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ABSTRACT

EFFICIENT FEATURE SELECTION FOR ONLINE

ACTIVITY RECOGNITION ON SMART PHONES

Activity Recognition (AR) is an active area of research that has direct appli-

cations on life quality and health of human beings. Related studies aim to classify

different daily activities of people with high accuracy rates using various types of sen-

sors. Becoming an essential part in our daily lives, smartphones are now suitable tools

that enable people to make use of AR technologies without being obliged to use or

wear some extra device. However, due to power and computational constraints of

these devices, it becomes a challenging task to attain accurate results by using power

and CPU-intensive classifiers. In this study, we present an efficient selection of features

to attain high accuracies in recognizing five daily activities with a lightweight classi-

fier, K Nearest Neighbors (KNN). Since previous studies in this area show that it is

possible to obtain high recognition performance with the KNN classification algorithm,

we focused on the problem of feature selection to see how far this performance can be

enhanced by employing the most appropriate feature sets for the KNN algorithm. We

use some well-known features together with some more specific features and in order to

keep the system energy-efficient, all features are extracted from the readings of a single

accelerometer on a smartphone that is carried in the trousers’ pocket with different

orientations. In this study, we also evaluated the effect of different window lengths and

window functions that are used for segmenting the data prior to feature extraction.

The results show that by having an efficient selection of features it is possible to ob-

tain promising accuracy rates with a simple classification algorithm like KNN which

facilitates online and real-time activity recognition on smartphones.
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ÖZET

AKILLI TELEFONLAR ÜZERİNDE ÇEVRİMİÇİ EYLEM

TANIMA İÇİN ETKİN ÖZNİTELİK SEÇİMİ

Eylem Tanıma konusu yaşam kalitesi ve insan sağlığı ile ilgili doğrudan uygula-

maları olan ve günümüzde aktif olarak çalışılan bir araştırma alanıdır. Bu konudaki

çalışmalar insanların gün boyunca gerçekleştirdikleri eylemleri farklı türlerde algılayıcı-

lar kullanarak yüksek doğruluk oranıyla sınıflandırabilmeyi amaçlamaktadır. Günlük

yaşantımızın vazgeçilmez parçalarından biri haline gelen akıllı telefonlar, insanların

eylem tanıma teknolojilerinden ilave bir alet kullanma ya da taşıma zorunluluğu ol-

maksızın faydalanmalarını sağlayabilecek cihazlardır. Fakat bu cihazların güç ve hesap-

lama açılarından kısıtlı kaynaklara sahip olması, bu cihazlar üzerinde güç-yoğun ve

işlemci-yoğun sınıflandırma yöntemleri ile yüksek doğruluk oranları elde etmeyi zorlaş-

tırmaktadır. Bu çalışma hafif bir sınıflandırma algoritması (KNN) ile beş farklı günlük

eylemin yüksek doğruluk oranı ile tanınabilmesini sağlayacak bir etkin öznitelik seçimi

sunmayı amaçlamaktadır. Bu doğrultuda, bazı özgün öznitelik tipleri ile yaygın olarak

kullanılan diğer bazı öznitelik tipleri bir arada kullanılmıştır. Ayrıca, sistemi ener-

ji verimli kılmak adına tüm bu öznitelikler yalnızca pantolon cebinde taşınan bir

akıllı telefondaki yerleşik ivmeölçerden alınan verilerden çıkarılmıştır. Bu çalışmada

ayrıca öznitelik çıkarımından önce algılayıcıdan edinilen veriyi pencerelemek için kul-

lanılan farklı pencere uzunlukları ve pencere işlevlerinin etkisi de değerlendirilmiştir.

Elde edilen sonuçlar gösteriyor ki etkin öznitelik seçimi, KNN gibi gerçek-zamanlı ve

çevrimiçi sınıflandırmaya uygun, basit bir sınıflandırma algoritması ile umut veren

doğruluk oranlarına ulaşmayı mümkün kılmaktadır.
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1. INTRODUCTION

Human activity recognition using sensing technologies refers to the classification

of a person’s physical activities like walking, sitting, falling, driving or running, with

different sensing modalities, such as motion, location sensors. Activity recognition

(AR) solutions have a wide range of application areas including patient monitoring

in health care services, child and elderly care and sports or fitness monitoring for

computing daily energy expenditure [3–10].

Earlier studies on human activity recognition were commonly making use of cam-

eras for visual analysis of human movements [11]. After the first use of small, wearable

accelerometers for monitoring human physical activities in 90’s, a wide range of research

has been carried out in order to make effective utilization of these small, low-power

and cheap devices for activity recognition. Thanks to the improvements in micro-

sensor technology, AR with acceleration sensors has become a popular field of research

starting with the studies at MIT [12].

The acceleration sensor (accelerometer) is the most common device used in AR

studies, especially in those aiming at physical activities [13, 14]. However, the way re-

searchers make use of this tool and the types of other assistant devices they use do vary.

Some of the major characteristics of an AR study are the number of accelerometers

used, variation in position and orientation of the device, usage of supporting data like

user activity history or field map and usage of supporting devices like GPS receivers.

Another important point about an AR study is the type of hardware used: commercial

devices [15], custom hardware [16,17] and mobile phones [18,19]. Among these, mobile

phones obviously differ from others in being adaptable to a person’s everyday life with-

out any perceivable change or burden. Today, mobile phones with relatively powerful

and rich hardware, including a set of integrated sensors such as accelerometer, micro-

phone, camera, GPS and compass are ordinary parts of our daily lives. Thus, successful

application of activity recognition solutions on mobile phones will not cause any extra

cost or intervention to a person’s daily life. On the other hand, one should consider
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the typical resource constraints of mobile phones like the limited battery power. Also,

the processing power of these devices should be utilized efficiently since they are usu-

ally not dedicated to AR applications, but there are other primary tasks they should

carry out like phone calls, internet browsing, playing music. The interruption of any

of these tasks will disturb the user. So, a candidate AR solution should be efficient

enough to keep the user experience level high. As a result, these constraints require

the implementation of feature extraction and classification algorithms that have less

complexity, when running on the phone. In relation to this, Könönen et al. show that

even a simple linear classifier can provide good recognition accuracies when a suitable

set of features are selected [20].

There are two groups of activity recognition systems that are offline and online

systems. In the context of activity recognition, online systems commonly refer to

those that employ real-time classification that is run mostly on sensory or intermedi-

ary devices and simultaneously with sensor data streaming. On the other hand, offline

systems are able to classify larger datasets on central computing units and they are

not practically restricted in terms of time and power. Thus, the most important char-

acteristics of an online AR system is the time and power restrictions for classification

and its convenience for interactive, mobile and participatory applications, whereas of-

fline solutions are suitable if the analysis of sensor readings over relatively longer time

periods is sufficient for the purposes of an application. A typical application of an

offline AR system can be seen in [21] where the purpose of the study is inferencing

daily physical activity diaries of people and an example of an online solution is used

in [22] for participatory sensing.

On the other hand, training of both online and offline systems is a heavy task.

In order to have a system that provides high recognition accuracy besides being in-

dependent of subjects, environment, time, etc., a sufficient amount of data should be

processed for creating a training model. Overcoming these context dependencies is

an issue for online activity recognition systems as much as for offline ones, but it is

generally not very efficient to process large datasets for training the system on devices

with limited capabilities that are used for online recognition, since the time such heavy
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tasks take will be too long to be acceptable for real-time processing. Therefore, the

computation of an efficient training model that is to be used for online classification

should be performed offline [15, 23]. This is also the case for the KNN classification

algorithm. Since this algorithm compares each sample with the whole training dataset,

a large training dataset will directly cause delays in the classification process. So, a

smaller but representative dataset should be formed to be used on the mobile platform

for obtaining high accuracy rates in real-time.

The main steps of activity recognition from sensory data include i) sampling of

the sensors, i.e. data collection, ii) feature extraction from the collected data, and iii)

classification [13]. Feature extraction step includes the generation of abstractions that

accurately characterize the sensor data, or in other words, that represent the original

data in the best way. The classification phase includes mapping the collected data,

i.e. the feature set, to a set of activities. Usually, machine learning algorithms are

used in the classification phase [13]. Although the classification step gives the final

decision about recognizing an activity, extracting the best features that characterize

raw signals is also equally important. Examples of features can be mean, variance in

the time domain and spectral energy, spectral entropy in the frequency domain, or

wavelet coefficients in the time-frequency domain. There are also examples of heuristic

features such as inter-axis correlation, signal vector magnitude and signal magnitude

area which are widely used [16]. In most of the activity recognition studies, a fixed set

of features are selected for a set of activities, only a few studies investigate the impact

of selected features on the performance of recognition [24,25].

In this study, we develop an online activity recognition software which attains high

recognition rates in classifying five daily activities that are walking, running, bicycling,

motorized transport and stationary state (sitting/standing/lying) with efficient feature

selection techniques. Considering the results obtained by our research group in previous

studies in which the performance of several different classifiers are compared for online

activity recognition [26] and the high performance of simple classifiers mentioned by

Könönen et al. [20], we focused on extracting efficient features that would yield high

recognition rates with a lightweight, simple classifier like K-Nearest Neighbor (KNN).
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In this regard, we evaluated the performance of various time and frequency-domain

features. These include some common features used in most of the related works (e.g.

variance and FFT coefficients) as well as some more specific features that are extracted

from the autocorrelation function of the accelerometer signal. Since wavelet coefficients

were shown to perform worse than frequency-based features [25] with accelerometer-

based activity recognition and considering the complexity of wavelet calculation on

resource-limited smart phones with online recognition, we focused only on the time

domain and frequency domain features. Also, we employed feature selection techniques

in order to find the most suitable set of features for maximizing the performance of the

KNN classifier.

For collecting the activity data, we used only a built-in tri-axis accelerometer on

a mobile phone. This contributed to the robustness of the system since accelerometers

are hardly affected by environmental conditions unlike other sensors like GPS receivers

which work only outdoors and compasses which are sensitive to magnetic fields. Using

a single accelerometer also helped us in minimizing the power consumption most of

which is usually caused by sensory devices in similar systems. Moreover, we extracted

all features from the square sum of three acceleration components on x, y and z -axis

(i.e. the magnitude of the acceleration vector) rather than making use of these three

components separately. Using only the acceleration magnitude provided us a system

that is not affected by the orientation of the phone.

Thus, over other activity recognition solutions on mobile platforms this study has

the following advantages:

• Real time classification of activities.

• Flexible orientation of the mobile phone.

• High performance with a lightweight classifier.

The development of the system involves several steps that are presented in Figure

1.1. In Step 1, we collected the activity data from 10 subjects to be used for analyzing

the classifier performance with a full set of features using the leave-one-out cross val-
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Figure 1.1. Block diagram of the activity recognition study.

idation technique. In the offline analysis, we determined the ideal set of features that

gives the best classification performance using feature selection methods. Besides, we

decided on the best values for several data pre-processing parameters like window size,

window overlap and window function to be applied. In Step 2, we prepared training

datasets for the online recognition software that we developed. In the last step, we

evaluated the performance of online classification by running the activity recognition

software on a mobile phone that is carried by subjects while performing the activities.

The rest of the thesis is organized as follows. In Chapter 2, we provide some

background information about concepts, tools and techniques that are used in this

study. In Chapter 3, we present related works in the context of feature selection and

activity recognition on smart phones. In Chapter 4, the experiment design for evaluat-

ing the performance of the proposed online activity classification system is explained.

In Chapter 4, we also give information about the main components and functionalities

of the applications that we implemented for developing and evaluating the proposed

system in both online and offline modes. Chapter 5 includes the evaluation of the

results of both offline and online tests. In Section 6, we provide our conclusions and

directions for future research.
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2. BACKGROUND

In this part, we give some introductory information about the background con-

cepts, tools and techniques which are used throughout this study. Particularly, the

details on how accelerometers work, the overall activity recognition procedure and the

algorithms that can be employed in different steps of an AR procedure are presented

in this chapter.

2.1. Accelerometers

Acceleration of an object is the rate of change in its velocity which can be caused

by a constant or a dynamic force. For example, the speed of a falling object increases

due to the force of gravity and a stationary ball gathers speed when it is kicked.

The electromechanical devices that help us in measuring the acceleration are called

accelerometers.

Accelerometers are useful tools for obtaining environmental information regarding

the changes in speed, orientation and position. For instance, one can detect the slope of

a surface since the direction of gravitational force can be extracted from the readings

of accelerometer that is placed on that surface or one can carry out vibration tests

on an industrial machine. In the context of activity recognition, accelerometers that

are embedded in different types of hardware like wearable equipments, mobile phones

and custom devices are used to estimate the activity that a subject is performing by

interpreting the acceleration of different body parts by attaching these devices to arms,

legs, etc., or putting them in a pocket, a bag, etc.

In this study, we use a smartphone (Samsung Galaxy Ace S5830) with a built-in

triaxial accelerometer. The device outputs the acceleration values on 3 perpendicular

axes with a rate of at most 100Hz. In Figure 2.1, an illustration of the accelerometer’s

axes in reference to the smartphone is presented.
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Figure 2.1. Orientation of the accelerometer axes on a mobile phone [1].

2.2. Activity Recognition Process

Different activity recognition solutions that are proposed so far involve several

common processing steps. These are preprocessing, segmentation, feature extraction,

feature selection and classification [13]. We give brief explanations for each of these

steps in the following subsections.

