the false alerts it creates or

the anomalies it is not able to detect. These two features complement each other for a cycle

of exploration iteration which can be repeated until the system experts are satisfied with the

accuracy of the anomaly detection pattern.

Furthermore, the rule based pattern detection mitigates problems created by the differ-

ences between the AAL environments and between different societies. There are inherent

differences in the way people from different cultures behave in executing the same task, like

preparing the breakfast, which might be important for detecting a cognitive disorder. In the

CAREACT system, patterns can be tailored to fit the targeted inhabitant’s behaviors in the

anomaly detection by updating the rules within the patterns. Consider a scenario where for-

getting to take a scheduled pill is the anomaly which triggers a reminder action. When this

scenario is deployed to an environment that hosts patients who needs to take medication via

injection, it will create false alerts indefinitely due to not detecting a pill intake. Such a sce-

nario can easily be updated by changing the rule that detects taking pills with using a syringe

before being deployed into the second environment. Having such a flexibility is an important

benefit of the CAREACT system, which improves the overall system applicability.

This flexibility also plays a role in adapting the existing rules to new environments that

do not have the same set of subsystems. Going back to the reminding medication scenarios

and assume existence of a smart pill bottle that ensures a drug has been taken from it, such
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an information can be used as the taking medication event for the CAREACT engine. If this

type of a subsystem does not exist, taking medication event can be replaced by the sequence

of events of opening the drawer, turning the faucet on, turning the faucet off and closing the

drawer in existence of the binary sensors that feed the respective information. This sequence

assumes that the pills were in the drawer and the inhabitant opened the faucet to drink water

while taking the pill whereas the same sequence might be the result of tooth brushing. Hence,

this approach is expected to create higher false alert rates than having a smart pill bottle,

but still provides significant information in case the inhabitant does not open the drawer.

The CAREACT system provides the flexible infrastructure if a system expert decides to use

medication reminder scenario on the environments that do not have smart pill bottles.

Another benefit related to having a rule based pattern detection support is that when

the system is extended by adding a new submodule, it is possible to update existing anomaly

detection patterns to use the information supplied by the new submodule resulting in better

anomaly detection patterns in terms of recognizing the real world anomalies. An example of

such an improvement is using location of the fall in deducing emergencies after adding loca-

tion services in an AAL environment that has a fall detection submodule in place. Integration

of a new submodule to the CAREACT system is easy because it means implementing only

one interface, namely the event interface, rather than integrating it to every other subsystem

within the AAL environment. To sum up, it is easy to integrate a new submodule to the

CAREACT system, as well as using the data from such a submodule in anomaly detection

pattern design which means that the CAREACT system has the benefit of being extendable.

Yet another benefit of using the CAREACT system is that it is able to adapt itself. This

ability is used to handle changes between different inhabitants and changes that happen over

time. The CAREACT system has the ability to capture feedback events which are created as

a result of the sanity checks and the reminders produced as a part of the anomaly detection

pattern. These feedback events are used to change the values of parameters that are used

in the anomaly detection pattern effectively adapting it to the time and the inhabitant. An

example of such an adaptive scenario is to remind inhabitants with chronic diseases who

forget to take their medicine. The amount of time to make sure that the inhabitant indeed

forgot taking her medicine is different for every inhabitant. The CAREACT system adapts
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the parameter that corresponds to this real life value for every inhabitant. This way the

CAREACT system is able to decrease the false alerts and increase the quality of the AAL

experience of the inhabitants.

Since the CAREACT engine is built on the CEP architecture, it has a higher perfor-

mance than traditional rule based approaches. Such a performance is important in reacting

to emergencies in real-time under heavy load. The massive amount of data that can be pro-

duced by sensory systems puts strict performance requirements for monitoring systems in

AAL context. It is particularly important to work in (near) real-time, because there are emer-

gencies in the context of the AAL environment in which seconds earlier detection might save

an inhabitants life. An example of such an anomaly is the heart attack. The CAREACT sys-

tem works in real-time under heavy load because it employs the CEP architecture where an

event is processed in the order of milliseconds which is negligible compared to time frames

of emergencies that occur in the healthcare domain [1].

The final benefit of using the CAREACT system is that it creates a common language

between users of the system. Since the patterns are designed as finite state machines via

a graphical user interface (See Figure 3.5), designing patterns is easier than writing the re-

spective code and also patterns designed by others are easy to analyze. People with simple

understanding of the finite state machine, or people who can understand UML flow charts

can describe, analyze and change anomaly detection patterns within the CAREACT system.

