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ABSTRACT

DEVELOPING A FITNESS COACH ROBOT FOR ELDERLY

PEOPLE IN ASSISTED LIVING ENVIRONMENTS

Ambient assisted living is a concept that summarizes the effort to create intelligent

technologies to help elderly people to live without constant supervision by costly health

personnel, as well as to improve their quality of life by offering solutions to typical problems

related with age and its physical and social implications. The primary goal in this endeavor

is to develop a preventive approach of health care for elderly, sometimes summarized by

the concept of ‘successful aging’, where the subject retains and sustains his physical and

mental well-being. Both physical and mental health require regular activity (possibly in the

form of regular exercises) for this purpose. In this study, we aim to develop a fitness coach

robot which can help elderly people in their daily physical activities. The overall scenario

includes two different parts. First, a human supervisor performs fitness motions and the robot

will learn them by analyzing the behavior of the demonstrator. In the second part the robot

performs the learned gestures to the best of its abilities, and while monitoring the elderly

subject with an RGB-D camera, provides verbal guidance to complement the visual display,

correcting gestures on the fly. The gestures were selected from an actual training programme

at an elderly care home in order to create a real world scenario. A humanoid robot, Nao,

is used for this study and a 3D depth sensor, Microsoft Kinect sensor is utilized to analyze

human gestures.
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ÖZET

ÇEVRE DESTEKLİ YAŞAMA ORTAMLARINDAKİ YAŞLI

KİŞİLER İÇİN EGZERSİZ EĞİTMENİ ROBOTU GELİŞTİRİLMESİ

Çevre destekli yaşam, yaşlı kişilerin sürekli bir sağlık personeli gözetimi altında ol-

maksızın, akıllı teknolojiler yardımı ile yaşlılığın getirdiği fiziksel ve sosyal etkilerin yarattığı

problemlere çözüm sunmak ve kişilerin yaşam kalitelerini artırmak için oluşturulmuş bir

kavramdır. ‘Sağlıklı yaşlanma’ olarak da özetlenebilen bu konsept çerçevesinde öncelikli

amaç, yaşlı kişilerin sağlık hizmetleri için koruyucu bir yaklaşım izleyerek kişinin fizik-

sel ve zihinsel sağlığını devam ettirebilmesidir. Fiziksel ve zihinsel sağlığın korunması

düzenli egzersiz hareketlerinin yapılmasıyla mümkündür. Bu çalışmada, bahsedilen teknolo-

jinin bir parçası olarak, yaşlı kişilere günlük egzersiz hareketlerinde yardımcı olabilecek bir

egzersiz eğitmeni robotu geliştirilmesi amaçlanmıştır. İnsan ve robot arasındaki etkileşim

senaryosu temel olarak iki farklı kısımdan oluşmaktadır. İlk kısımda, robot bir dizi egz-

ersiz hareketleri sergileyen egzersiz eğitmeninin hareketlerini analiz ederek bu hareketleri

nasıl yapması gerektiğini öğrenecektir. İkinci kısımda ise, robot eğitmenden öğrendiği bu

hareketleri yaşlı kişinin karşısında yaparak ona gösterecek ve ondan kendisini tekrar etmesini

isteyecektir. Kişinin hareketleri doğru yapıp yapmaması üzerine geri bildirimlerde bulunarak

istenilen performansın elde edilebilmesi için yaşlı kişiye yardımcı olacaktır. Robotun yap-

ması planlanan egzersiz hareketleri gerçek dünya ile benzerlik taşıması açısından bir huzur

evinde gerçekleştirilen toplu egzersiz seansları sırasında sergilenen hareketlerden seçilmiştir.

Çalışmamızda Aldebaran şirketi tarafından üretilen insansı robot Nao ve insan hareketlerini

analiz edebilmek için Microsoft Kinect algılayıcısı kullanılmıştır.
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1. INTRODUCTION

Recent developments in robotics has brought robots into prominence for human service

in indoor environments. Composition of a multitude of key technologies allows developing

robots which can be used to perform a variety of tasks such as cooking, shopping and guid-

ance. As the capabilities of service robots increase, the idea of a robot assistant for humans

in their living environments gained importance and started to play a role in real life scenarios.

The main aim of service robots is to assist people by facilitating daily tasks, such as serving

a soda to the user from the refrigerator.

The world population is rapidly aging. According to a report of the World Health

Organization, the proportion of the world’s population over 60 years will double from about

11% to 22% between 2000 and 2050 [1]. The statics shows the same trend also in Turkey.

The proportion of elderly population in the total population is expected to increase to 20.8%

in 2050 [2]. This increase in the number of elderly all over the world motivates the service

robot research towards the application of assisting elderly in their daily tasks.

Ambient assisted living is a concept that uses technological solutions as a way of sup-

porting elderly care, and controlling expanding health costs [3]. As people get older, most

of them need support as a consequence of decrease in their mental and physical capabilities.

Ambient intelligence refers to intelligent environments, which can help the elderly to handle

the problems caused by the impacts of aging. The primary goal is to sustain the mental and

physical health of the elderly while providing comfort to her in her own home.

Performing regular physical exercise has well-known benefits for the elderly [4]. Through

improvements in blood pressure regime, it helps reducing heart-related problems, most im-

portantly helping the prevention of coronary heart diseases. The improvement of the lipid

profile also helps prevention of type 2 diabetes [5]. Other benefits of regular exercise include

osteoarthritis, osteoporosis, neurocognitive function improvements, decreased mortality and

age-related morbidity [4]. As such, it makes sense to consider approaches to promote phys-

ical activities for the elderly. While there are findings that hospital-based rehabilitation is
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more effective than unsupervised home-based exercises [6], the introduction of smart tech-

nologies to supervise the latter may help in bridging the gap.

This study proposes an approach to create a robotic fitness coach, and primarily con-

cerns itself with the physical, rather than the mental fitness of the subject. A typical human

fitness coach performs a series of complex tasks including the assessment of the subject’s

physical condition, creating a fitness program for the subject by taking into account a number

of observed and known physical constraints, monitoring and adapting the program according

to the progress and engagement of the subject (or the lack thereof), and performs all these

while bearing responsibility for the health condition of the subject. We do not use the term

“coach” to incorporate all these functions, as many of them are beyond the abilities of cur-

rent robotic and expert systems. The system we propose has the much more modest goal of

only demonstrating a set of predesigned physical exercises to an elderly subject, and giving

constructive feedback on the performance.

The adaptation of the exercise program to the subjects’ individual needs however re-

quires expert knowledge. Once a set of individualized exercises are developed, the subject

needs to perform these regularly over long periods. It is at this point where a robotic com-

panion would play an important role, by monitoring the subject and its performance, as well

as by motivating the subject through an engaging and fun interface. Subsequently, we pro-

pose two different modes of operation. In our application scenario, the robot learns the set

of exercises from the physician or the fitness coach by observation and imitation. When

in operation, the robot performs the exercises to the best of its abilities, and supervises the

performance of the subject. Every once in a while, the fitness coach assesses and revises the

exercise program. It is not practical to let a computer scientist encode new exercises into the

coaching robot each time, so the robot should learn exercises in an automated manner from

the fitness coach.

The first challenge for the proposed method in this study is analyzing the coach’s ges-

tures autonomously to form a good representation of the performed gesture. This is accom-

plished by using the recently popularized RGB-D camera approaches to track the body of

the coach. The second challenge is that the robot possesses a different physical embodiment
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than a human fitness coach (or the subject, for that matter) and hence it is an imperfect inter-

mediary interface. We design and implement a method for mapping human gestures to the

robot. The performance criteria for the learned gestures of the robot’s are the stability and

smoothness of the actual move, as well as the perceptual validity of the gestures of the robot.

This validity is determined by the correct transfer of the intended gesture.

The second operation mode of our application consists of exhibition of the learned

gestures by the robot and providing vocal explanations about the performed motion. The

challenge here is to synchronize vocal explanation with the shown gesture so that both audi-

tory and visual perception of the subject are kept active. The robot also gives vocal feedback

on the success of the imitated gesture, whenever necessary.

The system was evaluated through the experimental user studies which were carried

out with a group of young subjects from our department, a set of the residents of Etiler

nursing home and a small set of middle aged people who are unfamiliar with the concept of

exercising. The results show that the visual and vocal explanation performance of the system

are good enough to allow the subjects perceive the exercise motions and replicate with the

robot. On the other hand, the subjects stated that the system suffers from the lack of social

aspects which are necessary to motivate them for exercising with a robot.

The organization of the rest of the thesis is as follows. In Chapter 2 we give brief

information about whole body human motion imitation on bipedal robots, imitation method-

ology, human-robot interaction and the currently developed robotic exercise coach systems

and their advantages and shortcomings. In Chapter 3, an overview of the system is pre-

sented. Our proposed system is detailed in Chapter 4. We provide initial results obtained

with a working prototype, and report a set of preliminary user studies in Chapter 5, and con-

clude the thesis with a discussion of the challenges and future directions envisaged for this

work in Chapter 6.
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2. BACKGROUND

2.1. Systems for Capturing Human Motion

Human motion capture is the process of recording human movements. It is used in

a variety of industrial and research areas such as film making, computer animation, medi-

cal applications, and robotics. In recent years, these systems have been utilized heavily in

robotics with the idea of robot learning from human demonstrations. Remote controlling of

robots, and teaching robots some simple tasks such as getting a spoon from table and bring-

ing it to its mouth are some of the applications [7]. Depending on the system used in motion

capturing, 2D or 3D position information of human joints can be recorded.

MoCap systems used in human motion imitation in robotics can be reviewed under

two main categories: optical and non-optical systems.

2.1.1. Optical Motion Capture Systems

Optical systems use data captured from image sensors. Traditionally, data captured

from sensors is used to construct the 3D position of a subject using one or more cameras

calibrated to get overlapped projections. Data acquisition can be done using markers located

on the subject as shown in Figure 2.1 or in a markerless way by using advanced computer

vision algorithms to process the whole image captured by cameras in order to extract infor-

mation about movements of the subject as shown in Figure 2.2 [8]. Although, marker based

approach requires the subject to wear special costumes, it increases the accuracy in position

information of human body parts.

Do et al. [10] use both markerless and marker based optical motion capture systems to

imitate human upper body motion using the humanoid robot ARMAR-IIIb. Commercially

available Vicon system [11] is used as the marker system. The markers are located on the

predefined body parts desired to be tracked. The system uses artificial reflective markers and

infrared cameras. Each camera emits a light signal, which is reflected by the markers. The
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Figure 2.1. Markers are located on the desired body parts of the subject. Captured motions

are then simulated on a 3D human body model, from [9].

Figure 2.2. The probability map for the 2D locations of each joint for the video frame shown

on the left, from [8].
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Figure 2.3. Depth image and fitted skeleton using the OpenNI software.

2D position information can be gathered from each camera and the information from all of

the cameras is used to extract 3D position data of human body parts with markers. They use

built-in stereo cameras of the robot and apply a color segmentation algorithm for the image

processing part and a particle filter algorithm with 3D kinematic model of human body for

movement tracking. Their markerless system can do an on-line tracking of the upper body

movements of the subject with a frame rate of 15 Hz. on a powerful computing hardware.

On the other hand, Do et al. depict that, besides time consuming preparation and calibration

setup of Vicon system, it provides more accurate human motion capture with high capture

rates. Grimes et al. present a study on dynamic imitation of a humanoid robot using marker

optical system [12]. Cole et al. extend Grimes et al.’s study and do pose estimation using

monocular video [8]. They factor in additional sensory noise to make the system more robust

to a larger degree of noise and uncertainty.

On the other hand, with the emergence of low cost RGB-D cameras, markerless optical

systems lost their significance in human motion capturing. Kinect sensor [13], which was

released first in 2010, provides an RGB camera, a depth sensor and a multi-array microphone

as a hardware platform. The point cloud returned by the depth sensor can be processed to

detect humans in the scene and a software is used to fit a skeleton on the detected human

depth map. Afterwards, the joint positions are revealed using the skeleton depth information.

A depth image and fitted skeleton using open source natural interaction library OpenNI is

depicted in Figure 2.3.
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Figure 2.4. Koenemann et al. use inertial MoCap system to imitate gestures on the Nao

robot, from [14].

2.1.2. Non-optical Motion Capture Systems

Non-optical motion capture systems can be grouped into three classes which are in-

ertial systems, exo-skeleton systems and magnetic systems. Inertial systems use inertial

sensors (mostly gyroscopes to measure rotation rate in the joints) to record movements. Exo-

skeleton systems require the subject to wear a skeletal like structure and as they move, the

relative movement changes in this structure are recorded. Magnetic systems calculate posi-

tion and orientation by the relative magnetic flux of three coils attached to each of the joints.

These systems have higher costs relative to the optical MoCap systems, however they are

much more accurate.

Inertial systems are the frequently used ones in motion imitation studies. Koenemann

et al. use Xsens MVN motion capture system consisting of inertial sensors attached to

the body to imitate the gestures on humanoid robot Nao [14]. Their system is shown in

Figure 2.4. Miller and colleagues use accelerometer, magnetometer, and gyroscope readings

provided by an IMU sensor to estimate the orientation of a rigid body [15]. They use this

information for teleoperation of NASA Robonaut.
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2.2. Learning and Recognizing Human Motions for Robotic Systems

Human motion analysis is a research area which has a wide range of applications. We

can group the studies under three main classes as surveillance, analysis and control [16].

Surveillance applications are developed for tracking and automatically observing humans in

a variety of environments such as airports, subways, and homes. Depending on the aim of

the study, the methods followed to analyze human motions can change. For example, in the

airport surveillance case, the aim can be locating a person by tracking the walking pattern of

him on a recorded video. On the other hand, more detailed motion analysis should be applied

in an ambient assisted living case where we want to recognize the motions performed by the

elderly such as walking, lying, exercising, etc. to allow the ambient intelligence system to

respond accordingly. Analysis applications such as performance evaluation of an athlete or

gait analysis of a patient in a rehabilitation center requires more domain specific approach.

Control applications where the estimated motion parameters are used to control some intel-

ligent devices are the ones which have been most popular among others recently. Interactive

games, virtual reality applications and remote device control systems are in this group. This

application group also covers the human controlled robotic systems such as telerobotics,

task-oriented human-robot collaboration etc.. In telerobotics, the user can control the robot

by sending motion commands via a wireless connector. However, this do not always require

a joystick to give direction and speed to the motors of the robot. The user can control the

robot remotely using his own body actions such as raising his left arm to make the robot

raise his left arm with efficient human motion detection and recognition algorithms. One of

the most popular methods applied in robot learning using human demonstration is named as

“learning from demonstration method” or simply “imitation learning” in the literature.

2.2.1. Learning from Demonstration Method

The problem of learning the mapping between the real world states and the robot sys-

tem generates motivation for many research studies in robotics. Manual programming of

robots for a particular task such as gathering and conveying a box requires many redundant

efforts. Since, any small change in the definition of the task such as a change in the size of

the object which robot interacts, or any shift in the position of the object and/or the obstacles
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on the path of the robot to reach the goal requires to start afresh. Learning from demonstra-

tion (LfD) method has brought a new ground on programming robots in this context. The

theory behind this methodology is to learn a policy to map state-action pairs between the

real world and the robot from examples or demonstrations performed by a human teacher.

In this method, the complexity of the search space for learning reduces dramatically. Good

examples performed by the human demonstrator can be used as a starting point in the search

space to reach a possible solution or bad examples can be eliminated from the search space to

reach an acceptable solution. As expected, the former is a better way in terms of complexity

issues.