2.2.1. Preprocessing

This step refers to all sorts of processing that remove redundant and useless

information from the raw data or transform the data to a more appropriate form for

feature extraction. Possible operations that can be done in the preprocessing step

are removal of noise, smoothing the signal and converting an unequally-sampled time

series to an equally-sampled one. Some of the filters used for removing potential noise,

smoothing the signal and removing DC offset in the related works are low pass [16],

high pass [27], Laplacian [9] and Gaussian [28] filters.

2.2.2. Segmentation

Segmentation (windowing) is the process of dividing a signal into variable or

fixed-sized windows in order to make it easier to extract features from the signal.
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Figure 2.2. Segmentation with sliding window technique.

Sliding window algorithms are the most popular ones among segmentation techniques

since they are simple and lightweight. Sliding window algorithms split the signal into

fixed-length windows by leaving no gaps between consecutive windows [29]. Also, it is

a common approach to overlap adjacent windows in these algorithms [25,30].

In Figure 2.2, an application of the sliding window algorithm is illustrated. In

this figure, the signal is split into 2-second long windows with 75% overlap ratio. If

we employ this segmentation scenario for real time processing, it will mean that the

system should process a data window for every 0.5 second.

There are also studies that use event-based or activity-based segmentation tech-

niques [31, 32]. As illustrated in Figure 2.3, these techniques decide on how to divide

the signal into successive windows by considering the events or the activity transitions

detected in the signal. Since these methods require an extra preprocessing phase for

detecting the time of event or transition, they are usually not preferred for real-time

solutions.
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Figure 2.3. Defining (a) sliding windows, (b) event-based windows and (c)

activity-based windows along a continuous sensor signal [2].
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2.2.3. Feature Extraction

Features can be described as indicators for different characteristics of a data

segment. By extracting a set of features from a large data window, we can obtain a

simple vector that is much easier to process for a classifier for differentiating similar

data segments. Such value sets are called feature vectors. Features can be computed

by time, frequency and time-frequency analysis.

In this study, we focused on time-domain and frequency-domain features. Time

domain involves the analysis of signals with respect to time and a time domain graph

plots the changes in the value of a signal over time. On the other hand, frequency

domain refers to the analysis of frequency components of a signal. Unlike time domain

graphs, the representation of frequency domain shows how much of the signal lies on

each frequency band.

The computation of the frequency-domain features requires intensive pre-processing

(e.g. windowing, FFT) whereas time-domain features can be computed without such

pre-processing tasks but the transmission errors like noise and packet-loss should still

be taken into account. The most popular transformation method between time and

frequency domains is the Fourier transform which can be used for decomposing a signal

into the sum of a number of sine wave components and for recovering the original signal

from these components. The computational complexity of the Fast Fourier Transform

(FFT) is n log(n) where n is the size of the sample window which is expected to be a

power of two. FFT is the fastest transformation method between time and frequency

domains.

2.2.4. Feature Selection

Employing more features does not always yield better classification accuracy.

Different features often mask each other’s distinctiveness when they are used together

by a classifier or the same sort of information may be contained by multiple features

which will cause redundancy and increased computational cost. Due to this fact, one
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should select an ideal subset of features that are extracted from the input signal in

order to obtain better recognition performance.

One of the most popular feature selection methods used in the previous works

is the sequential forward-backward search [17, 33]. The Sequential Forward Selection

(SFS) algorithm starts with an empty set of selected features. At each iteration, candi-

date features are compared according to the increase they provide in the classification

accuracy and the best one is added to the selected features. The algorithm stops when

no more improvement can be obtained with the remaining features. Unlike SFS, the

Sequential Backward Selection (SBS) algorithm starts with a full set of selected features

and removes a feature at each step by again considering the amount of improvement

in the classification performance. The process stops when it is not possible to improve

the performance by removing any of the features from the selection.

In this thesis, we decided to use SFS and SBS methods for feature selection,

since they are the most widely used methods in the literature besides being very easy

to implement. By the way, both of these algorithms apply a greedy optimization

approach on an initial feature set. So, the major weakness of these techniques is that

they can easily get stuck in local maxima. For avoiding this problem partially, we used

these algorithms in two different approaches as described in Section 5.1.

2.2.5. Classification

Classification is the final step of a recognition process. Having a set of categories

which is supposed to cover all possible observations, the classification process involves

the identification of the category that an observation belongs to. The most widely used

classification methods in activity recognition are as follows.

• K-Nearest Neighbors (KNN) method simply classifies a sample based on K closest

training samples. It is a lightweight algorithm which is easy to implement [20,

23,25,26].

• Decision Tree (DT) algorithms implement decision models with a tree structure
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where leaves represent categories and branches represent decision rules [21,23,29].

• Support Vector Machines (SVM) are a group of supervised learning models which

can be used for classification [20,21,29].

• Naive Bayes (NB) is a simple probabilistic classifier. It employs the Bayes’ theo-

rem with the assumption that the presence of a feature in a class is not dependent

on the presence of another feature [15,21,26,29].

• Hidden Markov Models (HMM) are statistical models which assumes that the

system is a Markov model with unobserved states [29,34,35].
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3. RELATED WORK

Activity Recognition using wearable or visual sensors has become a popular field

of research in the last decade. Although plenty of research is carried out on this topic

since 2000 [13], there are several parameters that make it a difficult task to compare

the results of these studies since they all evaluate the performance with different pa-

rameters. Some of these parameters are the type of hardware, the number of sensors,

the set of activities to be classified and how sensors are placed.

In Table 3.1, characteristic features of related studies are presented. These fea-

tures include the set of activities to be classified, sensor/hardware types used for data

collection, extracted features and the clasification algorithms.

The most common hardware types that have been used in AR studies are wearable

sensors [25, 36, 37] and mobile phones [38–42]. Multiple wearable sensors can be used

in combination for getting the motion data from different parts of the body unlike

mobile phones which are typically tested in accordance with their regular usage (e.g.

a single mobile phone carried in a pocket). However wearable sensors are usually have

limited processing capability and it is not possible to implement real-time classification

solutions on them, whereas modern mobile phones can be used as a sensor and a

classifier at the same time. Additionally, mobile phones can be integrated seamlessly

into practical AR applications since they already provide several other functions that

have regular daily usage by people. Other than these two hardware options, some

custom sensor boards can be used like in [24].



Table 3.1. Related Work.

Paper Activities Sensors Hardware Accelerometer

Position and

Orientation

Features Classifiers Recognition Results Online

Classification

[20] bicycling,

soccer,

lying,

nordic walking,

rowing,

running,

sitting,

standing,

walking

Multiple Ac-

celerometers

Wearable Sen-

sors (Wrist,

Hip)

Fixed Position and

Orientation

Mean, max, min, max-min

diff., variance, power spectrum

entropy, peak frequency, peak

power.

SFS and SFFS are used

for feature selection.

Min. Distance,

DT + DHMM,

KNN, SVM

80% (SVM),

78% (KNN),

73% (MDC)

No

[25] level walking,

walking up-

stairs/downstairs,

jogging, run-

ning, hopping

on left/right

leg, jumping

Multiple Ac-

celerometers

Wearable Sen-

sors (Waist,

Thigh, Ankle)

Fixed Position and

Orientation

7 sets of wavelet features,

3 sets of time-domain features,

4 sets of freq-domain features,

First 5 FFT Coefficients pro-

vided the highest performance

KNN 92% (1 Sensor),

96% (3 Sensors)

No

[37] resting, typing,

gesticulating,

walking, run-

ning, bicycling

Multiple Ac-

celerometers

Wearable Sen-

sors (Wrist,

Hip, Ankle),

Mobile Phone

Fixed Position and

Orientation

”Motion Intensity” of body

parts computed from ac-

celerometers. ”Intensity” is

proportional to variance.

Neural Net-

work

80% Average Accuracy No

Continued on the next page



Table 3.1. Related Work (cont.).

Continued from previous page

Paper Classified

Activities

Sensors Hardware Accelerometer

Position and

Orientation

Features Classifiers Recognition Results Online

Classification

[29] stationary,

walking, run-

ning, bicycling,

motorized

transport

Accelerometer,

GPS

Mobile Phone Mobile phone is

carried in different

positions and flex-

ible orientations:

arm, waist, chest,

hand, pocket, bag

Mean, variance, energy, DFT

of total accelerometer magni-

tude and GPS speed are eval-

uated using Correlation-Based

Feature Selection.

Variance, 1-3Hz DFT coeff.s

and GPS speed are selected as

feature set.

DT, KMC,

NB, NN, SVM,

DT + DHMM,

Continuous

HMM,

93% (DT+DHMM),

91% (NN or SVM)

No

[15] walking, jog-

ging, sitting,

bicycling on a

stationary bike

Accelerometer,

Foot Sensor

Mobile Phone,

Nike Sport Kit

Fixed Position,

Carried in pocket.

”Foot in Use” Feature, mean,

stddev, min, max of accelerom-

eter magnitude, Energy in each

band of 10 freq. components of

DFT, The value and index of

the largest DFT component

NB 97% Average Accuracy Yes

[21] sitting, stand-

ing, walking,

running, driv-

ing, bicycling

Accelerometer Mobile Phone Fixed Position,

Carried in pocket.

Mean, stddev, zcr, entropy,

etc. Features are computed

from horizontal/vertical com-

ponents and magnitude of ac-

celeration vector.

DT, NB,

KNN, SVM

90% (DT),

89% (KNN),

89% (SVM)

No

[26] walking,

running,

standing,

sitting

Accelerometer Mobile Phone Fixed Position,

Carried in pocket.

Average, minimum, maximum,

standard deviation

Clustered

KNN,

NB

92% (KNN) Yes

Continued on the next page



Table 3.1. Related Work (cont.).

Continued from previous page

Paper Classified

Activities

Sensors Hardware Accelerometer

Position and

Orientation

Features Classifiers Recognition Results Online

Classification

[23] walking,

running,

cycling,

driving,

idling

Accelerometer Mobile Phone Fixed Position,

Carried in pocket.

Mean, minimum, maximum,

standard deviation, different

percentiles, square sum of ob-

servations above/below certain

percentiles

DT, KNN,

QDA

95% (DT+QDA),

94% (DT+KNN)

Yes

[38] sit-to-stand,

stand-to-sit

Accelerometer Mobile Phone Fixed Position,

Carried in pocket.

Vertical acceleration waveform Custom

Method:

Cross corre-

lating vertical

acceleration

waveform with

characteristic

waveform of

sit-to-stand

transition.

70% Average Accuracy Yes

[24] walking,

standing,

jogging,

skipping,

hoppin,

riding bus

Accelerometer,

Digital Com-

pass, Light

Sensor

Custom Sensor

Board

Fixed Position and

Orientation

Mean, variance, energy, spec-

tral entropy, DFFT coeffi-

cients, Correlation of accelera-

tion in all three axes, Variance

of digital compass, Variance of

light sensor

KMC N/A No
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One of the most important factors that determines the performance of an activity

recognition system is certainly the classifier algorithm that is used. Although different

classifiers may yield high recognition rates with different sets of features, the successful

results attained by the KNN algorithm in several AR studies is remarkable [20, 23,25,

26]. The results achieved by this lightweight classifier encouraged us to choose the KNN

algorithm in this study for evaluating the role of feature selection in activity recognition.

In [20], KNN and SVM classifiers attain the two highest recognition accuracies which

are 78% and 80% respectively and in [21], KNN and SVM again achieve an equally high

classification performance of 89% whereas NB algorithm achieves only 75%. In [23], the

KNN classifier and Quadratic Discriminant Analysis (QDA) are used along with a DT

algorithm and both attain very high and close accuracy rates that are 94% and 95%

respectively. Lastly in [29], KNN and SVM again attain the same accuracy rate (91%)

and that is very close to the accuracy attained by a classifier which is a combination

of Discrete Hidden Markov Models (DHMM) and DT algorithms (93%).

Another significant factor that characterizes different AR studies is the selection of

sensors for collecting data. The most widely used sensor for recognizing human physical

activities is the accelerometer. However, the number of accelerometers used for activity

recognition and how they are placed on the human body vary. There are different

setups for the accelerometer usage in different studies like placing one or more wearable

accelerometers on different body parts like wrist, ankle, thigh and hip and using the

accelerometer embedded in a mobile phone that is carried in pocket. Recent studies

usually make use of accelerometers in common, however these sensors are sometimes

used along with some supporting sensors like GPS [20, 29], digital compass [24], foot

sensor [15] and heart rate sensor [20]. In this thesis, only an accelerometer that is

embedded in a mobile phone is used for sensing purposes. The elimination of the

energy consumption that may be caused by extra sensors and the high availability of a

single accelerometer for smartphone owners are the two important factors behind this

decision.

The set of activities to be classified is another design parameter which makes it

difficult to compare the results of different studies. The set of activities can consist of
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specific activity transitions like in [38] where sit-to-stand and stand-to-sit transitions

are classified or it can contain routine daily activities like walking, sitting and motorized

transport. Another significant difference between the previous studies is the evaluation

of idle activities like sitting, standing and lying. While some studies take all these

activities as one class of activity called idling or stationary [23, 37], others consider

them as separate activities [21, 26]. Also, there are other studies which concentrate

on sportive activities like soccer, rowing and jogging [20, 25]. In this study, we focus

on typical daily activities of a person which can be classified using the acceleration

of a mobile phone that is carried in a pocket. Thus, distinguishing activity pairs like

typing-resting [37], sitting-standing [26], soccer-rowing [20] is beyond the scope of this

study.

