} COMBINATORIAL AUCTION BASED RESOURCE CO- ALLOCATION MODEL
FOR GRIDS

by
Ah Haydar Ozer
B S in Computer Englneermg, Bogazigi Un1vers1ty, 2002

" Bogazici Umversn Libra

; i HlllllllllllHHIHHIIIIIIII

Submit_tyed to the Institute for Graduate Studies in
Science and Engineering in partial fulfillment of
the réquireinenté for the degree of

Master of Science B

‘Graduate Program in Computer Engineering
Bogazici University
2004



iii

ACKNOWLEDGEMENTS

“I'would like to express my gratitude to my supervisor Assoc. Prof. Can Ozturan,
for his kindness, guidance, encouragement and support throughout the whole study. I
thank Prof. Cem Ersoy and Assist. Prof. Erdogan -Sevilgen for participating in my
thesis jury. |

I would like to thank my dear friends for being with me whenever I need. Without

the beautiful times we spent together, this thesis would never be complete.

Finally, T would like to thank my beloveds, my family for their endless love and

support. They taught me love as the meaning of existence. -



iv

ABSTRACT

COMBINATORIAL AUCTION BASED RESOURCE
CO-ALLOCATION MODEL FOR GRIDS

Resource co-allocation problerﬁ is one of the challenging problems in grids. In
order to model this problem, a new combinatorial auction based resource co-allocation
(CABRC) approach is proposed. This economy based model provides efficient allo-
~ cation of resources in a grid environment by allowing bidders to submit bids on the
eombinations of different resource types. In order to solve the model, CABRC problem
is defined and formulated using integer programming. It is proved that CABRC prob-
lem is NP- hard and since optimum solutions may take tremendous amount of time to
be found, two new greedy heuristics based on price per unit criteria are proposed A
software package that consists of an ‘artificial test case generator, an optimum solver,
an upper bound estimator and three greedy heuristic solvers for CABRC problem is
| coded Since there is no real world data for testing the solvers, performance of algo-
rithms are compared using a comprehenswe test suite which is produced by the test
~ case generator. Proposed two polynomial time heuristic solvers produce promising re-
~ sults of 97.3 per cent and 99.2 per cent average performance relative to the optimum

solution respectively.



OZET

SEBEKELER IQIN BIRLESIMSEL MUZAYEDE TABANLI
KAYNAK TAHSIS MODELLERI

Kaynak tahsis pfoblemi, biligim gebekelerinin etkin olarak ¢ozillememig prob-
_1emlérinden biridir. Bu problemin modellenrhesi dogrultusunda biligim §ebekeleri icin
yem bir birlegimsel miizayede tabanh kaynak tahsis (BMTKT) yaklagim onerilmistir.
Bu ekonomi tabanh model miigterilere ayrim yapmaksizin, istedikleri kaynak tiplerine
, b1r1e§1msel teklif vermelerme imkan vererek, biligim gebeklerine ait kaynaklarm etkili
ve ekonomik agidan ver1mh.tahs1sme olanak saglamaktadir. Bu modeli gozmek icin
oncelikle BMTKT problem'i"t'ammlanm@ ve problem tamsay1 programlama metodu
kullanilarak formiile edilmigtir. vBu problem NP-hard siifina ait bir problem oldugun-
dan dolay1 optimum gbzﬁmﬁ bulmak ‘gok fazla zaman alabileceginden, birim fiyat kri-
teri tabanh iki yak1a§1k sonug algoritmasi onerilmigtir. BM'I}KT modeli igin, i¢inde suni
 test iireticisi, optimum ¢oziiciisi, bir -iist sinir hesaplay1c1s1 ve ii¢ adet yaklagik sonug
gozucusu bulunduran bir yazihm paketi ha21r1anm1§t1r Elimizde bu modele ait gercek
hayat verileri olmadlgmdan algorltmalarm performanslarl test {iireticisi taraflndan
olugturulan kapsaml testler ile smanm1§t1r Onerilmis olan iki polinom zamanl yaklasik
sonug algoritmasi optimum sonuglara gore _y_uzde 97,3 ve yiizde 99,2’lik ortalama sonug- |

larla imit verici performans degerleri vermigtir.
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1. INTRODUCTION

‘ Recently much research has been conducted on conventional distributed comput-
1ng By the time wide area network technology has evolved, this brought attention to
distributed computmg across wide area networks: A new paradigm grzd emerged in
_ m1d1990s as a new branch of dlstrrbuted computing [1]. The intention of this paradigm
is to 1nterconnect computat1ona1 resources all over the world like electrical power grids
and to make each apphcatlon draw computatlonal power from the grid by plugging into
the’ grid. Technically the term grid refers to an infrastructure that offers multiple com-
putation, data, or service resources owned by different organizations and spread over a
geographical region. The ma.in purpose of this infrastructure is to enable collaborative
use of these resources through virtual organizations which consist of rules that control -
accesses for shared resources. Although various distributed computing technologies
exist, they are not suitable for coordinated resource sharing among geographically sep-
arated organizations. Grid technologies are aimed at finding a solution for the problem

of coordinated resource sharing and problem solving in virtual organizations [2].

Grid systems can be grouped into three major category [3]. Computational grids
consist of interconnected computationai resources such as supercomputers clusters of
computers and are mainly used for solvmg computatlonally difficult problems. Data
grids consist of interconnected data repositories such as data warehouses and dlgltal
libraries in order to process and mine large amount of data that cannot be handled
" by local data repositories and computers. 'kFinally, service grids are constructed for

providing services that any single machine cannot provide alone.

Most attention has been paid to system level design and implementation of grid
‘software.- One of the Wellb known grid technology solution is Globus [4] which is based
on Open Grid Services Architecture (OGSA) [5]. 1t is a solution based on open source,
open architecture protocols, services and software for grids and appiicetions. -As of May
2004, current version of Globus provides services and software libraries for security,

information infrastructure, resource management, data management, communication,

3



fault detection and' portability.

'Although academic a.nd non-profit instituﬁions may support grids by sharing their
resources for the common good, this is not the case for companies which hold large
amount of computational resources. So ih order to make grid concept pervasive in the
capitalist world we live in, market models for .grias must be researched in correspon-
dence with grid éervices and software. Wblski et al. introduced the term G-commerce
as the problem of dynamic resource allocation on the grid in terms of computational
market economies [6]. Both commodities market and auction based models are dis-
cussed and it is claimed that commodities market based models are more suitable for
grids. However, the auction méchanism described is a form of sequential auction, in
which each item or indivisible bundle of items in the auction is auctioned one at a
time. Since sequential auction models do not support combinatorial bidding, syner-
gies between resources cannot be expressed. Therefore sequenﬁal auctions may not be

suitable for grids; but this is not the case for combinatorial auctions.

In grid environments, resource co-allocation problein is defined as the provision of
allocation, configuration, and monitoring/control functions for the resource ensemble
required by a single application [7]. As a part of OGSA, several studies have been

conducted for resource co-allocation problem at system level (7, 8].

One of the challenging problems related to resource co-allocatioh problem is the
discovery of resources and considering their allocation policies in especially dynamic
grid environments. Raman et al. proposed a matchmaking framework for address-
ing these problems [9, 10]. In this framework, both reéoﬁrce-suppliers and customers
advertise characteristics of their resources and resource requests respectively to-an ad-
- vertising agenf. These advertisbements are called classified advertisements. Advertising
agents match the cléésiﬁed adVertisements of resource requésts with the classified adver-
tisements 6f available resources using a matchmaking algoﬁthm called Gangmatching.
This’algorithm is basically a.searching algorithm in which resource requests are tried to
be satisfied by searching classified advertisements of resources. Since the requests are

processed one at a time, this algorithm may provide inefficient allocation of resources



when multiple resource types are requested.

In this study, we consider reSource co—alibcetion problem at user level instead
of system level and define the ‘pr'oblem as efficient allocation of available resources
emong multiple users when the users need multiple .units of different resources types
" in a grid environment. We are mainly interested in economic perspective of resource
, co—allocationvproblen.l in order to encourage reseurce holders to supply their resources
to users, therefore eﬁiciency criteria will be based on the proﬁt. gained by resource
suppliers. However the model is also applicable for non-profit grid environments such

~ as academic grids.

In this thesis, we propose a new combinatoriel auction (CA) based resource co-
allocatmn model for grids. In Chapter 2, we go over - currently available auction models
and introduce a new combmatorlal auct1on model called multi-unit nondiscriminatory

combinatorial auction (MUNCA) model. This model provides economically efficient
allocation of resources by allowmg bldders to submit bids on the combinations of avail-
able resource types. The model also supports declarmg substltutable resource types
m31de the bids. In Chapter 3, we apply MUNCA model to grid environment. We
first deﬁne combinatorial auction based resource co-allocation (CABRC) problem, give
integer programming (IP) formulatlon and prove that CABRC problem is NP-hard.
In Chapter 4 and 5, we describe the CABRC problem solver and test case generator
in detail. Our solver package consists of an optimum solver, a linear relaxation based
upper bound estimator, a linear relaxation based greedy heuristic sol'{}erTand two new
greedy heuristic solvers based on price per unit criteria. In Chapter 6, vs}e present, the
resuits of the tests conducted for measﬁrin_g performance of the solvers especially the

two new greedy heuristic solvers and discuss the result afterwards.
- 1.1. Contributions in the Thesis
- Main contributions in this thesis are given in the following list:

e A new combinatorial auction model MUNCA is presented. This model allows



bidders to bid on multiple instances of items andv to declare their preferences of
substitutable items. This results in economically efficient allocation of items from
both bidders’ and sellers’ perspectlve ,

We present CABRC model which is the apphcatlon of MUNCA model to resource
co-allocation problem in grids. We deﬁne CABRC problem and its IP formulation.
We discuss both,'economy and priority based applications of the model.

We prove that CABRC problem is NP-hard. - |

We propose two polynomial time greedy heuristic solvers based on price per
unit criteria ahd code solver package for CABRC model. Besides these heuris-
tic solvers, this package also contains an’optimum solver based on CPLEX [11]
mixed intéger solver, a lihear relaxation based upper bound estimator and a linear
relaxation based greedy heuristic solver.

We code CABRC problem test case generatorA. The generator is fully flexible and
all ten parameters of CABRC model can be configured separately. The generator
is also capable of producing test cases for full-factorial testing.

In order to measure the performance of solvers, we conduct comprehensive tests
based on the artificial test suite produced by fhe generator. In the first phase of
thé tests, we examine the effecf of each parameter of the model on the solvers
separately and in the second phase’,lwe measure the general performance of solvers
based on more than one thousand instances of CABRC problem.

According to the tesf results, we conclude that the two proposed polynomial-
tifne greedy heuristics run quite fast with respect to optimum solver_ and produce
results of 97.3 per cent and 99.2 per cent performé.nce on average relative to the

. optimum solution.



2. AUCTION MODELS

An auction is a market institution with an explicit set of rules determining re-
source allocation and prices on the basis of bids from the market participants. Although
pifecise origin of auctions and auctioning is v‘not knoWn, it is believed that first auction
began with t,h-evabuse of woman mbré than.2500 years ago. The Greek historian,
Herodotué, described Babyionian annual auctions of young women to be soldk for the
purpose of marriage. However in these auct}ionAs, instead of starting with low prices and
‘going up like well-known conte‘mporary auctions, the offers for women started from high
prices and lowered until a bidder accepted the woman‘for marriage. After Babylonians,
auctions have been used in the times of the Romans as a syst‘em of commercial trade.
After a battle, captured prisoners and goods were being auct‘ioned by agents. In 193
AD, Roman Empire collapsed and probably most interesting auctioﬁ in the history
occufred. Entire Roﬁlan Empire was auctioned as one lot. bDiduis Julianus., the winner
of the auction, was proclaimed Emperor. However after a -short period of time, a ter-
rible instance of winner’s curse occurred and he was beheaded [12].‘ Although history
of auctions goes back to 500 BC, most of the research related to auction models have
been done in the ‘»twentieth century. - With the incréase in computational powers of
computers, more complex and efficient auction models such as combinatorial auctions

have been introduced.

In order to solve resource co-allocation problem in érids, we'construéted a new
combinatorial auction model called MUNQA model and adapted the new model to grid’
environment. In the remaining parts; of this chapter, we will first describe previous
auction models and then present MUNCA modél briefly which is the basis of our
CABRC model. - | | |

2.1. Sequential Auction Model and Common Auction Forms

In the sequential auction model, each item or indivisible bundle of items in the

auction is auctioned one at a time. Winner determination is done simply by picking



the highest bidder for each item. Because of its Simplicity, this model has been widely
used throughout the history and most of the auctlons being done in the world are of

this type. There are four major auction forms [13]

e The English Auction: In this well-known open auction form, auctioneer begins
with reserve price, lowest ,acceptable price, and proceeds to higher bids from
bidders until no further increase irl price occurs. Highest bidder gets the item by
paying the amount of his highest-bid. Sirrcethe auction is open, all the bids are
known by the bidders during the auction. In the English auction, the auctioneer
has also rlght to keep reserve price secret. Because of high competition level
among the bidders and 1nexper1enced bidders who bid up the price, winner’s
curse, paying more than item’s real value, is common in this form of auction.
Currently, most of the auctions being done in the world are of this form.

e The Dutch Auction: Although the English auction is the most common auction
form, the Duteh auction is the first auction known in the history. As explained

’ ‘in the beginning of this ch'abter, Babyloniaris used this auction form for selling
young women to rich men. In‘ this open auction type bidding starts at an extreme
‘pric.e and is lowered until a buyer buys the item by calling "mine”. The buyer
pays the exact price at the time he calls ”mine”.

e The Firsf,-Price, Sealed—Bid Aucf.ion: ‘The most important property of this
auction is that bids are sealed and hence are hidden from other bidders. In this
form of auction, generaliy eaeh bidder can only submit one bid so preparation
of a bid is exfremely importe,nt. There are two phases of this auction form. A
bidding phase in which bidders submit their bids and a resolution phase in which
Awinner of the auction is determined. in this a_ucti-onvthe winner pays the exact

-amount of rrloney he offered.

e The Vickrey Auction: This form of auction is also known as ﬁniform second-
prz’ce.v Like the ﬁrst-price; sealed-bid auction, bids are sealed and hidden from

. other bidders. However in this auction form, winner of the auction pays only
the amount of second highest bid. Although it seems that the ﬁrst—price auction
should be favored w1th respect to benefit of seller, practlcally this is not true. In.