There are various studies which apply LfD method to teach a task to the robot. A

human demonstrator can move the limbs of the robot to achieve a specific task such as grab-

bing trash from a table top and putting it into a dust box. Kinesthetic sensors located on the

joints of the robot are generally used to measure the speed, the translation and the rotation

that arises in the joint. The trajectory followed to achieve the task should be learned by the

robot to be able to regenerate the demonstration. However, the initial and final positions

in this trajectory can be different for different experimental settings (i.e. if the position of

trash and dust box are changed for the scenario depicted above). Hence, multiple demon-

strations for the same task with different settings are necessary to make the robot learn how

to achieve conveying some objects from the table top to the dust box. Multiple examples are

also required to handle non precise behaviors of the human demonstrator and sensor noises.

Hence, it appears necessary to develop a method that would consolidate all demonstrated

movements.

LfD can be considered as a subset of Supervised Learning. Teacher demonstrations are

used as the training dataset. We address the formal construction of the LfD problem from

the study of Argall et al. [17].

Definition 2.1. The LfD method is a 7-tuple (S,A, T, Z,M, π) where:

• S is a set of states which are not fully observable.

• A is the set of actions.
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• T is the state transition function which determines the probabilities of the possible next

states given the current state S and the current action a. T (s′|s, a) : S×A×S → [0, 1]

• Z is a set of states where the learner has access to observe through mapping

M : S → Z.

• π is a policy which selects actions based on observations of the world state. π : Z → A

A demonstration d ∈ D is a pair of observations and actions: d = (zj, aj), zj ∈ Z, aj ∈

A. The training dataset can be built by the demonstration or the imitation approach. For the

demonstration approach, the trials are performed on the actual robot learner. Hence, there

is no need for embodiment mapping between the robot and the teacher. In the imitation

approach, the training dataset is constructed by collecting data from the sensors located on

the teacher or the external observation of human demonstrator using a vision system.

Policy learning calculates a function which approximates the state to action mapping,

f() : Z → A [17]. The general approaches for this mapping can be grouped as classification

and regression methods. Classification methods produce discrete outputs which are action

classes for robot state inputs. Gaussian Mixture Models (GMM), Hidden Markov Models

(HMM), k-Nearest Neighbor (kNN) classifiers are some of the techniques used in learning

from demonstration problems. Lockerd et al. uses Bayesian likelihood method to select ap-

propriate actions for button pressing task [18]. Pook et al. maps states to motion primitives

at first, then uses kNN to classify primitive membership [19]. The classified motion primi-

tives are recognized in the whole demonstration using HMM and combined accordingly to

regenerate the egg flipping task using a robotic hand and arm.

Regression approaches map demonstration states to continuous action spaces [17].

Various regression methodologies have been used for LfD problems. Neural networks (NN)

are used to drive a van autonomously on a variety of roads [20] while Sparse On-line Gaus-

sian Processes (SOGP) teaches an AIBO robot to perform basic soccer skills [21]. Further-

more, trajectory learning problems are widely solved by using Gaussian Mixture Regression

(GMR) models which are also applicable to the imitation of human movements scenarios.

Since, it is a significant approach to the first part of our project, we describe it in a more



11

Figure 2.5. Experimental setup for chess piece manipulation task, from [22].

detailed manners giving some application results from the literature.

Calinon et al. applies GMM and GMR to reproduce joint trajectories to solve con-

strained manipulation tasks [22]. First, they project joint angles and hand path motions

collected from a human teacher into a latent space using GMM spreading across spatial di-

mensions of the motion. In the second step of probabilistic encoding, HMM is utilized to

extract spatio-temporal variations. Finally, GMR is used to learn those latent space parame-

ters and generalize the trajectories considering the constraints in the task space.

In Figure 2.5, the experimental setup environment used in [22] for the task of moving

a chess piece to a position on the chess board is shown. Two demonstrations of the task

performed on the robot by moving its arm and hand. Then, a different setup with a change

in the position of chess pieces are used to test the learned model. The robot successfully

moves the chess piece by selecting a controller that fulfills the task constraint determined

after demonstration phase.

The four joint angle trajectories of the robot arm are collected through five demonstra-

tions. A number of gaussians is then fitted on the trajectories. The gaussians which have

too small variances means that the task is constrained during the time interval the gaussians

span. When considering the scenario, the path to bring the hand of the robot to the chess

piece can vary a lot depending on the initial position. On the other hand, after grasping

the piece, the trajectory should be followed in order to put the piece to the desired position

requires a nearly same joint angles in all of the demonstrations.
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For our scenario, the task constraints can be thought as joint angles which should

be performed in order to do an exercise motion activating the necessary bones and muscles

successfully. However, the demonstrations should be performed by an expert physical fitness

coach who is eligible to comment on the non constrained and constrained parts of a motion.

Such an approach also encodes the domain knowledge of the expert to give efficient feedback

to the subject.

2.3. Real Time Human Motion Imitation

Humans discover and learn new skills through imitating each other and sharing a joint

attention. This biologically viable learning method inspires researchers to make the intelli-

gent agents acquiring new qualities by imitating more competent other intelligent beings or

humans. This approach seems to provide an easy and efficient way to develop robots which

can imitate our actions without additional programming. Especially, for motion tasks which

require complex kinematic and dynamic calculations, imitation learning methodology brings

an efficient solution with some challenges related to the difference in physical capabilities of

a robot and a human.

The word “imitate” may not simply imply replicating the movements of the model but

rather is an attempt to achieve the task in the model by developing a novel action which has

the highest similarity with the one in observed model [23]. Although most of the currently

available imitation systems are developed using off-line learning where a model is learned

from collected demonstrations before the action is reproduced using that model, real time

imitation methodologies play a significant role in terms of immediate feedback possibility of

demonstrator to the action of the robot. The demonstrator can enhance the imitation accuracy

of the robot by observing it and giving feedback on the performance or changing his own

demonstration manner of the desired task to make the robot imitate himself in an easier way.

Hence, real time imitation allows the robot and the human to control each other in a closed

loop.

As depicted above, imitation may not be a mere replication of human movements

spread along time. The robot may need to understand the intention of the demonstrator
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behind the action he performs. This arises fundamental questions for research for imitation

learning. Breazeal et al. presents these questions as follows in [23]:

• How does the robot know when to imitate? The robot should understand the intention

of the instructor to perform the observed action and has to consider when to imitate

in order to maximize its own benefit. However, this requires the robot to have deep

cognition and planning skills.

• How does the robot know what to imitate? As humans, we have complex motion, cog-

nition and social abilities and are competent enough to manage and control all of them

simultaneously. Furthermore, we do not behave in a completely task oriented manner

and can perform inconsequential actions which do not have any value for achieving the

target task. For example, an instructor may wipe his brow while trying to open a glass

jar [23]. The robot should focus on the vital actions to imitate the target task correctly

(hand motions of the instructor for this case) and should ignore redundant behaviors

(wiping brow) in order to determine what to imitate in a demonstration correctly.

• How does the robot map observed actions into behavioral responses? Since, the robot

and the human have different physical embodiment capabilities, direct mapping of

human joint angles to robot generally does not produce feasible solutions for the im-

itation problem. The robot should realize the motion performed by the demonstrator

and the limits of its motor capabilities, then should try to find a suitable mapping to its

own motor coordinates by considering his physical constraints. This is also known as

correspondence problem in the literature. The details are given in Section 2.3.1.

• How does the robot evaluate its actions, correct errors, and recognize when it has

achieved its goal? This question should be answered depending on the goals and the

intentions of the task. If the task is to open a glass jar, then opening and putting the

lid of the jar to the table is the expected outcome of the task. However, as in our case

(imitating exercise motion shown by demonstrator), the accuracy in mimicking the

whole trajectory done by the human demonstrator can be the decisive criteria on how

well the robot achieve the task.

Next, we give some details of the methodologies used in human motion imitation on
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humanoid robot systems. Some of the studies only cover upper body imitation, while the

others propose solutions for the whole body imitations considering the stability problem.

Hence, we choose to present them under two different topics focusing on the challenges

each has.

2.3.1. Correspondence Problem

The correspondence problem can be considered as the inability to apply direct match-

ing between the body parts of two different agents. To be able to imitate an agent, the

imitator should have more or the same competent physical skills with the demonstrator or

should develop an action control realizing its own capabilities. Furthermore, the agents may

not necessarily have the same embodiment properties even for the ones that belong to the

same species. Hence, the correspondence problem is a fundamental challenge to be handled

in the imitation scenarios.

Alissandrakis et al. propose the ALICE (Action Learning via Imitation Correspond-

ing Embodiments) framework which creates a correspondence library to relate the actions

of the imitator to the actions of the imitator agent depending on its embodiment and affor-

dances [24]. Their key point is to compose a correspondence library which stores actions

that can be applied as a responce to the perceptions of the imitator. When a new action is

observed to imitate, the agent first queries the library and does a metric evaluation in order to

measure its effectiveness. If the existing actions are not satisfiable, then a new action is gen-

erated and added to the library. Hence, their solution constructs an incrementally growing

library to solve correspondence problem.

2.3.2. Upper Body Motion Imitation

Bandera et al. use a look-up table approach to imitate human upper body motions using

humanoid robot HOAP-I with 20 degrees of freedom, including 4 on each arm [25]. When

a new observation arrives, the similarity confidence level of it with the ones in the memory

is considered. If the robot has already imitated the behavior previously, the corresponding

action is fetched from the memorized behaviors. Otherwise, it performs an active imitation
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Figure 2.6. Overview of the grid based solution to correspondence problem in visuo-motor

mapping, from [25] : a) demonstrator; b) human model with the grid (only sub-region related

to the gesture is shown); c) humanoid model; d) humanoid imitator

by visuo-motor mapping. A grid-based approach is adopted to solve the correspondence

problem in visuo-motor mapping. They only use positions of the hands of the demonstrator

to imitate arm gestures, not necessarily respect to follow arm joint angles of imitator. In grid

based approach, the grid provides a quantization of the demonstrator range of motion and

its cells can be related to the imitator grid. The dimensionality differences of the limbs of

demonstrator and imitator is solved by re-scaling. This approach learns a function which

determines the imitator cell associated to a demonstrator cell. Their approach is shown in

Figure 2.6.

In [26], Matsui et al. map human upper body motions to the android called Repliee

Q2. They use 3D marker based motion capture system to measure the positions of limbs

of the human and the humanoid. Since Repliee Q2 is modeled after a Japanese women, it

has the appearance of a human. However, their kinematically different design prevents one-

to-one correspondence. Their aim is to control the android to get same postures with the

human using position information of limbs, since the dimensions of body parts of android

are almost the same with the ones of human. Joint angle extraction is not an appropriate

solution because of the kinematic differences.
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Figure 2.7. Repliee Q2 imitates upper body postures of performer. The number represents

the steps, from [26].

Matsui et al. adopt a three layer neural network to construct a mapping from the

human’s marker positions to the joint angles of android. This feedforward neural network

takes the error calculated by a feedback controller as the difference of marker positions of

human and android to integrate system noise into the learned model. The initial weights of

the network is obtained from another neural network encoding the mapping between the joint

position to joint angle of android which is previously trained by 50000 samples collected by

moving the android randomly. The experimental results are shown in Figure 2.7.

2.3.3. Whole Body Motion Imitation

2.3.3.1. Stability Problem. Whole body motion imitation puts another burden namely the

stability problem on the imitation task. Stability refers to satisfying balanced postures of

the robot with prevention of falls. Bipedal robots are inherently unstable systems. Several

control algorithms are applied to support balanced motions on those systems to achieve lo-

comotion and motion tasks successfully as presented in Section 2.3.3.2. Stability can be

divided into the static and dynamic stability based on the stability criteria:

(i) Static Stability: In case of static stability, the robot is stable without any need of motion

at every moment of time. Robots with three or more legs are statically stable so that

their center of mass is completely within the support polygon. Support polygon refers



17

to the convex hull which is defined by the ground contact points.

(ii) Dynamic Stability: A dynamic stable robot is stable while moving. Dynamic stability

can allow for greater speeds but require harder control since there are many dynamic

kinematic parameters that should be considered in real life problems.

Most of the bipedal robotic systems are not dynamically stable. There is no general

algorithm to solve the problem of dynamic stability for bipedal robots; often used

approaches are based on the zero moment point (ZMP). The ZMP is the point where

the robot has to base on to keep its balance. When the robot should move forward it

has first to compute the ZMP and after that it has to step the appropriate leg exactly

to the computed position. The ZMP is often described in robotics as the point on the

ground where all momentums are equal to zero [27]. The ZMP can be calculated using

equation 2.1 and 2.2 where (xZMP , yZMP , 0) are the ZMP coordinates in the Cartesian

coordinate system. (xi, yi, zi) is the mass centre of the link i, mi is the mass of the

link i, and g is the gravitational acceleration [28]. Ix and Iy are the inertia moment

components, θix and θiy are the angular velocity around the axes x and y.

xZMP =

∑
imi(z + g)xi −

∑
imixzi −

∑
i IiyΘiy∑

imi(z + g)
(2.1)

yZMP =

∑
imi(z + g)yi −

∑
imiyzi −

∑
i IixΘix∑

imi(z + g)
(2.2)

2.3.3.2. Literature Survey. Dariush et al. solves whole body control of humanoid robot

ASIMO by formulating the human to humanoid mapping as a task space control prob-

lem [29]. The retargetting algorithm produces joint space trajectories commanded to the

robot. The objective is to track desired task descriptors extracted from performance of human

demonstrator by satisfying the constraints such as joint angle limitations, collision avoidance

and balance. The balance problem is solved by shifting the torso in x and y directions while

controlling the ZMP.

A team from Robocup Standard Platform Soccer League, rUNSWift, applies multi-goal
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reinforcement learning to dynamically stabilize the Nao robot by using lateral movements.

They state that, the system allows self-stabilization of the robot through challenging tasks

such as standing on either foot, standing upright and switching between these behaviors.

In [14], Nao humanoid robot is used to perform complex whole body imitation task.

Koenemann et al. uses highly accurate Xsens MVN motion capture system to extract posi-

tions of the limbs of the performer. They consult to inverse kinematic solutions to handle

mapping from human to the robot. To be able to perform dynamically balanced real time

imitation, the system actively balances the center of mass over the support polygon of the

robot’s feet. They first find valid feet positions of the robot in the target task space so that

the feet can be planar and the center of gravity falls into the support polygon. Then, leg joint

angles are calculated via inverse kinematics.

A recent study which uses a Kinect sensor as the motion capture modality refers to

direct angle transformation of corresponding joints between the human and the robot [30].

Extracted joint angles using the Kinect sensor are preprocessed to obey joint limits. To

obtain a more exact motion trajectory with the performer, an offset to handle the distance bias

between motors of robot is added to each of the joint angles. Nguyen et al. also integrate

ZMP and center of mass (COM) balance controllers into the system to be able to imitate

lower body motions successfully. Successful reproduction of the performed motions by their

approach can be seen in Figure 2.8.

Seekircher et al. also use the Kinect sensor with the Nao humanoid robot for whole

body imitation scenario [31]. The parameters of the model used for angle transfer from

the human to the robot are optimized using three different algorithms which are CMA-ES,

xNES and PSO. All of the algorithms perform well in learning models which can reproduce

stabilized motions.