Although time-domain features are used in almost all of these related studies,

frequency-domain features are used in a few of them [15, 20, 25, 29]. The most widely

used time-domain features are the mean and the variance. Other than these, the

minimum, the maximum and different percentile values are used in [15, 20, 23, 26].

On the other hand, all of the frequency-domain features are extracted from the FFT

of the accelerometer signals. The raw data from which these features are extracted

also vary between different studies. In some of them, features are extracted from the

acceleration components on each axis, whereas others use the the magnitude of the

acceleration vector as the input for feature extraction. In this thesis we used both

time-domain and frequency-domain features. We evaluated the mean and the variance

of the time-domain features and FFT coefficients are used as the frequency-domain

features. Differently from the previous studies, we also evaluated several features which

are extracted from the autocorrelation function of the accelerometer signal. In order to

ensure orientation independency of the mobile phone, the magnitude of the acceleration

vector is used for computing these features.

As mentioned, dealing with different sets of activities by using different types of

sensors makes comparison of these works difficult. However, as a general requirement,

we can say that a solution which provides real-time classification on mobile phones,

power efficiency and high recognition accuracy can be considered as a successful one.
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Among the studies mentioned in this chapter, there are two of them which are

very close to this thesis in terms of the activities they classify and the sensors they

use. Reddy et al. [29] and Siirtola et al. [23] both classifies the same five activities that

are classified in this thesis which are idling, walking, running, bicycling and motorized

transport. In [29], different positions for the mobile phone is studied unlike this thesis

where the mobile phone is assumed to be carried in a pocket. However, they make

use of an extra GPS receiver along with the accelerometer, thus the need for a clear

line of sight with GPS satellites confines the usage of the solution to outdoors. Also

in [29], only offline experiments are carried out and in these cross validation tests the

system achieves 93% recognition accuracy with DHMM classifier and 91% accuracy

with KNN when both of these classifiers are used in combination with a DT algorithm.

In [23], only an accelerometer that is embedded in a mobile phone is used, the phone

is assumed be placed in a pocket and both offline and online tests are carried out like

in this thesis. However, Siirtola et al. use only time-domain features like the mean,

the minimum, the maximum, the standard deviation and different percentiles. Thus,

our study differs from this work in terms of the variety of features used. Besides the

extra features evaluated in this thesis, the SFS and the SBS algorithms are applied in

two different approaches for an efficient selection of features.
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4. ACTIVITY RECOGNITION AND EFFICIENT

FEATURE SELECTION

The objective of our study is to evaluate and employ an efficient feature selection

that will enable classification of five different daily activities of a person in real-time

with high accuracy on a mobile phone. We also aim to provide a solution that will not

require any constrained mobile phone usage, so it is assumed that the phone is car-

ried in a pocket in any orientation while the classifier is running. While determining

the activities to be investigated in this thesis, we considered how often the activity is

performed in daily lives of people and how much it was studied in the literature. By

selecting frequently performed activities in daily life, we intended to increase the prac-

tical use of the study. Investigating widely studied activities facilitated the comparison

of this work with the related ones. Accordingly, we chose to work on the activities of

idling (stationary), walking, running, bicycling and motorized transport.

One of the most important restrictions for a mobile platform is the limited power.

The effect of this limitation on activity recognition applications becomes critical gen-

erally due to the power consumption of sensors and the complexity of the classification

algorithm. To overcome this problem, we used only the accelerometer rather than other

power-hungry sensors like GPS. Besides being relatively energy efficient, accelerometers

can be found in almost all of the smart phones. Additionally, we used a lightweight

classifier (KNN) considering the low processing capacity on mobile devices.

Limiting our sensor options and classifier complexity to develop a solution that

is suitable for mobile phones, we focused on the selection of efficient features that

would help us attaining high recognition rates. Obtaining an appropriate selection of

features will help us in maximizing the performance of our lightweight KNN classifier

and utilizing the processing power efficiently by decreasing the number of features to

be processed by the classifier. In this regard, we evaluated several widely used time

and frequency-domain features along with some specific ones that are extracted from
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the autocorrelation function of the signal.

This chapter presents the details about the steps of our activity recognition pro-

cess and the implementation of the software on mobile and desktop platforms. Also,

information about offline and online tests that are performed to improve and measure

the system performance is provided.

4.1. Data Collection

As mentioned, our purpose is to develop a solution that will classify a person’s

five daily activities (stationary, walking, running, bicycling, motorized transport) in

real-time with high accuracy rate on mobile phones. The very first step of our study is

the collection of accelerometer data from different subjects while they are performing

the given activities.

Since the data collected in this step will shape the direction of the next steps,

we worked with different subjects and paid attention to covering different ways of

performing the given activities as much as possible. The only restriction in the data

collection is that the subjects are supposed to carry the mobile phone that is used

for sampling in the front pocket of their trousers and the subjects mostly wore tight

trousers in order to sense the motion patterns more clearly.

We collected the activity data from 10 individuals with different ages between 15

and 30. They are asked to perform each of these activities for 2 minutes. This provided

us 20 minutes of samples for each of the five activities and that makes a total of 100

minutes long data. Before starting the sampler, a subject provides his name and the

type of activity he will perform to the mobile application and places the mobile phone

in either left or right pocket of his/her trousers with any orientation. The application

always uses the maximum sampling rate of the accelerometer which is 100 Hz for the

data collection. The sensor readings are logged as comma separated values to a text

file which is given a name that includes the names of the subject and the performed

activity as in Figure 4.1.
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Figure 4.1. Accelerometer sampling log file.

The activities are performed in various possible conditions. For stationary ac-

tivity, samples are collected from subjects while they are sitting, standing or lying.

The activities of walking, running and bicycling are performed with variable speeds

and on both inclined and flat ground. Three different bicycles are used for bicycling.

The subjects tried to continue pedaling as much as possible, but there were still short

periods of coasting. Different possibilities are sampled for motorized transport as well.

Samples are collected while travelling on two different busses and an automobile. All

these variations in the performance of activities are supposed to make things more dif-

ficult for a classifier and one should consider this fact while evaluating the performance

of the system.

The data collected in this phase is used throughout the study. We used it to

carry out the offline analysis. In this series of analysis, we investigated the effect of

segmentation parameters and several different features. To find out how the system

performs for different feature and parameter combinations, we performed leave-one-

out cross validation tests on this dataset. We also used this data to form the training

datasets which are used for online tests.

4.2. Segmentation

As explained in Section 2.2.2, a continuous signal should be divided into data

windows for extracting features. For this purpose, we used fixed-length sliding windows
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Table 4.1. Sliding Window Configurations.

Sampling Rate Window Length Window Overlap

100 Hz 1350 msec 25%

100 Hz 2700 msec 63%

100 Hz 5200 msec 80%

that overlap with specific ratios. We preferred this technique since it is shown to yield

good results [25,29] although it is computationally efficient and easy to implement.

Some of the features evaluated in this study are computed using FFT. So, in

order to better represent the data by avoiding zero padding, we decided to use window

lengths that are powers of two. In this regard, we evaluated three different window

lengths which are 1350, 2700 and 5200 milliseconds. Since we use a sampling rate of

100 Hz throughout the study, the samples these windows contain counts to numbers

that are close to a power of 2 (i.e. 128, 256 and 512). Although the mobile phone

we used for carrying out the experiments was stable in sampling with the given rate,

we still decided to use a little bit larger windows to eliminate the effect of possible

undersampling caused by the operating system or the hardware. So, 1350, 2700 and

5200 msec windows always contain 128, 256 and 512 samples respectively. We applied

FFT to the first 128, 256 and 512 samples in those windows. The windows usually

contained few more samples, but these extra samples are also used for feature extraction

in the next data window since we used overlapping windows as explained below.

In a real-time activity recognition system, the output frequency of the classifier

should be consistent with the length of the time an activity transition takes. Since

most of the time, it is possible for an individual to change the activity he performs in

less than one second, in this study we fixed the output frequency of the classifier to 1

Hz. To attain this classification frequency, we used appropriate window-overlap ratios

for different window lengths. As a result, we used three different configurations for the

sliding window algorithm as shown in Table 4.1.
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Figure 4.2. Evaluated window functions.

Since we make use of Fast Fourier Transform (FFT) for feature extraction, we

also analyzed the effect of window functions on the performance of the system. Since

FFT algorithm cannot know how the signal behaves outside the given data segment,

it implicitly assumes that the data segment to be processed is repetitive. However, it

is very likely that there are discontinuities between the ends of these data segments

and this causes the signal energy to spread out over a wide frequency range. Window

functions are used to avoid this spectral leakage by eliminatimg discontinuities at the

ends of the data segments.

In this study we evaluated the performance of Hann and Hamming windows

along with rectangular windows (Figure 4.2). Hann and Hamming are two of the most

popular window functions for random signals, because they provide better frequency

resolution and leakage protection while offering fair amplitude accuracy.

4.3. Feature Extraction

In order to have a system that is not affected by the position and the orientation of

the mobile phone, all features are extracted from the the magnitude of the acceleration

vectors as computed in Equation 4.1.

amag =
√
a2
x + a2

y + a2
z (4.1)
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Although we may loose detailed information about the accelerometer readings in indi-

vidual axes by using the magnitude of the vector, this enables the classification process

not to be affected by the orientation of the phone. So, we do not have a constraint

for the orientation of the phone in the pocket. On the other hand, a successful fea-

ture extraction task is highly dependent on the way data is separated into windows

(segmentation) and the values of windowing parameters like the window size, the win-

dow overlap ratio and the windowing function. In a classification system, the effect

of these factors on the overall performance has strong correlation with the character-

istics of the input signal and the frequency of outputs to be produced. Inherently,

human physical activities have low frequencies. For example, a one-second sampling

window for the activity of walking one step per second will contain only one motion

pattern and that results in a value of 1 Hz for the frequency of motion. If we use

one-second windows for computing features, it is clear that we can hardly extract in-

formation about the frequency of motion, since each window will span only one period

of the signal. Moreover, applying window functions (i.e. Hann, Hamming, etc.) to

such windows will severely mask the signal. In Section 4.2, we provided information

about the segmentation method and the windowing parameters evaluated in this study

and in Chapter 5, the effect of different windowing parameters on the overall system

performance is compared. The results indicate that more than 95% recognition accu-

racy could be attained by both 2700 and 5200 msec windows, whereas at most 88%

accuracy is attained when using 1350 msec windows. Regarding window functions,

rectangular windows outperformed Hann and Hamming windows when using 1350 and

2700 msec windows, however Hann windows provided slightly higher performance than

rectangular windows when 5200 msec windows are used.

In this study, we extracted a total of 17 distinct features from the accelerometer

data (Table 4.2) and compared them in terms of their contribution to the classification

performance. These include some common features that are used in most of the ac-

tivity recognition studies like the mean, the variance, 10 primary FFT coefficients, the

value and order of the largest FFT coefficient. Other than these, we extracted some

particular features that are extracted from the autocorrelation of the sample windows.

Throughout the study, we evaluated the system performance by employing different
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combinations of these features.

Table 4.2. List of Features.

Domain Feature Symbol Extracted From

Time Mean µA Accelerometer Magnitude

Time Variance σ2
A Accelerometer Magnitude

Frequency 1st FFT Coef FC1 FFT of Accelerometer Magnitude

Frequency 2nd FFT Coef FC2 FFT of Accelerometer Magnitude

Frequency 3rd FFT Coef FC3 FFT of Accelerometer Magnitude

Frequency 4th FFT Coef FC4 FFT of Accelerometer Magnitude

Frequency 5th FFT Coef FC5 FFT of Accelerometer Magnitude

Frequency 6th FFT Coef FC6 FFT of Accelerometer Magnitude

Frequency 7th FFT Coef FC7 FFT of Accelerometer Magnitude

Frequency 8th FFT Coef FC8 FFT of Accelerometer Magnitude

Frequency 9th FFT Coef FC9 FFT of Accelerometer Magnitude

Frequency 10th FFT Coef FC10 FFT of Accelerometer Magnitude

Frequency Max FFT Coef Value max{FCi
} FFT of Accelerometer Magnitude

Frequency Max FFT Coef Index Imax{FCi
} FFT of Accelerometer Magnitude

Frequency Maximum Value of Autocorrelation max{Ri} Autocorrelation of Accelerometer Magnitude

Frequency Zero Crossing Rate of Autocorrelation zcr{R} Autocorrelation of Accelerometer Magnitude

Frequency Autocorr Peak Index Imax{Ri} Autocorrelation of Accelerometer Magnitude

Before passing the features extracted from the raw data to a classifier as an

input, we build a feature vector from the normalized values of these features. Since the

KNN classifier in this study uses the Euclidean distance while detecting the nearest

samples, the value ranges of different features is expected to effect the weight of their

influence on the distance calculation. So, in order to equalize the ranges of the features,

we normalized each feature’s value by mapping it to a value between 0 and 1. In

Equation 4.2, the calculation of the normalized value is shown. Here, fmax stands for

the maximum value of that feature in the complete dataset and fmin stands for the
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minimum value of it.

f̂ =
f − fmin

fmax − fmin

(4.2)

In the following sections, we explain how these features behave when samples of dif-

ferent activities are considered. We also give details about the features extracted from

the autocorrelation function and describe why they are expected to contribute to the

classification performance of our solution.