Vlckrey auctions, brdders do not fear for submlttmg high prices and this returns



to seller as profit.

Although we only considered,sihgle unit auctions, the discussed forms of auctions
can be extended to multi-unit case in which more than one identical or equivalent

objects are auctioned. For detailed discussion on multi-unit sequential auctions see

[12].
2.2. ’Cqmbihatoria] Auction Model (Single Unit)

Sequential auctions are suitable Wheh the valﬁe of each item is unrelated to the
values of other itefns for every bidder. However, there may be complementarities and
substitutabilities between items [14] Assume that in an electrdnicequ_ipment auction,

“several different brands of_televisiens and video recorders are to be auctioned. A bidder
who does not- have a television and a video recorder may request. both equipments
together because the-gain of getting equipments together is more than sum of the gains
of getting them separately. The reason is that although the gain of getting a television
alone can be higher but gain of getting a video recorder without a television is much
lower. Therefore getting both equipments is much more preferable. So we can say that
there is a complementarity between televisions and video recorders for this bidder.
Formally, complementarity between itemsvi and j exists if g5({3,7}) > gs({2}) +95({5})
Where 96(S) is the gain of getting set of items .S for a bidder b. If a bidder is interested
only in one television without diseriminating its brand, gain of getting second television

* would be useless for him and gain of getting both televisions Would be lower than getting

them separately. So we can say that there is a'substitutability between televisions of
different brands for this bidder. Formally,' sﬁbstitutability between items 7 and ] exists

if gb({z,j}) < 95({2}) + gs({5}) where g5(5) is the gain of getting set of items S for a

bidder b. | :

If there are complementarities between different items, sequential auctions may
provide inefficient allocation and a new type of auction model is necessary in order to
increase economic efficiency. Combinatorial auction model solves the complementarity

‘problem, having complementarities between items, by allowing bidders to submit bids



on combinations of ‘different items [15, 16, 17]. In this model, all items are available
tb bidders and ’bidders are free to express their own valuations to any combination of
items. Also ianA model it is possible to solve the substitutab-z'lity problem, h_aving
substitutabilities betwee’n ifems, byiintroducing dummy items for each substitutable
item. The role of dummy items are allowiﬁg bidder to express exclusive-or relationship
between bids. For instance, if avbidder’ wants to get one television of brand A of B
substitutably, one dummy item should be introduced and two separate bids, one bid fof
combination of dummy item and television of brand A and other bid for combination of
dummy item and television of brand B, must be‘submitted by the bidder. Although this
trick helps solving substitutability problem, mimber @f bids increases combinatorially

with the number of substitutable items.

Because of the rapid growth of electronic bﬁsiness, combinatorial auctions have
become popular in the- past yeérs. Federal Communications Commission (FCC) spec-
_trum‘auctions and aﬁctions for airp>ort time-slots, railroad segments and delivery routes
can be cited as examples of real world combinatorial auctions [18]. Among these auc-
tions, the most well-known aﬁctions are the FCC spectrum auctions.‘ Since 1994, FCC
- has conducted auctions of licenses for eléctfomagnetic spectrum. These auctions are in
the form of simultaneous multiple-round (SMR) auction where all licenses are available
for bidding throughout the entiré éuction; SMR auctions are conducted in rounds, with
the length of eéch round announced by FCC. After each round, results are proces_séd '
and made public. Until the next round, bidders g0 over their bid sti‘ategi_es and ad-
just their bids if nécéssary. The FCC auctions also support combinatorial bidding so
bidders may place bids on groups of liéens_es. The benefit Qf this approach is allowing

‘bidders to express the value of any complementarities that may exist among licenses

and to avoid the risk of winning only part of a desired set of licenses (19, .20].
2.2.1. Definition of CA Problem

Definition 1. Let M = {I1,I3,..,In} be the set of m items for sale. Let B =
{bi,bs,...,b,} be the set of n submitted bids where a bid is defined as b; =<



(A A3 - A7), p; >, with

.-} 1 ifitem k is requested in bid j
N=do . . ,
0 otherwise

and p; > 0 being the offered price. Then CA problem can be formulated as:

n

maximize Z DiZ; , : (2.1)
e : ;
‘subject to ‘Z)\;zj <1 (1<i<m) (2.2)
. v g=1 ) ’ . ) .
z;€ {0,1}(1<j<n) (2.3)

, In this formulation, z; is a 0-1 variable that represents whether a bid is satisfied
(1) or not (0). Objective line in Equation 2.1, maximizes the revenue gained from the
auction. Finally, Equation 2.2 ensures that the bids that have at least one common

item cannot be satisfied together.

2.2.2. CA Example

In this subsection, we will present a simple combinatorial auction example with

four items. The items to be auctioned 'a,re one wired kéyboard (kyb), one wired

‘mouse (mouse), one wireless keyboard (kyb.w) and one wireless mouse (mouse_w).

So M = {kyb, mouse, kyb_w, mouse_w} with m = 4. Assume that following six bids

are Submitted:

In bid 1; wired keyboard and mouse set is requested for 20 Turkish Liras (TL).
So by = (< 1,1,0,0 >, 20). | |
In bid 2, wireless keyboard and fnouse sét is.rveqvuested ‘for 80 TL. So by = (<
0,0,1,1>,80).

In bid 3, two keyboards aIé requested for 40 TL. So b3 = (< 1, O,vl, 0 >, 40).

In bid.4, two mice are requeéted for 50 TL. So by = (< 0,1,0,1 >, 50).



10

* Inbid 5, only wireless keyboard is requested for 40 TL. So bs = (<-0,0,1,0 >, 40).
e In bid 6, only wireless mouse is requested for 50 TL. So bs = (< 0,0,0,1 >,50).

This example can be formulated as: -

maximize 20z, -+ 80z + 4023 + 50z4 + 405 + 50z

“subject to Ea + z3 <1
Ty + x4 <1
| Ty + T3 | + . zs <1
To 4oz + zg<1
' | z;€ {0,1} (1<5<6)

2.3. Multi-Unit Combinatérial Auction Model

Although single unit combinatorial auction model provides economically efficient
allocations when the bidders are interested in bundles of items, they are inappropriate
for situations where multiple instances of items are auctioned. Sinée the bidder is
not interested in a 'Ispe»(':ial uﬁit, 'he must bid separately to all combiﬁations of items
he wa_ntS. For insfance, if the bidder wants to get 100 keyboafds and 100 mice»dut
of 200 keyboards vand 300 mice in a single unit combinatorial auction, he must bid
( = ) ( - ) times. Multi-unit combinatorial auction (MUCA) model solves this

problem by representing identical items as multiple units of single item and allowing

bidders to bid on units of items [21, 22, 23, 24, 25].
2.3.1. Definition of MUCA Problem

‘Definition 2. Let M = {I}, s, ..., I} be the set of m items and u; be the number of
units of item I; for sale (1 <4 g m). Let B = {b1,ba,...,b,} be the set of n submitted
bids where a bid is defined as by =< (AL A%, \),p; >, with >0 being the

requested amount 6f item %, and p; > 0 being the offered price. Then MUCA problem
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can be formulated as:-

- maximize Z D;T; | ‘ e (2.4)
subJect to Z)\’xj <w  (1<i<m) - (2.5)
;e {01} (1<j<n) (2:6)

~ In this formulation, z; is a 0-1 variable ‘that represents whether a bid is satisfied
(1) or not (0). Objective line in Equation 2.4, maximizes the revenue gained from the
auction. Equation' 2.5 constrains thesum of the requested amount of resource type %
by allvbids with the number of units of resource type i, so it is ensured that for each

resource type %, the resource limit u; is preserved.
2.3.2. MUCA Example

We will extend the example in Section 2.2.2. Let the items to be auctioned be
two hundred wired keyboards (kyb), four hundred wired mice (mouse), three hun-
dred wireless keyboards (kyb-w) and one hundred wireless mice (mouse-w) . So
M = {kyb, mouse, kyb_w, mouse_w} with m = 4 and u; = 200,uy = 400,u3 =
300, and ug = 100. Assume that followmg six b1ds are subrmtted

e In bid 1, 200 yvi_red keyboard and mouse sets are requested ‘fOr 400 TL. So b, =
(< 200' 200,0,0 > 400).

o In bid 2, 100 wireless keyboard and mouse set is requested for 800 TL. So by =
(< 0,0,100,100 >, 800) »

e In bid 3, 100 wired keyboards and 300 wireless keyboards are requested for 950

© TL. So by = (< 100,0,300,0 >,950).

.o In bid 4, 200 wired mice and 100 wireless mice are requested for 900 TL So
by = (< 0,200, 0,100 >, 900).

| e In bid 5, only 200 wireless keyboards are requested for 600 TL. So b5 = (<
0,0, 200 0 >, 600) ’
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e In bid 6, only 100 wireless mouse is requested for 500 TL. So bs = (< 0,0,0,100 >
500) '

This example can be formuleted as:

maximize 400z, + 800z + 950z3 + 900z, + 600z + 500z

subject to 200_:51 + 100z3 - ‘ ' < 200
200z, 4+ 200z, | < 400

10025 + 30023 +92000s <300

100c;  +100z;  + 100z < 100

z; € {0, 1}(1<j<6)

2.4. Multi-Unit Nondiscriminatory Combinatorial Auction Model

In MUCA 'mod.el bidders are allowed to bid on instances of items. Therefore if
multlple instances of 1tems are t0.be auctioned, MUCA model provides efficient bid
representatlon Although substitutability problem between identical units of items is
solved with this model, substitutability between different items is not considered. If
the bidder does not diﬁerentiate two or more different items, MUCA model becomes
insufficient for representing such preferences. Assume that in the exemple MUCA given
in Section 2.2.2, a bidder wants to buy 100 keyboards without differentiating wired and
wireless models. For this preference, one dummy item must be introduced and he must
bid 101 times ((< 0,0, 100 0,1>,p),(<1,0,99,0,1>,p),...,(< 100,0, 0,0,1 >,D))-
Likewise if he wants to buy 100 instances of 1tems without dlfferenmatmg any four items,
‘one dummy item must be 1ntroduced and he must bid 176, 851 times ((< 0, 0,0, 100,1 >
,0)(< 0,0,1,99,1 >p),...,(< 100,0,0,0,1 >,p)). In order to overcome this ineffi-
cienicy, we propose a new auction model called MUNCA model. In this model, bid-
ders may encode their preferences of substitutability to bids easily by declaring list of

nondiscriminatory items. Details of this model will be given in the next chapter.
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3. CA BASED RESOURCE CO-ALLOCATION MODEL

In this chapter we will introduce a new economy based model for co-allocating

resources in a grid environment called CABRC model. The goals of this model are:

° max1m1z1ng the revenue of résource holders and encouraglng them to supply their
idle resources, , 7

° maximizing the utility and the value of resources by alloWing buyers to express
their preferences of complementarities and substitutabilities between resources,

e being easily adaptable to existing grid infrastructures.

This model is based on MUNCA rriodel defined in Section 2.4. We will first give
“the definition and formulation of CABRC problem and prove the related theorems, then
explain how to apply this model to grids and finally give an example of the model.

3.1. Definition of CABRC Problem

Deﬁnition 3. Let R = {r,m2,... ,Tm} be the set of m different resource types in a
grid environment and let U = {ui,uz, ..., Um} be the set of units of resources where
u; is the number of available identical units of resource r (1 <4 < myu e Z+).
Let B = {by,bs,...,bs} be the set of submitted bids. A bid consists of two parts, a
list of subbids and an offered price to be paid if the bid is satisfied. There is logical
AND relationship between subbids because a bid is satisfiable if all of the subbids
are satisfiable. Similarly a subbid eonsists of two parts, a set of substitutable resource
types and requested quantity of'reseurces from this set. There is logical OR-relationship
between resource types in this set because a. subbid is satisﬁable if requested amount
'of resources can be supphed from the resource types in any subset of this set. So if the
size of this set is more than one, it means that the bidder does not discriminate the

listed resource types and treats them equivalently.

Let v be the maximum number of subbids among all bids. Then formally a bid
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by = {(< 851, g1 >, < 852, G2 > , < Sjt;» Qjt >),p;} is defined as a combination of set
of subbids and an offered price p; where Sik CRis the set of requested substitutable
resource types and qu is the requested quantity of resources for the set sjx (1 <7 <
n,1<k < t; <wv,p; € Z+). C’ABRC’ problem is defined as finding the subset b, of bid |
set B and correspending allocation of resources that maximizes the sum of the offered

prices of bids in b, while preserving the resource limits in U.