Dance motions are taught the HRP-IS humanoid robot by imitation using camera based

MoCap system [32]. They extract primitive motions from the performer’s continuous and

complex dance movements. Then, these primitive motions are realized on the robot by con-

sidering the limits of the joint angles and balance problem. They keep the robot’s feet fixed
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Figure 2.8. Virtual Darwin-OP humanoid imitates the full body motions of demonstrator,

from [30].

while dancing but the balance problem still exists for fast movements of torso such as swing-

ing arms. ZMP is controlled to be kept within the support area during motion imitation.

Nakaoka et al. also use imitation learning to perform whole body dance motions on

the HPR-2 humanoid robot [33]. Upper body motion and lower body motions are processed

separately, then the generated motions are combined to reproduce the original dance motion.

Upper body motions captured by marker based MoCap system are directly processed by

the upper body processor which calculates the corresponding joint angles in the robot by

performing inverse kinematic calculations. For lower body motions, primitive segments are

detected by analyzing the velocity of a body part related to a target primitive. The predefined

task primitives are squat, roll, pitch, yaw for waist, and right step and left step for foot

(see Figure 2.9). The system expects the lower body motions of the dancing performer

as a combination of those task primitives. Each primitive has its own parameters such as

the destination angle for the primitives roll, pitch, yaw and waist height distance between

the initial state and the medium state for the primitive squat. The position of the waist

and feet are set to realize the detected primitive with its parameters. Then, joint angles

of the legs are calculated by inverse kinematics (IK). The task processor also refines the

primitive parameters if they do not satisfy physical constraints of the robot. The calculated

whole body joint angles are processed by the yaw compensation module before sending
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Figure 2.9. Task primitives, from [33].

Figure 2.10. Imitation performance of the HPR-2 robot, from [33].

to the ZMP compensation filter. The yaw compensation module prevents slipping of the

supporting sole when the robot stands on one foot. It adjusts the waist yaw joint according

to the yaw moment. Finally, whole joint angles are sent to the ZMP compensation filter with

the desired ZMP to balance the robot. Upper body is shifted if necessary to keep ZMP in

support polygon. Experimental results are shown in Figure 2.10.

Chalodhorn et al. use a nonlinear autoregressive network to learn a model which takes

the joint angles projected into low dimensional space and gyroscope signals which are used

to determine the balance state of the robot [34]. According to the predicted sensor value by

the model, a point which corresponds to the current action of the performer is selected in the

search space of low dimensional latent space in order to optimize balance. This point is then

converted into high dimensional joint angles by inverse mapping.

Grimes et al. adopt a probabilistic approach using dynamic Bayesian networks (DBN)
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to learn the mapping function [12]. Bayesian networks provide a theoretical framework for

combining prior kinematic information (from observing a human demonstrator) with prior

dynamic information (based on previous experience) to model and subsequently infer mo-

tions which, with high probability, will be dynamically stable. DBN is used to infer imitative

motions. It depicts a set of variables with arrows representing conditional dependencies be-

tween variables. Variables which are observed are shaded blue. Latent action variables are

modeled as generating both the human kinematic postures mt and the robot kinematic con-

figuration kt. The modeled dynamic configuration of the robot dt, augments the kinematic

information to form the full state of the robot st. All conditional dependencies are shown

between the first and second time slices. Subsequent time slices are shown with the arrows

based on the state variable st, revealing the simple first order Markovian structure of the

DBN.

Nonlinear time scaling of the joint trajectories refers to the acceleration or decelera-

tion of the motion in order to satisfy the necessary ZMP trajectory for dynamically balanced

motions [35]. However, this approach may require the joint angle trajectories to be accel-

erated to catch up the performer’s motion and be in synchronization. Joint angle trajectory

optimization is formulated as to minimize the difference between imitated and performed

motion while satisfying constraints related to balancing and the physical properties of robot.

Shon et al. advocate that, at its core, imitation learning reduces to a regression problem.

They apply Gaussian process regression method to map human joints to the ones of the

robot [36]. The model learns a two way transformation; first from the human joint space

to the latent space and from that latent space to the robot joint space. The model is trained

with joint angle pairs of robot’s and human’s. They also state that, the usage of several

low dimensional latent spaces (5 separate 2-D latent spaces dividing the skeleton as left leg,

right leg, left arm, right arm, and torso) is advantageous compared to using a single, high

dimensional latent space (a single 10-D space). In other words, several regression models

yield better results than using a single, more complex regression model. The experimental

results for walking imitation case are shown in Figure 2.11.
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Figure 2.11. The HOAP-2 humanoid robot imitates gait. The red arrows show mapping from

human joint space to 2-D latent space while blue arrows show mapping from selected testing

points (shown in blue in latent space) to robot joint angle space, from [36].

2.4. Human Robot Interaction

Social intelligence refers to the ability of living beings to negotiate social relationships

with each other and with their environments. The richness of this capability shows the human

beings’ difference from other living beings. As humans, we desire to communicate with our

environments by sharing emotions with using social signals such as speaking, laughing and

crying. In return, we anticipate others as socially interactive agents.

The idea of social intelligence for robots has a recent history [37]. Integrating social

abilities to a robot stems from two fields. First, biologically inspired robotics proposes to

develop robots by mimicking the nature. This idea implies the concept of possibility of

interaction between a robot and its environment. Secondly, the robots which are planned to

be used in indoor environments with humans have to respect the human’s way of living and

behave accordingly. This requires providing a healthy communication between a robot and

a human. At that point, social capabilities of a robot plays great role to be acceptable by

ourselves and integrated into our environments naturally.

In this case, researchers in the human-robot interaction (HRI) field put an open to de-
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bate question. “What social skills does a robot needs to satisfy the social needs of the human

he interacts and which measures can be used to determine the quality of the interaction?”

These questions should be answered and evaluated in terms of the requirements and prop-

erties of the application area where the robot is used and the characteristics of the society

whom the robot interacts. On the other hand, the diversity in the human-robot applications

prevents researchers to define common metrics to measure the performance of human-robot

interaction. Steinfeld et al. say that, metrics can be classified to facilitate comparison of

research results [38]. They analyze HRI in terms of three aspects: performances of the

robot, human and the system. They determine some fundamental tasks frequently utilized in

robotics applications as navigation, perception, management, manipulation and social, and

describe metrics specific to each task. In our scenario, social interaction plays a significant

role. Hence, we describe some metrics specific to the task “social”.

According to T. Fong et al., there is a distinct difference in biologically inspired de-

signed robots and functionally designed robots [39]. In the latter, the purpose is to develop a

robot which seems to be socially intelligent for certain cases when interacting with human,

even if the internal design does not adopt the aim to have social intelligence like humans.

Therapy robots and health care robots are generally classified into this group. Steinfeld et

al. list the social metrics given below, although this division for intelligent robots affects the

critic of social effectiveness [38].

• Interaction characteristics: The robot can have its own interaction style. The conver-

sation can be shaped by analyzing the context of the interaction or the social signals

of the humans. This metric is highly important for biologically inspired social agents.

Hence it is not considered for robotic fitness coach.

• Persuasiveness: The robot can change attitudes or feelings of the human as in autism

therapy.

• Trust: Trust is an important metric to measure the relaxation of the human when in-

teracting with robot. Since, it affects other emotions such as engagement and being

persuadable. Unexpected behaviors of the robot can cause anxiety in humans.

• Engagement: Engagement is “the process by which two (or more) participants es-
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Figure 2.12. The Paro robot is used to establish social interaction with elderly people, from

[41].

tablish, maintain and end their perceived connection during interactions they jointly

undertake.” [40]. The effect of various engagement methods such as dialogue and emo-

tional transfer through gestures can be measured to decide on the engagement power

of the robot.

• Compliance: The physical and social properties of robot affect the cooperation a hu-

man provides to a robot in scenarios where the human and the robot take action to-

gether. This metric is critical for health care to evaluate the performance of the system.

2.4.1. Influences of Human Robot Interaction on Elderly

As people get older, over time physical and mental disabilities emerge. This requires

a supervision of elderly in order to retain his life. On the other hand, a continuous care of an

elderly puts major workload and stress on the supervisor. At that point, the idea of a robotic

assistant to reduce the necessary effort or complete replacement of the supervisor with a

robot stresses the importance of study of robot-elderly people interaction.

Wada et al. present their user study with the robot Paro (see Figure 2.12) in a nursing

home over five months [41]. They allow elderly people to play with Paro two days a week.

The subjects are questioned to choose their mood level using the face scale [42] shown in

Figure 2.13 before and after the interaction sessions. They evaluate the effect of the inter-

action of the robot on the moods of elderly people. Results show that there is a significant

increase in the happiness level of elderly people after interacting with Paro.

J. Pineau et al. develop a cognitive agent, NurseBot, for nurses and elderly people in
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Figure 2.13. Face scale to evaluate person’s moods, from [42].

assisted living facilities [43]. The robot autonomously provides reminders and guidance to

the elderly. It uses speech and visual inputs as well as user preferences to decide on the action

plan and behave accordingly. Another important feature of this robot is being adaptable

to the properties of subjects. Its planning mechanism takes into account the physical and

psychological aspects of the subject. The robot interacts with the elderly via a speech unit

and touch sensitive graphical display unit. The user study performed with NurseBot shows

the success of the usage of the robot assistance in elderly care by handling the differences in

individuals’ behaviors thanks to its user adaptable planning mechanism. On the other hand,

they do not perform a study to grade the interaction performance of NurseBot.

2.4.2. Aspects of Human Robot Interaction in Exercise Coach Robot Case

In [44], Fasola et al. present a comprehensive study on design methodologies and their

effects on the user’s psychology for the case of robotic fitness coach system. They perform

a user study with 33 subjects which is a high number to be able to evaluate the findings

statistically reached at the end of the experiments.

The design principles considered in the study [44] are as follows:

(i) Motivating : Performing exercise motions correctly and regularly is a challenging task

for an elderly. Hence, the motivating aspects of HRI play significant role for increasing

the overall effectiveness of the system. Fasola et al. employ a feedback mechanism

based on scoring the success of the subject in performing the motion shown by the

robot. This approach gamifies the exercise interventions and motivates the subject to

do better to reach higher scores.

(ii) Fluid and Highly Interactive :Flow stands for the turn taking principle in social inter-

actions to allow the dialogue to be continued without interruptions. For the robotic
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fitness coach system, the robot perceives and recognizes the gestures of the user and

provides active feedbacks for correction or motivation. Then, the user adjusts his own

gesture according to the feedback received from the robot. This allows the flow of the

interaction between robot and the subject.

(iii) Personable : The robot should interact with the user using the individual informa-

tion about it to establish close and personal relationship. This personal relationship is

important for the robotic exercise coach case to achieve success since this system is

based on one-on-one interaction between the subject and the robot. The subject an-

ticipates personal interest from the interaction with robot. Bickmore et al. say that,

referring to the user by her name increases intrinsic motivation [45]. Moreover, Fasola

et al. propose to develop a ‘personal’ fitness coach robot which remembers the past

performances of the user in exercise interventions and provides feedback to the user’s

individual performance level by evaluating the overall performances up to now.

(iv) Intelligent : Users of an autonomous system want to trust on the working principle

of the system so that the system is intelligent enough to perceive its environments

correctly and respond in a logical way accordingly. This should be a key component

in an assistance robot system to be able to establish a close relationship with the user

since the robot is responsible to help and care the user. The user should feel in a way

that the robot is intelligent enough to not do anything wrong which can harm the user

and should believe that the system is competent to provide functionalities expected

from such a system.

The following should be considered to satisfy trust condition in robotic fitness coach

system according to Fasola et al. [44]:

• Evaluation of the user performance should be accurate. The robot should not pro-

vide redundant feedbacks when the user performs the gesture sufficiently. Like-

wise, deficiency in performed motions should be detected and the user should be

warned to correct herself in order to make her believe that the robot tracks her

continuously.

• Feedback phrases should be varied to prevent repetitions. Repetitions tend to

cause negative effects on user motivation [46]. For example, the robot can select

randomly from a positive feedback list consists of phrases like “excellent”, “so
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good”, “nice job” to not be repetitive.

(v) Task-driven : Although the design criteria presented above plays a significant role for

developing an effective system, the main goal of the system should not be forgotten.

The task aimed is to help elderly people to retain their well being by exercising with

the help of proposed system. Hence, the main objective is to provide consistency in

interaction towards accomplishing the health care task [44]. Otherwise, the perception

of the robot by the user may change into entertainment rather than caring.

Fasola et al. perform 20 minute long exercise sessions for four times during two weeks.

They apply questionnaires to evaluate the interaction and the robot’s effect on the users at the

end of first and fourth exercise sessions. They request the users to give scores on some pre-

defined adjectives that describe the questioned component of the system on a 10 point scale.

Their measures are classified under three topics which are the evaluation of the interaction,

the evaluation of the robot and user performance measure. The evaluation of interaction

consists of enjoyableness of the interaction and value or usefulness of the interaction. For

the evaluation of the robot, they measure companionship of the robot, helpfulness of the

robot, intelligence of the robot, social attraction towards robot, social presence of the robot

and the robot as an exercise partner. Besides, questionnaires applied to the users, they use

user performances during exercise interventions as an evaluation metric. The adjectives and

measures to describe the questioned components used in study by Fasola et al. are listed in

Table 2.1.

They relate each of the measurement to the design principles described above to evalu-

ate the overall system effectiveness. The experiments are held in two groups of people. The

first group of subjects interacts with a virtual robot and the second one is exercised with the

real robot. The subjects favor the real robot to the virtual robot for all of the design criteria

discussed. This finding from Fasola et al. contrasts with the results from Heerink et al. [47]

who also study the effect of the embodiment differences on interaction with elderly people.

Fasola et al. explain the reason behind this variation as the number of times the experiments

done before collecting the results of questionnaires. They say, the initial results collected af-

ter the first exercise session show more or less same values for the subject groups with virtual
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Table 2.1. Questionnaire details taken from the study of Fasola et al. [44].

Evaluation of Interaction

Measured Component Adjectives Used in Questionnaire Scaling

Enjoyableness enjoyable, interesting, fun, satisfying, entertaining, boring, exciting 1-10

Usefulness useful, beneficial, valuable, helpful 1-10

Evaluation of Robot

Measured Component Adjectives and Questions Used in Questionnaire Scaling

Companionship bad/good, not loving/loving, not friendly/friendly, not cuddly/cuddly,

cold/warm, unpleasant/pleasant, cruel/kind, bitter/sweat, distant/close

1-10

Helpfulness useful, beneficial, valuable, helpful 1-10

Intelligence competent, clever, intelligent, smart 1-10

Social Attraction I think, the robot could be a friend of mine,

I think, I could spend a good time with the robot,

I could establish a personal relationship,

I would like to spent more time with the robot 1-7

Social Presence unsociable/sociable, impersonal/personal, machine-like/life-like, in-

sensitive/sensitive

While you were interacting with the robot, how much did you feel as

if it was a social being?

While you were interacting with the robot, how much did you feel as

if it was communicating with you?

1-10

As an Exercise Partner How much did you enjoy exercising with the robot?

How likely would you be to recommend the robot as an exercise part-

ner to your friends?

How much would you like to exercise with the robot in the future?

How much have you been motivated to exercise while interacting with

the robot?

1-10

User Performance Measures

Game Type Measures

Exercise Game average time to gesture completion

number of seconds per exercise completed

number of failed exercises

number of movement prompts

feedback percentage
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and real robot. However, the answers of questions returned from this two groups changed

significantly through the end of fourth exercise intervention. The results of user performance

measures which are completion time of gestures and feedback percentage also support the

proposal of Fasola et al. [44].