4.3.1. Common Features

As mentioned above, we can separate the features used in this study into two

groups. In the first group, there are some common features that have been used in

several previous studies. In this section, we present an analysis of how these common

features behave for each of the activities that are to be classified by this work.

Among the features that are studied in this thesis, the mean and the variance are

the most widely used features in different domains of signal processing. These features

are extracted from each data window that are obtained by segmenting the continuous

accelerometer readings. As mentioned above, we only use the the magnitude of the

acceleration vector which is the sum of values on all three axes for extracting features,

thus the average value and the variance of the accelerometer magnitude is computed

for each data window to obtain these two features.

Before including the mean and the variance to our initial feature set, we ana-

lyzed the behaviour they exhibit for accelerometer signals of different activities that

are targeted in this work. In Figure 4.3, the normalized values of mean and variance

are plotted for 100 randomly selected data windows sampled while performing the ac-

tivities of stationary, motorized transport, bicycling, walking and running. Among the

segmentation configurations explained in 4.2, we used 2700 msec 63% overlapping rect-

angular windows for extracting the values plotted in these graphs. This segmentation

configuration is one of the most appropriate ones for obtaining a good separation of
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Figure 4.3. Mean and variance values for randomly selected data windows of

accelerometer samples for five daily activities.

activities using these features.

The curves that show normalized mean values for activities like walking, running

and bicycling appear to be distinct enough so that this feature seems to be a reliable

one for differentiating samples from these three activities. However, there are still

some intersection zones where the value for these activities overlap significantly. For

example, there are data windows of both walking and running activities that reside on

the interval [0.5-0.6]. On the other hand, it is not likely that the mean will be useful

for classifying the other two: stationary and motorized transport. Also bicycling is

partially separable from these two in the graph, thus it is clear that we need some other

supporting features to distinguish bicycling from these activities precisely. In Figure

4.4, it can be clearly seen how the mean curves for bicycling, motorized transport and

stationary are interlaced.

Looking at the graphs that show the normalized variance values of data windows
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Figure 4.4. Mean and variance values for randomly selected data windows of

accelerometer samples for three daily activities.

for different activities, it is possible to say that variance is expected to provide a similar

level of differentiation between bicycling, walking and running activities. In the graph,

there are still overlapping zones between the curves of activity pairs like running-

walking and walking-bicycling. However, the variance curves of bicycling, motorized

transport and stationary activities are not as mixed as in the mean curves. As seen in

Figure 4.4, although they sit in a relatively narrow interval, variance curves of these

activities are separated more clearly than the mean curves.

Other common features that are used in this study are extracted from the Fourier

transform of the activity samples. As mentioned in Section 4.2, we used appropriate

window sizes to avoid zero padding before applying FFT. Throughout the experiments

carried out in this study, we used 128, 256 and 512-point FFT in accordance with the

evaluated window size. A total of 12 features are extracted from the result of FFT.

These are the index of the greatest FFT coefficient, the value of the greatest FFT

coefficient and the value of 10 primary FFT coefficients.
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To have an idea about how FFT coefficients behave for the accelerometer samples

of the activities that we aim to classify in this study, the graphs in Figure 4.5 can be

analyzed. Each of these five graphs shows the results for a different activity. On

each graph, the normalized values of 10 primary FFT coefficients are plotted for 20

randomly selected sampling windows separately. So, there are 20 series on each graph

which corresponds to those data windows.

As suggested in these figures, there are significant differences between the values

of FFT coefficients that are computed from the samples of the five activities. The

values for stationary and motorized transport are always very small when compared

to other three activities. Also, there is no indication of a dominant FFT component

in these values. Instead, the values of coefficients for different data windows exhibit

an independent behaviour. On the other hand, the FFT coefficients that are extracted

from activities like bicycling, walking and running have much higher maximum values

and they follow more regular patterns that are independent of the data windows. This

is apparent especially in the graphs of walking and running activities. For example,

in the graph of walking activity, 4th FFT coefficient almost always has a significantly

higher values than other coefficients regardless of the data window. This is also the

case for the 6th FFT coefficient for the activity of running.

Obviously, these differences in the FFT features for the given activities mainly

stem from the fact that some of the activities evaluated in this study are composed

of periodic motions like taking steps and pedaling and the frequency of these motions

differ. So, depending on these results, we can conclude that the use of FFT coefficients

are very likely to contribute to the performance of the activity recognition system that

we build.

4.3.2. Autocorrelation Features

In this section, we give details about the features that are extracted from the

autocorrelation function and describe why they are expected to contribute to the clas-

sification performance of our solution.
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Figure 4.5. FFT Coefficients for randomly selected 20 data windows from each of the

five daily activities.
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In general, physical activities have two important properties which we can use for

classifying them more efficiently. The first one is the periodicity of an activity. This is

a feature that differentiates activities that consists of repeating motion patterns (e.g.

walking) from those that are not actually a repetition of a specific motion (e.g. sitting).

Furthermore, different types of periodic activities can be distinguished using a second

property which is the period of motion. However, the period of an activity signal is

not sufficient in classifying different periodic activities, since two different activities

may have the same periods for the repeating patterns that constitute them like in fast

walking and slow running. Nevertheless, this feature is still expected to contribute to

the classification performance when typical speeds of activities are considered.

One can consider using FFT coefficients for estimating such frequency compo-

nents of an activity signal. However, since FFT components have limited resolution

in low frequencies, they will not help us in finding the period of the signal precisely.

For instance, we can consider the application of a 256-point FFT to a window of 256

samples which are collected with 100 Hz. First five frequency components produced

by this transform will be 0.39 Hz (100/256), 0.78 Hz (200/256), 1.17 Hz (300/256),

1.56 Hz (400/256) and 1.95 Hz (500/256). Our observations show that distinguishing

walking and running activities will require more resolution for the period of signal, be-

cause we can have 1.4 Hz motion frequency in a walking signal while having 1.6 Hz in

running when they are performed with specific speeds. Moreover, FFT is not suitable

for estimating periodicity since the true fundamental frequency might not be the one

with the largest amplitude.

In order to precisely estimate the frequency and the periodicity of a signal, we

decided to use the autocorrelation function which can be computed efficiently from raw

data X(t) with two Fast Fourier Transforms as in Equation 4.3. The autocorrelation of

a signal describes the correlation between signal values within different time frames, as

a function of the time difference between these frames. In order to detect the existence

of repeating patterns, one should look at the autocorrelation values which approach to

1 when the correlation between two time frames increases. The maximum value and

the zero crossing rate of the autocorrelation function are the two features that we use
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Figure 4.6. The zero crossing rate and the maximum values of autocorrelation

function.

for estimating the periodicity of activities. Besides these, we use the index of peaks

in the autocorrelation function as an indicator of the period of motion for periodic

activities.

FR(f) = FFT [X(t)]

S(f) = FR(f)FR
∗(f)

R(τ) = IFFT [S(f)]

(4.3)

In Figure 4.6, it is seen that the maximum autocorrelation value is higher for samples

collected while walking than those collected during motorized transport, since walking

consists of periodic motion patterns. The two activities can also be separated by looking

at the zero crossing rate of the autocorrelation function. Due to the randomness and

the lack of patterns in the samples for motorized transport, the autocorrelation values

exhibit an irregular course that frequently alternates between negative and positive

values. Thus, the zero crossing rate has higher values for aperiodic signals.
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Figure 4.7. The peak of autocorrelation function and the period of motion.

Figure 4.7 illustrates the reflection of the period of a motion on the autocorrelation

function. In these two diagrams, the magnitude of acceleration and its autocorrelation

is plotted for a window of 256 samples which are recorded while the subject is walking.

From the acceleration signal, it is clearly seen that a complete movement cycle (a left

and a right step) is completed in 97 samples which correspond to 970 msec since the

sampling rate is 100 Hz. When we look into the peak values in the autocorrelation

diagram, we will see that the function reaches its highest value at around 97th point

which point to the period of motion seen in the sample window. Note that we should

ignore the higher values in the beginning of the autocorrelation function since it actually

shows the autocorrelation of the sample window with itself and also the second half of

it can be disregarded since the autocorrelation function is symmetric.

4.4. Feature Selection

Finding an efficient set of features that will provide high classification accuracies

with a lightweight classifier on smartphones is one of the most important objectives



35

of this study. To attain this goal, we employed two well-known feature selection algo-

rithms, after the extraction of 17 candidate features that are mentioned above. These

two methods are Sequential Forward Selection (SFS) and Sequential Backwards Selec-

tion (SBS). The reason for choosing these two algorithms for feature selection is that

they are the most widely used methods in the literature besides being very easy to

implement.

The SFS algorithm starts with an empty set of selected features. At each iter-

ation, candidate features are compared according to the increase they provide in the

classification accuracy and the best one is added to the selected features. The algorithm

stops when no more improvement can be obtained with the remaining features. Unlike

SFS, the SBS algorithm starts with a full set of selected features and removes a fea-

ture at each step by again considering the amount of improvement in the classification

performance. The process stops when it is not possible to improve the performance by

removing any of the features from the selection.

Since the sequential approaches like SFS and SBS do not reevaluate the usefulness

of features that were selected previously, they converge to local minima. For avoiding

this problem partially, we used these algorithms in two different approaches. The

details about these approaches are given in Section 5.1.

All feature selection procedures are employed in the offline cross validation tests.

The best feature set found during these tests is used in the online activity classification.

In Chapter 5, we present the best feature sets and the recognition performance attained

by each of them.

4.5. Classification

Since the main focus of this study is to evaluate the contribution of several

different features to classifying different daily activities, we decided to use a single,

lightweight classifier for analyzing the efficiency of the features more clearly. In this

regard, we used the KNN classifier which is shown to yield high classification accura-
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cies in several related studies [23, 25]. In the previous studies of our research group,

the performances of several different classifiers are also compared for online activity

recognition [26].

4.6. Software Implementation

We implemented two applications for running both offline and online tests on the

performance of our activity recognition solution with different feature sets and system

parameters. One of these applications is built for offline analyses that are to be run on

a desktop computer and the second one is a mobile application that can be used for

testing the system in real-time. Both applications are written in Java and the mobile

software is implemented for Android OS. In the following subsections, we present the

details about the components and the functionalities of these software.

4.6.1. Mobile Application

We implemented our activity recognition software on a Samsung Galaxy Ace

S5830 smartphone with Android OS version 2.2.1. The phone is equipped with a 800

MHz CPU and a tri-axial accelerometer. The accelerometer has a measurement range

of ±2g and a maximum sampling rate of 100 Hz.

The application that we developed for the Android OS contains three main ser-

vices that implements the core activity recognition procedure. These are the Sampler,

the Feature Extractor and the Activity Recognizer. Besides, we implemented a desk-

top application for carrying out offline tests. We used these three services also in the

desktop application which feeds the Sampler service with the offline data that is to

be tested unlike the mobile application in which Sampler registers as a sensor-event

listener with the help of Android API and listens for the real-time sensor input. In

the following sections, the details about these components and the user interfaces for

making use of them are presented.
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Table 4.3. Android sampling rate options on Samsung Galaxy Ace S5830.

Sensor Delay Parameter Sampling Rate

SENSOR DELAY FASTEST 100 Hz

SENSOR DELAY GAME 16 Hz

SENSOR DELAY UI 8 Hz

SENSOR DELAY NORMAL 4 Hz

4.6.1.1. Sampler. Sampler service is responsible for reading accelerometer values and

logging them into text files on demand. For fetching the list of sensors on a device and

registering as a listener for the events of a specific sensor, Android API offers an inter-

face called SensorManager [43]. Using this interface an application is able to retrieve

the samples from an accelerometer sensor with four possible sampling rates which are

specified by the predefined values for the delays between sensor readings. In the API

these values are referred as SENSOR DELAY FASTEST, SENSOR DELAY GAME,

SENSOR DELAY UI and SENSOR DELAY NORMAL. Although these values are

constant, they may correspond to different sampling rates on different hardware since

the sampling rate is effected also by hardware and operating system constraints.

Registering an application for accelerometer readings with these SENSOR DELAY

parameters on the smartphone that we used in this study provides the constant sam-

pling rates given in Table 4.3. Among these values we used the fastest one (i.e. 100 Hz)

for both offline and online tests, since a sampling rate above 30 Hz is recommended for

ascertaining human movements [44].

In Figure 4.8, a user interface for the Sampler service is given. Via this interface

the user can provide parameters like the user name (for naming the log file), the

sampling rate and the data label (activity name) before starting the sampler. This

interface is mainly used for collecting the activity dataset that was used in offline and

online tests. On the other hand, Sampler is actually implemented as a standalone

service to provide accelerometer readings to Feature Extractor and Activity Recognizer.
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Figure 4.8. User interfaces for sampling and feature extraction.

4.6.1.2. Feature Extractor. This component is responsible for retrieving sensor data

from the Sampler, segmenting this data into windows, extracting features from data

windows and writing feature vectors to a log file. The detailed information about

segmentation and feature extraction approaches of this study is already presented in

Sections 4.2 and 4.3.