The graphical representation of an anomaly detection pattern is a common language which

makes communication between medical experts from different domains, system operators

and system experts easier. This communication minimizes the risk of designing anomaly

detection pattern that detects a wrong real life phenomenon.
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Figure 3.5. Graphical user interface of the CAREACT engine.
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4. EXPERIMENTS AND RESULTS

We implemented our proposed architecture in Bogazici Univesity, Kandilli Campus

testbed as a part of WeCare framework [47]. This chapter describes the results and the setup

used for our implementation.

To validate our system, we conducted two types of experiments. In the first group, we

worked on artificially created data where the proposed architecture is evaluated from adaptiv-

ity and analyzability perspectives. In the second group, we made a real life implementation

by integrating a fall detection algorithm to the CAREACT to showcase applicability of the

overall architecture.

4.1. Demonstration of Adaptivity

To validate adaptivity, we conducted three experiments. In each of the experiments,

the CAREACT system adapts the value of a parameter to match the generated value of the

same parameter which can correspond to a threshold in a real life scenario, like the maximum

allowable inactivity period before creating an alarm for an elderly. When an event includ-

ing such a parameter is generated, the CAREACT engine creates a sanity check. Positive

feedback events, like I am OK, increase the value of parameter whereas negative feedback

events, like I don’t feel good, decreases the value of the same parameter.

In the first experiment, the threshold data are generated for 1,000 inhabitants from a

Gaussian distribution with the mean and the variance equal to 10 and 1 respectively. The

system is initialized to learn just one parameter and the starting value is set to the mean of

the normal distribution, 10, for each inhabitant. In each iteration, the step size which is used

to increase or the decrease the value of the parameter is halved and the starting step size

value is set to the variance of the Gaussian distribution. With this schema, the CAREACT

engine actually makes a binary search for generated threshold value of every inhabitant.

In the second experiment, 500 values are generated from two Gaussian distributions
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each with parameters (mean:10, variance:1), (mean:5, variance:2) to create a mixture of

Gaussian distributions. The system is initialized with a starting value of 7.5 (mean of means)

and the step size of 1.5 (mean of variances).

In the last experiment, it was assumed that parameters of distributions from the second

experiment are known at the time of designing the adjusting scenario. This experiment aims

to evaluate if and by how much the CAREACT architecture can make use of a-priori data

about an adaptive parameter. In this scenario, half of the inhabitants have a starting value of

10 with a step size of 1 whereas the other half has a starting value of 5 with a step size of 2.
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Figure 4.1. Error percentage vs Number of iterations.

The results are presented in Figure 4.1. In all experiments, the system adjusted the

values of parameters to their generated values in a convergent manner. In Experiment 1,

at average, 5 iterations were necessary to decrease the percentage of difference between

generated and adjusted values of parameters under 1%. In Experiment 2, where we used

parameters of a single Gaussian distribution to adapt to a mixture of Gaussian distributions,

the errors were higher and it took 5 iterations on average to decrease the percentage error

under 1%. In the third experiment, we were able to observe that the more a-priori knowledge
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the system had, the sooner it converged. This time, we used the parameters of two Gaussian

distributions to adapt to the same type of data from Experiment 2 and it took 3 iterations to

decrease the error percentage under 1%.

Experiments showed that our proposed architecture is able to adapt its parameters.

Furthermore, a-priori knowledge of the distribution of the environment parameters can be

used to design better adapting scenarios.

4.2. Demonstration of Analyzability

To demonstrate the analyzability capabilities of the CAREACT system, we worked

with a real life like scenario on artificially created data. In the scenario, when an inhabitant

forgets to take his/her medication, a reminder is sent. If the inhabitant sends a Later feedback

event, the reminder is marked as a false alarm. If an inhabitant sends Done feedback event,

the reminder is marked as a successful reminder and the time between the actual medication

time and reminder time is logged into knowledge base as the reporting latency.

In this scenario, two adaptive parameters are used. The first one is the mean timeout

(mean timeout before sending a reminder). Lower timeout values increase the false alarm rate

while decreasing the reporting delay, whereas higher timeout values decrease the false alarm

rate while increasing the reporting delay. The second parameter is stdev timeout (standard

deviation of the timeout). The value of this parameter is multiplied by a factor (F) and then

added to the mean timeout to calculate the timeout (timeout before sending parameter).

We used three algorithms in three sets of experiments to adapt two parameters. The

first two algorithms, additive increase multiplicative decrease (AIMD) and multiplicative de-

crease linear increase (MDLI) only adapt the timeout and require only binary(positive/negative)

feedback events for adaptation process. The third algorithm, running standard deviation

(RSD), adapts both parameters but requires absolute values of the measured timeout in feed-

back events.