2.5. Currently Developed Rehabilitation and Fitness Coach Systems

A social assistive robot (SAR) is a socially interactive robot whose primary goal is

assistance [48]. Our approach is positioned in the related literature primarily as a SAR with

non-contact assistance. There are a number of existing SAR systems [49], Heerink gives

a detailed overview of these in [50]. Most of these systems focus on monitoring the el-

derly [43], or in helping them in their daily tasks. There are relatively few systems that target

physical exercise applications. Rehabilitation robots that are created for physical training

usually do not have a person-like embodiment [51], and lack the social aspect completely,

which is found to be useful in elderly care scenarios [41]. On the other hand, we briefly

present those systems as they have some common properties with the exercise coach sys-

tems such as performing motions and evaluating the performance of the subject. We will

investigate the currently developed fitness coach systems basically by considering the fol-

lowing:

• Are exercise motions learned from a human demonstrator or predefined static motions

used?

• If there is an embodied agent, is he able to perform leg motions or only arm motions?

• Is the agent capable of giving feedback to the subject to enhance the performance of

the elderly?

2.5.1. Virtual Rehabilitation and Fitness Coach Systems

Most existing systems for home based elderly physical training do not involve robots

at all. An example is Respondesign’s MayaFit Virtual Fitness Trainer, which uses Kinect-

based motion analysis and a screen-based interface to guide subjects through physical ex-

ercises [52]. This system requires the precise specification of each gesture, and does not
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involve automatic imitation based learning. However, the system provides verbal feedback

and allows the subject to see his own gestures in a small frame on the screen. This frame

also shows the important key positions of the currently performed gesture by the animated

instructor which should be repeated by the subject to perform the motion correctly. In [53] a

web system is proposed for facilitating repetitive movement training for stroke rehabilitation.

The subject is tracked with two cameras attached to a home PC.

Some systems use a robot just for mobility, and use screens for interaction. In [54], the

authors use a tablet PC interface mounted on a Pioneer robot to implement an exercise coach

system. The exercises are displayed on the tablet screen, and the subject is queried from time

to time via short questionnaires to adapt the system automatically. In [55], a table-top robot

was proposed as a daily weight-loss advisor, which also used a touch screen interface. It also

gives feedback to the user by comparing the goal to the activities done by the user. It also try

to help the user to reach the goal by suggesting diet programs.

2.5.2. Physically Embodied Robotic Rehabilitation and Fitness Coach Systems

Obviously, an embodied conversational agent (ECA) or a similar 3D avatar displayed

on a screen would provide a much more realistic visualization of the target exercise. In [45]

such a system was proposed. However, lacking physical and tangible embodiment, such a

system may be at a certain disadvantage in terms of engaging the subject, when compared

to a social robot. Indeed Fasola and Mataric have contrasted the user responses to relational

robots and nonrelational robots, and found that the subjects rated the robot to be more en-

gaging and interesting [56].

Fasola et al. propose a robotic exercise coach for chair aerobics which are prede-

fined and coded statically. The authors evaluate the motivational aspects of this scenario

extensively [56]. For instance, the robot always provides positive feedback on successfully

completed exercises, and never gives negative feedback, because sustaining motivation over

longer periods is one of the keys to building a successful system. One of the motivational fac-

tors the authors have used is providing numeric feedback on the task success, which “gam-

ifies” the experience, and makes it more engaging through the feeling of challenge. The
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Figure 2.14. A wheeled robot Bandit, from [56].

system also includes an imitation game which allows the subject to show some gestures to

the robot and waits for him to imitate herself. This can be used to teach arm gestures to robot

by human demonstrator as in our study. However, the authors do not give any information

about it.

For the analysis of the gestures performed by the elderly, visual assessment is preferred

to wearable sensors for ease of use. In [57], the robot compares the user’s current arm angles

to the pre-specified goal arm angles to determine whether an exercise is performed correctly,

or not. In this approach, there are no gesture-specific weights assigned to the different joints,

whereas in most physical exercises, the value and range of some angles are much more

important than others.

Fasola and Mataric use a Bandit robot in [56] that has a humanoid torso with 19 degrees

of freedom (DOF) on a mobile base. (6 DOF arms (x2), 1 DOF gripping hands (x2), 2 DOF

pan/tilt neck, 1 DOF expressive eyebrows, and a 2 DOF expressive mouth). A standard RGB

camera is used for gesture analysis, and the visual analysis is performed against a uniform

background (i.e. a black curtain). This puts restrictions on the exercise motions which can

be performed. The range of the arm movements is planar and constrained to the sides of

the body to maximize the vision system accuracy when tracking the subject. However, the

authors note that future versions will incorporate RGB-D solutions to the problem. Their

experimental setup is depicted in Figure 2.14.

Matsusaka et al. develop the TAIZO robot as an exercise assistant to a human demon-
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strator [58]. In their scenario, human demonstrator leads the exercise program and the robot

follows. TAIZO can be controlled by both voice commands and key inputs from a key-

pad. Their research focuses on the demonstrative of these two different modalities. The

TAIZO robot can perform exercises which requires to use whole body joints by means of

its humanoid embodiment. They utilize a motion database which contains preset joint an-

gle values for each exercise motion and a speech database which contains prerecorded voice

commands as the explanations of gestures. On the other hand, the system does not adopt ant

feedback mechanism.

Recio et al. use the Nao humanoid robot to research the affect the assistance of robot in

geriatric physiotherapy rehabilitation [59]. Nine preselected exercises are programmed stat-

ically, and are employed during physiotherapy interventions. The experiments are applied

using a real robot and the simulated version of the same robot on a screen. Each exercise

is assigned to three different experimental setups which are physiotherapist only, physio-

therapist and virtual robot and physiotherapist and the real robot. Recio et al. say that, the

embodiment and speed of the Nao affect the mimicking capabilities of the subjects of Nao’s

motions. The subjects respond to the robot and try to synchronize himself with Nao if their

speed is similar. Otherwise, this effect is not observed. Moreover, experiments with real Nao

show that, the subjects are more careful in mimicking the ones done with the virtual robot.

Another important finding of Recio et al. is that, the physical inabilities of the robot results

in performing the exercise not in a totally correct way. This causes the subject to repeat an

incorrect exercise observed from the robot. This problem also applies in our study. We try

to bridge the gap induced by the physical constraints of the robot using vocal explanations

of gestures.

In [60], the RoboPhilo humanoid robot is used in a physical exercise scenario that is

similar to the one we propose. This robot has 20 DOF that enable the turning movements

of the head, waist, and thighs and joint movements of the limbs. In the proposed scenario,

computer vision techniques are used to detect the face and hand positions, from which two

gestures are detected: head turn, and hand raise. On the other hand, using a RGB camera

in such an experimental setup requires providing the required illumination conditions in the

room and the user should be away from camera in a distance dependent on his height to
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be able to process whole body image. The robot gives vocal feedback when the gesture it

performs is successfully imitated by the elderly.

Other approaches to exercising the elderly involve for instance the design of interactive

games. Playful interaction for serious games is a recent area that is receiving more attention.

Representative examples for physical exercise scenarios are given in [61] and [62]. A taxon-

omy of games for rehabilitation is given in [63].

Another study related to the rehabilitation robots is the one performed by Ros et al.

which is realized with children as a target user group [64]. They develop a system which

teaches a dance to hospitalized children according to their capabilities. The methodology

adopted in the study regards adapting the dance movements and the robot’s interaction based

on the physical capabilities and personal traits of the child. They use Nao as robot platform

and the dance movements are designed using the Choregraphe software. They have a feed-

back mechanism to guide the child during the dancing interventions. The session is then

adapted to make the robot dance along with the child according to the responses of child to

these feedbacks. The priliminary results of their user study are promising so that the child

tend to engage more with the robot as the robot adapts itself depending on the observations

of the child. Hence, their interaction design criteria can also be applied in our robotic fitness

coach scenario with elderly people in order to increase the motivating aspect and effective-

ness of the system.
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3. SYSTEM OVERVIEW

In this chapter, we outline a whole process from imitation of exercise motion on robot

which is performed by human demonstrator to exercise interventions of robot with an elderly.

The overall system is overviewed in two different parts in Section 3.1 and 3.2.

3.1. Imitation of Exercise Motions Performed by Human Demonstrator by Robot

In this part of the project, the robot learns exercise motions from human demonstrator

by imitating him in real time. Exercise motions are acquired as 3D skeleton data extracted

from depth images of the human performer. For the exercise motion imitation case, contrary

to other many imitation studies, mimicking body movements considering the positions of

limbs in 3D space is not a correct approach. Since, the physical properties of the human

and the robot differ considerably, the necessary joint angles to move the joints into the same

position in 3D space relative to the torso changes also for the human and the robot. However,

the value of angle performed in a joint affects the magnitude of contraction in the muscles

bonded to the bones articulated in that joint. To be able to perform an exercise motion in a

‘healthy way’, the joint angle value and the duration of the joint in that angle value are vital

criteria. Hence, our imitation is based on joint angle values extracted from the skeleton data.

Since direct transformation of captured motion data is not applicable due to dynamic

and kinematic constraints, the data must be converted to realize on the robot. This process

mainly consists of generating motion data for the robot. Because of the stability problem for

the motions including leg movements, this process adopts different approaches for arm mo-

tions and whole body motions. Arm movements require solving the correspondence problem

only, while whole body motions also require to take the balance constraint into the consid-

eration. Whole body motion generation uses the recognition of support foot additionally. To

sum up, motion generation uses both the captured skeleton data and the result of analysis of

support foot for leg movements. Through the conversion process, the speed and smoothness

of motion can be edited by adjusting capturing frequency.



35

We adopt real time imitation to allow the performer observe the imitated motion on

the robot, and adjust his own demonstrations if the imitated motion is not satisfactory. For

example, due to the angle interval of elbow roll joint of the Nao, it can not perform gesture,

putting hands on head, like we humans can do. Hence, the performer is expected to recognize

this inability and try to achieve such a gesture considering its physical constraints (such as

raising shoulder more instead of bending elbow roll too much).

We use the Nao robot platform which has also virtual physical model on some simu-

lation environments such as Choregraphe and Webots. The validity of the generated motion

data is first tested on Webots simulation environment which has whole real world physics

which allows to test balance states and falling conditions and, then performed on real robot.

The overall system for this part of the project is depicted in Figure 3.1.

In the following sections, the details of each process are presented.

3.1.1. Capturing Human Motion

Although the Nao robot used in the project has two RGB cameras with 960p resolution

output at 30 fps frequency, we utilize the Kinect sensor as the motion capture system. In

Figure 3.2, a human demonstrator in front of Kinect is shown. There are two underlying

reasons behind this choice among various MoCap system described in Section 2.1 :

(i) Since, we are interested in extracting joint angles in 3D space, depth information in

addition to RGB image is necessary. Multiview camera systems can be used to get

depth information by locating the RGB cameras accordingly in order to have inter-

sected view angle. However, it is a challenging setup and replacement is not easy. In

our scenario, the elderly does not always have to perform exercise interventions in the

same place of home and the system should have a straightforward utilization for every

day use (or three days in a week). Hence, mobility and plug and play properties of the

setup play a vital role. We also do not consider marker based MoCap systems for the

same reason. They have inappropriate designs and calibration difficulties even if their

high accurate outcomes bring advantage over optical MoCap systems.
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Figure 3.1. The overview of imitation system.
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Figure 3.2. The Kinect sensor as motion capture system.
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Figure 3.3. Joints provided by skeleton fitted on human depth image using OpenNI frame-

work.

(ii) RGB-D cameras are novel sensing systems that capture RGB images along per-pixel

depth information [65]. Research problems such as processing of this depth informa-

tion to construct the models of objects in the view of the camera or enhancing perfor-

mance of mapping algorithms stand in another side and are not our primary concern in

this project. Hence, we utilize the OpenNI framework for processing of depth images

which is used for the development of 3D sensing middleware applications by many

developers [66]. It provides skeleton information with 3D positions of each 15 joints

as shown in Figure 3.3. The skeleton is fitted to the human model extracted from the

background environment in depth image.
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3.1.2. Conversion of Motion Data

Direct transformation of joint angles of human to robot is not possible due to differ-

ences in the physical properties of the human and the robot. Hence, a correspondence process

before realizing motions on the real robot is inevitable. Arm joint angle conversion is han-

dled by a correspondence mapping module by matching 3+1 DOF system of the arm of the

human (3 DOF in shoulder and 1 DOF in elbow) to 2+2 DOF system of robot arm (2 DOF

in shoulder and 2 DOF in elbow). Furthermore, joint angle limits are scaled considering the

maximum rotation degree of robot joints.

Realization of leg motions on the robot requires a more complex conversion approach.

Some exercise motions are performed on only one foot such as stretching the left leg to the

left. Direct transformation from the human to the robot causes the robot to fall in those states

where the support foot changes. Hence, our system recognizes the change in the support foot

mode of the robot (standing on both feet, standing on only left foot and standing on only right

foot) and a selected statically balanced motion primitive considering the previous support

foot state of the robot and current support foot state is integrated into the imitated motion.

In other cases, the static balance condition, where the projection of COM should be within

the support polygon, is regarded. If the joint angle configuration gathered from the human

demonstrator disturbs static balance, then the robot does not move into that configuration

and stays still. We adopt such an approach since the adjustment of joint angles to keep in

balance the robot may damage the characteristic of the exercise motion. Instead, the human

performer should try to perform the motion in a slightly different way keeping the robot in

balance by looking up the COM visualizer provided by our system. Of course, the human

demonstrated should be aware of constraints of the exercise motion and sacrificeable joints in

terms of angle value. The demonstration scenario has a closed loop as shown in Figure 3.4.

3.2. Performance of Exercise Motions by Robot in an Exercise Intervention with

Elderly

This part of the project covers the exercise interventions performed by elderly person.

The flow is shown in Figure 3.5. The robot demonstrates previously learned exercise motions
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Figure 3.4. The overview of exercise motion imitation by the Nao robot observing human

demonstrator.

in front of the elderly and expects the elderly to imitate himself. During this process, skeleton

of the elderly is tracked. The joint angles performed by the elderly is matched with the ones

recorded from the human demonstrator in the first part of the project and vocal feedback

is given on the performance of the elderly in repeating the exercise motion successfully. If

the robot believes that the performed motion is successful, he switches to the next exercise.

Otherwise, he requests the elderly to repeat in order to correct his way of doing the motion.

The overall system is depicted in Figure 3.6.

3.2.1. Performing Exercise Motions on Robot

Previously learned exercise motions are stored in a database in the form of joint angle

sequences. These joint configurations are transformed considering robot constraints and

guaranteed to keep the robot in balance as stated in Section 3.1. Hence, no processing is

done while performing exercise motions on the robot in this part, joint angles are just sent to

the robot.

We present the motion to the elderly in two different modalities. Vocal explanations

are used besides visual performance to make the perception of the motions by the elderly

easier. Furthermore, as we stated in Section 3.1.2, the exercise motions which damage the
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balance of the motion are performed up to the point which satisfies the balance condition.

However, for representing motions, our reference point is the joint angles showed by human

demonstrator. For those motions where the robot is capable to imitate up to some extent,

vocal explanations are necessary to make the elderly perform the exercise correctly as the

human demonstrator does. For example, the robot may say: “Now, we are stretching our

left leg to the left” and after stretching his leg, he can support his demonstration by saying

“Please stretch your leg some more as I am not able to do it”.