The Feature Extractor service takes the sensor data as the input and gives a

feature vector per second as the output which is consumed by the Activity Recognizer.

However, it is also possible to obtain Feature Extractor’s output as a text file after

running it with specific parameters via the user interface given in Figure 4.8.

4.6.1.3. Activity Recognizer. This service implements a KNN classifier which is trained

with a dataset that is read from a text file containing labeled feature vectors. After the

short training phase Activity Recognizer starts to fetch real-time feature vectors from

the Feature Extractor service and outputs the classification result for each of them.

Activity Recognizer is designed to be trained only once, so that no additional

input is needed from the user. The training data is read from a predefined file location.
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Figure 4.9. User interface for the online activity recognition tests.

Figure 4.9 shows the main user interface that makes use of the Activity Recognizer

service. This interface is used for performing online tests where the user provides

which activity he will perform and the duration of the test. When the user starts the

test, all three services described above are activated in sequence and by comparing

the outputs of Activity Recognizer with the activity type entered by the user, the

recognition accuracy is calculated and it is displayed to the user.

4.6.2. Desktop Application

As mentioned above, we also embedded the activity recognition services that are

described above into a desktop application which is written in Java. In this application,

we implemented leave-one-out cross validation tests, feature selection algorithms and

training dataset generators for the online classifier. The offline tests and analyses

that we made with the help of this desktop application facilitated the evaluation and

comparison of different features and system parameters. In the following sections, we

refer to the tests that are performed with the desktop application as offline tests and

to those that are performed in real-time on mobile phone as online tests.

We did not create a graphical user interface for the desktop application since it
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was implemented for analysis of system parameters rather than a standalone end-user

application. So, we ran the application from the command line or the IDE that we

used for Java development (i.e. Eclipse).

The input and output of the application are always handled using text files. The

main input files are the ones that contain activity samples that are collected in the first

phase of this study. As mentioned in Figure 4.1, each of these files contain data for a

specific activity-subject pair and they are named accordingly. Each line contains an

accelerometer reading that includes the timestamp and the acceleration values on all

three axes. Since the timestamps of the accelerometer readings are available in the file,

it is possible to feed an offline application by passing each reading at the corresponding

time just like they are being read from a sensor.

By reading the accelerometer samples from these input files, the application can

extract labeled feature vectors for each subject. Before this operation, we can set

values for segmentation parameters and select the set of features that we want in the

output file. This feature extraction function outputs new data files that contain the

resulting feature vectors and the activity labels. The format of this output file is given

in Figure 4.10. After generating these labeled feature vectors, the application is able to

use them for performing cross validation tests. For example, we can write the features

generated from the data collected from subject X and Y to a file and in another file we

can have the features extracted from the samples collected from subject Z. Then we

can employ a cross validation test by using the first file for training and the second one

for testing. Since we can choose any values for windowing parameters before extracting

features and we can select any set of subjects and features for both training and testing

datasets, we can run cross validation tests with all possible configurations to analyze

the effect of parameters and features.

The next important functionality of our desktop application is the feature selec-

tion. It employs SFS and SBS algorithms according to the performance measurements

done by cross validation. For determining the best set of features for different segmen-

tation parameters, the software implements two approaches that makes use of these
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Figure 4.10. Labeled feature vectors extracted for offline analysis.

algorithms. These approaches will be described in Section 5.1.

Finally, we can form online training datasets by making use of this offline appli-

cation. Since it is not possible to train the classifier with a large dataset on a mobile

phone in a reasonable time, we implemented an algorithm to select a representative

subset of the complete activity dataset. At each turn, the algorithm selects an equal

number of feature vectors for each activity from the dataset. Then, it performs a clas-

sification test where the classifier is trained with this selection and the remainder of

the dataset is used for testing. In this test, a high classification accuracy indicates that

the selected subset is a good representation of the complete dataset. After repeating

this procedure for a sufficient number of times, the algorithm returns the best subset

which can be used for training the online classifier.
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5. PERFORMANCE EVALUATION

As mentioned above, this study offers an efficient selection of features that yields

high recognition rates with a simple classifier like KNN. Meanwhile, we evaluate the

parameters used for the segmentation task, since these strongly effect the influence of

features on the recognition performance. So, while testing and evaluating the system

performance, we focused on two main factors that effect the performance of the activity

recognition system. These are the parameters used for dividing the input data into

windows and the feature set used for classifying the activities.

For evaluating the performance of the proposed system, we performed a series

of tests which can be grouped into two stages. The first stage is the longer one that

involves the offline tests. In this stage, we worked on the sampling data collected from

10 different participants as mentioned in Section 4.1. Using this dataset, we applied

cross validation tests for finding the best configuration for data segmentation and the

best feature set to be used in classifying activities. In the second stage, we carried out

real-time online tests with our final activity recognition system that is configured with

the most successful setup discovered as a result of the offline tests.

In the following sections, the details of offline and online tests are presented along

with the performance results obtained during these tests.

5.1. Offline Tests and Results

For measuring the performance of our system in the offline analysis, we used leave-

one-out cross validation on our sampling data which is collected from 10 individuals as

mentioned above. At each iteration, the system is trained with the samples of 9 subjects

and tested with the samples of the remaining subject. This is repeated until samples

collected from each subject is once used as test data. At the end of 10 iterations, each

subject’s data is once used for testing and we take the average of recognition rates

obtained in these iterations as the main indicator of the system performance.
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Figure 5.1. Snapshots from experiments.

As described in Chapter 4, before measuring the performance of the system at

each test, we are able to tune parameters for the sliding window segmentation and

select any set of features to be used in the classification. In the first part of the offline

tests, we analyzed the performance of the system when we do not apply any feature

selection procedure and use all 17 features at the same time. Next, we utilized SFS and

SBS algorithms for each fold of the cross validation tests and aggregated the results

to find out which features are selected most. Then, we tested the system with these

mostly selected features. Lastly, we ran the SFS algorithm over all 10 folds of the cross

validation at the same time.

We applied all these test steps with different sliding window configurations sepa-

rately. As mentioned in Section 4.2, we evaluated three possible [window size, window

overlap] pairs that satisfy 1 Hz output rate for the classifier (Table 4.1). We also

compared the performance for three different window functions that are Rectangular,

Hann and Hamming. So, we had nine different parameter combinations for compari-

son as shown in Table 5.1. In Section 4.2, information about the reasoning behind the

selection of given window sizes and window overlap ratios was explained.
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Table 5.1. Evaluated Windowing Configurations.

Window Function Window Length Window Overlap

Rectangular 1350 msec 25%

Rectangular 2700 msec 63%

Rectangular 5200 msec 80%

Hann 1350 msec 25%

Hann 2700 msec 63%

Hann 5200 msec 80%

Hamming 1350 msec 25%

Hamming 2700 msec 63%

Hamming 5200 msec 80%

5.1.1. Performance Before Employing Feature Selection

In the first part of the offline tests, we measured the system performance using

all 17 candidate features. So, the feature set is fixed in this test and we repeated the

test for different segmentation options listed above.

Figure 5.2 shows the recognition accuracy of the system when all features are

used at the same time. As the results suggest, using rectangular windows for feature

extraction yields significantly better accuracy rate than the rate achieved by Hann and

Hamming windows. On the other hand, the results show that the best window length

is 2700 msec which provides slightly higher accuracy than 5200 msec. As mentioned

in Section 4.3, the relatively low accuracy rates for Hann and Hamming windows may

possibly be due to the low frequency of activity signals which causes the signal to

be distorted when multiplied with a window function when short window lengths are

used. Also the complete collection of features that we used in this test may be more

suitable for Rectangular windows. So, feature selection tests may shed a light on this

performance difference in the following sections.

Table 5.2 shows the confusion matrix of the classification done by 2700 msec
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Figure 5.2. Performance of different segmentation parameters with all features.

Rectangular windows which achieved the best results in this test. As the results show,

the average recognition accuracy is 91.22% which means that we already have a good

starting point and that will surely make it more difficult to further improve the sys-

tem performance. However, we still managed to improve the recognition accuracy

significantly as we present in the following sections. Besides improving the system per-

formance, feature selection algorithms speed up the application execution by decreasing

the number of features to be computed.

With a first look into the differentiation of activities in the given confusion ma-

trix, we can clearly see that the system mostly fails in classifying bicycling and mo-

torized transport activities. Although, these two activities produce signals with close

variances, the periodic signal of bicycling activity should help in differentiating them.

Also, the bicycling samples that are collected while the subject is coasting rather than

pedaling may cause a confusion with the samples collected during motorized transport.

The other significant confusion is between stationary samples and motorized transport

samples. The signals for these activities are sometimes very similar especially when

the motor vehicle is stuck in a traffic jam. Since feature selection algorithms are not

applied in these tests, it is possible that some features suppress the influence of others

that can be more helpful when used together with a better subset of features. This
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Table 5.2. Confusion matrix for leave-one-out cross validation test with complete set

of features that are extracted from 2700 msec rectangular windows.

CLASSIFICATION
ACCURACY AVERAGE

Stationary Motorized Bicycling Walking Running

G
R

O
U

N
D

T
R

U
T

H Stationary 942 53 3 0 0 94.39%

91.22%

Motorized 67 846 89 0 0 84.43%

Bicycling 1 163 812 20 0 81.53%

Walking 0 1 24 966 2 97.28%

Running 0 0 1 14 979 98.49%

will be investigated in Section 5.1.2 and 5.1.3.

Before going into feature selection analysis, we also tested the performance of the

time-domain features that are used in this study. Since there are related studies that

attain good recognition rates by using only time-domain features [21,23,26], evaluating

the performance of these features will enable us to see how frequency-domain features

contributes to overall system performance. Although we used only two time-domain

features (mean and variance) they provided pretty good results in cross validation

tests. We attained an average recognition rate of 78% when both variance and mean

are used, 67% when only mean is used. The maximum performance is achieved when

we used only variance and that provided 88% average accuracy.

The confusion matrix of the tests that are performed by using only variance

is given in Table 5.3. The results are consistent with the variance graphs that are

presented in Figure 4.3 and 4.4. As can be seen in these graphs, there are intersecting

parts mostly between the activities of motorized transport and bicycling. This fact is

reflected to the confusion matrix in which a relatively higher confusion is seen between

these two activities. The second mostly confused activities are bicycling and walking. In

the mentioned graphs, there are obvious intersection zones between these two activities

as well. On the other hand, the activities like running and stationary are separated

more successfully in both the confusion matrix and the graphs.



47

Table 5.3. Confusion matrix for leave-one-out cross validation test with only variance

feature that is extracted from 2700 msec rectangular windows.

CLASSIFICATION
ACCURACY AVERAGE

Stationary Motorized Bicycling Walking Running

G
R

O
U

N
D

T
R

U
T

H Stationary 972 26 0 0 0 97.39%

88.32%

Motorized 42 827 133 0 0 82.53%

Bicycling 0 99 817 80 0 82.03%

Walking 0 0 81 847 65 85.30%

Running 0 0 0 56 938 94.37%

As a result of the two tests presented in this section, we can say that the time-

domain features achieve pretty good performance (88%) in classifying the given ac-

tivities. However, the frequency-domain features that are evaluated in this study are

very likely to contribute much to this performance since a higher recognition accuracy

(91%) is obtained even without employing any feature selection algorithms.

5.1.2. Personalized Feature Selection Approach

In this study, we evaluated two different methods of applying feature selection

algorithms for determining the best set of features for our purposes: personalized and

generalized approach. In this section, we evaluated the performance of the system with

our first approach. In this approach, we applied SFS and SBS methods for each fold

of the leave-one-out cross validation tests. Since we test the system with a different

subject’s samples at each fold, we get different feature selections for recognizing the

activity data of each subject. At the end of this test, we evaluated the performance of

the system by using first N mostly-selected features for all N between 1 and 17 (total

number of features) and determined the best one among these features.

The feature selection algorithms are applied when testing a different subject’s

data at each iteration of these tests. This is why we named this feature selection

approach as Personalized Feature Selection. Since we aggregate the results at the end
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Table 5.4. Selection rate of features with 5200 msec Rectangular windows and the

highest recognition accuracies with mostly-selected features.

Feature
Selection Rate

Highest Recognition Accuracies
SFS SBS Overall

σ2
A 10/10 10/10 20/20

91.47%

92.95%


94.10%


95.67%


95.76%



85.07%

FC2 4/10 10/10 14/20

FC3 4/10 10/10 14/20

FC8 3/10 10/10 13/20

FC6 4/10 7/10 11/20

FC9 3/10 7/10 10/20

µA 2/10 8/10 10/10

FC4 1/10 9/10 10/20

FC5 2/10 7/10 9/20

max{Ri} 1/10 8/10 9/20

FC7 0/10 9/10 9/20

max{FCi
} 1/10 7/10 8/20

FC10 1/10 7/10 8/20

FC1 0/10 8/10 8/20

Imax{FCi
} 3/10 4/10 7/20

zcr{R} 0/10 7/10 7/20

Imax{Ri} 1/10 4/10 5/20

of the tests and reach to an efficient collection of mostly-selected features, this technique

actually outputs results that are shown to yield high recognition rates for all subjects.