3.2. Formulation of CABRC Problem

In order to formulate this problem, two new variables z and y must be introduced.
In this formulation z; 1s a 0-1 variable that represents whether a bid is satisfied (1)
or not (0) and yj isa natural number that represents how many number of units of
resource % are taken by kth subbid of bid j if it is satisfied (1<i<m,1<j<n,1<
k <w). |

maximize }: D;T; ‘ . | - (3.1
subject to ZZ yJ(}C) <y (1<i<m) o (3.2)
=1 k=1 ‘ : e
Oy —gua;=0  (1<ism1<k<o) (3.3)
i=]

W =0 (1<ism1<j<nl<k<undsy) (34)
z;€ {01} (1<j<n) I (35)

e N 1<i<ml<j<nls<k<o) (3.6)

In thls formulation, the obJectlve line in Equatlon 3. 1 ensures that the maximum
revenue is galned from the auctron Equatlon 3.2 constrains the sum of the requested
amount of resource type % by all subbids W1th the number of umts of resource type %, SO
it is ensured that for each resource type i, the resource limit u; for that resource type
is preserved. Equatlon 3.3 constrams the sum of quantltles for each item type 1n81de a
subbid te be equal with the requested quantity in that subb1d if the bid _7 is satlsﬁed

and z; is 1 otherW1se y() values are cleared to 0. In this equa.t1on it is also ensured
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that if a bid is satisfied, all the subbids inside that‘bid is also satisﬁed In Equation
3.4, y ) value is set to 0 if resource 4 is not requested by kth subbld of jth bid.

3.3. Theorems. Related to CABRC Problem

Proposition 1. CABRC problem is NP-hard.

Proof. Let 1I be decision v_ersionof CABRC probvlem: Given set of resource types
R = {r1,72,.--,Tm}, set of units of resources U = {ui,ug,...,um}, set of bids B =
i {bl, b, ..., b}, and.an integer P, is there a satisfiable subset of bids b, such that the

sum of the prices of bids in by s greater than or equal to P7

First- we will show that I is in NP. If we have a certificate that consists of z bids,
and allocation values y 7, ) for these bids, we can verify this certlﬁcate in polynomial time

by checking the following equalities:

iZyJ(l)S U; 1<7,<m)

Jlkl

Zyﬂc = o (1<j<z1<k<t)
where t; is the number of subbids in bid j. Therefore II is in NP.

Next we will present a polynomial transformation from independent set problem
(given G and positive integer P, does G contain an independent set of size P) to TI. Let
G = (V, E) be an instance of independent set problem where V' is the set of n vertices,

'V = {v1,v3,...,vs}, and E is the set of m edges, £ = {e1,e3,...,€m}. Assume that
for each edge e; in G we have a separate item type r,-. in IT with only one available
unit (R = {ri,72,..,tm}, U = {1, 1,..';, 1}). Also:for each vertex v; in G we define
~a bid b; with price 1 in II ‘and for each edge e; connected to v; we add a subbid tov
bid b, V\‘fith» requested subset»of r; and quantity of 1 (b; = {(< 851,51 >, < $j2,Gj2 >

< Sjt;,qjtj >),p;} where g =1, s = {r;} if e; is connected to v;, p; = 1,
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= degree(v;), 1 < j < m, 1 < k <t;). Then if G has an independent set with
yértices 1)0 and size P, then by the definition of independent set, there can be no edge
co.nnecting vertices U, of this indepeﬁdeﬁf set. Since edges represents a common item
between’bids in II, we can coﬁclude that subset of bids b, corresponding to vertices v,
does not share a common item and all bids in b, can be satisﬁed. As the price of all
bids are set to 1, P will'-be.the total price of bids in b,. Similarly if IT has a solution
b, with total price P, since there is onlyy‘ one unit of each item type, bids in b, cannot
share a common item. As a fesult, vertices v, that correspond to bids b, csnnot have
edges in common. As the price of all bids are set to 1, G must have an independent
set of size P. Therefore we can conclude that a solution to independent set problem

will be a solution to IT and vice versa.

Since II is in NP and independent set problem was proved to be NP-complete

[26], II is NP-complete and therefore CABRC problem is NP-hard. . O

3.4. Applying CABRC Model to Grids

In this section, we will first briefly discuss two ‘different_apprdaches of applying
CABRC model to grids and then comment on identifying resources in a typical grid

enviro_nment.
| 3.4.1. Economy Based Approach

In this approach, resource suppliefs declaré their avsilable resources for hiring _eind
buyefs_subniit bids on these resources. Rental period can be either fixed or variable
as decided by the supplier. In the fixed period scheme, the Tesources are allocated to
winner for a speciﬁc amount of time. After the end of this time, the resources get. '
released and a new auctlon can be conducted In the variable length penod scheme,
the winner pays an extra amount of money beside the bid price for the time he is using

the resources. New auctions can be conducted after the winner releases the resources.



17

In the auction, all resources are available to all bidders and auction can be held
either in one session as in the first-price sealed bid ‘auction ‘model or in successive

sessions as in the SMR auction model. -
3.4.2. Priority Based Approach

_ For non-profit organizations like'academic institutions, priority based approach
can be used for co-allocating resources. In this épproach, priority values are used in-
stead of price values for resource‘requests. Then CABRC model is used for maximizing
sum of priorities insﬁead of prices. Although no Ihathematical changes in the model are
necessary for this approach, defining priority policy, what priority value to be assigned
for a request, can be difficult. However, the simplest.po,licy, assigning 1 to priorities
of all requests, can be sufficient for most cases. In> order to prevent starvation of re-
_quests, aging techniqpé can be used. In this technique, priorities of waiting requests
are gradually increased in order to get higher chance of winning in the next auction

[27].
3.4.3. Identifying Resources in a Grid Environment

Any resource in a grid environment that can be reseived_ to a user for a specific
amount of time can be used as resource type in CABRC model. To be more specific,
if advanced reservations of resources are possible in a grid environment (28], following

resources can be used in CABRC model:

e Processors: Sinoe most of thé current operating systems provide preemptive
multitasking, percehtage time slots of different processors can be used as a re-
source type in the model. However, along with the processor time slot, a fixed
memory and fixed hard disk space must also be allocated for every processor
request. - o ’

) Memory and Secondary Storage: Each pfoceés requires memory and storage
space in order to be executed by the processor. However, some processes require

more memory and storage space than others. In order to provide better allocation
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of resources; remaining memory and storagé space can be defined as separate
resource types. Then users of 'a'pp‘l‘ications that require more memory and/or
storage space' can bid fqr more memory and storage space beside processor time.

. N_efwork Bahdwidth: A predefined amount of bandwidth is required for ap- .

| pliqations ‘Tunning in parallel. Like in memory and secondary storage case, some
parallel applications may require _rhore bandwidth then other parallel applica-
tions.  So we can aiso model ex'cess bandwidth inside and between clusters as

separate resource types.

‘Although these described :eéource’s ‘can bei'usedl as resource typ'esv'in CABRC
model, in practice bidding for these resources may get overcomplicated. So instead of
dividing resources inside a computer, we can threat each computer configuration as
one resource type. If only one application runs on a single computer, then it may use
all available resources of the computer and share the network bandwidth with other
applications running on other computers. If more than one application is permitted to
run on a single machine, then applications running on a computer at the same time
share available memory, secondary sforage spacé and available network bandwidth
equally. This simplifies both the bidding process énd the co-allocatioﬁ process at
system level. Beside cbmputers and network bandwidth, external storages, databases,
licenses and othér reservable resources such as input/ouput units can also be used as

resource types in this model.
3.5. CABRC Problem Example

In this séction, we will present a simple CABRC model example. Assume that in

a small computational grid following reservable resources are available:

10 Intel x86 workstations (intel)
10 AMD x86 workstations (amd)

20 Sun workstations (sun)

A license server with 5 MATLAB licensés (matlab) and 5 CPLEX licenses (cplez)

10 GB (in 1GB chunks) storage space in an external storage server (storage)
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Among these resources, first bidder requests 10 Intel x86 workstations, 5 MATLAB li-
| censeé and 4 GB storage space for 1,000 TL. Second bidder requests 10 x86 workstations
and 5 CPLEX licer‘lses‘for 600 TL and the last bidder requests 30‘workstations and 5 GB
storage space for 1 500 TL. So forthis environment, R = {mtel amd, sun, matlab, cplex,

storage}, U = {10, 10,20, 5,5, 10} and submitted bids are:

o by = {(< {intel},10 >, < {matla'b},ﬁ_ >, < {storage},4 >), 1000}
e by = {(< {intel,amd}, 10 >, < {cplex},5 >),600}
o by = {(< {intel,amd, sun}, 30 >, < {storage},5 >), 1500} -

This example can be formulated as (for simplicity we omitted variables and constraints

if y(z) 0):

maximize 1000z, + 60025 + 150023
subject to yﬁ) +y(1) +yg) < 10-
L yi? +ufd < 10
yiy < ?0

W < 5

W< 5

v+ < 10

v =10z, = 0
@

Yo — 5T = 0

O — 4z, =0
W 32 105, = 0

Z/§2) - Sza=0

y:(ﬁ) +y§21) +y 1 . 303:3 =0

y§2) —5z3 =0
Ty,T2,%3 € {0 1}

yjk € N (for all 7,7, k)
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3.5.1. Exclusive-OR. Bids

Although CABRC model does not diréctly ’su'ppOrt exclusive-OR bids, there is an
indirect method for handling thls problem Assume that bldS b, and b, are exclusive-
ORed (b1 @ bp). We introduce a dummy resource dl with only one instance. ‘Then

we add one subbid of the same dummy resource with one unit of quantity for each

“exclusive-ORed bids. So

o by = {(< {intel}, 10 >, < {matlab},5 >, < {storage},4 >, < {d1},1>), 1000}
o by = {(< {intel,amd}, 10 >, < {cplex},5 >, < {d1},1 >),600} '

Since there is only one unit of d1, b; and be cannot be satisfied together.



21

4. CABRC PROBLEM SOLVER

CABRC problem solver package consists of the following solvers and estimators:

Optimum solver (OPT)

Linear relaxation based upper bound estifnator (LRE)

e Linear relaxation based greedy heuristic solver (LRS)

Greedy heuristic solver based on price per unit criteria (PS)

Enhanced heuristic solver based on price per unit criteria (EPS)

Linear relaxation based methods are widely used for bounding NP-hard problems be-
cause of their simplicity and effectiveness. Althoughv»our main contributions in this
study are OPT,'PS and EPS, we included LRE and LRS in order to present how tight
the linear relaxation b;ased bounds for CABRC problem are. Solver package is coded in
ANSI C++ and compiled using Micfosoft Visual C++ .NET 2003 compiler. CPLEX
solver version 8.1.1 [11] is ﬁsed for solving integer and»llinear programming problems

and network flow problems.
4.1. Optimum Solver

Optlmum solver solves CABRC problem by calhng CPLEX mixed mteger pro-
: grammmg solver (CPXmipopt functmn) for the IP problem described in Section 3.2.

4.2. Linear Relaxation Based Upper Bound Estimator

This trivial estimator finds an upper bound for the optimum solution of CABRC

problem by solving the linear relaxation of the IP formulation described in Section 3.2.
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Linear relaxation of the formulation is,
maximize - Z D;iT;
n. v
- subject to i ZZy;-k <y (1<i<m)

j=1 k=1

) —guz;=0 (1<j<n1<k<0)

i
o

y;k (1<i<m,1<j<n1<k<ynési)

8
)
v

[a)

(1<j<n)
;<1 (1<j<n)

(1<i<m1<j<n1<k<v)

A%
o

i
Yk

LRE uses CPLEX linear programming solver (CPleopt funct1on) for solving this

linear programmmg problem
4.3. Linear Relaxation Based Greecly Heuristic Solver

LRS finds an approximate feasible solution to CABRC problem by solving the
linear relaxation of the IP formulation 'and running a greedyv heuriStic based on the
results of linear relaxation solution. LRS algorithm is based on the assumption that
after solving the linear relaxation of the problem, bids with hlghest z; values are more
hkely to be in the optimum solution. This algonthm consists of two phases In the
ranking phase, hnear relaxatlon of the problem is solved and then bids are sorted
accordmg to x; values in descending order. ‘In the allocation phase, we start by addmg
the first bid in the sorted list to empty w1nn1ng bids set and check whether the bid
in the set is fea51ble or not. If it is fea&ble, we continue adding the second bid in the
list to the winning bids set. If it is not feasible, we remove the bid from the set an_d

| then add the second bid. Then we check the feesibility of the set again. The procedure
continues in this manner until all the bids in the sorted list are traversed. Affer the
end of procedure winning bid set is returned The pseudocode for LRS algorithm is

pre_sented in Figure 4.1. checkFeaszbzhty functlon will be explained in the following
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subsection.

* |Algorithm LRS ,
Input: CABRC problem instance
Output: winningBids

1/ * Ranking Phase * /
solve LP rela.xatlon of CABRC problem and get z; values for each bld

sort bids according to z; in descendmg order and store in orderedBids

/* Allocation Phase */ -
wz‘nm’ngBids =0 ;
forj=0ton-1
add orderedBids; to wmmnngds
1f checkFeabibihty(wmmnngds) = aise then
reriiove orderedBids; from winningBids
end for

return winningBids

Figure 4.1. The pseudocode for LRS algorithm

4.3.1. Checking Feasibility of Given Bid Set

For all presented greedy heuristics, checking feasibility of & given bid set is an
_ essential step Unhke MUCA model checkmg fea81b1hty in CABRC model is s not trivial

because of ORed resource types in the subbids In order to check fea81b1hty of given



24

bid set B = {by, by, ...,b,}, following set of equations must be solved,- .