We generated data with the following characteristics. Every inhabitant completely for-
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gets taking medication with 0.25 probability. The mean time to remember taking medication

is a random variable with a mean of 60 minutes and a variance of 60 minutes for each inhab-

itant. Actual time to remember taking medication is another random variable with the mean

and the variance equal to the mean time to remember taking medication.

Table 4.1. Performance results of different adaptation algorithms for same scenario

Algorithms False Alert Rate Reporting latency (min)

No Adaptivity 50% 60

AIMD 24.16% 110.22

MDLI 46.30% 56.03

RSD, F= 3 5.23% 160.03

The results from the knowledge base are presented in Table 4.1. Results show that

different algorithms can be employed to fine tune the false alert rate and the latency of the

overall system. For scenarios where handling a false alarm is costly, like calling an ambu-

lance, algorithms with low reporting latency can be employed at the cost of an increased

overall latency. For scenarios where handling a false alarm is cheap or latency is critical, a

low latency adaptation algorithm can be selected at the cost of an increased false alarm rate.

This is the main point of having an analyzability module in our proposed architecture.

System experts can analyze these data to find the best fitting adaptation algorithms for their

needs. Thus allowing better overall efficiency.

4.3. Demonstrative Implementation

We implemented a real life use case of CAREACT by integrating it to a fall detection

system [47] in our laboratory environment. The existing fall detection system works on the

smartphone platform to monitor daily lives of inhabitants for fall detection purposes. When

the system detects a fall, it provides the ability of confirming the fall or marking it as a false

alarm to the inhabitant via the user interface. If the final decision is not a false alarm, the

system connects to the preconfigured emergency center.
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Figure 4.2. In our laboratory environment, we integrated our proposed architecture with an

existing fall detection algorithm [47].

In our implementation, we improved this use case by integrating the fall detection sys-

tem to CAREACT and designed a scenario that can detect false alerts after a fall is detected.

This scenario introduces a waiting time threshold for collecting feedback events from the

inhabitants. If there is no feedback within such threshold after a fall is detected, it is deduced

as the inhabitant is unconscious and the CAREACT system connects to emergency center. If

the inhabitant gets up within the specified threshold, the system treats the fall as a false alert.

The integration required two easy modifications on the existing solution. As the first

modification, the fall detection system sends the fall event directly to the CAREACT system

rather than asking for the inhabitant feedback. As the second modification if the CAREACT

system sends a sanity check event, asking for the inhabitants feedback, it is represented as

user interface choices to the inhabitant.

When a fall event is received by the CAREACT system, the inhabitant’s personal in-

formation is accessed from semantic information store which include the average get up

time after falls and the age of the inhabitant which are used as parameters on executing the
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Figure 4.3. Screenshot of the scenario definition screen of the CAREACT engine.

described logic. (See Figure 4.3 for the designed scenario).

4.4. Performance Evaluation of CAREACT Engine

We evaluate the performance of the CAREACT engine to assess the appropriateness

of CAREACT engine for typical use cases of the proposed framework which includes mon-

itoring daily activities monitoring and anomaly detection. Since typical use cases include

monitoring environments from a hospital or a multitude of homes to a single home and mon-

itoring capabilities that produce a couple of events like per hour to several events per second

we selected values from different orders.

We identified five parameters that might have an effect on the performance of the

CAREACT engine, namely, the number of the monitored inhabitant, the number of events

per inhabitant per second, the number of concurrent scenarios, the number of event types

used and finally the number actions per event. We conducted two sets of experiments, in

the first set, we identified which parameters have an impact on the performance whereas in

the second set we measured the effect of the each parameter that has an impact in detail. We

measured three metrics to evaluate the performance of the system, the maximum throughput,

the memory consumption and the latency.



38

Table 4.2. Parameter set of the first experiment set.

Parameter Description Values

num inhabitants Number of the monitored inhabitants 1,100,10000

num events per inhabitant Number of events per inhabitant per second 0.01,1,100

num concurrent scenarios Number of concurrent Scenarios 1,2,10

num event types Number of event types used 1,2,10

ave num actions per event Number of actions per event 0,0.5,1

All the experiments were performed on amazon elastic cloud computing standard large

instance running Oracle SE 1.6.0 33 Java virtual machine (JVM) on Ubuntu 12.04 operating

system. We set the JVM maximum and minimum heap size to 2 GB, so that the virtual mem-

ory allocation activity had no influence on the results. To test the system, we implemented

an event generator that creates stream of events according to a Poisson process. In each of

the experiments we sent 6 batches of 100,000 events to the CAREACT system. First batch

makes sure that all the startup initializations are finished and do not have an effect on the

steady state runtime behavior of the CAREACT system. The following batches are the rep-

etitions of the same experiment and are started after all the events from previous batch has

been completely processed. The scenarios used in the experiments are identical and designed

with a self transition loop in the state machine so that every processed event results in a tran-

sition in every scenario. The number of event types are the number of self transition loops

in a given scenario. The number of actions are controlled with the value based parameters.