3.2.2. Tracking Exercising Elderly

The robot starts to track the elderly in the interval of his own demonstration of a mo-

tion. However, the elderly may not synchronize herself with the robot sometimes and com-

plete the motion a bit later. To handle such situations, the robot waits for the elderly to stay

still upon his own demonstration to evaluate her performance. The system allows delays

lower than 5 seconds and the robot switches to the next motion if the user do not complete

the current motion. Otherwise, the exercise session will be open to possible perturbations

which elderly may cause.

Performance evaluation of the elderly for a exercise motion is done by checking the

similarity in the joint angle values of the final posture of that exercise motion. Although an

exercise motion is formed from a combination of a set of joint angle trajectories, not joint

angle values of a specific frame, a sliding window approach to discover similarities in time

intervals is avoided in order to not to bother and confuse the elderly with extensive sound

stimuli. The original joint angles recorded from human demonstrator during motion learning

process are used to test the correctness of the motion performed by the elderly since robot’s

joint angles may differ slightly during conversion process as mentioned in Section 3.1.2.

The performance should be evaluated considering the characteristics of the exercise

motion. For example, if the elderly bends his knee slightly during the repetition of motion

stretching arm to the both side, the robot should not give feedback on incorrect behaviors

which may arise in the leg part of the body. This puts force on whole body control during

all exercise session which is an undesirable situation. Hence, our system extracts the charac-



42

teristic of a performed motion by checking variance of joint angles values over time. Then,

the system checks the similarity only in those joint angles between original and repeated

motion by elderly. Some primitive feedback sentences such as “Please, raise you arm up a

bit more” are hard coded into the system and consulted if the detected joint has a varied an-

gle with a considerable difference. Feedback database can grow by adding new dynamically

constructed sentences depending on the situation faced with the performance of the elderly.

If the elderly does not correct himself upon a given feedback within a certain duration,

the robot gives another one and waits again. He switches to the next motion after the second

feedback without considering whether the motion is completed successfully or not. The

elderly may not be able to perform that motion either because high pressure may annoy her

and cause to lose her whim or due to her physical inabilities.

Besides corrective feedbacks, the robot may give some motivating feedbacks. These

sentences such as “Very good” or “You are getting better” are stored in the speech database

and used upon successful performances from time to time by selecting randomly from the

database.

3.3. Platform of Humanoid Robot

In this study, we use the commercially available robot Nao as a humanoid platform

which is developed by Aldebaran Robotics. We have “H25”, version 4 Nao robot which has

57 cm height and 31 cm width as shown in Figure 3.7. It has a total of 25 DOF which are

distributed as 6x2 DOF in arms, 5x2 DOF in legs, 1 DOF in torso and 2 DOF in head. 21 of

them, excluding wrist and hand joints in arms, are utilized in this project. Detailed kinematic

model of Nao is shown in Figure 3.8 which is borrowed from the study of Gouaillier et al.

analyzing the design of the Nao humanoid robot [67].

The Nao robot has a Linux based real-time operating system. In order to manage the

hardware, a system, called NaoQi, is implemented by Aldebaran Robotics. This system

lets us receive sensor values and send commands to the hardware. NaoQi contains different

modules for special purposes. For example ALMotion module is used for the motor control,
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Figure 3.7. The joints of the Nao “H25” V4 robot, from [68].

Figure 3.8. The detailed kinematics of the Nao robot, from [67].
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ALMemory is used for the communication between modules. In the NaoQi infrastructure, it

is also possible to implement module.
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4. METHODOLOGY

We use a Nao humanoid robot, a Kinect sensor, and robotic simulators Webots and

Choregraphe in the proposed scenario. The system works in two modes. In the first mode, the

human coach ‘teaches’ the robot the desired exercise, and records the accompanying verbal

description. In the second mode, the robot demonstrates the exercise to a subject, monitors

and provides feedback on the performed gesture. ROS (Robot Operating System) [69] is

used to provide messaging system between modules shown in Figure 4.1 and Figure 4.2.

4.1. Gesture Learning from a Human Demonstrator

In our system, the human demonstrator is expected to perform the gesture in front of

the robot, while marking the gesture boundaries via simple vocal commands such as “start”

and “end”. The robot is then expected to imitate the motion sequence performed between

this interval, and store it for further reference. The visual input (i.e. the exercise performed

by the human coach) is acquired with a Kinect camera, and the skeleton is extracted with

the OpenNI software. The obtained joint angles are transformed to a set of corresponding

Nao joint angles. The exercise is then assessed for the physical limits of Nao; if it involves

stretching of limbs, or rotation of joints not available to the robot, the vocal assistance module

is assumed to complement the system. At this moment, this is simply a recording (and

replication) of the coaches vocal instruction (e.g. “. . . and stretch both arms”). Then the

exercise plan is passed to the Webots simulation software, which assesses the stability of

the gesture. If this check is not passed, joint angle positions are optimized to obey stability

conditions in a way to produce minimal deviation from the desired appearance. Then the

exercise is stored in a database for further reference. A flowchart is given in Figure 4.3 to

summarize the proposed system.

4.1.1. Gesture Imitation

In order to map human gestures to the robot, the first challenge to be handled is to spec-

ify the embodiment differences between human and robot. Due to the anatomic differences,
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Figure 4.1. The system architecture which shows the modules and their communication for
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Figure 4.3. The flowchart of the proposed system for gesture learning from a human demon-

strator.
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the robot is not able to imitate every motion of the human successfully. The Nao robot has

a much smaller number of degrees of freedom than the human and the limits of each joint

differs from the corresponding ones in humans. Hence, a robust mapping system is needed

to allow the Nao to be able to imitate as many different motions as possible. We represent

the gestures in terms of a 3D skeleton of joints and their connections.

We use two main criteria to determine the success of the gesture generated by the

robot through the mapping system: the stability of the robot, and the similarity between

the robot’s motion and the human’s motion, respectively. We use a simple approach for the

similarity, and take the sum of absolute values of the joint angle differences in the human and

the robot. As mentioned earlier, a better approach would be to consult the physician about

the relevance of each gesture component, for each gesture. That would, however, require

explicit supervision. Another possibility is to let the fitness coach demonstrate each gesture

multiple times, and discount joints that show high variance in their angle values. This in turn

would require that the fitness coach is aware of this procedure, and exhibit such variance

consciously.

The stability of the robot is a very important restrictive factor in exhibiting whole

body motions. Especially raising a leg usually requires that the arms help in stabilizing the

robot, lest it should fall. However, if the original motion does not include any arm ges-

tures, additional movements added for stabilization spoils the characteristics of the exercise.

Furthermore, most of the leg exercise motions for seniors are performed in a sitting position.

At the beginning of the project, we attended exercise sessions three times held in the

nursing home which we test our system. We observe and record the motions and then an-

alyze each of them. In the literature, the exercise motions are classified as stretching and

strengthening exercises. We follow this taxonomy and extract text description of each move-

ment with the joints used to perform the motion. Afterwards, we try to realize them on the

Nao robot using the producing company’s simulation software “Choregraphe” which allows

to set joints manually by using a simple user interface. Though Choregraphe does not have

an implied physics engine in it which is necessary to sense the balance condition and fallings

for whole body motions, we use the Webots simulator. We can control both of the simulators
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by the same NaoQi instances. Ultimately, we can observe the simulated motions on Nao in

real world scene of the Webots simulator using easy to interface of Choregraphe as seen in

Figure 4.4.

Our experimental analysis shows that, the Nao robot has difficulty or inability to do

most of leg motions. On the other hand, it is capable of performing arm motions easily

relative to the leg motions. The taxonomy of gestures with text descriptions and doability

analysis with encountered problems with Nao are shown in Tables 5.1 and 5.2. Gesture

imitation gets more challenging directly proportional to the physical qualifications of the

robot. The upper body motion imitation can be performed much more easily compared to

the lower body motions. Hence, the overall system should be evaluated separately for upper

body motion and whole body motion imitation.

4.1.1.1. Imitation of Upper Body Motions. The Nao robot has four degrees of freedom in

its arm, which are shoulder pitch, shoulder yaw, elbow yaw, and elbow roll joints, respec-

tively. Humans also have the same number of DOF in their arms, but there are three of them

in the shoulders and only one DOF is used for the elbow [70]. Hence, direct mapping from

human arm joint angles to the Nao joints will not produce the correct motions. To handle the

difference in embodiments, a combination of inverse and forward kinematics is used.

We use an additional external RGB-D camera (i.e. Kinect) mounted on Nao’s platform

in this study. The positions of joints for the human skeleton are provided by the OpenNI

Kinect driver [66]. When the bones are treated as vectors whose initial and terminal points

are defined by the two joint positions J1, J2 respectively, the angles between the bones and

the XY , Y Z and XZ planes give the angle θ of the joint J1:

θ = arccos(|V |/|Proj(Vx)|)

x ∈ {XY, Y Z,XZ}, V =
−−→
J1J2

(4.1)

The figures in Figure 4.5 shows the coordinate axes of Kinect sensor and representation

of left upper arm of demonstrator in this system. The joint angles are calculated by projecting
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Figure 4.4. Simulator environments: Choregraphe (above) and Webots (below) which can

be controlled by the same NaoQi instances. The same motion performed in both simulators

is shown.
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Figure 4.5. The left upper arm of human demonstrator is represented as a vector in 3D

coordinate axes of the Kinect sensor. This vector is projected on XY (upper left), XZ

(upper right) and Y Z (bottom) planes and θ angles between these three planes are calculated

as in Equation 4.1.

the vector (shown in green) onto each of three planes which are XY , XZ and XY .

The angle between the upper and the lower arms is found using the following formula:

φ =
V1 ∗ V2

‖V1‖ × ‖V2‖
(4.2)

where ∗ stands for scalar product of vectors, and V1 and V2 represent upper arm and lower

arm, respectively. The same formula can be used for the angle between upper and lower legs.

These joint angles are first preprocessed to obey the limit angles of robot joint intervals

given in Table A.1. Afterwards, filtering is applied to eliminate the sudden changes in skele-

ton joints positions due to camera noise. In real time applications, the smoothing with less

latency becomes important. However, there is a trade off in the smoothing performance of

a filter with latency. For skeleton data filtering, ARMA (Auto Regressive Moving Average)

filters are generally used. They are a class of linear filters which gives a weighted average of

current and N previous inputs and M previous filter outputs as represented in Equation 4.3.

X̂n =
N∑
i=0

aiXn−i +
M∑
i=1

biX̂n−i (4.3)

where the first term is named as moving average and second term is named as auto-regressive

which helps to track the trend of the filter.
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“Double exponential smoothing” filter which is a variant of exponential smoothing

filter and a subclass of ARMA filters, given in Equation 4.4, is used to eliminate the sudden

changes in skeleton joint positions due to camera noise:

St = αyt + (1− α)(St−1 + bt−1);

bt = γ(St − St−1) + (1− γ)bt−1
(4.4)

The filter output St is a weighted sum of filter input at time t, yt, and summation of filter

output and filter trend output bt−1 calculated one step before. α is the dampening factor and

takes value in the interval of [0-1]. The larger the α, the filtered output changes fast with the

current input value which results in less smoothing with less latency. Otherwise, it follows

the trend of the filter which means that older inputs have larger weights in calculating the

current filtered value. This trend factor stores the difference between two last filter outputs

and is updated with another dampening factor γ at each step. Note that, the filter trend

helps to respond to sudden changes in the input sequence more quickly but this can result in

overshoots. In Figure 4.6, the output of filter with different α and γ parameters are shown

on the skeleton data captured from a human demonstrator who moves her arms up and down

too fast. With the increased gamma parameter, the filtered skeleton responds changes in

original data immediately as shown in Figure 4.6c and inversely, small value of γ parameter

causes high latency in smoothed data in Figure 4.6a.

For the upper body imitation case, the preprocessed shoulder pitch, shoulder roll and

elbow roll angles from the human are directly usable in the robotic joints. For the elbow

yaw joint, we need to approximate Nao’s motion. In order to achieve this, the position of

the human hand is calculated by forward kinematics, using the first three determined joint

angles. Denavit-Hartenberg notation is adopted for kinematic calculations. Table 4.1 shows

the parameters for the right arm of the Nao robot, where j1, j2, j3 and j4 stands for shoulder

pitch joint, shoulder roll joint, elbow roll and elbow yaw joints, respectively. L1 denotes

the upper arm length, and L2 denotes the lower arm length. In order to find the interpolated

position of the hand of the robot using the shoulder pitch, shoulder roll and elbow roll joints,

the transformation matrix is calculated using the Denavit-Hertenberg kinematic parameters
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Original Skeleton
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α = 0.1, γ = 0.1
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Filtered Skeleton
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α = 0.1, γ = 0.9

Figure 4.6. The original joint positions and smoothed joint positions after applying double

exponential smoothing with different parameters.
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Table 4.1. The Denavit-Hartenberg parameters for the right arm of the Nao robot.

i αi ai Θi di

1 -π/2 0 j1 0

2 π/2 0 π/2+j2 0

3 π/2 0 π+j3 L1

4 π/2 0 π/2+j4 0

5 -π/2 L2 0 0

of Nao [71]. See Section A.2 for details.

The result is where the hand would be, if the shoulder yaw joint was in a neutral

position. This position is measured in the 3D space relative to the shoulder. The spatial

difference between this interpolated position and the real position of the hand needs to be

compensated by the elbow yaw joint in the robot. Hence, the next step is to apply inverse

kinematics to find the most suitable angle for the elbow yaw joint. Intuitively, the proposed

approach tries to exchange the role of the shoulder yaw joint in the human with the elbow

yaw joint in the Nao robot.

Figure 4.7. The spatial difference between interpolated position and real position of the hand

is compensated by the elbow yaw joint.

4.1.1.2. Imitation of Whole Body Motions. There are few approaches where the gesture of

the demonstrating human is transferred to a humanoid robot. Koenemann and Bennewitz

implement a scenario where human gestures are transferred to the Nao robot, using an Xsens

MVN motion capture system with inertial sensors attached to the body of the demonstra-

tor [14]. Inverse kinematics is used to correct the transferred sensor positions for stability.
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Figure 4.8. The demonstration and imitation of two different exercises. The upper exercise

is unstable, and if performed rapidly, can cause the Nao robot to fall, whereas the lower

exercise is stable.

They do not use this system in a particular application scenario.

In our system, the gesture is performed by a human demonstrator in front of the RGB-

D camera and the joint angles, driven by the external computer in real-time, are sent to

the robot. Let Ah denote the joint angle vector for the human demonstrator. This vector

is mapped to a joint angle vector Ar for the robot. Two problems we need to solve are

the limited joint angle ranges of the robots (similarity) and the balance problems that arise

during the performance of the gesture. For the latter, not only the center of mass of the robot

needs to be maintained within the convex hull of the feet of the robot, but the time needed to

interpolate between different gestures should also be taken into account: fast gesture changes

can cause the robot to fall down, whereas the same gesture, performed slowly, may not.

However, our application scenario of displaying gestures to the elderly permits the robot

to move slower than the originally demonstrated gesture. Subsequently, we ignore speed-

related instability here and try to keep the robot statically stable. Figure 4.8 shows examples

from stable and unstable exercises.