' n v ‘ | ' »
'ZZy§k§ up (1<i<m)

=1 k=1 -

(Zy§k)—ij= 0 (1<j<.n,1§k§v’)

We modeled this proble‘m as a feasible néﬁwork flow problem (for details 6;1 network

flow problems, see [29]). The model is presented in Figure 4.2. ‘

[b] Net flow cvenerate,d at the nodes
~(u,]) : Upper bound and lower bound of arcs _

Figure 4.2. Network flow diagram for cheCking feasibility of bids

Let N(V, Al u,b) denote the network. We begin constructing the network by
adding one node, b;, for each bid and drawing an arc from source node s, to b; with
infinite upper bound and zero lower bound ((u,!) = (+inf,0),1 < Jj < n) Then for

each node b;, we add ¢; nodes where t; is the number of subbids inside bid j, and

CEaatg o E LI soAb EE ’
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draw an arc from b; to each newly added node Sk with fixed ﬂow requlrement of gk
((u,l) = (‘Jﬂm QJk) 1<j<ml<k<t;). These arcs with ﬁxed flow ensure that each
subbid gets the requested amount of resources. After that we add one node, 7;, for
each resource type in R and draw an arc from Sjk if resource i is requested in subbld
k of bid j (1 <i < m). There are no flow constraints (except being positive) on these
arcs’((u, ) = (+inf,0)). ‘These arcs ensure that only requestedresource types for each
| subbid are allocated by that subbid. Firraliy,. we add one arc from each resource type
node Ti to sink node ¢ with upper bound ef u; and lower bound of zero ((u,l) = (u;,0).
- These last set of arcs limits the rlumber of units resource types. Supply/demand values
for internal nodes are set to zero, Seurce node supplies [¢sum = PR Zij=1 g;x) amount

of flow and sink node demands the same amount as the source node [—gsum)-

If this network model is feasible, then we can conclude that given set of bids is
also feasible. After solving the model, amount of flow between nodes s;, and T; gives

y(k) values (-'EsJ-k,rl y](;c))

- 4.4. Greedy Heuristic Solver Based on Price Per Unit Criteria

Like LRS, PS is also based on greedy allocation of bids however for sorting bids,
price per unit criteria is used instead of linear relaxation. In the ranking phase of the

algorithm, we first calculate heuristic value of each bid j using the following formula:

| P : s
h; = (4.1)
’ Zk 1 QJk .

Then we sort bids according to these heurlstrc values in descendmg order The rest of
the algorithm, the allocation phase, is the same as LRS algorithm. The pseudocode

" for PS algorithm is presented in Figure 4.3.

| @.Beﬁa'zici Uniﬁer,sitesi:l_(ﬁtﬁphanesi @
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Algorithm PS
Input: CABRC problem instance -
Output: winningBids

| /* Ranking Phase */
| for each bid 7 ”
gSum; =0 .
for each subbid & of bid 5
gSum; = gSum; + gk
end for ‘

A Pji
hJ ~ qSum;

- lend for

sort bids according to h; in descending order and store in orderedBids

/* Allocation Phase */
winningBids = 0
forj=0ton—1
add orderede;dsj to winningBids
- if checkFeasibility(ﬁ)inmnng'ds) = false then
remove orderedBids; from winningBids

|end for

return winningBids

Figure 4.3. The pseudocodé,for PS algorithm

4.5. Enhanced Heuristic Solver Based on Price Per Unit Criteria

In EPS, we change the ranking scheme by introducing two new factors, or-. factor

(o) and and-factor (8). The new ranking formula is:

) . pJ : . , .
hj= — (4.2)
T (g - o) L B
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The allocation phase is the szrme with PS algorithm however different from PS, this
algorithm increases the chance of ﬁndirrg better solution by ehanging or_factor and
and_factor in the range of [0.9, 1.1} with 0.05 increments and returns 'the best solution '
found. The original idea behind this ranking scheme was to favor the number of ORed
’ resource types inside the subbids and to dlsfavor the number of ANDed subbids inside -
the bid. In order to realize this idea, the range of or_factor was or1g1nally set to
[0.9, 1] and ‘the range of and_factor was set to [1,1.1]. However, we observed that
extended ranges gave slightly better solutions because of the except.ionalv instances of

the problem.

When or_factor and and_ factor are set to 1, this algorithm gives same result
as PS, therefore EPS is guaranteed to give better solutions than PS. However, this
‘also makes EPS to run up to approximately twenty five times slower than PS. The

pseudocode for EPS algorithm is presented in Figure 4.4.
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Algorithm EPS
Input: CABRC problem instance
' _Output: mava:Bvids o
mazPrice = 0; o _
for = 0.9 to 1.1 step 0.05 /* and_factor */
for o = 0.9 to 1.1 step 0.05 /* or_factor */
/* Ranking Phase */
for each bid j
| gSum; = 0
for each subbid k'of bid j
gSum; = qSum; + gz - ol
- end for -
hi = BT
end for
sort bids according to h; in descending order and store |
in oﬁ"deredéids |
/* Allo’catién Phase */
A winningBids =0
forj=0ton—-1
add orderedBids; to wz’nm'ngBids
if checkFeésibility(wz’nn_inng'ds) = false then
remove orderedBids; from winningBids
end for o :
if total_prz'ce"(iuin'r;,inngidé) > mazPrice then
mazPrice = total _price(winningBids) |
mazBids = winningBids
end if | |
end for
end for

return mazBids

Figure 4.4. The pseudocode for EPS algorithm
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‘5. CABRC PROBLEM TEST CASE GENERATOR

Since there is no real world data for CABRC problem, we code an artificial
CABRC problem test case generator in order to_generate a test suite for observing
the performance of our solvers. The gene'rator‘is capable of producing test cases for

full-factorial testing in which all poésible combinations of all factors can be tested.
Generator module is coded in ANSI C++ and compiled using Microsoft Visual
C++ NET 2003 compiler. It uses- GNU Scientific lerary (GSL) [30] for generatmg

pseudo-random numbers.

CABRC model generator requires settings for eleven different configuration pa;

rameters related to CABRC model. The list of parameters are given below.

e number-of-instances defines how many set of instances will be generated.

m defines how many types of resource will be generated.

u defines number of units for each resource type.

n defines how many bids will be,generated for each.inétance.

¢ defines how many subbids will be generated for each bid in the model.

s defines size of requested subset of resources for each subbid inside all bids.

s_jk_method defines method for generating requested resources for subbids.

q defines requested amount of resources for each subbid inside all bids.

or_factor defines price factor for ORed resource requests inside a subbid.

and_factor defines price factor‘ for ANDed subbids inside a bid.

price_variance defines variance for calculating price.

'The algorithm of generator is relatively simple: For each pa,rameter the generator
~draws pseudo random numbers accordmg to a given dlstrlbutlon type and the parame—
ters, and construct CABRC problem instances based on these numbers. Although the
algorithm is simple in general, the method for determining the resource types inside

a subbid and determiningb the price of a bid needs more'explanation. In the following
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sections, we will describe these methods in detail.

51 Determining Requested Resource Types in a Subbid -

There are two methods for generating requested resource types for subbids. First
method (0)»15 called _umform random method. In this method, resource types of sub-
bids are chosen randomly from all available resource types. Second method (1) is called
| nez’ghborhood method. In this methed first resource type of subbid is chosen randomly
among all resource types and the remalmng resource types are chosen from the neigh-
bors (in terms of resource type 1ndex) of chosen resource type For 1nstance let m = 10,
and. for a subbid let s = 5 and index of chosen resource = 8, then list of requested
resources are {6,7,8,9,0}. In grids, it is more likely that clusters that are connected
with fast networks or geographically closer to be chosen inside a subbid. This method

-is proposed in order to model this property simplistically.
5.2. Determining the Price of a Bid

Assignment of proper prices for bids has important role for generating realistic
- test cases. In the generator, after number of resources-are determined, a uniform
random number between 0 and 1 is assigned as the price of one unit of each resource.
In order to deterrnine the price of a bid,v we first find the price of each subbid in the -
~ bid. Raw price of a subbid is determined by multiplying requested quantity of resources
with the weighted avemge price of ORed resources inside the subbid. In order to favor
substltutablhty between resources, we multlply the raw subbid price with od**I=! where
« is the or_factor and |s;| is the number of resource types inside the subbid. This
| produces the price of the subbid. Then we sum up the prices of subbids inside a bid and
in order te disfavor complementarities between subbids, we multiply this value With '

B4~1 and produee the raw bid price where 3 is the and. factor and t; is the number of
subbids inside the bid. Finally, we draw a normally distributed random number with
mean raw bid price, and standard deviation price_variance. We assign this nrlmber as

" the price of the bid. The pseudocode for determining the price of a bid is presented in

Figure 51
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Price ,Determination Algorithm
Input: or_factor, and_factor, price_variance

Qutput: price :for given bid

| for each resource type i
um’tPﬁcei = uni form(0,1)
end for |
for each bid j
bidPrice; = 0
for' each subbid k of bid. 7
subbid Pricer = 0 _
for each resource type 1n subbid &
subbzdPrzcek = subbid Pricex + gjk - uth’rzcel (wf ZZESJk Us)
end for .
subbidPrice; = subb'Ldece;c alsixl=1
bid Price; = bidPricej + su'bbialPrzce,c
end for '
bid Price; = bidPrice; - §%7
bid Price; = normal(u bzdPrzceJ,a = (bidPrice; - pmce_'uarzance/ 100))

end for

Figuré 5.1. The pseﬁdocode for determining the price of a bid -

" 5.3. Distributions Used in the Generator

The generator currently supports uniform, normal, exponent1al distributions and
fixed value parameters for-generating ‘CABRC problem instances. Details of these

distributions are given in Appendix A.
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6. EXPERIMENTAL RESULTS

In order to measure the performance of CABRC problem solvers, we prepare

2 comprehensive test suite generated by CABRQ,problemjtest case generator and

_conduct tests in two phases.' In the first. phase, we examine the effect of each parameter
separately while holding the other narameters ﬁxed and in the second phase, we check

the general performance of solvers by comblmng the results in the first phase and the

results of several general tests.

We run the tests on the following platform: AMD Athlon 64 3200+ based work-
station with 1GB RAM The operating system used is Microsoft Windows XP Service
Pack 1.

| Goodness Valnes of solutions for each configuration are calculated using the fol-

lowing formula:

Solution Of Solver s for Distribution d
- Optimum Solution for Distribution d

~100 -~ (81)

where s is either LRE, LRS, PS or EPS and d is either uniform, normal or exponential.
Running time values are recorded using wall clock time in seconds Maximum running
time for optimum solver is set to 1000 seconds for all conﬁguratrons except » Number
of Bids” configurations which are set to 2000 seconds. The reason for rncreasmg the
maximum runmng time is that in ” Number Of Bids” conﬁguratlon tests are conducted
~ for larger n values whrch are exactly the twice of the n values in other configurations.

The results of all solvers are omitted if the optimum solution cannot be found.

Also note that since goodness values of the upper bound estimator and greedy
~ heuristic solvers are calculated according to the same formula, they should be inter-
preted differently. For greedy heuristic solvers, higher goodness values are better,

whereas for upper bound estimator, lower goodness values are better.
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6.1. Phase 1: Effect of Parameters

In this part, our aim is to find effects of each parameter on the results separately
while holding other pa,rameters fixed. We will also exan'linethe-effects of different distri-
butions on the results. For each parameter., we generate three sets of CABRC problem
instances based on uniform, normal and exponential distriblitions. Base configuration
files for each set can be found in Api)endfx C. Graphs presented in this part are based

on mean values of results for configurations based on these three distributions.

In this phase of the tests, if the mean of a parameter is set to mean, then param-

eter(s) of

e uniform distribution are (a = 1,b = (2 - mean) — 1),
o normal distribution are (1 = mean,o = mean/4),

e exponential distribution is (u = mean). . .

Since EPS algorithm is an e_nhanced version_ of PS} algorithm' a'ndris guaranteed
to produce better results than PS algorithm, goodness results of PS and EPS would
not be compared.A Also since it is gu’aranteed that PS runs’faster than EPS, runriing
vti.mes performances would not be compared too. The results of PS are given in order

to consider the trade-off between speed of algorithms and goodness of results.

In this phase of the tests, we mention the results of greedy heurlstlcs as lower
bounds of the optimum solutlon in order to be conﬁdent with the upper bound esti-
mator and therefore the word tzghtness refers to how close the approx1mate solutions

are to the optlmum solution.
6.1.1. Number of Resource Types. (m).
We conducted tests for m = {20, 40, 60, 80, 100}. The results ef'each distribution

are giverl in Table B.1 and Table B.2. The mean results can be seen in Figure 6.1.

Note that logarithmic scale is used for the y axis of the running time plot. -
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Mean Goodness (m) .
190 T T T . Mean Running Time
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Figure 6.1. Goodness of solutions and funning times: (m)

For uni_form and normal distributions, LRE produces tight upper bounds with a
maximum mean of 104 pér cent and corresponding standard deviation of 2 per cent.
However, for exponential distribution, the upper bound is far away from tightness vﬁth
a mammum mean of approximately 215 per cent. For LRS, the resuits are neaﬂy the
same as the results of LRE. Fo; uniform and normal distributioins, the results of LRS
,;alt‘hough not so tight, are tighter than results of LRS for the exponential diStribu_tion.-
Results of EPS are the tightest among all greedy heuristic sqlﬁtions with a minimﬁm

- mean of 97.5 per cent and correspohding standard deviation of 3.3‘per cent.

1n terms of running times, the optimum solver is much slower than ‘heuristic
solvers as expected. PS is the fastest among all and EPS is faster than linear relaxatlon |
based heurlstlc In general runnmg times of all solvers are increased with m.. Accordmg
to the mean running times of the optimum solver, we can also conclude that in general,
the problém gets harder if we inc‘reaséthe'nur‘nber of resource types. Hdwever it should
also be noted that the /sz'ze of request‘ed subset of resources. (s ) is also bésed on the value

of m. .
6.1.2. Set of Units of Resources (u)

“We conducted tests for mean(u) = {2,4,8, 16, 32}. The results of each distribu-

tion are given in Table B.3 and Table B.4. The mean results can be seen.in Figure
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6.2.