The results for 5200 msec rectangular windows are presented in Table 5.4. This

segmentation setup provided one of the highest recognition accuracies (95.76%) using

only six features. The table shows the number of times each feature is selected by

feature selection algorithms and the highest accuracy rates attained by the first N

mostly-selected features where N is between 1 and 17. The detailed results of the tests

for each segmentation configuration (Table 5.1) are presented in Appendix A.



Table 5.5. The best feature sets composed of mostly-selected features and the recognition accuracies they yield.

1350 msec 2700 msec 5200 msec

Rectangular Hann Hamming Rectangular Hann Hamming Rectangular Hann Hamming

σ2
A FC1 µA σ2

A FC1 max{FCi
} σ2

A max{FCi
} max{FCi

}

FC10 max{FCi
} max{FCi

} FC1 FC4 µA FC2 FC5 FC3

FC9 µA FC1 FC4 FC3 FC4 FC3 FC3 FC2

zcr{R} FC10 FC10 FC9 FC6 FC1 FC8 FC8 zcr{R}

FC3 FC7 FC5 FC5 max{FCi
} FC6 FC6 FC2 FC5

Imax{FCi
} FC9 FC6 µA FC3 FC9 FC6 FC9

FC3 FC2 FC7 FC2 max{Ri} FC4 FC6

FC8 FC4 FC10 FC7 FC2 FC9 FC10

FC9 FC6 FC2 FC8 FC7 µA Imax{Ri}

FC2 FC8 FC3 FC5 FC5 µA

FC6 FC7

FC4

88.06% 86.67% 84.14% 95.26% 94.71% 91.97% 95.76% 95.76% 93.66%
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In order to interpret the results of these tests, we can take a look at Table 5.5

which shows the feature sets that yield the highest recognition performance for each

segmentation scenario.

The results clearly show that segmenting the data into 1350 msec windows always

yields relatively lower recognition performances regardless of the windowing function

applied to the data segments. Using the mostly-selected features, we could attain at

most 88% classification accuracy when 1350 msec windows are used. On the other hand

we obtained more than 95% accuracy when we used specific subsets of mostly-selected

features for 2700 and 5200 msec windows. This clearly indicates that a window length

of 1350 msec is not sufficient for classifying the five daily activities that are evaluated in

this study. This result is expected since we are classifying activities like walking which

can be performed so slowly that 1.35 second interval may span less than two steps and

this prevents us from detecting the frequency of motion in such a short window.

When the results for 2700 and 5200 msec windows are compared, it is seen that the

maximum classification accuracies that could be attained with rectangular windows are

very close and above 95% for both window sizes. So, the maximum recognition accuracy

obtained in the tests does not show any significant increase while switching from 2700 to

5200 msec windows. This indicates that both of these window lengths are long enough

for classifying the activities when rectangular windows are used. So, it is clear that

the most preferable window length is 2700 msec since it requires lower computational

complexity than 5200 msec while providing equally high recognition accuracies. The

lower computational requirement of this window length becomes especially important

when we deploy the solution to the target mobile platform.

Regarding window functions, it is seen that the use of Rectangular windows al-

ways yield the maximum accuracy when compared to Hann and Hamming windows

which could give competitive performance only for 5200 msec windows. The main

reason behind these result seems to be the low frequency of accelerometer signals for

physical activities. For example, a 1350 msec window for the activity of walking one

step per second will contain less than two motion patterns. Thus, if we use this window
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length for computing features, it will not be possible to extract a reliable information

about the frequency of motion. Moreover, applying window functions (i.e. Hann, Ham-

ming) to such short windows will further mask the signal. This is why the difference

between the performance attained with rectangular windows and the one attained with

Hann or Hamming windows decreases when the window size is increased.

Since Hann and Hamming windows could not yield any significant improvement

even when 5200 msec windows are used, depending on the results of our tests, it is not

possible to claim that these window functions contribute to recognition performance

in the scope of this study. As a result, the use of Rectangular windows seems to

be the most appropriate option since other two window functions do not exhibit any

significant superiority and on top of that they require extra processing.

Another important point in these results is that the type of features that are

frequently selected by SFS and SBS algorithms slightly differs by the window function

used for segmentation. Although the features that are related to FFT coefficients are

always among the preferred features for all window functions, the variance which is

the mostly selected feature when rectangular windows are used is never contained in

the best feature selections for Hann or Hamming windows. This is possibly due to

the fact that both Hann and Hamming functions decrease the variance of the sample

window by attenuating the signal at the window edges, so that classifying the activities

by looking at the signal variance becomes less efficient. The results show that, when

Hann or Hamming window is used, the mean takes the place of the variance in the

selected feature lists. Since window functions are not expected to effect the mean

values as much as they effect the variance, this substitution in time-domain feaures is

reasonable.

5.1.3. Generalized Feature Selection Approach

In our second approach, we applied the same feature selection algorithms consid-

ering the average result of a complete cross validation test. In other words, at each

iteration of SFS and SBS algorithms, we tested the performance of the current feature
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set against the whole 10-fold cross validation test which gives an average accuracy for

all subjects. Since the whole cross validation test is repeated plenty of times during

the test, this second test takes much more time than the previous one.

As in the previous section, we again performed the test for each segmentation

configuration (Table 5.1). After testing the system with one of these configurations,

we obtain a single feature set which yields the maximum average recognition in leave-

one-out cross validation. Since the feature selection performed by the SFS algorithm

almost always outperformed SBS in these tests, here we present the results of SFS only.

The best feature sets found by the SFS method for each segmentation configura-

tion and the average recognition rates they achieve are given in Table 5.6. Comparing

these results with the results attained in the previous feature selection approach (Table

5.5), it is seen that for some of the configurations SFS converges to a local minimum

which we could avoid in the previous section with the help of our first approach. On

the other hand, for some other configurations this generalized approach gave us better

results than we could reach in the previous section. For example, in our personalized

feature selection approach, the best feature set discovered for 5200 msec Rectangular

windows yielded 95.76% recognition accuracy whereas the best feature set found in

this second generalized approach could yield 94.38%. However, the selection of fea-

tures made by these two approaches always gave us very close accuracy rates which

differ by at most 1.5%.



Table 5.6. The feature sets selected by SFS in generalized feature selection and the average recognition accuracies they yield.

1350 msec 2700 msec 5200 msec

Rectangular Hann Hamming Rectangular Hann Hamming Rectangular Hann Hamming

σ2
A max{FCi

} max{FCi
} σ2

A max{FCi
} max{FCi

} σ2
A max{FCi

} max{FCi
}

FC10 µA µA FC4 FC4 FC4 FC3 FC9 FC9

max{FCi
} FC8 FC1 FC1 FC1 µA Imax{Ri} FC6 FC10

FC8 Imax{FCi
} FC2 FC5 µA FC1 FC2 µA µA

FC1 FC3 FC10 FC2 max{Ri} FC6 FC2 FC4

FC10 FC8 FC2 FC3 FC6 FC1 FC3 FC5

FC7 FC10 FC6 max{Ri} FC5 FC8 Imax{Ri}

FC3 FC6 FC7 FC7 FC3 FC10 FC6

FC4 FC7 FC3 FC10 FC2 FC3

Imax{Ri} FC9 FC1

88.62% 87.32% 84.81% 95.26% 94.77% 92.26% 94.38% 95.93% 94.34%
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In Table 5.7, we aggregated the results of our two feature selection approaches

that are described above. In this table, the best feature set that achieved the highest

classification accuracy in offline tests is given for each different segmentation setup.

We also plotted the results in Figure 5.3.

When we look at these final results, we can see that the deductions that we made

in the previous section still holds. Regarding the recognition accuracies attained by

different window lengths, the unsuitability of short window lengths like 1350 msec for

the purposes of this work is again obvious. As mentioned before, this is due to the

fact that the frequency of physical motions is inherently low, thus the usage of short

windows makes it hard to extract frequency related information.

On the other hand, the sufficiency of a window length of 2700 msec depends on the

window function. Although there is no significant difference between the performances

attained by 2700 and 5200 windows when rectangular windows are used, the recognition

accuracy exhibits a regular increase proportional to window length when we use Hann

or Hamming windows. As mentioned in the previous section, the reason behind this

behaviour is that applying Hann and Hamming window functions to a short window is

expected to mask the signal, since the motion signals analyzed in this study have very

low frequency and the windows sometimes contain only a few repeating patterns (i.e.

wavelengths).

The performance of Hann windows could reach the performance of rectangular

windows only when 5200 msec windows are used, however both Hann and Hamming

windows could not yield any significant improvement when compared with rectangular

windows. Since 5200 msec Hann windows outperform rectangular windows by only

0.17%, it is not possible to claim that these window functions clearly contribute to the

recognition performance in the scope of this study. As a result, the use of rectangular

windows seems to be the most appropriate option since other two window functions do

not exhibit any significant superiority and on top of that they require extra processing.



Table 5.7. The best feature sets that are found in offline tests.

1350 msec 2700 msec 5200 msec

Rectangular Hann Hamming Rectangular Hann Hamming Rectangular Hann Hamming

σ2
A max{FCi

} max{FCi
} σ2

A max{FCi
} max{FCi

} σ2
A max{FCi

} max{FCi
}

FC10 µA µA FC4 FC4 FC4 FC2 FC9 FC9

max{FCi
} FC8 FC1 FC1 FC1 µA FC3 FC6 FC10

FC8 Imax{FCi
} FC2 FC5 µA FC1 FC8 µA µA

FC1 FC3 FC10 FC2 max{Ri} FC6 FC2 FC4

FC10 FC8 FC2 FC3 FC6 FC9 FC3 FC5

FC7 FC10 FC6 max{Ri} FC5 FC8 Imax{Ri}

FC3 FC6 FC7 FC7 FC3 FC10 FC6

FC4 FC7 FC3 FC10 FC2 FC3

Imax{Ri} FC9 FC1

88.62% 87.32% 84.81% 95.26% 94.77% 92.26% 95.76% 95.93% 94.34%
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Figure 5.3. Best recognition rates attained by different segmentation parameters in

offline tests with feature selection.

5.1.4. Training Dataset for Online Classifier

As a result of the offline tests that are described in Section 5.1.3 in detail, it is

shown that segmenting the input signal into 2700 and 5200 msec rectangular windows

and 5200 msec Hann windows yield the highest recognition accuracies which are very

close (95.26%, 95.76% and 95.93% respectively). However, 2700 msec windows require

256-point FFT computation whereas 5200 msec windows require 512-point FFT which

has higher computational complexity. Since our target platforms are mobile phones

with limited resources, we decided to use 2700 msec rectangular windows at the cost of

the negligible performance difference that is shown by the tests above. The best feature

set that is found to yield the highest performance consists of the features σ2
A, FC4 , FC1 ,

FC5 , FC10 , FC2 , FC6 , FC7 , FC3 and FC9 . In Table 5.8, the confusion matrix of the leave-

one-out cross validation that is carried out using this segmentation configuration and

feature set is given.

Compared to the related studies, especially those considering the same set of

activities [23, 29] which report 92% and 95% accuracy rates, the results obtained in

this study are similar where we experiment with more users and select the features

that maximize the recognition rate.
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Table 5.8. The confusion matrix of leave-one-out cross validation obtained by using

the best feature set determined for 2700 msec Rectangular windows.

CLASSIFICATION
ACCURACY AVERAGE

Stationary Motorized Bicycling Walking Running

G
R

O
U

N
D

T
R

U
T

H Stationary 978 20 0 0 0 98.00%

95.26%

Motorized 42 912 48 0 0 91.02%

Bicycling 0 65 910 20 1 91.37%

Walking 0 0 17 973 3 97.99%

Running 0 0 1 20 973 97.89%

The confusion matrix shows that the misclassifications are made mostly between

the activity pairs like motorized transport-bicycling and stationary-motorized transport.

This is very similar to the confusion made by the system when testing it without feature

selection (Table 5.2). As mentioned in Section 5.1.1, the confusion between motorized

transport and stationary activities is possibly due to the sampling periods when the

motor vehicle is stuck in traffic and the confusion between bicycling and motorized

transport may be caused by the coasting on bicycle rather than pedaling.

The final step of our performance evaluation involves performing online, real-time

tests after tuning the system according to the feature set and the segmentation setup

that are selected according to the results achieved in offline tests. Before deploying

the configured application to a mobile platform, we should form a training dataset for

the online version of the system. Since the size of the training dataset directly effects

the memory and CPU usage of the KNN classification algorithm, a reasonable dataset

size should be chosen for an efficient consumption of the mobile phone resources so

that the application leaves enough space for other important tasks running on the

device like phone calls and internet browsing. In order to determine the right dataset

size, we observed the resource utilization of our application by using training datasets

with different sizes. In Table 5.9, the average memory and CPU utilization of the

application for different sizes of training dataset is presented. In this table, the first

column shows the number of feature vectors contained in the training dataset. In order
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Table 5.9. The effect of training dataset size on the resource utilization.

Dataset Size Average Memory Usage Average CPU Usage

5000 12.3 MB 28.6%

4000 11.1 MB 20.4%

3000 10.2 MB 18.2%

2000 9.2 MB 12.9%

1000 8.3 MB 9.8%

500 7.8 MB 8.2%

to keep the CPU usage of our solution below 10%, we preferred using the dataset size

of 1000 which is the largest dataset size that keeps the CPU usage below this level.

This dataset corresponds to 1
6

of the total data that we collected from participants.