We divided the whole body motions into two parts: motions performed on both feet

and motions performed on one foot. Difference in the position value on y axis of right foot

and left foot of the demonstrator is used to understand the stance foot. If the status of the

stance foot (left foot, right foot, both feet) stays same for more than one second, i.e. for
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consecutive 15 frames, it is set as the current stance foot status. Otherwise, noise in depth

image may be sensed as change in demonstrator status in milliseconds which is not match

with our presumption that the demonstrator moves slowly and causes fast movements which

are hazardous for balance.

For the former motion types, such as bending knees slightly, stability check is done

by controlling whether the center of mass of the robot falls into the support polygon of the

robot. If it is so, then the extracted joint angles after preprocessing and filtering are set to

the motors of robot. Otherwise, the robot does not continue to imitate the demonstrator

because of the stability constraints. We do not adopt any dynamic balance algorithm as

stated in Section 2.3.3.2 since it requires to change some angles from the original ones in

order to maintain balance. Furthermore, this may cause inappropriate appearance of the

demonstrated motion and cause the elderly to exercise the motion improperly. Note that,

the ankle pitch joint is left independent from the set angles and adjusted in order to satisfy

the parallelism of the foot to the ground. The details of calculation of COM algorithm

is given in Figure 4.9. The center of mass is simply calculated by dividing the sum of

products of position of limbs with their masses to the total mass. The positions of limbs are

found using forward kinematics methods based on DH transformation matrix. AngleX and

AngleY sensors of robot are used to get the orientation in left-right and front-back directions

respectively. Calculated COM is projected onto the ground to get the real world coordinates.

For the second motion types, we define some primitive actions to avoid complex in-

verse kinematic solutions. Because of the embodiment differences, the imitation of transition

motions between different postures with different support legs (motions done on right foot

to double feet or vice versa) is not possible. The robot should determine his own motions

to be able to follow the demonstrator and try to perform similar gestures akin to the demon-

strator’s. Our predefined and statically coded motions are “transition from left foot to double

feet”, “transition from right foot to double feet”, “transition from double feet to left foot” and

“transition from double feet to right foot”. These motions are more functional and do not

have to be same with the human necessarily. If the robot starts to stand on his one foot, then

a linear optimization algorithm is consulted to calculate joint angle values of the swinging

leg and arm joints. Note that, the angle values of support leg are not changed until a detected
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shift in support leg.

There are two main requirements to be satisfied for a robot coach imitating a human,

which are self-balance and maximum similarity with the human demonstrator, respectively.

Our system tries to find joint configurations for the robot which have minimum difference

from the ones collected from human and also satisfy balance constraints. Hence, the objec-

tive function we use is the minimization of the sum of the absolute differences between joint

angles of the robot and the human demonstrator, subject to the stability constraint function

that ensures that the ground projection of the center of mass of the robot lies within the sup-

port polygon of the robot. Moreover, ankle pitch angle of the foot in contact with the ground

should be equal to zero minus of the sum of the related knee pitch angle and hip pitch angle,

in order to satisfy the parallelism of the foot to the ground:

min |Ah − Ar| s.t.

σ(Ar) ∈ P (Ar),

φankleP itch = −φkneeP itch − φhipP itch,

Ajr ∈ [Ajmin . . . A
j
max], ∀j = 1 . . . J

(4.5)

where σ(Ar) denotes the center of mass of the robot, and P (Ar) is the convex hull of its feet

support, both as functions of the joint angle vector Ar. The individual joints j = 1 . . . J each

should be within their respective minimum (Ajmin) and maximum (Ajmax) limits, at all times.

To solve the optimization problem, we make use of the COBYLA algorithm [72] from the

NLOpt library [73].

The pseudocode of our whole body imitation approach is given in Figure 4.11.

4.1.2. Observation of Robot by Demonstrator and a COM Visualizer as Stability Indi-

cator

In our approach, the demonstrator and the robot are in an interaction in terms of observ-

ing each other and behaving accordingly. While the robot tries to imitate the demonstrator,

the demonstrator also observes the robot and adjusts his own motion in order to be able to
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Algorithm CalculateCOM

Get jointAngleList

for joint in jointAngleList do

Compute jointPosition relative to the torso using forward kinematics

COMPosition⇐ COMPosition+ (jointPosition× jointMass)

totalMass⇐ totalMass+ jointMass

end for

COMPosition⇐ COMPosition÷ totalMass

Project COMPosition onto the ground using AngleX and AngleY sensor values

Figure 4.9. The center of mass calculation by considering the robot body orientation.

Algorithm PreprocessingStep

Filter out the 3D coordinate system positions of the skeleton.

Extract jointAngles from the filtered position values.

Adjust the jointAngles in order to be in the interval of rotation limits of the

corresponding motor of the robot.

Decide on the currentStanceFoot.

Calculate COM .

Figure 4.10. The preprocessing step for whole body motion imitation.
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Algorithm WholeBodyMotionImitationAlgorithm

Preprocessing step.

if currentStanceFoot = BothFeet then

if previousStanceFoot = LeftFoot then

Perform primitive motion: “transition to standing on both feet from left foot”.

supportPolygon⇐ ground contact area of left foot

else if previousStanceFoot = RightFoot then

Perform primitive motion: “transition to standing on both feet from right foot”.

supportPolygon⇐ ground contact area of right foot

else

if COM is within supportPolygon then

Send jointAngles to the motors of the robot.

else

Keep the robot in the previous posture, ignore the movement of the performer.

end if

end if

else if currentStanceFoot = LeftFoot then

if previousStanceFoot = LeftFoot then

Keep the position of the support leg (left leg) same.

Optimize the motion and send optimized jointAngles to the robot.

else if previousStanceFoot = BothFeet then

Perform primitive motion: “transition to standing on left foot from both feet”.

supportPolygon⇐ ground contact area of both feet

end if

else if currentStanceFoot = RightFoot then

if previousStanceFoot = RightFoot then

Keep the position of the support leg (right leg) same.

Optimize the motion and send optimized jointAngles to the robot.

else if previousStanceFoot = BothFeet then

Perform primitive motion: “transition to standing on right foot from both feet”.

supportPolygon⇐ ground contact area of both feet

end if

end if

Figure 4.11. The whole body motion imitation algorithm.
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Figure 4.12. An example motion that the Nao robot can not perform due to its physical

constraints.

realize it on the robot. For example, human elbow roll joint has the capability of bending

up to 160 degrees approximately. For the motion, putting hands on head, humans raise their

shoulder up slightly while bending elbow pretty much. On the other hand, Nao has an elbow

roll joint which has a rotation limit up to 90 degrees. Hence, imitation of human joint angles

for this motion can not reproduce the same gesture on Nao as shown in Figure 4.12. Instead,

our approach proposes to assign the demonstrator the responsibility of observing the robot

and comprehend his capabilities and alter his own way of performing the motion.

For whole body motion imitations, the demonstrator should also be aware of the stabil-

ity state of the robot in order to avoid positions which can cause fall in the robot. We prepare

a display which shows the support polygon of robot and COM point. The display is updated

at every process cycle of joint angle values. The simulated robot imitating leg motions and

the COM visualizer screen are shown in Figure 4.13. The visualizer is updated according to

the support foot state of the robot while switching to stand on one foot.

4.1.3. Solution to “When to imitate” Problem

When to imitate problem requires on-line gesture recognition of performed motions to

reproduce synchronous gestures with the demonstrator. However, it is another challenging

research area and is out of our scope. We handle this problem by referring to the demon-

strator’s guide. The robot expects Start and Stop vocal commands from user to decide on

imitation time intervals.

Google translate API is utilized for speech recognition. The system takes recording
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Figure 4.13. The COM visualizer: support polygon switches to right foot from both feet

while performing leg motions with stance on one feet. The green and red rectangles stand

for left and right foot of the robot respectively. COM point is visualized as a blue point.

for every 3 seconds and sends this recording to Google cloud service. The response returned

from the servers are matched with our predefined Start and Stop keywords. Then, the robot

makes a decision about starting or stopping the imitation. Google translate API supports

multiple languages including Turkish. This allows human demonstrators who speak only

Turkish be able to use the system.

4.2. Interaction with the Elderly and Exercise Session Scenario

In the second mode of the system, the robot performs the learned gestures to the subject

and asks the subject to imitate them. While showing the motion, a verbal explanation of the

gesture recorded from human demonstrator is also provided to the subject by the robot to

make the perception of the gesture easier and to compensate for the differences between the

physical embodiment of the robot and the human. The robot monitors the subject during the

exhibition of the motion and gives vocal feedback on the success of the imitation of gesture.

The aim is to force the subject to repeat the performed gesture successfully and motivate the
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Hello, I am Nao, 
your personal trainer robot.

Let's start exercising.

Perform motion

Vocal explanation 
of motion

Demonstration of
current motion 
is completed?

Compare tracked joints and 
original joints of the motion

Is the performance
correct?

Fetch the feedback 
from feedback database

Is it third 
feedback?

Are all motions
are performed?

Fetch the feedback 
from feedback database

We try it for the 
next time

Start
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Wait for 5 seconds
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to stay still
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Give feedback

Say!Give motivational 
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Say goodbye! End

Demonstration

No

Yes

Is user still?

Check joint 
angle variation 
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No Yes

No No

Wait for 5 seconds
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Figure 4.14. The flowchart of the proposed exercise intervention scenario. See text for the

details.
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subject to continue with the exercise program.

Recorded motions in the motion database are preprocessed before using them in exer-

cise interventions. The joint angle values are not changed, but some analysis are applied for

vocal explanation and feedback mechanism.

In exercise sessions, most of the motions are performed by doing the same gesture

consecutively like opening and closing arms to sideways for five times. Human exercise

coach counts on how many times the gesture repeated while showing the motion. He also

counts the repetition time of the the user like “one, two, three” by observing her in order to

motivate and insure continuity on the motion.

We also adopt such an approach to support the visual performance of motion with vocal

assistance. The cycles in the motion are determined and the corresponding motion frames are

marked to give vocal explanations. We apply a simple dimensionality reduction algorithm,

namely principal component analysis (PCA), and reduce the data to one dimension from

22 dimensions. Then, the data are smoothed by using the moving average filter with 80

framed-window size (approximately over 5 seconds of motion parts). The smoothed data is

normalized between [-1,1] and local maxima detection is utilized to extract the cycles in the

motion. In Figure 4.15, the normalized 1-D data and smoothed data with peaks labels are

shown. Reduced joint data is informative enough to extract cycles in the performed motion

and detect count feedback frames.

Another preprocessing applied on the stored joint angles in motion database is to ex-

tract the list of joints utilized extensively through the motion in question. Since the given

feedback should only consist of a kind of notice about the joints used in exercise, this list is

used to avoid redundant feedbacks. The robot should not comment on leg posture of the user

if the motion in interest belongs to a class of arm motions. We calculated the variance of

each joint angle individually and selected the ones with the variance value larger than 0.01.

The threshold is selected empirically. We refer to those joints as gesture identifier joints in

the rest of the thesis.
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Figure 4.15. 1-D representation of the joint data of the motion opening-closing arms to

sideways. The same gesture is performed five times.

One of the challenges encountered in developing the feedback system is to adjust the

timing and determine on the number of times verbal feedback should be given in the exercise

sequence. In our approach, the feedback is given to the subject when the robot completes to

demonstrate the gesture, and stays in the final posture of the gesture. The robot determines

when the imitation of the gesture by the subject is terminated by analyzing the stability of

the subject. If the variance in the gesture identifier joints of the subject skeleton is nearly

zero during the last five seconds upon completion of exercise performance of the robot, then

the user is accepted as stable and finished imitating the robot. Otherwise, the robot waits for

another five seconds to allow the user in order to finish his move. If the user has not been

stable yet, then the feedback mechanism is activated without waiting further.

Our system allows to compose the feedback messages on the fly without need of pre-

recording. On the other hand, we have some primitive feedback sound files stored in the

feedback database which can be used if they have the expected message content. This ap-

proach relieves the system from regenerating same messages redundantly. Our aim is to

enhance feedback database by adding dynamically composed ones during exercise sessions.

The system decides on when to activate the feedback mechanism by comparing the

recorded skeleton data of the subject to the original stored gesture template, as performed

by the coach considering the gesture identifier joints. Our similarity metric is simply the

difference of those two joint angle sequences. If it is larger than an acceptable value which



65

is determined for each joint angle empirically, then a text message in the form of action verb

(e.g. “raise”, “lower”, “spread”) + target limb (e.g. “right arm”, “both arms”) + a modifier

indicating the amount of the correction (e.g. “slightly”, “as much as you can”) is added to the

current feedback message. The feedback then consists of simple sentences such as “please

raise your right arm up slightly” or “please spread the arms to both sides as much as you

can”, depending on the difference from the template. Finally, the feedback text is converted

to an audio file using a text to speech module, and played on the robot.

There is another important point in the feedback mechanism. The subject may not

be able to perform the gesture simultaneously with the robot, or the performance speed

may be different. If that is the case, one-to-one matching results in erroneous outcomes.

Dynamic time warping algorithm is used to normalize gestures of human demonstrator and

subject in time by stretching the shorter sequence. It is a simple sequence matching algorithm

which takes two input sequences as input and gives one warped sequence as output. First

it constructs a distance grid which includes the difference of each element of the first input

vector from each element of the second input vector. Then, the optimal path with minimum

differences on this grid is found. Figure 4.16 shows the original left elbow roll joint values

gathered from human demonstrator during imitation of the gesture and from the subject

during exercise session for opening and closing the arms to sideways. Note that, the subject

follows the pattern of the robot but with a joint angle nearly half of the original one. For this

case, it means, the subject did not open her arm necessarily up to 90 degrees as robot does.

Besides corrective feedbacks, the robot also gives motivational feedbacks upon suc-

cessful completion of a gesture by the subject. The motivational feedbacks are prerecorded

and stored in feedback database. The system selects randomly among them and say it to the

subject to inform her about the success on the performance and strength flow and motivation

of the subject to the exercise intervention. Some motivational feedbacks are “You are really

good”, “Perfect”, “Congrats!, you successfully completed the motion”. Selection in random

order is important in order to not bother the user and keep interest of her on the robot.

Google Translate API is used again in order to convert text messages into sound files.

The recorded sound files are then sent to the robot and played. Note that, this module requires
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Figure 4.16. The original and tracked angle trajectory for left shoulder roll joins (upper

image). Tracked joint trajectory is extended to original one using DTW (bottom image).
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the Internet connection.

The flowchart is given in Figure 4.14 to summarize the proposed exercise intervention

system.

4.3. Questionnaire Design

We adopt two different questionnaires to be applied after the exercise interventions to

measure the demonstration performance of the robot as a robotic fitness coach and its social

aspects.

The first survey contains questions adapted to our scenario based on the the Game

Experience Questionnaire (GEQ) that measures different emotional responses to a game-like

experience [74]. We used questions related to positive and negative affect, flow, immersion

and challenge components. The positive affect questions are included to measure the general

impact of the system on the subject. The negative affect questions are asked for crosscheck.

An easy to use system is targeted in order to minimize confusion and to concentrate the

subject’s attention on the exercise intervention. The convenience of the system from this

standpoint is tested with the flow component. The immersion component is questioned to test

how well the subject is motivated to participate in the exercise intervention. The challenge

component is included for a crosscheck of the flow component. It questions how much the

subject has difficulty in following the robot and replicating the exercises during the session.