Mean Goodness {u)
T

Mean Running Time (u}
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Figure 6.2. Goodness of solutions and running times: (u)

Like results of configuration m, for uniform and normal distributions, LRE pro—i
duces tighter upper bounds than for exponential distribution with a maxiﬁ_mm mean
of 106 per cent and corresponding standard deviation of 2.2 per cent. However for
exponehtial. distribution, upper-bbund is tighter than results of configuration m, with
a maximum mean of approximately 126.5 per cent. For LRS, the tesults for normal
distribution are better than results for uniform distribution. The results for exponen-
tial distribution are again the worst in terms of tightness. So linear relaxation methbds
~ produce relativély better bounds for uniform and normal distributions but fail for ex-
ponential distribution. Reéulté of EPS are the tightest among all greedy heuristic.
solutions with a minimum mean of 97.7 per cent and corresponding standard deviation

of 2.3 per cent.

- The speédv of the optimum solver for exponential distribution is interestingly
better than those of uniform and normal distributions, although in general it is much
.more» slower than heuristic solvers. PS is the fastest among all heuristics and the speed
of other heuristics are nearly the same. On avéfage, running times of the optimum

solver tend to increase with u, howevér, speed of heuristics are not affected by changes

in this parameter.
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6.1.3. Number of Bids (n)

We conducted tests for n = {100, 200, 300,400, 500}. The results of each distri-

bution are given in Table B.5 and Table B.6. The mean results can be seen in Figure

6.3.

Mean Goodness {n}

Mean Running Time {n)

Running Time (s)

Figure 6.3. Goodness of solutions an_d running times: (n)

The tightness of upper bdunds produced by LRE are less than 110 per cent except
for the exponential distribution with n = 400,500 which are less than 120 per Ceht.
- So, it can be concluded that results of LRE do not change dramatically with .the type
of distribution unlike in coﬁﬁguration m. For LRS, the results for normal distribution
which oscillate between 90 per cent and 98 per cent, are better than results for uniform
distribution which oscillate between 77.3 per cent and 92.3 per cent. The results for
exponential distribution are vefy discouraging with a minimum of 50.6 per cént. Results
of EPS are the tightest among all greedy heuristic solutions with a minimuxh mean of

96.6 per cent and corresponding standard déviation of 4.8 per cent.

- According to mean running times of the optimum solver, we can conclude,that in
general, thé problem gets harder if we increase the number of bids. Also the running

times of heuristics increase with n as expected.
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6.1.4. Number of Subbids for Bids (t) -

We conducted tests for mean( = {3,7, 11 15, 19} The results of each dlstrlbu-

tion are given in Table B.7 and Table B.S8. The mean results can be seen in Figure 6. 4

Mean Running Time (1)

4 GQoodness (%)

Figure 6.4. Goodness of solutions and running times: (t)

For mean(t) = 3, LRE produces tighter bvounds"of less than 102 per cent and
with an increase in ¢, mean upper bound gets relaxed to between 120-130 per cent.
LRE gives best bounds of maximum 112.4 per cent for normal di‘str‘ibutiqn, and gives
worst results of maximum 159.7 per cent for exponential distribution. Like LRE, LRS
tends to give worse results as ¢ increases. On average, goodness of LRS starts with
96.5 per cent for mean(t) = 3 and decreases to 50.6 per cent for mean(t) = 19. The
results of PS is close to the results of EPS. EPS again gives the beét results in all tests

generated for this configuration.

»

Mean running times of the optimum solver strictly increase as t increases. So
number of bids (n), and number of subbids for bids (t) parameters are important factors
for determining the difficulty of CABRC problem instance. However, the speed of

heurlstlc solvers are not affected from the change in t.
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6.1.5. Size of Requested Subset of Resources (s)

We conducted tests for mean(t) = {10, 20,30, 40,50 per cent} where percentage
defines the relativity to number of resource types (m). The results of each distribution

are given in Table B.9 and Table B.10. The mean results can be seen in Figure 6.5.

Mean Running Time (s}

Mean Goodness (s)
T

Running Time (s)

Figure 6.5. Goodness of solutions and running times: (s)

The goodness pattern of -LRE and LRS resembles the pattern in configuration
t. Lower t vaiues produce bettér results. Mean goodness of LRE starts from approxi—
mately 110 per cent when mean(t) = 10 per cent and increases to 125 per cent when
mean(t). = 50 per cent with little oscillations. Also mean goodness of LRS starts from
94.6 per cent and decreases to 74.4 per cent. Pe,rformances'of PS.and EPS are closer .

and EPS gives the best results in all tests generated for this configuration.:

‘Mean running times of the optimum solver are about 160 seconds. Interestingly,
the optimum solutions for normal distribution take four to nine times more time than
those for the exponential distribution. In general, there is no pattérn of variation

‘between running times of all solvers according to s so it is more likely that the parameter

'S does not affect the difficulty of the model.
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6.1.6. Method for Determining Elements of sjk (sjkmethod)

We conducted tests for s;method = {0,1} where zero means uniform random

method and one means neighbbi*hood method. The results of each distribution are

given in Table B.11 and Table B.12. The mean results can be seen in Figure 6.6. _

Maan Gaodness {s-jk method)

Me;

Aunning Time (s-jk methad)
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1sfF
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3-jk method

3-jk method

‘Figure 6.6. Goodness of solutions and running times: (s;emethod)

For uniform and normal distributions, LRE produces tight upper bounds with a

maximum mean of approximately 105 per cent. However, for the exponential distribu-

tion, the upper bound is looser with a maximum mean of approximately 165 per cent.

For LRS, results for uniform distribution provide tighter lower bound of approximately

97 per cent than for normal distribution. Like results of LRE, results for exponential

distribution is far from being tightness with a mean of approximately 55 per cent. |

While PS results provide mean goodness of 98.1 per cent, EPS results provide a mean

result of 99.8 per cent and EPS wins the round again.

In terms of running times, the pattern resembles to the s case. The optirhum

solutions for the normal distribution take four to thirty times more time ‘than for

the exponential distribution and again the running times of algoriﬁhms do not vary

dramatically with the sjzmethod.
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6.1.7. Requested Amount of Resources for Each Subbid (q) <
We Conducted teste for mean(q) = {10, 20, 30,' 40, 50 per cent} where perce‘n'tage

| deﬁnes relativity to Zkesjk ug. The results of each distribution are given in Table B.13

and Table B.14. The mean results can be seen invFigure 6.7.

Masan Running Time (q)
T =

Figure 6.7. Goodness of solutions and running times: (9)

‘As the ratio of q increases, the results of LRE get worse in terms of goodness for all

~ three distributions. The worst bounds are obtained from instances based on exponential

distribution. Same condition is also true for LRS. When mean(q) = 10 per cent average
goodness is approximately 92 per cent and when meah(’q) = b0 per cent average '
goodness reduces to 69 per cent. Again, PS performs better than LRS, and EPS‘iS the

clear winner in terms of goodness among all greedy heuristics.

, Running times of the optimum solver do not show an iricreasing or decreasing
pattern along with g and therefore the effect of g to the difficulty of CABRC problem
instance cannot be determined with these results. The speed of heuristic solvers are

| not affected by ¢ directly.
6.1.8. Price Factor for ORed Requests Inside a Subbid (or_factor)

We conducted tests for or_factor = {0.92,0.94,0.96,0.98,1}. The results of each

distribution are given in Table B.15 and Table B.16. The mean results can be seen in
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Fjgure 6.8.
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Figure 6.8. Goodness of solutions and running times: (or_factor)

Both LRE and LRS produce relatively tight upper and lower bounds respeotively
for uniform and normal distributions. However, both heuristics fail when parameters
are distributed by an exponential distribution. The difference between results of LRE
and the optimum solver and also the difference between results of LRS and the Optimurn
are approximately 50 per cent in the worst case. Again performance of PS is much
greater than LRS in terms of goodness and EPS outperforms both solvers with a mean '

goodness of 99.2 per cent.

The maximum average running time of the optimum solver occur when or_f actor
= 0.98, and running times of other greedy heuristics do not differ with the changes in -

or. factor.
6.1.9. Price Factor for ANDed Subbidsf Inside a Bid (and_factor)

We conducted tests for and_factor = {1,1.02,1.04,1.06,1.08}. The results of
each distribution are given in Table B.17 and Table B.18. The mean results can be

seen in Figure 6.9.

For and_factor =1, LRE produces tighter average bounds of approxim.ately 102

per cent and with the increase of and. factor, the mean upper bound gets relaxed to
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Figure 6.9. Goodness of solutions and Tunning times: (and-factor)

between 120-125 per cent on thé average. LRE gives}best bounds with an average of
104.8 per cent for normal distribution, and gives worst results with an average of 127.9
per cent for exponential distribution. Like LRE, LRS tends to -give worse results as
and_factor increases. On the average, gOodnesé of LRS starts with 94.4 per cent for
and_factor = 1 and decreaseé‘to 82.8 per cent for and_factor = 1.08. The results of
PS is 1.6 per cent lower than the results of EPS and EPS again gives the best results
 with the minimum mean of 97.7 per cent and corresponding standafd deviation of 3.3°

per cent in all tests generated for this conﬁgu‘fation.

The maximum average running time of the optimum solver occur when and_factor
— 1.06, and running times of other greedy heuristics do not differ with the changes in .

and-factor like the or_factor case.
6.1.10. Variance for Price (price-variance)

We conducted tests for price-variance = {10, 20, 30, 40, 50 per cent} where per-
centage defines relativity to raw price of each bid. The results of each dlstrlbutlon are

'~ given in Table B.19 and Table B.20. The mean results can be seen in Figure 6.10.

'For uniform and normal distributions, LRE produces tight upper bounds with

a maximum mean of 106.7 per cent and corresponding standard deviation of 1.7 per
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Figure 6.10. Goodness of solutions and running times: (price_variance)

cent. However for exponential distribution, upper bound is looser on average with a
maximum mean of approximately 132 per cent. For LRS, the results -are nearly same
as the results of LRE. For uniform and normal dlstrlbutlons the bounds of LRS are
| tighter than the bounds of LRS for exponential distribution. Results of EPS are the
tightest among all greedy heuristic solutions with a minimum mean of 98.2 per cent

and corresponding standard deviation of 3.5 per cent.

The maximum average running time of optimum solver occur when price_variance
= 30 per cent, and running times of other greedy heuristics do not differ with the

changes in price_variance.
6.1.11. Conclusion of Phase 1

In this phase of the tests, we- tested the effect of ten different parameters of
CABRC model using three different conﬁguratlons based on uniform, normal and ex-
ponential _distributlons We also discussed the general behavror of solvers under differ-
ent conﬁgurations From the results, it can be concluded that in general an increase
in parameters m,n or s make the instance of model more difficult to solve in terms
of running times of the optimum solver. Secondly, it can be seen that on average,
running times of optimum solver for normal distribution are more than for other two

distributions. So instances of the problem Which are based on normal distribution are
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more difficult instances. Finally, in general, linear relaxation based heuristics, LRE and
LRS, provide tlghter bounds on the tests based on uniform and normal distributions
* and looser bounds on the tests based on exponentlal distribution. Also, the results
btarned in this part give some information about general characteristics of solvers but

in order to be more confident, more general tests are needed.’ Therefore comparlson

of solvers will be left to the next phase of the tests

6.2. Phase 2: General Performance

In this pha.se of the tests, we prepare three sets of general test configurations
namely generalQi .general-2 and: genéml—é’ for uniform, normal and exponential distri-
butions separately (total of nine configurations). We fix the maximum time for the
optimum solver to 1000 seconds and omit the results of all solvers if the optimum so-
lution cannot be found. The results of these tests are given-in Tables B.21-B.26. After
conducting general-tests, we combined the results of general tests with the results of
tests explained in the first phase. -After that the average goodness and running time
of all 1478 solutions are calculated. The results can be seen in Figure 6.11 and Figure

6.12.

In terms of goodness, LRE gives results approximately 15 per cent higher than
the optimum solutions and LRS gives results approximately 15 per cent lower than
the optimum solutions on average. While PS gives a very ‘high goo.dness ratio of 97.34 |
per cent, EPS outperforms other two greedy heuristies and gives an excellent goodness
ratlo of 99.2 per cent on average. In terms of running times, PS is the clear winner
among all greedy heuristic solvers. However EPS is also.not very slow compared to
PS but very fast compared to the optimum solver. So, overall, we can-conclude that
performance of EPS is excellent both in term of goodness and speed. However, if the
application is time critical, PS can also be preferred with approximately 2 per cent loss

on average.

By achieving 99.2 per cent goodness on average with a fast bpolynolmialheuristic

| EPS, one of the main objectives of this study is accomplished.
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7. CONCLUSION

In this study, we proposed a new combinatorial auction based model for resource
co-allocatlon problem in grids. The intention behlnd this economlcal model is to en-
oourage resource holders to supply their idle resources in grid environment and to allow
users value any combination of resources according to their‘preferences. Powerful bid
representation of this auction based model pro{/ides higher revenues to resource vsup—
' pliers and higher sati_sfaction to users. In this study, we examined CABRC model

and its application to ‘grids in detail. We formulated CABRC problem .usirlg IP and
proved 'that it is NP-hard. Although i‘r can be difficult to solve large instances of the
problem, for small sized grids with rela_tively small number of resource types and users,
'optimum solution of the problem can be found quickly. However, for large grids, the
optimum solution may take tremendous amount of time. Therefore, we proposed two
new polynomial-time greedy heuristic solvers in order to solve large instances of l:he
problem. We coded a solver package that consists of the optimum solver linear relax-
ation based upper bound estimator, lmear relaxatlon based g‘reedy heuristic solver and
“the two mentloned solvers. Since there is no real world data, we also coded a com-
prehensive test case generator for CABRC problem and measured the performances of
'~ these solvers under different test conditions. Proposed tvsro heuristic solvers, PS and
EPS, obtained quite good results in the tests with 97.3 per cent and 99.2 per cent

average performance relative to the optlmum solution respectively.