The training dataset is extracted from the set of labeled features that are com-

puted from the samples which we used in offline tests. For this purpose, we employed an

algorithm which helped us in selecting an appropriate subset which is a representative

one for the whole dataset. As illustrated in Figure 5.4, the algorithm runs classification

tests in which the classifier is trained with the subset that is selected for the online

version, and the remainder of the dataset is used for testing. After repeating this test

with a sufficient number of randomly selected subsets, the one that gave the best results

is deployed to the smartphone which is used for online tests. In this phase, we selected

50 as the number of randomly selected datasets which is symbolized with n in the

algorithm. In order to see if 50 is a sufficient number for this purpose or not, we tried

generating 75 or 100 datasets as well. As a result, it is found that generating more than

50 random datasets does not provide any significant contribution. For example, the

performance difference between the best one found in 100 randomly selected datasets

and the best one in 50 datasets never exceeded 0.1%.

Using this method, we selected 10 sets of labeled features as training datasets

which are represented by Ti in the algorithm. While creating each one of these training

datasets we excluded the samples of a different subject (di). Using these 10 training
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Let D be the set of all labeled features

Let ns be the number of subjects (10)

T := An empty list of training datasets

nt := Training dataset size

for i = 1 to ns do

di := data collected from ith subject

Di := D − di
Rmax := 0

for j = 1 to n do

Sj := Select nt feature vectors from Di randomly

Train KNN classifier with Sj

Accuracy := Test the classifier Di − Sj

if Accuracy > Rmax then

Rmax := Accuracy

Ti := Sj

end if

end for

end for

Figure 5.4. The algorithm for extracting training datasets for online tests.

datasets, we could perform online test for each of the same 10 subjects by training the

system with a data set that do not contain the subject’s previous samples. So, each

training dataset is prepared for a different subject and while performing an online test

we trained the system with the corresponding dataset for that subject. In Section 5.2,

we will present the results of the online tests that are carried out by deploying these

training datasets to the mobile phone.
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5.2. Online Tests and Results

As the last stage of the performance evaluation, we performed online tests using

the set of features that are selected as the result of the offline tests (Table 5.8). Online

tests are performed by the same 10 participants, however for each subject, we used a

different training dataset which is prepared using the samples of 9 other subjects that

were collected in the beginning of performance evaluation part.

This time participants are asked to perform each activity for 1 minute. Before a

subject starts performing an activity, the application on the phone is informed about

the type and the duration of that activity and it is placed in either left or right pocket

of the subject without any orientation restriction. When the activity duration ends,

the application displays the classification accuracy on the screen (Figure 4.9).

Performing the test with 10 participants and five activities, we carried out a total

of 50 test sessions. Summing up the confusion matrices of these sessions, we obtained

the matrix given in Table 5.10. The average recognition accuracy achieved in online

tests is nearly 93% which is very close to the results obtained in offline tests. This result

suggests that the online classifier is modeled successfully on the desktop application

and the achieved performance is really a competitive one when compared with the

related studies.

Table 5.10. Confusion matrix of online tests.

CLASSIFICATION
ACCURACY AVERAGE

Stationary Motorized Bicycling Walking Running

G
R

O
U

N
D

T
R

U
T

H Stationary 568 28 4 0 0 94.67%

92.67%

Motorized 5 578 17 0 0 96.33%

Bicycling 0 72 514 12 2 85.67%

Walking 0 1 32 567 0 94.50%

Running 0 0 5 42 553 92.17%
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Table 5.11. Confusion matrix of the longer online tests.

CLASSIFICATION
ACCURACY AVERAGE

Stationary Motorized Bicycling Walking Running

G
R

O
U

N
D

T
R

U
T

H Stationary 839 52 9 0 0 93.22%

91.98%

Motorized 67 791 40 2 0 87.89%

Bicycling 0 48 823 26 3 91.44%

Walking 0 2 38 857 3 95.22%

Running 0 0 4 67 829 92.11%

The confusion matrix of online tests is not so different from the matrix in Table

5.8 which presents the results of the offline tests. Again there is a significant confusion

between bicycling and motorized transport activities which is evaluated in the previous

sections. However, the confusion between motorized transport and stationary activities

that we experienced in offline tests is not seen in online test results. The reason behind

this difference should be the fact that during online tests for the activity of motorized

transport, the vehicle has never stopped. Since each online test session was only one

minute long, it was easier to keep moving for such a short time before the motor vehicle

is stopped by something like red light, traffic or a pedestrian crossing the street. In

order to verify this, we carried out another online test in which 3 subjects performed

each activity for 5 minutes. The confusion matrix of this test is given in Table 5.11.

The most significant difference between the results of these two tests is decrease

in recognition rate of the activity of motorized transport. As mentioned, as long as the

motorized vehicle keeps moving the activity is recognized with high accuracy, however

if there are intervals during which vehicle stops moving for some reason (e.g. traffic,

red light) then the accuracy decreases and the activity is confused with stationary. In

the second test, such intervals were experienced more than in the first one since the

duration of the test is longer and it was inevitable to stop moving from time to time.

Moreover, among the subjects that are participated in the second test, one of them

performed the activity of motorized transport by traveling on a bus which frequently

stops at bus stops.
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In order to filter out such short periods of confusion during a continuous perfor-

mance of an activity, a long-term intelligence can be implemented on a higher level.

Analyzing the outputs of the classifier over a long period like one minute, it can be

determined whether there is a dominant activity throughout this period. If it is likely

that the same activity is performed during this period, then the individual misclas-

sifications or the short-term confusions can be eliminated. Although a higher level

approach like this may increase overall classification rate remarkably for similar sys-

tems, we could not employ such techniques in this study since one of our objectives

was to give real-time output.

On the other hand, the recognition rates for the activities of stationary, walking

and running are very close in both tests. However, the recognition rate of bicycling is

increased in the second test. The recognition accuracy for bicycling is mostly effected

by the confusion of with motorized transport. As mentioned, the confusion of bicycling

with motorized transport is very likely to be caused by the periods of coasting on bicycle

rather than pedaling and the decrease in this confusion shows that the participants of

second test kept pedaling on bicycle more than the participant of the first test did.

5.3. A Probabilistic Approach with Prior Probabilities

The classification accuracies reported in the previous sections are computed with

the assumption that a priori probabilities of all activities are equal. However, that

is not the case in real world. For example, it is much more likely that a person is

walking rather than running at a random moment of the day. That means recognition

accuracy for walking activity contributes more to the actual performance of the system

than accuracy for running activity does.

In this section, we present a probabilistic version of KNN that considers the prior

probabilities of activities that are to be classified. Unlike plain KNN algorithm, in

this modified algorithm given in Figure 5.5, the classifier takes both the number of

occurrence of a class in k nearest neighbors and the specified prior probability of that

class. As shown in the pseudocode, the likelihood of selecting a class increases with
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C := Set of classes

D := Training dataset

t := Input test sample

pc := Prior probability of class c

pmax := 0

r := NULL

Nk := Find k nearest neighbors of t in D

for all c ∈ C do

oc := Number of occurrences of class c in Nk

p := oc · pc
if p > pmax then

pmax := p

r := c

end if

end for

return r

Figure 5.5. A probabilistic version of KNN which takes prior probabilities into

account.

both the number of occurrence in the nearest neighbors and the prior probability of

that class. By the help of this algorithm we analyzed the effect of prior probabilities

of the activities on the overall recognition performance of the system in real world.

For evaluating the system performance, we used two different vectors that con-

tain prior probabilities for the five activities that are classified in this study. While

constructing these vectors we analyzed the share of different transportation modes that

are preferred by the people of two famous metropolises, Istanbul and Amsterdam. We

have extracted the percentages of motorized transport, bicycling and walking in the

total transportation time of people by looking at the figures presented in [45] and [46]

for these cities. As shown in Table 5.12, there is a significant difference about bicycle

usage between Istanbul and Amsterdam. Since the share of bicycling is very small
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Table 5.12. Percentage of transportation times for Istanbul and Amsterdam.

Istanbul Amsterdam

Motorized 75% 62%

Walking 24% 21%

Bicycling 1% 17%

for Istanbul, the classification accuracy of the proposed solution will have very little

impact on the real performance in that city.

Unlike the transportation options mentioned above, the ratios of idling and run-

ning activities during a day does not vary that much between different cities. So we

will make logical assumptions for the share of these two activities. In today’s world,

most people stay physically idle during most of their work hours and when they are at

home. If we assume that a person is awake and active for 12 hours, does exercise for

one hour and spends two hours for transportation or travelling every day in average,

in the remaining nine hours he can be considered physically idle (working at the desk,

watching TV, resting, etc.). We divided the time for exercise between running and

bicycling equally and distributed the transportation time according to the percentages

given for Istanbul and Amsterdam. As a result, we obtained two vectors composed of

a priori probabilities of activities for these cities as shown in Table 5.13.

Using the prior probabilities given in Table 5.13, we performed leave-one-out cross

validation tests by employing the modified KNN algorithm (Figure 5.5). In the previous

offline tests, we tested the system with equal amount of data from each activity. But

Table 5.13. A priori probabilities of activities for Istanbul and Amsterdam.

Istanbul Amsterdam

Idling 75% 75%

Motorized 12.4% 10%

Bicycling 4.2% 7.5%

Walking 4.2% 3.3%

Running 4.2% 4.2%
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Table 5.14. Real world recognition accuracy with different prior probabilities.

KNN Modified KNN

Uniform 95.26% 95.26%

Istanbul 97.17% 97.32%

Amsterdam 97.34% 97.49%

in this section, in order to simulate the prior probabilities of the activities, we adjusted

the amount of test data for each activity so that the occurrence rate of each activity

in the test data is proportional to its prior probability.

After forming the test data according to prior probabilities, we tested the system

with both the plain KNN algorithm that was used throughout the study and the

modified probabilistic version which is presented in this section (Figure 5.5). Testing

with the first classifier is expected to show us how the overall recognition performance

of the system is effected when the prior probabilities of activities are not uniform

and the second test will indicate whether the described probabilistic KNN approach

contributes to that performance. Throughout these tests, we used the feature set and

the segmentation setup that are shown to perform best in the offline tests. This was

also the configuration that we used for online tests.

The results of the tests are given in Table 5.14. In this table, first column shows

the recognition accuracies attained by using simple KNN algorithm and the second

one contains the results for the probabilistic KNN algorithm that was described early

in this section. When the prior probabilities of activities are assumed to be equal,

both algorithms behave the same as shown in the first row. So, 95.26% is actually

the classification performance that we attained in the offline tests where the prior

probabilities are supposed to be equal.

Looking at the next rows of the table, we can see how the prior probabilities of

activities effect the real performance of the system. For both Istanbul and Amsterdam,

these probabilities provided a performance increase around 2%. The reason behind this
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increase is the higher prior probabilities of the activities that can be classified more

accurately by the system. For example, as the results in the previous sections suggest,

idling is one of the most successfully classified activities and for both Istanbul and

Amsterdam it is by far the most probable activity of a person during the day. On the

other hand, the probabilities of other four activities slightly differ between Istanbul

and Amsterdam and this accounts for the small performance difference between these

cities.

The second KNN algorithm that we used in this section was a very simple mod-

ification of the basic algorithm that makes use of prior probabilities of classes and in

this section we tried to demonstrate the effect of such a classifier when the probabilities

of the activities are not uniform. Table 5.14 indicates that the probabilistic version of

the KNN algorithm provides slightly better performance for both Istanbul and Ams-

terdam. So, it seems that making use of prior probabilities within the classification

algorithm helps in increasing the classification accuracy of the system.

In this section, we presented a brief demonstration of how prior probabilities

of activities change the real performance of the system and whether it is possible to

increase the recognition accuracy by considering prior probabilities in the classification

algorithm. As the results suggest, the performance of the system in the real world is

very much effected by these probabilities and it is possible to increase the classification

accuracy by adapting the classifier with different priors.

5.4. Classification Smoothing Analysis

Smoothing the classifier output is often useful for filtering out singular misclas-

sifications by looking at the dominant (presumably correct) classification around each

output. In this section, we analyzed the contribution of classification smoothing on the

overall system performance.

The smoothing is performed by applying a majority filter. In this operation,

a fixed-size window is slided over the classification output and at each iteration the
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classification output in the center of the window is changed to the majority class in that

window. If there is no majority class, the classification in the center is not changed.

Here, the majority class is defined as the class that constitutes more than a given

percentage (threshold) of the window.

In Figure 5.6, the smoothing procedure is illustrated. In this example, window

size is taken as 5 and the threshold percentage for majority class is 50%. As shown in

this figure, two classifier outputs of class M are filtered out due to the dominant output

class S.

S S S M S S M S S S S S M S S M S S

S S S M S S M S S

S S S M S S M S S

S S S M S S M S S

S S S M S S M S S

S S S S S S M S S

S S S S S S M S S

S S S S S S M S S

S S S S S S S S S

Figure 5.6. Classification smoothing.

In order to see the progress that can be attained by using classification smooth-

ing, we performed offline leave-one-out cross validation tests with the samples of 10

individuals and applied the smoothing procedure to classification output. In these

tests, we used the feature set and the segmentation setup that we preferred for online

tests. As mentioned, there are two important parameters for smoothing. One of them

is the window size for which the majority filter is applied and the second one is the

threshold rate that is required for a class to be considered as major class. We evaluated

the performance for four different window sizes (5, 10, 20, 30 classifications) and five
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different threshold rates (0.5, 0.6, 0.7, 0.8). Since our system produces 1 classification

output per second, it can be more clear if we think of these window sizes as seconds.