A 5-point Likert scale is used with 1 being the lowest score, and 5 being the highest. Each

component is tested with five questions, which results in 25 questions in total, given in a

random order. Occupation, age and gender information is also asked to the subjects for

further analysis of the relationship between these properties and the positive affect of the

system. The questionnaire is given in Table C.1.

On the other hand, the later evaluations and the feedbacks received from the subjects

who filled the survey showed that this survey is not competent enough to measure the effect

of the robotic fitness coach system. Hence, we changed our survey design. A second sur-

vey is prepared which includes questions to measure the perception of robot, human-robot



68

interaction, and exercise session by the subject. It is prepared considering some design cri-

teria explained in Section 2.4. The components depicted in Table 2.1 in the study of Fasola

et al. [44] are included in the survey. The interaction is evaluated over enjoyableness and

usefulness constituents. The subject is asked to rate the how much the exercise session is

enjoyable, interesting, satisfying, boring, exciting for enjoyableness and how much useful,

beneficial, valuable for usefulness property. A 10-point Likert scale is used. In order to eval-

uate the robot, the components of companionship, helpfulness, intelligence, social attraction,

social presence are questioned. For the questions related social attraction module, a 7-point

Likert scale is used. A 10-point Likert scale is utilized for the questions related to the other

components. The opinions of the subjects on the performance of the robot as a fitness coach

are also inquired by four questions with a 10-point Likert scale.

We also include a question to learn the background of the subject with robots in the

second survey. We think that the familiarity with robotic systems may affect the acceptance

of our system. The questions for occupation, age and gender information are again included

for the same purpose applied in the first survey. Furthermore, the physical performance of

the robot in expressing the exercise motions visually and vocally is asked to rate over a 10-

point scale. The performance of feedback mechanism is rated over 3-point scale. The survey

is concluded with a drawing of seven faces with each face depicting a slightly different mood

state from very happy to very sad, which is from the study of Lorish et al. [42]. The subject

is asked to select one of the faces which best shows the way he feels after the exercise

intervention. We want to analyze the effect of the system on the mood of the subject in the

long run. The questionnaire is given in Table C.2.
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5. EXPERIMENTS AND RESULTS

In order to the create a real scenario, we first visited the nursing home and attended the

exercise sessions three times to observe the gestures performed by the physiotherapist who

leads the sessions. We noted the vocal commands provided by the physiotherapist to correct

the movements of the attendees, and to ease the control of the session flow, to utilize them in

our system. As explained in Section 5.1, we formed a taxonomy of the exercise gestures and

analyze their demonstration feasibility considering the physical properties of the Nao robot.

After completion of the first prototype of the system, we demonstrated five exercise

gestures selected from the ones performed in the nursing home which are chest stretching,

upper arm stretching, back strength as upper body motions, and hip side extension and hip

extension gestures as lower body motions (see Tables 5.1 and 5.2). We recorded videos of

the demonstration of the gestures by the human performer. Then, these videos were used

to teach the gestures to the robot. This demonstration setup however did not adopt a closed

loop approach as explained in Section 4.1.2. In other words, the human demonstrator did not

adjust her motions by observing the robot in real time. The imitation performance results of

the robot for these gestures are given in Section 5.2.

Although our essential aim is to hold an experimental study with a set of elderly people,

we first carried out an initial user study with nine young subjects whose ages are between 25

and 35. The details of the experiment is mentioned in Section 5.3.1. The aim of this study

is to calibrate the exercise system by receiving feedback on the gesture performance of the

robot and to determine on the expectations from such a robotic exercise coach system. The

young subjects stated that the leg motions are tiring and difficult after completing the upper

body motions in the standing pose.

Based on this feedback, we changed the exercise scenario slightly and used the side

lumber stretching (to both side and three times for one side), upper arm stretching (five

times), back strength (five times), knee extensions (both knees and five times for one knee)

and ankle exercise (both ankles and five times for one ankle) gestures. The subject was
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allowed to sit down after the last two motions in this setup so as not to tire the subject too

much. These gestures are also selected from the ones depicted in Tables 5.1 and 5.2. While

showing the gestures to the robot, the demonstrator observed the robot and changed her way

of doing the motion in order to increase the imitation performance of the robot. The results

of the upper body motion imitation for the second scenario are given in Section 5.2.

Upon obtaining the ethical committee approval from İnsan Araştırmaları Etik Kurulu-

INAREK (Human studies ethics board) to hold a study with humans and an approval from

Aile ve Sosyal Politikalar Bakanlığı (the Ministry of Family and Social Policies) to study in

the nursing home, we tested our updated system with six elderly people who reside in the

nursing home. The design of the experiment is detailed in Section 5.3.2. The subjects were

from the attendees of the exercise sessions carried out in the nursing home. Hence, they were

familiar with the exercises performed by the robot.

To determine the effect of previous knowledge on the perception of the gestures per-

formed by the robot, we applied another user study with four subjects who are relatively

younger than the nursing home residents as explained in Section 5.3.3. These subjects do

not have any exercise routine in contrast with the subjects in the nursing home and they were

unfamiliar with the gestures. The second exercise intervention scenario was applied during

the second and third user study.

5.1. Taxonomy of Physical Exercises

Exercise motions are generally categorized into four classes, which are stretching and

relaxation exercises, strength exercises, balance exercises and endurance exercises, respec-

tively. The nursing home that helps us to observe the exercise session hosts seniors whose

ages are generally above 75. These exercise sessions are held out three times a week and

the same seniors participate in the sessions regularly. The exercises listed in Table 5.1 and

Table 5.2 stand for the general and common exercises performed in a real senior fitness sce-

nario. At this point, we do not consider balance and endurance exercises for robotic coaching

due to the risk of falling, and heart problems, respectively.



Table 5.1. The analysis of stretching and relaxation exercises considering the Nao humanoid robot.
Stretching and Relaxation Exercises Stance Description Robot Joints Doability Problems

1.Side lumbar stretching Standing One hand is on the lumbar, stretch the body using

lumber to the side of that hand

Upper body joints

+hip roll

Yes —-

2.Lumbar spine relaxation Standing Arms are relaxed and swing around body, turn upper

body around itself

Shoulder roll +

hippitchyaw

Yes —-

3.Whole body stretching 1 Standing One foot is on front a bit, bend over that foot and stand

again by raising and stretching arms

—- No Balance problem

4.Upper arm stretching Standing Reach the arms at back Upper body joints Yes —-

5.Circular hip exercise Standing Hands on hips, one foot is moved to front, side and

back to draw a half circle

Hip pitch and roll Yes —-

6.Upper body stretching Sitting Link the hands by raising arms horizontally, stretch

upper body back and forth

Shoulder roll +

hip pitch

Partially Nao can not link his hands on front due to

embodiment constraint in shoulder roll joints

7.Shoulder rolls Sitting Sit up, move shoulders up and down while breathing

carefully

—- No Nao does not have movable joints

8.Chest stretching 1 Sitting Link the hands at back, stretch chest area —- No Shoulder joint angles’ interval does not al-

low

9.Neck stretching Sitting Move the head back and forth, to the right and left Head pitch and

yaw joints

Yes —-

10. Neck side stretching Sitting Gently tilt the head to the left and right in turn —- No No head roll joints available in Nao

11. Hand stretching Sitting Open and close the hand, spreading the fingers apart —- No Nao does not have motors for hands

12. Chest stretching 2 Sitting Raise arms and place hands behind your head and

stretch

Upper body joints Partially Linking okay, but no stretching, no movable

shoulder joints

13. Quadriceps stretching Standing Bend your right knee, grasp your right ankle, gently

pull up toward your bottom, repeat for left ankle

Whole body

joints

Partially Nao should tilt sidewards in order to balance

itself.

14. Whole body stretching 2 Sitting Extend one leg horizontally, stretch the upper body

over this leg without bending knee

Whole body

joints

Partially Nao’s body length ratios are different from

humans.

15. Back reach Sitting Exhale and gently move arms backward. Pause, then

return to the start position

Shoulder

roll+pitch

Yes —-



Table 5.1. The analysis of stretching and relaxation exercises considering the Nao humanoid robot (cont.).
Stretching and Relaxation Exercises Stance Description Robot Joints Doability Problems

16. Upper hind leg and back

stretching

Sitting pull the knee to the head level by lowering back —- No Upper body and upper leg lengths are not

convenient, hip pitch joint interval is not

large enough.



Table 5.2. The analysis of strength exercises considering the Nao humanoid robot.
Strength Exercises Stance Description Robot Joints Doability Problems

1.Knee extensions Sitting Make the legs horizontal to the floor by moving lower

leg up and down from the knee

Knee pitch Yes —-

2.Back strength Sitting Upper arm is horizontal to the floor, lower arm makes

90 degrees with upper arm, link the arms at front then

open towards to the back and close again

Upper body joints Partially Nao can not link its hands in front because of

shoulder roll joint constraints, but can bend

the lower arm a bit to perform the motion

3.Shoulder circles Sitting Circle shoulders forward and backward —- No Nao does not have movable joints

4.Upper leg strength 1 Sitting Raise both of the feet up slightly Knee pitch Yes —-

5.Arm raising and side lumber

strength

Sitting Hold a ribbon, bend over hip to the floor, raise the

upper body and arms to the cross side

Hip roll + upper

body joints

Partially Common hip pitch yaw joint does not allow

to perform the motion as in human. How-

ever, hip roll joint is used to do a similar mo-

tion.

6. Upper inner leg strength Sitting Raise both feet up, open and close them in a lateral

way

Hip pitch+hip

roll+knee pitch

Yes —-

7. Upper leg strength 2 Sitting Pull the knee to the head level rapidly and extend leg

without bending afterwards

—- No Upper body and upper leg lengths are not

convenient, hip pitch joint interval is not

large enough

8. Ankle exercises Sitting Move ankle up and down Ankle pitch Yes —-

9. Shoulder strength and ab-

dominal region exercise

Sitting Make the arms cross over each other on the knee (up-

per body tilted forward), stretch strongly to the back

by raising arms up

Upper body joints

+ hip yawpitch

Partially Shoulder roll interval does not allow cross-

ing the arms over each other

10. Ankle circles Sitting Extend knee and move foot in a circle Knee pitch+ankle

roll+ankle pitch

Partially Nao does not have ankle yaw joints. Ankle

pitch and roll joints are used to perform the

motion

11. Lower hind leg strength Standing Hands on hips, move through heel to toe on one foot

while the other is stable for self balance

Whole body

joints

Partially Due to balance problem, the motion can not

be performed smoothly while going through

heel to toe

12. Upper hind leg strength Standing Hands on hips, move forward the legs from the hips Whole body

joints

Partially Due to balance problem, Nao tends to tilt

sidewards



Table 5.2. The analysis of strength exercises considering the Nao humanoid robot (cont.).
Strength Exercises Stance Description Robot Joints Doability Problems

13. Shoulder and leg exercise Standing Bend knees, cross arms, then stand up while raising

the arm up to the head level

Whole body

joints

Partially Shoulder roll interval does not allow cross-

ing the arms over each other

14. Hip side extension Standing Lift your leg to the side as high as comfortable, then

return to the stand position again

Hip roll joint Partially Due to balance problem, Nao tends to tilt

sidewards

15. Calf raises Standing Rise up on toes as high as you comfortably can —- No Balance problem

16. Hip extension Standing Extend your leg backward, keeping knee straight. Hip pitch + knee

pitch

Yes —-

17. Sit to stand Standing Lean forward with bending knees and lower yourself

towards the chair as if attempting to sit.

—- No Balance problem
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Figure 5.1. Demonstration and subsequent imitation of several fitness exercises.

With the proposed pipeline of observation, skeletonization and angle matching, the

Nao humanoid robot is able to perform six out of 16 stretching motions completely, and four

motions partially. Stretching exercises help warming the muscles, protect against injury and

allow a maximum range of motion for joints. Hence, these exercises require a muscle system

to be exploited properly while being performed within certain minimum or maximum limit

angles of joints. Human joints have a greater degree of freedom compared to the joints of

Nao, and some exercises fall beyond the robots capabilities.

Purely gesture based imitation success in strength exercises is higher. The Nao robot

is able to perform five motions properly and eight motions partially, while four exercises are

beyond its physical limits. The main problem in strength exercises is the constraints in the

joint angle intervals. Figure 5.1 shows some exercises, fully learned and imitated by the Nao

robot.

The motions that the Nao robot is not able to perform are demonstrated with additional

vocal assistance. Understanding motion characteristics such as stretching or strengthening

may be a difficult task even for the humans; we observed some elderly having difficulty in

properly interpreting the instructions of the human coach. In order to correctly explain the

action where needed, the Nao robot should provide qualitative markers, for instance “pull

your knee to the head level”, instead of saying “rotate the knee joint 10 degrees and set the

hip pitch angle to -40 degrees”. The definition and proper use of a set of highly explanatory

and practical qualitative markers is at the moment left as a future work.
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5.2. Evaluation of the Gesture Imitation Performance of the Nao robot

As mentioned before, the Nao robot can not imitate all of the motions performed

by the human demonstrator due to its physical inabilities. Imitation of the arm motions is

easier than the leg motions since there is no balancing constraint. We evaluated the imitation

performance of the robot by considering a metric which is the absolute difference of the

joint angles sent to the robot and the original joint angles of the human demonstrator. The

performance is calculated for each joint except the ankle joints and the elbow yaw joints

which are left independent to handle the correspondence problem and the balance constraint.

The evaluation is performed over the exercise motions adopted in the user studies.

In Table 5.3, the imitation performances of three upper body motions and two leg

motions used in the first experimental study are shown. For the upper body motions, the

robot is less successful in performing the chest stretching motion compared to the upper arm

stretching and the back strength motions based on the value of the differences in arm joints.

The differences are approximately the same for the left and right arms since these upper

motions are performed using the left and right sides of the body in a symmetrical manner.

The performances for the leg motions, namely the hip side extension and hip extension, are

not satisfactory for the swinging leg joints. However, this is expected since the joint angles

for the swinging leg of the motions performed on one leg are optimized in order to satisfy

the balance constraint.

Table 5.4 shows the imitation difference results for the upper body motions adopted in

the second user study. Note that, there are some common gestures which are also used in

the first user study with enhanced imitation performances. This difference results from the

change in the demonstration style of the human performer. When the performer demonstrates

the gestures considering the physical constraints of the robot, the imitation performance also

increases.
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Table 5.3. The absolute differences between the joint angles of the robot and the human

demonstrator per frame for the motions adopted in the user study with the young subjects

(the values are in radian).

Chest stretch-

ing 2

Upper arm

stretching

Back

strength

Hip side ex-

tension

Hip

extension

Left Shoulder Pitch 0.23 0.17 0.17 0.03 0.03

Left Shoulder Roll 0.11 0.22 0.26 0.04 0.03

Left Elbow Roll 0.32 0.06 0.18 0.04 0.04

Right Shoulder Pitch 0.23 0.17 0.20 0.04 0.04

Right Shoulder Roll 0.09 0.20 0.19 0.06 0.04

Right Elbow Roll 0.32 0.04 0.22 0.03 0.05

Left Hip Roll 0.05 0.07 0.13 0.69 0.54

Left Hip Pitch 0.01 0.02 0.14 0.98 0.79

Left Knee Pitch 0.20 0.20 0.34 1.18 1.25

Right Hip Roll 0.01 0.02 0.08 0.10 0.06

Right Hip Pitch 0.02 0.02 0.14 0.06 0.09

Right Knee Pitch 0.20 0.21 0.26 0.20 0.23

Table 5.4. The absolute differences between the joint angles of the robot and the human

demonstrator per frame for the motions adopted in the user study with the elderly subjects

(the values are in radian).