As a feature work, CABRC model can‘be'integrated into grid softWares such as
~ Globus and Condor as a resource co—allocatlon submodule. . Hoﬁvever, before using this
model comrnercially, if the proposed heuristics are to be used as solvers, performance
of heuristics must also be confirmed under real life conditions. Therefore, before go-
ing pubhc it would be better to test this model in a gr1d testbed and evaluate the

performances of heuristics in real gr1d environments.
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APPENDIX A: DISTRIBUTIONS USED IN THE
GENERATOR

The generator currently supports three different distributions and fixed value

parameters in order to generate models. Accepted distributions are:

e Uniform Distribution: This distribution gets two parameters a and b, and
generates random integers in the range [q, b] that are equally likely.

The generator uses gslrng uni f orm-z'nt(cbnst gslrng * v, unsigned long int n)
function of GSL library in order to generate ﬁniform random integers. This
function returns a random integer from 0 to n — 1 inclusive such that all integers
in the range [0,n — 1] are equally likely. The distribution is‘,
1 _

p(z) = G=a) (A1)
i_‘f,a <z <band0 otherwise. In order to get integers in the rané;e [a,b], the
function is called with parameter n = abs(b — a) + 1 and min(a,b) is added to
the return value. ’

e Normal Distribution: This distribution gets two para.metérs u and o, and
generates normally distributed random real or integer numbers with mean = pu
and standard deviation = 0. |
The generator uses gsl_ran_gauséian(const gsl_rng * r, double sig:rna) function
of GSL library in order to generate normally distributed real numbers. This func-
tion returns a,Gaussian random 'vari'ate, with mean zéro and standard deviation

sigma. The probability distribution for Gaussian random variates is,

1 oin g \
p(¢)= Wexp(—w [20%) (A2)

for z in the range —oo to +co. In order to get numbers with mean u and

standard deviation o, the transformation 2 = i+ z is applied to the numbers
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returned by this function. If integer numbers are required by the generator instead
of real numbers,‘feal numbers are rounded to the nearest integers.
Exponential Distribution: This distribufion gets one parameter p and gener-
ates eprnéntially distribut‘e‘d‘ random real or integer numbers with mean = 4.
The generator uses gsl.ran-empOnential(éohst gsl-rng . 7, double p) function
of GSL library in order to generate expdﬁentiélly distributed real numbers. This

function returns a random variate from the exponential distribution with mean

u. The distribution is,
1 .
p(z) = P exp(—z/ ) L (A.3)
for z > 0. If integer numbers are required by the generator instead of real .
numbers, first mean is shifted to left by 0.5 and-gsl;ran_gaussian function is

called with shifted mean, then returned nurhbers are shifted to right by 0.5, and

finally numbers are rounded to the nearest integers.



Table B.1. Goodness of sd_lutions (%): m

APPENDIX B: TABLES OF TEST RESULTS

m| 20 40 60 80 100
K o 7 o w |.0 U o 7 o
U 1031 2.2 | 1032 | 2.0 [ 1027 | 1.2 [ 1021 0.8 |1032| 1.9
LRE | N | 1034 | 0.8 | 1042 | 0.7 | 1036 | 0.9 | 103.6| 0.8 |1042]| 18
E | 1097 | 65 | 1520 | 26,6 | 21458 | 455 | 205.8 | 113.4 | 144.4 | 306
U|os2 | 13917 |62]010]64]|052]| 31 |806]|59
LRS | N.| 050 | 43 | 90.6 | 45 | 974 | 36 | 924 | 1.8 | 941 | 6.1
E| 879 |78 | 742 | 08| 527 | 00| 689|263 | 751|178
U | 987 |09 9902|0890 03|00 09 |95 |04
PS [N | 968 | 36 | 951 | 34 {1000 0.0 | 95.3 | 35 | 98.4 | 1.4
E| 908|117 984 | 23 | 999 | 01 | 967 | 3.8 | 995 | 04
U | 096 | 06| 994 | 04997 | 05990 09 |95]04
EPS | N | 975 | 33 | 976 | 3.1 | 1000 | 0.0 | 99.6 | 0.7 | 98.6 | 1.4
B | o085 | 26|98 |02]|99]|o01]084| 22 |09.6]03




- Table B.2. Running times'(s)rz m

m| 20 40 60 80 100
M o) 0w o I o umo o j2 o
U |56 |51 |932|1187|615|60.8| 91.3 | 97.3 | 175.3 | 45.5
OPT | N | 319|328 |117.3 | 157.5 | 45.0 | 23.9 | 112.5 | 41.5 | 380.7 | 295.0
E| 49| 29| 180 95 |441|184 1188|1133 |177.8 | 2188
Uloalo2| 10|06 |18]|10]| 22| 13| 27| 13
LRE |N|04|02] 09|05 |06lo01| 17| 12| 23] 17
E|04|02]| 16| 07 |28|13| 45 | 33| 47 | 20
Ulo05|02] 11|06 |10]10] 23 | 14 | 28 | 14
LRS |N|05|02| 09 | 05 |07 |01] 18 | 12| 24 | 17
E|04]02]| 16 | 08 |29 |13 46 | 33 | 49 | 21
Uloolool o1loo|o1loo] 01| oo 01]o00
PS |N|01|00] 01|00 |00|00| 01| 00]| 01| 00
5|00 lo0o| 01|00 |o1]oo| 01| 00| 01|01
Ul11lo04] 16|06 |22]08] 24| 09| 28| 11
gPs |N| 12|04 15| 06 | 12|00} 20 | 09 | 22 | 09
Eli2los| 16|07 |19]|09] 25| 10| 34 | 15



Table B.3. Goodness of solutions (%):
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2 4 8 16 32
.y o I o L (0] I 'a' H o
U | 1058 | 2.57| 104.6 | 2.1 | 101.5| 1.1 | 103.4 | 1.4 | 106.3 | 2.2
LRE | N | 103.5{ 2.0 | 103.5 | 0.0 1041 | 1.7 | 1047 | 3.4 | 1039 | 1.6-
E | 1254|227 | 1265 | 22.4 | 114.3 | 227 | 1115 | 3.6 | 111.2 | 12.9
U| 945 |41 | 917 |'79 | 962 | 49 | 865 | 93 | 87.5 | 82
LRS |N| 950 | 38 | 78.1 | 0.0 | 941 | 49 | 91.9 | 54 | 96.3 | 5.0
E| 784 [205| 71.0 | 248 | 81.2 | 16.2 747 | 232 | 799 | 24.3
U|9.1|13|975]33]|9%.2]| 16| 976 | 48 | 970 | 2.3
PS |N| 958 | 74| 967 | 00| 9797 20| 915 | 6.1 | 988 | 20
E|997 | 04993 | 07|96 | 06| 982 | 14| 987 | 24
U| 994 | 11|97 |22]9.9]02]1000]| 01| 9.4 |08
EPS |N| 992 | 14 | 989 | 0.0 | 988 | 23 | 97.7 | 2.3 | 989 | 1.9
E| 997 | 04 [1000] 0.0 | 99.9 | 02 | 99.2 | 0.7 | 98.8 | 2.4




Table B.4. Running times (s): u
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m 2 4 8 16 32
N H o | u o | u o 7 | o
| U |59.3| 58.0 | 80.9 | 102.8 | 51.5 | 97.2 | 35.1 | 36.0 | 178.2 | 223.5
OPT | N | 985|133.9 | 1725 | 0.0 |65.0 | 63.6|183.9 | 262.1 | 263.0 | 2454
E|648| 854 | 201 | 183 |17.1]12.7| 283 | 152 | 20.1 | 377
U|{09| 04| 07|03 0905|0905/ 08| 06
LRE |N| 10| 07 | 12 | 00 |09 | 06| 07 | 05 | 09 | 06
E|15| 08 | 15 | 1.0 |16 |09 | 15 | 07 | L5 | 05
U|09| 05| 07|04 |20]|05| 10 05| 09 | 06
LRS |N|11] 08 | 13 | 00 |10]06| 08 | 05 | 1.0 | 06
E|15] 08 | 15| 10 | 16]10| 16 | 0.7 | 1.5 | 05
Ulo1| oo |ot| oo |or|oo| 01| 00|01} 00
ps |N|o1| 00| 01|00 0100|0000 | 01|00
E|01]00] 01|00 o1loo] 01|00 01|00
U|15]| 06 | 1.4 | 06 | 15| 06| 1.5 | 06 | 14 | 06
EpS |N| 14| 06 | 20 | 00 | 15| 06| 13| 06 | 1.4 | 06
E|16| 06 | 16 | 06 | 16|07 | 16 | 06 | 1.6 | 0.7



Table B.5. Goodness of solutions (%): n

n 100 200 300 400 500
Y © o U o 7 o 7 o
U |105.8 | 0.7]107.3 | 1.8 | 102.5 | 1.0 | 108.9 | 0.0 | 101.9 | 0.2
LRE | N | 102.4 | 0.5 | 103.9 0.9 | 103.0 | 2.1 | 103.3 vo.o' 104.0 | 0.0
E |103.2 | 1.0 | 105.8 | 2.1 | 106.9 03| 1149 | 7.9 1215 | 272
U| 773 |72]88.3 |26 92379838 |00/ 923 | 1.8
LRS | N | 917 | 6.3 97.3 |26 | 95.7 | 6.1] 90.8 | 0.0| 97.8 | 0.0
E| 957 |44 617 |41.1] 915 | 54| 50.6 | 6.7 | 72.2 | 34.7
U | 949 |47 985 | 21 | 985 |21 924 |0.0| 97.9 | 3.0
PS |N 96.6 | 0.7 97.3 | 2.6 | 100.0| 0.0 | 97.9 | 0.0 | 97.8 0.0
E| 974 11| 996 | 06 | 962 | 5.4 96.6 | 4.8 | 98.9 | 0.9
U| 994 |09]99.2]| 12 |998 |02]| 985 |0.0]|100.0 | 0.0
EPS | N | 986 | 20| 99.6 | 06 | 100000 | 982 |0.0|100.0]| 0.0
E| 979 | 18] 999 | 01 1000|001 96.6 | 4.8 | 99.1 | 1.0




Table B.6. Running times (s): n

n| 100 200 300 400 500 -
H o B oo 7 o W o Iz o
U |148.4{140:5 | 111.1|81.7 | 109.4 | 73.4 | 269.0 | 0.0 | 233.8 | 241.9
OPT |N| 257 | 38 |102.1|72.1|128.4|164.2|139.3|0.0|1266.5| 0.0
E| 67 | 08 | 258 |20.7230.0]235.6| 382 |0.1| 377.1 | 237.6|
Ulos |01 14]00]|30]03]51]00] 70 |087]
LRE [N| 04 [ 00 | 13 |01| 32 | 04 | 47 {00| 85 | 00
E| 07 (00|26 |01]|37 | 005402 95 | 08
U| 06|01 | 15]01|31]|03]53] 00| 71 |08
LRS [N| 04 | 00 | 13 |01|33 | 04| 49 |00] 86 | 00
E| 07| 00| 26 01|39 01]56|01] 97 |07
Ul 00 ]o00]|o01foo|o1]|o0o]|o02]00] 0200
PS |N| 00| 00| 01)00]01]00]|01] 00 0200
E| 00 {001} o01]00]|01]00]| 02]00 02 | 0.0
U| 10| 01]20]01]33] 01|45 00| 55 | 00
EPS [N| 10 | 00 | 19 |o1| 29 | 01| 38 [00] 47 | 00
E| 11 )00 22 01|35 | 02|49 |01] 58 | 03




"Table B.7. Goodness of solutions (%): t
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t 3 7 11 15 19
plol p ol w|o| p|o|uw|o
U | 1004 | 0.3 {1046 | 2.5 | 107.1| 4.2 | 115.3 | 18.6 | 1324 | 24.7
LRE | N | 100.8 [ 05| 1043 | 1.2 | 106.7 | 3.0 | 107.6 | 2.9 | 1124 | 0.0
E | 101.8 |09 | 1240 | 17.5 | 150.7 | 22.8 | 142.2 | 27.9 | 122.6.| 0.2
U| 9.0 |51|975 | 17| 8.4 |245| 71.3 | 239|678 | 6.4
LRS N | 985 |13 974 | 3.2 | 89.6 | 14.1 | 100.0 | 0.0 | 40.3 | 0.0
E| 950 |38 644 | 151 535 | 9.1 | 50.1 |19.4| 436 | 9.4 |
U | 9.1 |09 987 |12 |1000] 0.0100.0]| 0.0°| 97.0 | 43
PS |N| 980 21| 981 |21 |99 |53|1000]|00 92400
E| 970 24] 969 | 49 | 980 | 2.3 | 99.8 | 0.3 | 1000 | 0.1
U| 9.2 08| 995 | 06 [100.0] 0.0 |100.0| 0.0 | 1000 | 0.0
| EPS |N| 988 |17 99.0 | 0.9 |100.0| 0.0 |100.0| 0.0 |100.0 | 0.0
E| 976 |24| 973 | 51 | 984 | 1.6 | 99.9 | 0.2 | 100.0 | 01



Table B.8. Running times (s): ¢
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3 7 11 15 19
[N W o L o M o | o
| U | 18| 1987211016 | 424 | 18.9 | 289.3 | 376.5 | 64.8 | 40.7
OPT | N | 181 20.9 | 65.0 | 33.4 | 294.0 | 188.4 | 43.5 | 18.0 | 741.5 | 0.0
E| 14|04 |172] 119 | 69.0 | 40.0 | 2000 | 250.9 | 32.6 | 9.9
U|02|01|07]03 | 17|11 |23 | 17| 21 |01
LRE [N |02 | 01|09 05 119 | 10| 52| 14| 10300
E|04]02{15] 09 |22 |09 | 18] 10]| 13|00
Ulo03|o1|o7| o3| 17| 12| 23] 17|21 |01
LIRS [N|03|01|10| 05| 20| 10| 52| 14|105]00
E|05|02(16| 09 |23 {09 | 19 | 10 | 14 |00
Ul01|00|01]| 00|01 |00 01|00 /|00]00
PS |N|01]0001] 00 | 01 | 00| 01 | 00 | 01 |00
E|01(00]01] 00| 01|00 01] 00| 00|00
U|16|06|15] 06| 15 | 08 | 13 | 06 | 1.0 |00
EPS |N| 14|05 |16| 05| 16 | 06| 19 | 01| 19 |00
E| 17|07 17| 06| 19| 06| 15|07 | 11|00