For every event, we sent a dummy parameter whose value is uniformly distributed between 1

and 10. If this value is smaller than a threshold for an event, then an action is executed. The

value of this threshold controls the number of the actions per event parameter. The action

itself is a number crunching operation which takes a couple of microseconds. The selection

of this CPU bound action is for practical purposes although sleeping the thread is a better fit

for simulating the workload of typical operations like sending a packet over network, writing

to a database or to a file. While Java supports nanosecond sleeping, the JVM only guaran-

tee that the sleep operation will take at least specified amount of time which makes overall

action execution time vary wildly when a lower priority thread, mainly garbage collector
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thread, requests for CPU cycles. We selected the CPU bound action to mitigate the problems

caused by unguaranteed wake up time of thread sleeps. We present the values we used in the

first set of experiments in The Table 4.2. For this set, we did not experiment on the cartesian

product of the possible values of the each parameter. We varied one parameter while using a

fixed value for the rest of the parameters, which are underlined in the table.

Table 4.3. Parameter set of the first experiment set.

Parameter Throughput & Latency Memory Consumption

num inhabitants Partial effect Affects

num events per inhabitant Partial effect No effect

num concurrent scenarios Affects Affects

num event types No effect No effect

ave num actions per event Affects No effect

There are a number of observations from this set of experiments. The parameters can

be classified into two categories, those that affect the latency and the throughput together and

those that affect the memory consumption. Because of this fact, we examine the affect of

the parameters in two perspectives, from the memory consumption perspective and from the

latency and the throughput perspective. We summarized the relationship of the parameters

and the performance metrics in Table 4.3.

From memory consumption perspective, only two parameters have an impact, num in-

habitants and num concurrent scenarios. The memory consumption of the CAREACT en-

gine increases linearly with the increasing number of the monitored inhabitants. The increase

is ~240 KB for 10,000 inhabitants. This is an expected outcome since the CAREACT engine

creates a new state machine instance for every inhabitant which has a fixed memory cost. The

effect of increasing the number of scenarios is similar to increasing the number of inhabi-

tants. The memory consumption increases linearly with increasing the concurrent number

of scenarios. This behavior is also an outcome of creating a new state machine instance for

every inhabitant. For every scenario, every inhabitant have one state machine which means

a linear increase in the memory consumption for increasing either the number of monitored
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inhabitants and the number of concurrent scenarios.

From the throughput and the latency perspective, the initial experiments show that in-

creasing num concurrent scenarios increases the latency and decreases the maximum through-

put whereas num event types do not have a measurable impact on the these two performance

metrics. This is a natural outcome of the state machine based execution of the system which

is explained in Section 3.2. A new event type creates exactly one more if statement for the

state it transits from, which is insignificant compared to the other processing components

of the CAREACT system. Number of actions per event also affects the performance of the

CAREACT system. When one increases the number of actions per event, the latency in-

creases whereas the throughput decreases. The number of the monitored inhabitants and the

number of events per inhabitant parameters do not have a direct effect as long as the total

number of the events sent to the CAREACT engine remains the same. These two parameters

together form the number of the events sent per second and before proceeding to the detailed

experiments, we isolated this parameter so that we can understand which values make sense

for num sent events per second in the detailed experiments.

We observe that the effect of increasing num sent events per second increases the

throughput up to a threshold, which is the maximum throughput of the engine that is equal to

~25000 events/second for 5 concurrent scenarios. After this threshold, further increasing the

num sent events per second does not increase the throughput because the CPU usage hits

100%. This is the limit for throughput and the rest of the sent events are backlog events and

are put to queue. Since there is no event dropping in the CAREACT engine, these events

are sooner or later processed unless the engine crashes due to queued events consuming all

the available memory. In the detailed experiments we want to observe latency and maxi-

mum throughput while varying other parameters. But the current experiment setup which

includes sending fixed number of events at a rate higher than maximum throughput of the

CAREACT engine, which is called bursting in this context, skews the latency results due to

the latency of the backlog events. To solve this problem, we decided to divide the experi-

ments into two sub categories. In the first category, which we call steady state experiments,

we adjust the num sent events per second parameter so that there is 1 event on average in

the event queue. This way our observations will show the effect of changing different pa-
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rameters of the system on the maximum throughput and on the latency without the skewing

effect of the bursting. In the second category, which we call bursting experiments, we send a

bulk of events as rapid as possible and calculate the additional latency introduced so that we

can analyze the applicability of the CAREACT framework for environments that has bursty

time spans. The impact of the number of events sent in one burst on the performance of the

CAREACT engine are investigated in the second set of experiments.