For example, if a window size of 10 classifications is used, then at each iteration the

smoothing algorithm will consider the majority class in a period of 10 seconds and that

means, as a results of the smoothing, each classification result will be effected by the

classifications done during the 5 seconds before and after it.
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Figure 5.7. Classification performance with smoothing.

Figure 5.7 shows the change in the classification performance of the system af-

ter applying the smoothing procedure with different parameters. In this graph, the

window size of 1 stands for the classification without smoothing and that is actually

the result that we attained in Section 5.1. As the graph suggests, there is an obvious

increase in the classification accuracy after applying smoothing on the classification

outputs. Having an already high classification accuracy without smoothing (95%), an

improvement of 1-2% can be considered to be a remarkable contribution.

When we look at the effect of window size for smoothing, we can see that even

a window of size 5 provides a performance increase. Although the windows with the

size of 10 or more improve the performance further, there is no significant difference

between them. From this result, we can conclude that most of the time a smoothing
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window of 10 classifications is enough for taking a good advantage of smoothing. That

may be due to the fact that temporal misclassification periods generally last less than

10 seconds which can be handled with a smoothing window of size 10.

Another factor that effects the contribution of the smoothing is the threshold rate

of occurrence that we used for specifying the major class in a window. As Figure 5.7

suggests, using higher thresholds decrease the performance of smoothing after some

point. That is reasonable since misclassifications of the system does not always occur

as singular confusions, instead they sometimes occur in a temporal fashion during short

periods of time. So, if we use a high threshold for occurrence rate, we can determine

major classes for only the windows that contain very few, individual confusions and

that will prevent us from recovering temporal confusions that decrease the occurrence

rate of the major class in that window.

The results that we attained in this section shows that smoothing classification

outputs can improve the performance of the system significantly. However, in this

technique, we need to process former and subsequent outputs of the system before

deciding if a classification output is correct or should be changed. In other words,

the improved result can only be produced with some latency which depends on the

window size which is selected for applying the majority filter. So, future works can

take advantage of such techniques by relaxing real-time constraints of the system.
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6. CONCLUSION AND FUTURE WORK

In this study, we proposed an online activity recognition system which is shown to

achieve high recognition accuracies in classifying five daily activities that are walking,

running, bicycling, motorized transport and stationary state (sitting/standing/lying)

by employing an efficient selection of features. While developing the system, we also

evaluated the performance of the system against several different configurations for

segmentation of the input data.

Throughout the study, in order to perform recognition online, we used a lightweight

classifier (KNN) with different feature sets that contain well-known features together

with some specific features. In order to keep the system energy-efficient, all features

are extracted from the readings of a single accelerometer on a smartphone. Moreover,

we extracted the features from the magnitude of the acceleration vector rather than

considering each axis separately and this provided us a system that does not depend

on the orientation of the phone.

As a result, we achieved an average recognition rate above 95% in the offline tests

and above 92% in the online tests. This is a very promising result when the recognition

rates offered by similar studies that are mentioned in Chapter 3 are considered. There

have been very few studies that could attain classification performances close to the

level achieved by this work, however they lack important advantages offered by this

solution like real-time classification on a smartphone, using only a single accelerometer

for data collection and orientation independency for the smartphone.

As a future work, the effect of the proposed features with other lightweight clas-

sifiers can be analyzed. For example, the performance of the system may be enhanced

by using KNN in combination with DT as described in [23]. The confusion matrices

presented above supports this idea since there are some activities which are never con-

fused like running and motorized transport. For such activities, reducing the size of the

target activity set with a DT before applying KNN can increase the true classification
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rate.

On the other hand, the performance of the system can be evaluated with a larger

set of activities. Although we evaluated the general daily activities in this study, this

can be extended to more specific activities like playing soccer and jumping. The effect

of mobile phone positions is another topic that can be studied. We evaluated our

solution assuming that the phone is always carried in the trouser pocket and we used

relatively tight trousers like jeans for better reading of the body part acceleration. So,

how the system behaves for looser clothes is also an open question for future studies.
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APPENDIX A: RESULTS OF PERSONALIZED FEATURE

SELECTION

Table A.1. Selection rate of features with 1350 msec Rectangular windows and the

highest recognition accuracies with mostly-selected features.

Feature
Selection Rate

Highest Recognition Accuracies
SFS SBS Overall

σ2
A 10/10 9/10 19/20

88.24%

88.00%


87.59%


88.06%


88.00%



84.84%

FC10 6/10 10/10 16/20

FC9 3/10 9/10 12/20

zcr{R} 3/10 9/10 12/20

FC3 3/10 8/10 11/20

FC5 3/10 8/10 11/20

µA 2/10 9/10 11/10

FC6 1/10 10/10 11/20

FC1 2/10 8/10 10/20

FC8 2/10 8/10 10/20

FC7 1/10 9/10 10/20

Imax{FCi
} 3/10 6/10 9/20

FC2 3/10 6/10 9/20

max{Ri} 1/10 8/10 9/20

FC4 8/10 0/10 8/20

max{FCi
} 2/10 5/10 7/20

Imax{Ri} 2/10 4/10 6/20
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Table A.2. Selection rate of features with 1350 msec Hann windows and the highest

recognition accuracies with mostly-selected features.

Feature
Selection Rate

Highest Recognition Accuracies
SFS SBS Overall

FC1 7/10 10/10 17/20


86.59%



86.65%



86.33%



85.99%



86.67%



86.51%

max{FCi
} 9/10 6/10 15/20

µA 6/10 9/10 15/10

FC10 5/10 9/10 14/20

FC7 4/10 10/10 14/20

Imax{FCi
} 5/10 7/10 12/20

FC3 4/10 8/10 12/20

FC8 3/10 9/10 12/20

FC9 3/10 8/10 11/20

FC2 3/10 8/10 11/20

FC6 3/10 8/10 11/20

FC4 2/10 9/10 11/20

max{Ri} 2/10 8/10 10/20

FC5 2/10 7/10 9/20

Imax{Ri} 1/10 8/10 9/20

σ2
A 3/10 4/10 7/20

zcr{R} 2/10 5/10 7/20
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Table A.3. Selection rate of features with 1350 msec Hamming windows and the

highest recognition accuracies with mostly-selected features.

Feature
Selection Rate

Highest Recognition Accuracies
SFS SBS Overall

µA 8/10 9/10 17/10


83.50%



83.64%



83.96%



83.92%



84.14%



83.27%

max{FCi
} 8/10 8/10 16/20

FC1 5/10 10/10 15/20

FC10 6/10 8/10 14/20

FC5 5/10 9/10 14/20

FC9 5/10 8/10 13/20

FC2 4/10 8/10 12/20

FC4 4/10 8/10 12/20

FC6 4/10 7/10 11/20

FC8 3/10 8/10 11/20

FC7 2/10 8/10 10/20

Imax{FCi
} 4/10 5/10 9/20

FC3 2/10 7/10 9/20

Imax{Ri} 1/10 7/10 8/20

zcr{R} 1/10 6/10 7/20

σ2
A 2/10 2/10 4/20

max{Ri} 0/10 3/10 3/20
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Table A.4. Selection rate of features with 2700 msec Rectangular windows and the

highest recognition accuracies with mostly-selected features.

Feature
Selection Rate

Highest Recognition Accuracies
SFS SBS Overall

σ2
A 10/10 9/10 19/20


94.73%



94.67%



94.63%



95.05%



95.26%



93.03%

FC1 7/10 9/10 16/20

FC4 5/10 9/10 14/20

FC9 3/10 10/10 13/20

FC5 5/10 7/10 12/20

FC6 4/10 8/10 12/20

FC7 3/10 9/10 12/20

FC10 2/10 10/10 11/20

FC2 2/10 9/10 11/20

FC3 2/10 8/10 10/20

zcr{R} 0/10 9/10 9/20

µA 0/10 9/10 9/10

Imax{FCi
} 4/10 4/10 8/20

max{FCi
} 1/10 6/10 7/20

FC8 0/10 7/10 7/20

max{Ri} 0/10 5/10 5/20

Imax{Ri} 1/10 2/10 3/20
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Table A.5. Selection rate of features with 2700 msec Hann windows and the highest

recognition accuracies with mostly-selected features.

Feature
Selection Rate

Highest Recognition Accuracies
SFS SBS Overall

FC1 8/10 10/10 18/20


94.45%



94.47%



94.71%



94.59%



94.61%



94.55%

FC4 7/10 8/10 15/20

FC3 4/10 9/10 13/20

FC6 4/10 9/10 13/20

max{FCi
} 5/10 7/10 12/20

µA 4/10 8/10 12/10

FC2 4/10 8/10 12/20

FC7 3/10 9/10 12/20

FC8 3/10 9/10 12/20

FC5 2/10 8/10 10/20

FC9 2/10 8/10 10/20

Imax{Ri} 1/10 8/10 9/20

FC10 1/10 8/10 9/20

max{Ri} 0/10 9/10 9/20

Imax{FCi
} 3/10 2/10 5/20

zcr{R} 1/10 4/10 5/20

σ2
A 3/10 1/10 4/20
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Table A.6. Selection rate of features with 2700 msec Hamming windows and the

highest recognition accuracies with mostly-selected features.

Feature
Selection Rate

Highest Recognition Accuracies
SFS SBS Overall

max{FCi
} 9/10 6/10 15/20



91.73%



91.69%



91.97%



91.83%



91.62%



91.54%

µA 7/10 8/10 15/10

FC4 7/10 8/10 15/20

FC1 6/10 9/10 15/20

FC6 5/10 9/10 14/20

FC3 5/10 8/10 13/20

max{Ri} 5/10 7/10 12/20

FC2 4/10 8/10 12/20

FC7 4/10 8/10 12/20

FC5 3/10 8/10 11/20

FC8 3/10 6/10 9/20

FC10 3/10 5/10 8/20

FC9 1/10 7/10 8/20

zcr{R} 1/10 5/10 6/20

σ2
A 2/10 3/10 5/20

Imax{Ri} 0/10 4/10 4/20

Imax{FCi
} 1/10 0/10 1/20
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Table A.7. Selection rate of features with 5200 msec Rectangular windows and the

highest recognition accuracies with mostly-selected features.

Feature
Selection Rate

Highest Recognition Accuracies
SFS SBS Overall

σ2
A 10/10 10/10 20/20

91.47%

92.95%


94.10%


95.67%


95.76%



85.07%

FC2 4/10 10/10 14/20

FC3 4/10 10/10 14/20

FC8 3/10 10/10 13/20

FC6 4/10 7/10 11/20

FC9 3/10 7/10 10/20

µA 2/10 8/10 10/10

FC4 1/10 9/10 10/20

FC5 2/10 7/10 9/20

max{Ri} 1/10 8/10 9/20

FC7 0/10 9/10 9/20

max{FCi
} 1/10 7/10 8/20

FC10 1/10 7/10 8/20

FC1 0/10 8/10 8/20

Imax{FCi
} 3/10 4/10 7/20

zcr{R} 0/10 7/10 7/20

Imax{Ri} 1/10 4/10 5/20
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Table A.8. Selection rate of features with 5200 msec Hann windows and the highest

recognition accuracies with mostly-selected features.

Feature
Selection Rate

Highest Recognition Accuracies
SFS SBS Overall

max{FCi
} 10/10 10/10 20/20



94.94%



95.76%



95.67%



95.56%



95.65%



95.69%

FC5 6/10 8/10 14/20

FC3 4/10 9/10 13/20

FC8 3/10 9/10 12/20

FC2 4/10 7/10 11/20

FC6 4/10 7/10 11/20

FC4 3/10 8/10 11/20

FC9 3/10 8/10 11/20

µA 2/10 9/10 11/10

max{Ri} 1/10 10/10 11/20

FC1 1/10 9/10 10/20

FC10 2/10 7/10 9/20

Imax{Ri} 1/10 6/10 7/20

zcr{R} 0/10 7/10 7/20

FC7 0/10 7/10 7/20

σ2
A 1/10 5/10 6/20

Imax{FCi
} 3/10 1/10 4/20
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Table A.9. Selection rate of features with 5200 msec Hamming windows and the

highest recognition accuracies with mostly-selected features.

Feature
Selection Rate

Highest Recognition Accuracies
SFS SBS Overall

max{FCi
} 8/10 9/10 17/20



92.56%



92.80%



93.66%



93.60%



93.64%



93.66%

FC3 5/10 10/10 15/20

FC2 6/10 8/10 14/20

zcr{R} 4/10 10/10 14/20

FC5 5/10 8/10 13/20

FC9 4/10 8/10 12/20

FC6 3/10 9/10 12/20

FC10 3/10 9/10 12/20

Imax{Ri} 3/10 8/10 11/20

µA 2/10 9/10 11/10

FC1 2/10 8/10 10/20

FC8 2/10 8/10 10/20

FC4 4/10 5/10 9/20

max{Ri} 0/10 9/10 9/20

FC7 1/10 7/10 8/20

σ2
A 6/10 1/10 7/20

Imax{FCi
} 2/10 1/10 3/20
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