~ Table B.O. Goodness of sdlutions_,(%): s

s| 10% | 20% | 30% 40% 50%
polo o o |.u o L o | u o
| U1103.9| 1.8 | 1044 | 23 | 1055 | 3.8 | 110.5 | 10.5 | 115.4 | 3.8
LRE | N | 1029 | 2.0 {1043 | 2.9 | 105.9 | 3.6 | 114.0| 0.0 |110.3 | 3.8
E 1207 | 17.3 | 110.4 | 9.4 | 1452 [ 45.5 | 135.9 | 21.2 | 147.5 | 26.1
U| 954 |32 |915 (33| 858|176 789 |21.1] 721 | 17.7
LRS |N| 959 | 32 | 966 | 48 | 8858 | 11.3 | 1000 | 0.0 | 86.9 |17.1
E| 925 | 28 | 845 |216| 761 | 195 | 652 | 17.4 | 64.1 | 7.1
U |94 |83|989 | 13|96 | 1999216098121
PS |N| 9053|5496 05| 075 22]|1000] 00 962 | 62
E| 973 | 06| 994 |06 ]|985|19]|9.9]|01]9.2]|14
U|99.1| 13|99 |01 |1000] 0.0 [100.0| 0.0 | 995 | 08
EPS |N | 982 | 27 |100.0| 0.0 | 98.3 | 1.5 | 100.0 | 0.0 | 99.4 | 1.1
E| 993 | 06| 97| 03|96 08|99 01]|1000] 00




- Table B.10. Running times (s): s
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s | 10% 20% 30% 40% 50%

o o po| oo p o po| o po| o
U831 | 27.77| 475 | 40.5 | 251.3 | 363.5 | 117.2 | 130.1 | 61.1 | 29.9
OPT | N | 540.5 | 382.3 | 279.0 | 427.0 | 235.1 | 267.2 | 271.9 | 0.0 |349.6 | 345.1
E.| 623 | 64.7 | 343 | 465 | 71.5 '57‘.0 400 | 248 | 80.1 | 209
Ul o7 03| 10|06 150920132119
LRE [N| 07 | 03 | 09 | 05 | 11 | 09 | 26 | 00 | 26 | 20
E| 13|06 | 15|07 ] 18|09 ]| 19| 07]|18]12

Ul 08| 03|11 |07]15]|10]20]|13]22]|19

LRS |N| 07 [ 04 [ 10 | 06 | 11 | 09 | 27 | 00 | 27 | 21
1BE| 14 06| 16|07 |18 09|19 08]|18]|12

Ul 01]00]o1]oo|o1]oo|o1]|00]o01]o00

PS |N| 01| 00]01[00|00|00]o01|00]o01]|00
E| 01|00 01100101 00 | 0.1 | 00 | 01 | 00
U| 17 |07 | 16|08 |15|05]| 15| 05| 13|05

EPS [N| 1.6 | 0.6 | 1.5 | 0.6 | 1.3 | 06 | 19 | 0.0 | 1.4 | 05
B| 17| 07| 17|07 | 16|06 16| 07| 14]07




Table B.11. Goodness of solutions (%): s;kmethod :

s_jk_method 1 2
7 o 7’ o
U 102.3 | 0.9 | 103.3| 1.8
| LRE N 103.2 | 0.0 | 1052 0.5
E 164.4 | 10.8 | 137.1 | 24.3
U 96.4 | 1.9 | 98.0 | 1.7
LRS N 86.6 | 0.0 | 90.8 | 5.7
| E 57.6 | 41 | 51.1 | 2.5
- U 99.9 | 0.2 | 99.7 | 0.4
PS N 95.2 | 0.0 | 99.6 | 0.6
E 96.1 | 5.6 | 98.3 | 2.1
U 100.0 | 0.0 | 99.7 | 0.4
EPS N 99.1 | 0.0 | 100.0 | 0.0
' E 99.9 { 0.2 | 99.9 | 0.1
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Table B.12. Running times (s): s;xmethod

s_jk_method 1 2

- p o 7 o

U 488 |46.2| 73.8 | 976
OPT N 130911 0.0 |171.5] 161.9
E 107 | 15 | 415 | 345

U |09 |0o5]| 08 05

LRE N 15 [ 00| 1.0 | 0.7
E 16 | 12| 15 | 11

U 09 | 06| 09 | 05

LRS N 15 | 00| 1.0 | 08
E 16 | 12| 1.6 | 11

U 01 | 00| 01 | 00

PS N 0.1 | 00| 01 | 00
' E 01 | 00| 01 | 00
U- 16 | 09| 1.6 | 08
EPS N 20 | 00| 15 | 0.7
| E 17 | 09| 18| 08
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Table B.13. Goodness of solutions (%): ¢

61

a| 10% | 20% 30% 40% 50%
po| o jz o 7 o j2 o 7 o
U 108108 103.2 | 0.8 [ 105.8 | 1.4 | 127.2 | 11.9 | 151.0 | 3.1
LRE | N | 101.0 | 0.2 | 103.3 | 1.0 | 105.2 | 0.0 1174 | 6.6 | 123.0 | 12.3
| E ‘104.0‘ 361046 | 5.1 | 154.8 é3.7 179.5 | 46.4 | 175.3 | 43.2
U| 9207|945 |30 | 849 |17.7| 749 |23.9| 73.1 | 2.1
LRS | N | 95.6 ’3.9 942 1 35| 838 | 0.0 | 82.6 | 24.6 71;6 171} |
E| 8.8 |73| 8.1 |20 743 |11.6| 656 | 9.0 | 626 | 10.2
U| 94 /09|98 | 121957 |69 | 971 |51 | 94.0 | 2.1
PS |N 98.6‘ 0.7 978 | 44 | 888 | 0.0 | 826 24.6 88.7 | 7.4
E|9.2 (76|99 0293252 90.1|53]9.6 |27
Ul 988 |1.2]9.4 |07 |93 | 11|9.8]05]|979 |13
EPS |N | 99.7 {0.2]1000| 0.0 | 975 | 0.0 | 98.6 | 2.0 | 100.0 | 0.0
| E [100.0{01] 999 | 02| 982 | 1.5 | 954 | 3.7 | 97.7 | 3.0



- Table B.14. Runhing times (s): q

a| 10% 20% 30% 40% 50%
plolw ol uw|o|p|o| |0
| U |43.7|61.7|166.3 | 218.7 | 251.8 | 320.0 | 281.8 | 282.7 | 116.0| 5.3
OPT | N |01.5|92.3|131.3 | 155.0 | 4015 | 0.0 | 72.8 | 59.9 | 164.4 | 259.5
E|48 | 47| 91 | 43 | 845 |101.4|147.4|227.0| 705 | 81.6
U(09|05| 11|07 |10]05]|10]|06]05]00
LRE |N|08|05| 1.0 | 07 | 18 | 00 | 1.0 | 08 | 1.0 | 0.7
E|15|07| 16 | 08 | 1.7 {09 | 14 | 08 | 1.6 | 0.8
|ul10|06| 11|07 | 11|06 11| 06]|06]|00
LRS |N| 08 |-05| 10 | 07 | 1.8 | 00| 1.0 | 08 | 10 | 07
E|{16|07| 17 |09 | 17 | 09| 14|00 | 17 | 08
U|01]00| 01| 00|01 |00]01l]|007]O00] 00
PS |N|01|00]| 01| 00| 01| 00| 00| 00]|00]o00
E|{01]00]01]00]01|00]00]00]01]|00
| Ul20|08| 16| 06| 14|06 13| 05|09 |00
EpS |N|19 |07 | 15 | 06 | 17 | 00| 12| 06 | 12 | 05
E|22(09| 17|07 |16°] 07| 13| 06| 15| 06
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Table B.15. Goodness of solutions (%):
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or_factor . .

or|  0.92 0.94 0.96 1 0.98 1
B ol pw ol p|o| uw|o|w|o
U 1046 21 [104.7 | 51 |103.6 | 2.1 | 1044 | 3.2 | 1059 | 1.0
LRE | N |1033| 22 | 1029 | 1.0 | 1044 | 25 | 1041 | 1.7. | 103.9 | 0.0
E | 1184 | 15.8 | 144.6 | 30.6 | 152.0 | 30.9 | 141.8 | 34.8 | 150.4 | 24.6
U | 875 |38 | 940 | 69| 936 | 35| 913 | 7.4 | 899 | 6.3
LRS (N | 947 | 91 | 962 | 1.7 | 957 | 3.7 | 93.4 | 6.1 | 94.8 | 0.0
|E| 573 |17.3| 508 | 7.2 | 504 | 88 | 614 | 7.7 | 68.0 | 44
U| 976 |25 |on1 | 48| 995 | 07| 966 | 37| 992 |07
PS |N| 994 | 12| 952 |49 |97.2| 21948 |29/ 982 |00
E|987|24|980 | 17982209307 |9.7]| 04
U 991 | 1293|0795 |07]|987| 17| 996 |05
EPS | N | 998 | 04 | 969 | 34 | 00.1 | 1.6 | 984 | 1.5 | 100.0 | 0.0
E|999 |01 |1000] 01987 17|99 |02]|9.7 |04




Table B.16. Running times (s): or_factor .

64

or| 0.92 0.94 0.96 0.98
W o 0 o m o po| o | p o
U |85.7|107.9.| 64.1 | 33.7 | 104.1|111.6 | 154.2| 163.2| 80.3 | 38.8
OPT | N |66.1( 89.3 |272.0|205.1 | 72.0 | 60.9.|410.2 | 442.4 | 42.3 | 0.0
E|145| 138 | 219 | 233 [ 170.6|196.1 | 33.7 | 51.5 | 16155 | 178.6
|Uf11] 06| 11|07 | 10|06 11|07 | 10] 08
LRE [N |09 |05 | 11| 06 | 07 | 05 | 10 | 07 | 0.4 | 00
E|[18|09 |17 |08 | 18|08 | 15| 00| 18|09
Ultr|o7 | 1207 |11]06]| 11|07 | 10|08
LRS |N| 10| 05| 12 | 06 | 08 | 05| 11| 07 | 0.4 | 00
E|[18| 09| 18|08 |18 |09 | 16|09 ]| 19| 10
U|01{00]01|00]|01]|00]o01]|00]00] 00
PS IN|01] 00| 01|00/ 01]|00]01]|00]00]|00
E| 01| 00| 01| 00|01 00]01]00]|01]00
Ul|16| 06| 16| 06| 16|06 ]| 16| 06| 14| 06
EPS |N| 14| 06 | 1.6 | 06 | 13 | 06 | 15 | 06 | 1.0 | 00
E|18]| 06| 18| 06| 18|07 | 15| 06| 17 | 06




Table B.17. Goodness of solutions (%): and_factor -

and | 1 1.02 1.04 1.06 1.08

A A A p o b o | u o
| U |1021{12|1042| 22 | 1047 | 2.3 | 1084 52 | 107.9 | 3.2
LRE | N |1027|0.7|103.4 | 0.9 | 1056 | 4.3 | 106.5 | 1.5 | 105.8 | 3.3
| E |101.6|14]107.9 | 3.8 | 128.3 | 21.6 | 155.8 | 42.0 | 145.9 | 59.2
U | 953 |17[939 | 50| 9265080376847 |49
LRS | N | 955 |55| 919 | 57 | 993 | 12| 956 | 42 | 909 | 108
E | 924 (50823 |162| 725 | 204 | 64.2 |36.9 | 72.8 | 404
U | 989 |13| 966 | 3.9 | 986 | 1.8 | 100.0| 0.0 | 94.0 | 45
PS | N | 966 |25| 043 | 54 | o972 | 49 | 986 | 1.3 | 962 | 53
 |'B | 978 |17| 968 | 27 | 988 | 19 | 986 | 1.7 | 992 | 0.7
U | 991 |09 999 | 02| 986 | 18 |100.0| 0.0 | 985 | 2.7
EPS | N | 97.7 |33 99.0 | 1.3 | 1000 | 0.0 | 99.9 | 0.2 | 100.0 | 0.0
E | 980 |20] 980 | 28| 9.5 | 06| 989 | 1.9 |100.0| 00