Table 4.4. Parameter set of the steady state experiments.

Parameter Values

event rate Adaptive

num concurrent scenarios 5, 10, 15, 20, 25

ave num actions per event 0, 0.2, 0.4, 0.6, 0.8, 1

The values that are used for the steady state experiments are presented in the Table 4.4.

Unlike the first set of experiments, in the steady state experiments we conduct an experiment

for every possible combination of the values of the parameters. For this experiment we

have implemented a new event simulator which takes the number of average queue size of

the previous repetition as an input. It starts with 1,000 events/second and increases load

by with step size of 1,000 events/second. if the average queue size within 0.95 and 1.05 it

repeats the experiment with the event rate until the there are 5 consecutive repetitions with

average queue size within 0.95 and 1.05. Otherwise if the average queue size is below lower

threshold it increases the load by the step size else it halves the load and starts decreasing

the load. This time same rules apply except if the load is less than the 0.95 it halves the step

size and starts incrementing again. With this schema event simulator find the event rate that

creates average queue size around 1 and with that event rate makes 5 repetitions for every

possible combination of the parameter set.

The impact of num concurrent scenarios and num actions per event on throughput

under steady state is presented in Figure 4.4. As can be seen from the figure as the value

of either increases the throughput under steady state decreases and the relationship is in-

versely proportional. Another observation we make from the figure is that the effect of
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Figure 4.4. The effect of increasing ave num actions per event on throughput for different

number of concurrent scenarios.

num concurrent scenarios is higher than the effect of num actions per event. We conclude

that deciding on the action is harder than actually running the action in the CAREACT en-

gine. The impact of same parameters on latency is presented in Figure 4.5. In terms of la-

tency, the effect of increasing thenum actions per event increases the latency linearly. This

is an expected outcome because as the num actions per event increases the time spent on ex-

ecuting the action linearly increases. The effect of increasing the num concurrent scenarios

is linear as well. This is an expected outcome since the execution of an event on concur-

rent scenarios is sequential and the scenarios are identical. An event is executed in every

scenario one by one and the latencies from each scenario add up. In a real life setting it is

possible to have anomaly detection patterns with different input events and different action

per event values because there will be scenarios that will focus on different aspects of daily
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Figure 4.5. The effect of increasing rate on latency for different number of concurrent

scenarios.

living which translates to using different event sources. This implies that the performance

impact of adding an anomaly detection pattern will not be linear, it will depend on the event

sources and the actions per event of designed anomaly detection patterns. An important ob-

servation from the steady state latency results is that the computation delay introduced by the

CAREACT engine is in the order of milliseconds which is comparable or less other delay

sources in an AAL environment like network communications and activity recognition and

it is negligible in the context of ambient assisted living.

In the bursting experiments, we send burst load of 1,000, 10,000 and 100,000 events

to the CAREACT engine with the same set of values for num concurrent scenarios and

num actions per event parameters and we measure maximum latency of all the events. Ex-
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Figure 4.6. The effect of burst loads on different hardwares.

periments show that the relationship of the burst load and the latency is linear and we ob-

serve that for 100,000 events it is possible to observe aroud 40 seconds maximum latency

under num concurrent scenarios=25 and num actions per event=1 for our previously de-

scribed test hardware. While the 40 seconds latency might be reasonable for some if not

most of the anomaly detection scenarios in the context of AAL we expand our experiments

to different hardwares so analyze if it is possible to improve results by changing hardware.

We used 4 types of machines, 2 desktops and 2 on demand instances of different sizes from

Amazon Web Services. The first desktop has 4 Intel 2.8 GHz i7 cores whereas the second

one has 2 Intel 2.23 GHz i5 cores which we named Desktop1 and Desktop2 respectively.

The amazon instances are c1.medium which has 5 cores and m1.large which has 4 cores.

The clock speeds are undocumented but same for all the Amazon Web Services instances.

We named the c1.medium instance as Amazon1 and the m1.large instance as Amazon2. The
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results for num concurrent scenarios=5 and num actions per event=1 are presented in Fig-

ure 4.4. We observe that both clock speed and the number of cores have a positive impact on

the maximum latency by comparing Desktop1 to Desktop2. Desktop1 has twice the cores

and higher clock speed than the Desktop2 and the latency for the Desktop2 is almost 3 times

the latency of Desktop1. The effect of changing only the number of cores is visible from the

results of Amazon1 and Amazon2. The additional core to existing 4 decreases the maximum

latency by 20% from 1̃0 seconds to 8̃ seconds for 100,000 events. We conclude that in-

creasing clock speed decreases latency by decreasing the execution time of an event whereas

increasing the number of cores decreases the latency by higher level of parallelization. Hence

depending on the work load and the latency requirements of the CAREACT scenarios it is

possible to select a hardware by sizing the computational power vertically by increasing the

clock size or horizontally by adding new cores from the benchmark we present in Figure 4.4.

We also share the bursting throughputs of these machines in the Table 4.5.

Table 4.5. Bursting throughput for different hardwares.

Hardware Bursting Throughput (events/second)

Desktop1 26,542

Desktop2 9,062

Amazon1 6,573

Amazon2 4,744

To sum up, the CAREACT engine is able to process thousands of events per second

on tens of concurrent scenarios while executing as high as 1 action per event with commod-

ity hardware. Under steady state the latency is in the order of milliseconds and which is

comparable or less other delay sources in an AAL environment like network communica-

tions and activity recognition and it is negligible in the context of ambient assisted living.

When loaded with event rate over the maximum capacity of the CAREACT engine over short

bursts of time the latency may go up to 40 seconds which may still be acceptable for most

of the targeted scenarios for the CAREACT framework. Furthermore, for scenarios with

stricter requirements both horizontal and vertical sizing is possible to decrease the latencies

for burst loads. We conclude that the CAREACT engine is a good fit for the CAREACT
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framework which targets scenarios ranging from long term monitoring activities of daily

living to anomaly detection.

4.5. Performance Evaluation of Future Events

In this section we evaluate the performance of future events and compare the exper-

imental results with theoretical analysis. The central part of the analysis is the size of the

time window size in temporal constraints because as it grows the throughput decreases for

the state of the art literature [17] based on the reasons we explained in Section 2.2. To such

end, in our experiments, we varied the size of the time windows from 1 second to 30 seconds

and measured throughput, memory consumption and latency. We have fixed the number of

concurrent scenarios to 5, the number of actions per event to 0.1 and the rate to 1.

From throughput perspective, we have observered that increasing the size of the time

window does not have an effect. The throughput throughout the experiments was almost

constant at ~2510 events/second. There is no CEP engine in literature that does not have

a decreasing performance when the time window sizes in the pattern matching sequences

increase. These results show that the future events change the paradigm of processing the

time windows within patterns in a way that it does not depend on the size of the time window.

From memory consumption point of view, increasing the time window size did not

have an effect. The future events mechanism consumed additional memory of ~200 KB for

every experiment. The reason is that after the system starts running in steady state, there is

exactly one future event for every monitored inhabitant, which does not depend on the size

of the time windows on temporal constraints.

From latency perspective, increasing the size of the time windows decreases the latency

because the number of events fired within the CAREACT engine decreases thus adding ad-

ditional workload. The number of fired events increase when they are not postponed by an

event that schedules a future event. When the time window size increases, the probability of

not receiving a postponing event decreases, in our setup they are reversely proportional. We

present the results of the experiments together with the analytical counterpart in Figure 4.8.
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We used queueing theory, in particular Jackson’s Theorem for open queueing net-

works, to analyze the overall performance of the future event mechanism. From a queueing

perspective the system is presented in Figure 4.7.

μ1

λ1

λ11

λ1

λ11

Figure 4.7. Modelling of a future events in the CAREACT engine.

Jackson’s Theorem provides a general product-form solution for both feed forward and

feedback open queuing networks and the CAREACT engine is a feedback open queueing

network, where the future events are the feedback mechanism. There are 4 assumption for

Jackson’s theorem which are:

• the network is composed of K first come first serve (FCFS), single-server queues

• the arrival processes for the K queues are Poisson at rate r1, r2...rK

• the service times of customers at jth queue are exponentially distributed with mean

1/µj and they are mutually independent and independent of the arrival processes

• once a customer is served at queue i, it joins each queue j with probability Pij or leave

the system with probability 1 −
∑K

j=1 Pij where Pij is the routing probability from

node i to node j.

In the CAREACT, the system is composed of 1 FCFS single server and in the experi-

ments we have used a Poisson process for sending events. The events either create a future

event with the probability P11 or exit the system. The only assumption that does not per-

fectly hold for the CAREACT engine is the third assumption. The service time of each event

has two components, the time to process event in the state machine and the time to execute
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an action if an action is triggered as a result of the state machine execution. The first com-

ponent has constant complexity whereas the second is distributed exponentially. Since the

more dominant componant of the two is action execution time, we simplified the complexity

of real distribution with by assuming it is an exponantial distribution with the same mean.