- Table B.18. Running times (s): qnd_factor_‘
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and 1 1.02 1.04 1.06 1.08
R o L c | p | o | u o W 1 o
U | 714 | 949 | 470 | 33.9 | 51.0 | 6.3 |162.2|270.9|185.4{189.2|
OPT| N |144.5|224.9|106.2125.9|115.5| 84.0 |375.2|258.7|239.2|331.8|
| B | 321|534 139|102 |217.5|412.4]493.4| 446.9| 67.3 | 105.9
U |09|05|09]|05|08]06|09]o05]|10]|06
LRE| N'| 07 | 06 | 1.0 | 06 | 11 05 | 1.0 | 0.6 | 11| 07
E|15|09 1209|1509 17]09]12]09
U|10]|05[10|05|09|06]|10]|06]|11]06
LRS| N [ 08 | 06| 10| 06|12 05|10 |06 | 11|07
E|16|10|13|09]|15|10|18]09]|13]09]
lulo1|oo|o01|00|00|00]|01]00]01]|00
Ps | N |00 o00]o1]|o00|o1]oo|o1|oo]|01]00
E|o1]00|01|00]01]00]01]00]01]00
U|16|06|16]06]|14)07]|16]|06] 16]086
EPS| N | 14| 06| 15| 06|17 06| 15|06 15]06
E|18|07|15|07|18|08]|20]|07]|16]08



| Table B.19. Goodriess of solutions (%):" price_variance

67

pv|  10% 20% 30% 40% 50%
[ o A c | u o U o | u o
U 1035 0.8 |102.7| 1.9 |108.8 | 1.7 | 105.0 | 1.3 | 103.8 | 2.2
LRE | N |103.7| 2.0 | 1044 07 | 1048 | 3.0 | 1045 | 2.2 | 1067 | 1.7 |
E (1252|255 | 127.9 | 46.8 | 1207 | 19.3 | 100.1 | 5.9 | 132.9 | 313
U | 873 |77|9301| 808898940 | 51| 87.2 89
LRS | N | 028 | 52 | 962 | 46 | 010 | 51 | 936 | 7.3 | 97.6 | 0.4
E | 725 |249| 825 | 283 | 781 | 21.6 | 704 | 207 | 69.1 | 32.2
U|975 (10| 98040976 |28 988 08]979]|35
PS | N | 9045 | 7.7 | 970 | 35 | 970 | 19 | 989 | 21 | 98.1 | 1.3
E|9.3|02|99]|02]|97]|05]|9.6]|04|9.2]08
U | 987 |08 |1000] 00| 93| 07|99 |03]| 92|35
EPS | N [100.0| 0.0 |100.0] 0.0 | 98.8 | 1.0 | 99.6 | 0.8 | 100.0 | 0.0
E|931]03]99]|02]{9.7]|05]09.9]{02]9.6]| 03



Table B.20. Running times (s): price_variance
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pv| 10% 20% 30% 40% 50%

JIA o) 1 g L o I | o o o
U |89.4| 88.9- 45.3 | 71.6 | 171.6|143.8 | 1265 | 197.3 | 46.7 | 711
OPT | N |539| 17.9 |359.7|313.9 | 349.1 | 403.4 | 85.1 | 103.4 | 258.8 | 337.8
E |83.0(102.2| 22.2 | 34.2 | 25.4 | 17.3 | 195.2 | 353.5 | 28.7 | 35.6
U[10| 07|10 |07 |11 |07]|09] 05| 10]06
LRE | N |04| 00| 08| 06|09/ 06| 09]06]|09]06
E{15| 11| 12|12 |15 11| 16|12 15] 12
S julti]o7 |11 |o7| 12| 08| 10| 06| 11| 06
LRS |N| 04| 00|08 ]| 06| 10| 06]10]06]| 1.0] 06
E|l16|12 13|13 |16|12]| 16| 13| 16] 12
|Ujo1|o00 |01 |00|01}00]|01]|00]|01]|00
PS |N|00] 00| 00]00]01]00]|01]|00]|01| 00
E|o0r| 00|01 ]00]|01]00]|o01|00] 01|00
U|16] 06| 16| 06| 16| 06| 15| 05| 1.6 | 06
EPS |N|10| 00 | 13| 06 | 15 | 06 15 | 06 | 15 | 06
E|17] 07|15 07| w7 |o7| 17|07 | 17|07




Table B.21. Goodness of solutions (%): general-1

50

100

150 -

200

250

"

"IJ -

U

: P ;

LRE

100.5
102.9
101.8

0.9
2.1
2.3

100.1°} 0.3
102.2 | 1.3

102.2 | 2.5

100.3

102.4

103.2

0.6

1.7
5.2

100.2 | 0.3

102.3 | 1.6

101.8 | 2.0

100.2
102.3
101.6

0.3
1.7
2.3

LRS

99.3
95.5
98.1°

1.2
5.0
3.5

99.0| 1.8
95.8 | 2.6
94.9 | 4.3

98.6
95.3
94.4

2.5

3.6
7.2

98.6 | 1.5
94.5 | 2.9
96.1 | 3.6

98.4
94.4
96.2

2.7
2.6

3.3

PS

97.7

96.0
94.7.

3.8
5.4
5.1

96.7 | 4.3
96.9 | 2.2
94.5 | 5.5

97.2
97.3
93.2

3.4
2.4

5.9

97.7 | 2.8
96.8 | 3.1
94.6 | 4.7

97.9
96.4
95.9 -

2.4
3.2
3.7

EPS

HE 2 ¢l® 2 cdlyg 2 cdlg 2 d

198.2

98.4

97.7

3.0
21
2.8

98.8 | 1.8
98.0 | 1.8
98.5 | 2.0

98.5
98.5

97.8

2.1
1.3
2.7

98.8. 1 1.7
98.3 | 1.6
98.4 | 2.2

99.3
98.5
98.9

0.8

14|

1.1
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“Table B.22. Running times (s): general-1

n

50

100

150

200

250 |

'LL .

L

ag

7

o

R

o

oPT

0.0

0.1
0.0

0.0

0.1

0.0

0.0
0.2
0.1

0.0
0.2
0.0

0.1
0.5
0.2

0.1

0.5
0.1

0.1
0.8
0.2

0.2

0.9

0.1

01101
08111
02102

LRE

0.0
0.0
0.0

0.0

0.0
0.0

0.0
0.0
0.1

0.0
0.0
0.0

0.0
0.0
0.1

0.0

0.0

0.1

0.1

0.1

0.1

0.0
0.0
0.1

0.1]01

01|01
02|02

LRS

0.0
0.0
0.0

0.0
0.0

0.0

0.1

0.1
0.1

0.0
0.0
0.0

0.1
0.1
0.2

0.0
0.0

0.1

0.1
0.1
0.2

0.0
0.0
0.1

02 0.1
0.2 | 0.0
0.3 0.2

PS

0.0
0.0
0.0

0.0
0.0

0.0-

0.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

0.1
0.1
0.1

0.0
0.0
0.0

0.1(0.0

0.1]0.0

0.10.0

EPS

0.2
0.2

0.3

0.1
0.1
0.0

0.4
0.7
0.7

0.3
0.0
0.0

0.7
1.1
1.1

0.4
0.1
0.1

0.9
1.4
1.4

0.6
0.1

1.1]08

1.8(0.1
1.810.1

g 2z cle 2 clw 2z calm 2 c|lw 2

01
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Table B.23. Goodness of solutions (%): géneral—Z _ )

n| 50 100 150 200 250
L o) 7 o 7 s 7 o 7 o
U 1022 |17|1008] 1.3 |101.9| 1.7 | 1012 | 1.3 | 1013 | 1.0
LRE | N 1020 |1.5| 1019 | 1.4 [101.7| 13 | 1018 | 10| 101.6 | 1.0
| E | 1024 | 2.6 | 1067 | 75 | 1029 | 3.0 | 103.0 | 2.5 | 108.1 | 7.9
U| 938 |54 957 |'33| 944 | 47 | 936 |64 955 | 3.3
LRS |N | 965 | 22| 965 | 23 | 95.3 | 3.3 | 969 |24 96.2 | 2.0
E| 949 |56/ 8.6 | 164 | 80.1 | 117 | 946 |58 80.8 | 13.3
U| 985 |22]988 | 13| 98229989 |17] 982 | 2.2
PS |N|97.6 |19] 966 | 19| 971 | 24 | 974 | 20| 974 | 1.7
E| 088 |15|979 | 33| 084 | 26| 992 |09]| 994 | 1.1
U| 994 |13] 996 | 1.0 | 99.4 | 0.9 | 99.8 {03 | 99.4 | 0.9
EPS |N| 989 |12 990 | 1.1 | 988 | 1.5 | 99.2 | 0.9 99.0 | 0.8
E| 995 |07| 9.4 |09]|094|11]09.4|08]9.5]08
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Table B.24. Running times (s): general-2

200

n 50 100 150 250
H o 2 o) W o 7 o W o
U| 17|21 55|39 |218[481]16.2]| 214 | 383 | 333
OPT | N | 26.2 | 88.8 | 21.1 | 17.2 | 31.9 | 35.6 | 83.7 | 132.7 | 125.6 | 102.8 |-
E| 0907|4254 |102]|102]104] 100 | 233 | 246
U|01]00|03]01]05|02]08] 03| 12| 04
LRE |N|01]00|03]|01]05|02[07]| 03| 11 | 04
E|lo02|o01]06|01]09|01]14]01] 22 03]
JUl01]|00]03|01]06|01]09]|03]| 13|04
LRS [N|01|00|03|01/05|02|08]| 03] 12| 04
Elo2]o1lo7)o01|10l01|15]| 01| 23 | 03
Ul 000000 00 o01]00lo1]o00] 01] 00|
PS |N|00|00|00]00]o1]0o]o1| 00| 01|00
E|00|00]|00|00]|01]|00]|01|00]| 01|00
ju|o05|00|10|01|16|01]|21]| 0l |27 |01
1®EPs|N|os|00]11]o1]16]01|21]| 01 | 26 | 02
glos|oo|lt1lo1]17|o1]23) 01| 30 | 01

T2



Table B.25. Goodness of solutions (%): géneral—B S

73

n| 50 100 150 200 250
plolw|lo|plo|w|o|n |0
U | 1208 | 14.0 | 121.9 | 144 | 117.8 | 13.2 | 112.1 | 8.5 | 109.0 | 6.4
{LRE | N | 1196 | 89 | 117.8 | 7.4 | 115.7 | 10.5 | 1124 | 55 |102.0 | 0.0
| E | 2085|436 1443 | 27.1 | 1701 | 416 | 153.3 | 9.9 | 175.2 | 314
| U| 809 |198] 70.7 |18.7 | 68.8 |18.9| 71.3 | 19.0 | 83.1 14.0
LRS | N| 892 | 9.9 | 810 | 218 | 82.4 | 21.3 | 68.6 | 285 | 1000 | 0.0
E| 688 |10.8| 475 |125| 53.8 | 13.7| 50.5 | 11.9| 47.6 | 9.5
U| 972 |36 |97.3 | 43| 958 |54 |97.7|32]|982]38
PS |N| 921|927 96| 11|962]53]|9.9|021000] 00
E| 947 | 43| 976 | 42 | 976 | 46 | 966 | 44 | 993 | 1.4
|U| 993 | 16|91 |21|9.8]|04]|95| 11|99 |01
EPS |N | 986 | 29 |100.0 | 0.0 {100.0 | 0.0 | 100.0 | 0.0 | 100.0 | 0.0
E| 988 | 11|96 |06|981|40]|9.6|05]9.3 |14




Table B.26. Running times (s): genera1-3 ‘

74

n 50 100 150 200. 250

(7 - AT - R R R I S T
U | 77.2 | 1745|2445 | 235.4 | 164.5 | 147.4 | 406.6 | 315.2 | 552.8 | 311.2

OPT | N | 145.0 | 188.0 | 184.3 | 128.8 | 384.5 | 258.7 | 381.3 | 303.5 | 405.4| 0.0 |
E| 670 | 842 | 1004 67.1 | 3124 |321.4 | 584.1 | 313.0 | 513.4 | 2635
| Ul os5|01|17|05]|30]|08]|56] 1471|013
LRE [N| 04 | 01 | 13 | 04 | 32 | 0.9 | 55 16 | 99 | 00
El 08| 02|17 |01]|37]07|60| 04|85 |04
|Ul 05 | 01| 17| 05|31 | 08|57 14 | 72 | 1.3
LRS |N| 04 | 01| 13| 04| 33| 09| 56| 16 |100| 00
E|08 | 02|18 01|38 |07|61]|04]|86]| 04
Ul 00| 00|01]00]01]|00)01]|00]0L|00
Ps |N| 00| 00|00 |00 01]00]|o01]|00]|01]|00
E| 00 {00 j01]00] 01|00} 01 00 | 01 | 00
U|los|o1| 12|01 | 18|01 26|02} 32|02
leps nl o5 (00|11 o1 |16]o1]23]|o01]27] o0
E| 06| 00| 13|01 ]20]|01]26]00]35]02
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APPENDIX C: CONFIGURATIONS OF TESTS

Table C.1. Base chﬁgﬁratioh for imifofmly distributed test files

| Dist. Type | Prm. 1|Prm. 2|
Number of resource types fixed 40 |.
~ Set of units of resources uniform (1,15)
~ Number of bids . fixed 100 200
Number of subbids for bids uniform | (1,15) | |
Size of requested subset of resources. uniform | (1,40%) (. .
Method for determining elements of s_jk fixed | 0 1
Reqﬁested amount of resources uniform | (1,40%) |
OR factor for ORed requests fixed 10.98
AND factor for ANDed requests - fixed 1.03
Variance for pfice fixed 20%




Table CZ Base configuration for normally distributed test.ﬁleS-

76

Dist. Type| Prm. 1|Prm. 2
© Number of resource types fixed 40
Set of units of resources normal |- (8,2)
‘ Number of bids fixed 100 200-
Number of subbids for bids normal | (8,2)
Size of requested subset of resources " normal ‘(20%,5%)'
Method for determining elements of s_jk fixed 0 1
- Requested amount of resources normal | (20%,5%) |
OR factor for ORed requests fixed 0.98
AND factor for ANDed requests fixed |  1.03
Variance for price fixed 20%




(A

Table C.3. Base configuration for exponentially distributed test files

Dist. Type | Prm. 1 Prm. 2
Number of resource types fixed 40
Set of units of resources exponential 8 ,
Number of bids fixed 100 200 |-
Number of subbids for bids | exponential | 8
Size of requested subset of resources | . exponential 20% )
Method for determining elements of s_jk fixed 0 1
Requested amount of resources | exponential 20%
OR factor for ORed requests fixed | 0.98 |
AND factor for ANDed requests fixed 1.03
Variance for price fixed 20% |
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