Under these assumption, Jackson’s theorem states that the number of customers in the

queue j is

E[Nj] =
ρj

1− ρj
(4.1)

where

ρj =
λj
µj

(4.2)

and

λj = rj +
K∑
i=1

λi · Pij (4.3)

Applying Little’s law results in average response time, in our case average latency.

E[R] =
1

λ
·
∑
j

E[Nj] (4.4)

In the case of the CAREACT engine, we have just one queue and the probability of the

feedback, P11 depends on the future event time, t with

p11 =
1

t+ 1
(4.5)

substituting Equation 4.5 in Equation 4.3 and solving for one queue system yields

λ1 = λ+ λ1 ·
1

t+ 1
(4.6)
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solving for λ1

λ1 = λ · t+ 1

t
(4.7)

substituting Equation 4.1, Equation 4.2 and Equation 4.7 in Equation 4.4 results in

E[R] =
1

λ
·

λ·(t+1)/t
µ1

1− λ·(t+1)/t
µ1

(4.8)

E[R] =
1

t
t+1

· µ1 − λ
(4.9)

The comparison of the experimental results with the analytical results calculated from Equa-

tion 4.9 by substituting 4,800 for µ1 and 2510 for λ, which are measured values for experi-

ments are presented in Figure 4.8.

These results show that they have similar trends but with different characteristics. The

analytic results are much more smooth and start from a higher latency value for smaller time

windows and end up in lower latency values compared to the experimental results. The dif-

ference in smoothness is partly caused by the measurements and partly caused by the garbage

collections, both of which are inherent to java programming language. The difference in the

trends are caused by the assumptions made on analytical modelling. Given every assump-

tion holds for our system with the exception of the third assumption, we conclude that the

difference between trends caused by the difference between the actual distribution and the

assumed exponantial distribution for processing an event.

4.6. Methods for solving interoperability related latency

It is common for an activity recognition system to report the detected activity certain

time after it happened in the monitored environment. The reason is that the statistical mod-

els that recognize activities usually use sensor readings after the event happened in addition

to the readings before the event in calculation. Consequently, there is a gap between the
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Figure 4.8. Experimental vs analytical results for the effect of the size of time windows on

latency.

time event happened in real world and the time it is recognized which is called the recogni-

tion latency in this context. For scenarios where events having different latencies are used

together in sequences, having different latencies may reduce the accuracy of the pattern de-

tection. For instance, if a scenario uses has a pattern of event A followed by event B where

the recognition latency of event A is higher than that of event B, real world occurences of

event A followed by event B may be missed in cases where the recognition latency of event

A is larger than the amount of time between the two events. This phenomenon is described

in the top two rows of Figure 4.9.

In scenarios where events with different latencies are used together, the real world se-

quence and the sequence perceived by the CAREACT engine may differ, which decreases
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Figure 4.9. Methods of handling latency of different subsystems.

the pattern detection accuracy. One way to deal with this type of problem is buffering events

up until a threshold, shown as system level buffering in Figure 4.9, that is equal to the maxi-

mum recognition latency. This way, events that are out of sequence are sorted before feeding

them into the CAREACT engine and the real world ordering is restored. The first problem

with this approach is that it requires the maximum recognition latency to be known. The

second problem is that this approach adds a fixed latency to every scenario in the CAREACT

engine. Another approach that employs the future events is shown as Event Buffer with Fu-

ture Events in Figure 4.9. In this approach if the second event in a sequence is matched a

future event is set. If the first event arrives within this time, the sequence is matched suc-

cessfully. In other words, this approach allows out of order events to be processed in the

CAREACT engine with the correction support in certain scenarios that employ events with

latency. This approach does not inject any additional latency. The third approach employs

a semantic information store which also allows out of order events to be processed in the

CAREACT engine. In this approach, whenever the second event is matched in a pattern,

its timestamp is stored in the semantic information store. If the first event is matched af-

terwards, its timestamp is compared against the second event that is already matched. The
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pattern is matched if first event’s timestamp is earlier than the second one. The challenge

of this method is that it requires every subsystem to provide the real world timestamp of the

events they produce.
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Figure 4.10. Accuracy of different methods on dealing with the recognition latency.

To evaluate the performance of each methodology, we setup the following experiment.

For each inhabitant, we produce event pairs of A and B with very close timestamps of B

following A and send these events in the reverse order and after waiting for an exponentially

distributed random amount of time. The mean of exponential distribution function is named

as the recognition latency. If the scenario is able to detect the pattern of A followed by B,

we count it as a hit, otherwise it is counted as a miss. We calculated three metrics, accuracy,

reporting latency and throughput in terms of the number of inhabitants monitored where we

defined the accuracy as the ratio of hit count to the overall count.
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The experiments (See Figure 4.10) show that no buffering, which is normal execution

for the CAREACT engine is not able to detect any pattern whereas Timestamp based compar-

ison is able to detect every sequence. For Future Event Buffer methodology, we observe that

increasing the future event time increases the accuracy of pattern detection (See Figure 4.11).

From the reporting latency perspective, Timestamp based comparison method always

wait for the trailing B to arrive and hence its reporting latency increases linearly as the

recognition latency increases. Future Event Buffer method waits the full future event time

before failing to detect a pattern and detect the patterns with buffer period as they arrive. As

the recognition latency increases, the Future Event Buffer method misses more patterns and

the value of the reporting latency gets closer to future event time. As the future event time

increases the Reporting Latency increases (See Figure 4.13).

From the maximum throughput perspective the worst performing method is the Times-

tamp based comparison method since in this method the timestamps are saved in every event

of type A and read in every event of type B. (See ). The maximum throughput of the Future

Event Buffer method depends on the future event time and is presented in Table 4.6.

Table 4.6. Performance evaluation of different methods for handling the recognition latency.

Method Througput

No Buffering ~4,800 events/sec

Timestamp Comparison ~1,160 events/sec

1 sec FE buffer ~2,410 events/sec

2 sec FE buffer ~3,230 events/sec

4 sec FE buffer ~3,890 events/sec
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5. CONCLUSION

In this thesis, we analyzed the current literature on both telemonitoring and ambient

assisted living from the perspective of detecting anomalies in activities of daily living. The

studies on the former focuses on the anomaly detection and remote monitoring whereas the

latter focuses on detecting activities from the raw sensor data. Both of the branches lack a

holistic solution that effectively detects anomalies in the context of AAL by taking both the

raw sensor data and the activities of daily living with the ability to automatically or semi

autmatically act on found anomalies.

Consequently, we proposed a novel ambient assisted monitoring framework, the CARE-

ACT, that has the capability to process both the sensor data and the activity data with the sup-

port for four core features that increase performance of overall anomaly detection process in

a smart home environment: interoperability, rule support, adaptivity and analyzability. While

all these features exist in different studies, to best of our knowledge they have not been com-

bined in a single framework. Furthermore, the proposed architecture runs in real time and is

able to act on detected anomalies both automatically and in real time. Our proposed archi-

tecture is built on CEP technology because of its high performance, inherent interoperability

and rule support. We also addressed a challenge that arose while adapting CEP technology

for detecting activities of daily living which includes temporal relationships in the order of

minutes, hours or higher that is orders of magnitudes higher than the current CEP literature

is able to deal with. Rest assured, the current state of the art CEP engines has more than

linear computation and memory complexity dealing with the higher order temporal relation-

ships whereas our proposed mechanism, Future Events, has O(1) computation and memory

complexity.

We have implemented the proposed architecture as a framework, and realized sam-

ple scenarios on top this framework to validate its adaptivity and reporting capabilities.

Conducted experiments with sample scenarios on generated data showed that our proposed

framework is able to achieve adaptation and present easy to analyze reports. While the adap-

tivity and analyzability of the results highly suspect to the design of the anomaly detection
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scenarios we were able to achieve a decrease in false alert rate from 48% to 5% with adaption

on simple scenarios. These figures clearly show that the system gives adaptation tool at the

anomaly designers disposal for detecting anomalies. These figures were extracted directly

from the sample analysis reports of the scenarios where the desginer could clearly analyze

the affect of changing a design element or a parameter within anomaly detection scenario

which is a showcase of analyzability aspect of the CAREACT framework.

We devised experiments to measure the raw performance of the CAREACT engine to

identify whether or not the engine itself create a bottleneck within the system. We deduced

that latency in the order of milliseconds would not be the dominant latency of this end to end

system where network communication and execution of modelling algorithms typically take

orders of magnitude longer to finish compared to cpu bound execution of the CAREACT

engine. We also modelled the system using analytical tools and compared it to experimental

results which confirmed that there is a reasonable model for approxiamating the behaviour

of the CAREACT engine. We have also integrated it to a working fall detection mobile

application to validate its real life applicability. After the integration we were able to observe

to entire CAREACT cycle with mobile device as both the sensor, activity recognition system,

event sender and alert receiver. Thus while it seemed like the entire framework was too

complicated and had too many components, the integration showed that one mobile client

and one server was all that is necessary to create an automated and context aware anomaly

detection system.

Our future work will focus on ease of scenario development by supplying reusable

building blocks and tools to create them. Ultimately, we aim to create a platform as a ser-

vice where various rule based pattern detection requirements, including but not limited to

anomaly detection, are handled by a centralized system that is built on top of the CAREACT

architecture.
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