Left side lumber

stretching

Right side lumber

stretching

Back

strength

Upper arm

stretching

Left Shoulder Pitch 0.000 0.000 0.000 0.000

Left Shoulder Roll 0.000 0.022 0.005 0.060

Left Elbow Roll 0.000 0.049 0.014 0.000

Right Shoulder Pitch 0.000 0.000 0.000 0.000

Right Shoulder Roll 0.020 0.000 0.008 0.007

Right Elbow Roll 0.065 0.006 0.003 0.000

Left Hip Roll 0.105 0.036 0.025 0.060

Left Hip Pitch 0.195 0.109 0.208 0.138

Left Knee Pitch 0.109 0.293 0.173 0.194

Right Hip Roll 0.018 0.053 0.027 0.009

Right Hip Pitch 0.187 0.183 0.186 0.122

Right Knee Pitch 0.206 0.185 0.263 0.218
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5.3. Evaluation of the Performance of Exercise Interventions with Robotic Fitness

Coach

5.3.1. The First Experimental Study with Young Subjects

For the first experimental study, we tested our system with nine young people who

are members of our department. Since our project targets providing assistance in elderly

exercise, these experiments do not give information about the real performance of the system.

However, they were useful in determining the shortcomings of the system.

In this initial study, the exercise session performed by the robot contains five different

gestures. Three of them are arm related exercises (arm stretching and relaxation exercises),

while the remaining are leg strength exercises. The subjects received a brief description about

the overall scenario before starting the test. During the session, each gesture is explained

verbally by the robot in the beginning of the gesture exhibition. The subjects were monitored

during the session and skeleton joint angles were recorded to analyze how the subjects were

synchronized with the robot and the performance of the subject in imitating the gesture

accurately. Figure 5.2 shows the angles for two different tracked joints (for all subjects)

during two different gestures. The trajectory of the coach is indicated with a bold line, and the

individual subjects are indicated with thin lines. The values are shown without smoothing.

Except for one subject (which is shown in red), the joint angle values of all subjects follow

the same trajectory with the human demonstrator’s angle values which means that they were

able to follow and replicate the gestures of the robot successfully.

We have also assessed the interaction with a post-exercise study. The subjects were

requested to fill out the first survey which is mentioned in Section 4.3 in detail. The survey

is evaluated to measure the effects of the system. The results are given in Table 5.5. The

designed system scores high on immersion and positive affect, and on a smaller degree on

flow. The flow is affected by the lack of smoothness in the robot’s gestures. The scores on

challenge and negative affect are small, indicating an easy-to-use system.
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Table 5.5. The user evaluation results of the experiment with the young subjects.

Component Mean Standard Deviation

Positive Affect 3.63 0.72

Negative Affect 2.20 0.68

Flow 3.25 1.13

Immersion 3.68 0.37

Challenge 2.65 0.72
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Figure 5.2. Left Shoulder Pitch (left) and Right Elbow Roll (right) joint angle trajectories of

the subjects and the human demonstrator for one gesture.
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5.3.2. The Second Experimental Study with the Elderly Subjects of the Nursing Home

In the experiment held in the nursing home, at the beginning of each exercise session,

the robot gives an introduction of itself as “I am Erdal, I am here to assist you for the exercise

session”. Afterwards, it gives a brief explanation of the system flow as “Now, I will display

some exercise motions and request you to follow me. I will give vocal explanation for each

gesture before starting performing the gesture”. We adopted again five exercise motions

which are different from the ones selected for the initial study with the young subjects. These

exercise motions were chosen from the exercise list performed in the exercise sessions held

in the nursing home as mentioned in Table 5.1 and 5.2. The robot performs side lumber

stretching (to both side and three times for one side), upper arm stretching (five times) and

back strength (five times) in stand pose. Thereafter, it sits down and continues with the leg

motions. The selected leg motions are knee extensions (both knees and five times for one

knee) and ankle exercise (both ankles and five times for one ankle). All of the motions can

be seen in Figure 5.3. The gestures performed in the standing pose are taught to the robot by

imitation, while the leg motions are handcoded using the Choregraphe software. The robot

gives vocal explanation for each gesture. On the other hand, counting feedback is provided

only for the gestures learned by imitation in order to assist the motion.

Our aim is to test the performance of the combination of the gestures learned by imi-

tation and counting feedback compared to the handcoded gestures performed without vocal

assistant. Therefore, we also questioned the subjects to rate on the demonstration perfor-

mance of the leg and the arm motions of the robot. Although eight subjects participated in

our study, two of the subjects refused to fill out the survey applied after the exercise inter-

vention. Hence, we evaluated the results of the six remaining subjects. Three subjects out

of six said that the arm motions are easier to understand. Two subjects rated the same per-

formance on both the leg and the arm motions. Only one subject preferred the leg motion

demonstration to the arm motions.

The subjects were asked to rate over a 1-10 scale the performance of the robot on the

explanation of the gestures by visual demonstration and vocal commands. The results are

pleasing as shown in Table 5.6. The elderly people rated 7 points for visual and 7.5 for vocal
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performance on the average. This means that our system is powerful enough to express the

exercise motions to the elderly. All of the subjects had also a common opinion in that the

vocal explanations besides the visual demonstrations make the perception of the gestures

easier. Figure 5.4 and Figure 5.5 show two different exercise motions demonstrated by the

robot to an elderly subject in the experimental study held in the nursing home.

The second survey mentioned in Section 4.3 was applied to the subjects after the ex-

ercise session. We noted that, the interest in and the acceptance of the robot is high for the

older subjects in this group. There may be some psychological effect so that the older people

have a stronger sense of loneliness and a robotic companion can be perceived as a way of

addressing such a need. On the other hand, our subject set is too small to comment on this

claim.

We also asked the subjects whether they have seen a robot before and interacted with

it. We want to understand, whether the subjects who have never seen a robot before will

be more interested in the robotic fitness coach or not. Only one of the subjects had a real

experience with a robot during her lifetime. Hence, we do not have a diverse subject set, as

we mentioned, to be able to test this claim.

The results of the survey questions related to the robot and interaction perception is

also shown in Table 5.6. Although the subjects appreciated the performance of exercise

demonstration of the robot, they did not prefer our robot as an exercise partner. The reason

behind this can be two fold. First, our robot has low social skills while interacting with the

subject. It is more like a functional robot. Social presence and social attraction perceptions

of the robot by elderly subjects also have low scores 5.6. This may prevent the subjects

to adopt our system. Second, the subjects in the nursing home were selected from people

who attend the group exercise sessions held three times in a week under the supervision of a

physiotherapist. They perceive these sessions as social events and say that this a social event

which allows them to socialize with each other.

As a future work, we intend to extend our experiments by integrating new social skills

to our system and apply the survey again to see the effect of social interaction on the percep-
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Figure 5.3. Gestures performed in the experimental exercise interventions held in the nursing

home.

tion of our system as an exercise partner.

5.3.3. The Third Experimental Study with the Subjects who are Unfamiliar with the

Gestures

The same exercise intervention scenario was carried out with the subjects of the third

experimental study. The average age of this group was 58. The subjects have not attended

any exercise activities previously. Hence, they were not familiar with the exercise motions

performed in the experiment. They were able to repeat the motions after the robot demon-

stration (see Figure 5.6). However, for the motions where the Nao robot can only perform

partially such as side lumber stretching, the direct replication of the robot by the subjects

resulted in incorrect reproduction of the gestures. This observation shows that the previous
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Table 5.6. The user evaluation results of the experiment held in the nursing home.

Interaction

Component Mean Standard Deviation Scale

Enjoyableness 4.8 1.38 1-10

Usefulness 4.3 2.24 1-10

Robot

Component Mean Standard Deviation Scale

Companionship 5.7 2.0 1-10

Intelligence 5.0 2.28 1-10

Helpfulness 4.16 2.63 1-10

Social Attraction 2.54 2.31 1-7

Social Presence 3.25 2.29 1-10

As Exercise Partner 3.91 2.92 1-10

Demonstration Performance of Robot

Component Mean Standard Deviation Scale

Visual Demonstration Performance 7.0 2.34 1-10

Vocal Explanation Performance 7.5 2.42 1-10

Providing Feedback Performance 2.0 0.89 1-3
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Figure 5.4. The robot and an elderly person performing right side lumber stretching exercise.

Figure 5.5. The robot and an elderly person performing upper arm stretching exercise.
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domain knowledge in exercising are important for the perception of the motions which the

Nao robot can not perform completely.

The second survey mentioned in Section 4.3 was applied to the subjects. The survey

results of the study are given in Table 5.7. This group of subjects found the exercise system

more useful and more enjoyable compared to the elderly people in the nursing home. The

evaluation of the robot for social presence and as an exercise assistant are also better. Since

the subjects do not have any other alternative for exercising, our system can be perceived as

more valuable and useful. Furthermore, one of the subjects said that the arm motions are

easier to understand. Two subjects rated the same performance on both the leg and the arm

motions and one subject preferred the leg motion demonstration to the arm motions. All of

the subjects had again a common approach in that the vocal explanations besides the visual

demonstrations make the perception of the gestures easier.

5.3.4. The Gesture Replication Performances of the Subjects in the Exercise Interven-

tions

The numerical evaluations of the replication performances of the subjects of the first,

second and third user studies are shown in the Tables 5.8, 5.9 and 5.10 respectively. The

mean and standard deviation over the absolute differences in the angle values of the human

demonstrator and the subject for gesture identifier joints per frame are calculated for each

exercise motion the subject performs. The results are assessed for each subject separately.

Note that, due to some technical problems during the exercise intervention of the third user

study, we could not record the skeleton data of one the subjects and evaluated the remaining

three subjects.

The overall replication performance of the young subjects are relatively higher than

the subjects of the second and third user group. According to our observations, the elderly

people have some difficulties in performing the exercise motions due to their physical inabil-

ities. Hence, worse replication performance compared to the first and third group of subjects

is reasonable. The third group has nearly the same results with the elderly subjects of the

nursing home except the second subject although our expectation was to obtain better results
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Table 5.7. The user evaluation results of the third group of subjects.

Interaction

Component Mean Standard Deviation Scale

Enjoyableness 7.6 1.00 1-10

Usefulness 8.8 0.99 1-10

Robot

Component Mean Standard Deviation Scale

Companionship 7.25 2.7 1-10

Intelligence 8.5 2.38 1-10

Helpfulness 6.00 3.60 1-10

Social Attraction 4.81 3.31 1-7

Social Presence 5.62 2.81 1-10

As Exercise Partner 5.06 4.69 1-10

Demonstration Performance of Robot

Component Mean Standard Deviation Scale

Visual Demonstration Performance 7.66 2.51 1-10

Vocal Explanation Performance 8.25 2.36 1-10

Providing Feedback Performance 1.0 0.0 1-3
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Figure 5.6. The subjects of the third user group are replicating the robot.
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compared to the second group, since this group of subjects are relatively younger and ca-

pable of demonstrating all motions physically. However, the subjects had no prior domain

knowledge on exercising and this may cause them directly replicating the robot for all mo-

tions. Since the robot performance shows differences for the motions which can be done

partially, the final difference in the way of performing exercise of the subjects and the human

demonstrator are higher than the first group of subjects and similar to the second group.

Since the skeleton tracking performance of the OpenNI software is not satisfactory

for the postures other than the standing pose due to camera noise, we could not record the

skeleton data of the subjects for the leg motions performed in the sitting pose in the second

and the third user studies. Hence, we can not compare the replication performance of the

upper body and lower body motions for these groups. For the first user study, we were able

to test the leg motions in the standing pose with the young subjects. However, the results

show that there is no significant difference in the replication performance of the arm and the

leg gestures.

Another interesting finding in the experimental results of the elderly people is that

the replication performance increases through the exercise session. Although the left side

lumber stretching and the right side lumber stretching gestures are the same, all subjects

replicated the second repetition of the gesture (stretching to the right side) more successfully.

This shows that the recognition of the robot’s physical structure and its way of motion may

affect the replication performance. More promising results can be obtained with an increased

number of user studies with the same subjects.
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Table 5.8. The mean of absolute differences between the joint angles of the human demon-

strator and the subject of first user study.

Chest stretch-

ing 2 (Mean ±

Std. Dev.)

Upper arm

stretching

(Mean± Std.

Dev.)

Back

strength

(Mean± Std.

Dev.)

Hip side

extension

(Mean± Std.

Dev.)

Hip exten-

sion (Mean

± Std. Dev.)

Subject 1 0.122 ± 0.122 0.156± 0.147 0.101± 0.071 0.097± 0.054 0.082± 0.092

Subject 2 0.113 ± 0.115 0.220± 0.136 0.270± 0.037 0.062± 0.081 0.119± 0.435

Subject 3 0.099 ± 0.109 0.157± 0.143 0.148± 0.049 0.071± 0.059 0.143± 0.141

Subject 4 0.097 ± 0.123 0.196± 0.189 0.129± 0.069 0.109± 0.063 0.181± 0.128

Subject 5 0.111 ± 0.108 0.132± 0.101 0.081± 0.072 0.085± 0.037 0.090± 0.087

Subject 6 0.112 ± 0.109 0.171± 0.133 0.268± 0.092 0.057± 0.059 0.104± 0.307

Subject 7 0.101 ± 0.142 0.135± 0.096 0.189± 0.052 0.101± 0.050 0.069± 0.320

Subject 8 0.094 ± 0.174 0.145± 0.145 0.105± 0.060 0.070± 0.040 0.100± 0.077

Subject 9 0.093 ± 0.151 0.132± 0.071 0.074± 0.048 0.111± 0.031 0.048± 0.038

Table 5.9. The mean of absolute differences between the joint angles of the human demon-

strator and the subject of second user study.

Left side lum-

ber stretching

(Mean ± Std.

Dev.)

Right side lum-

ber stretching

(Mean ± Std.

Dev.)

Back

strength

(Mean± Std.

Dev.)

Upper arm

stretching

(Mean± Std.

Dev.)

Subject 1 0.363 ± 0.380 0.185 ± 0.195 0.262± 0.288 0.102± 0.057

Subject 2 0.383 ± 0.354 0.171 ± 0.172 0.275± 0.272 0.118± 0.061

Subject 3 0.421 ± 0.420 0.194 ± 0.197 0.264± 0.301 0.119± 0.091

Subject 4 0.394 ± 0.382 0.196 ± 0.225 0.289± 0.286 0.055± 0.124

Subject 5 0.381 ± 0.370 0.175 ± 0.206 0.250± 0.281 0.054± 0.078

Subject 6 0.361 ± 0.353 0.168 ± 0.191 0.264± 0.259 0.106± 0.080
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Table 5.10. The mean of absolute differences between the joint angles of the human demon-

strator and the subject of third user study.

Left side lum-

ber stretching

(Mean ± Std.

Dev.)

Right side lum-

ber stretching

(Mean ± Std.

Dev.)

Back

strength

(Mean± Std.

Dev.)

Upper arm

stretching

(Mean± Std.

Dev.)

Subject 1 0.317 ± 0.411 0.160 ± 0.203 0.242± 0.360 0.136± 0.081

Subject 2 0.269 ± 0.333 0.329 ± 0.183 0.146± 0.188 0.106± 0.037

Subject 3 0.363 ± 0.307 0.133 ± 0.156 0.251± 0.194 0.120± 0.023
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6. CONCLUSION

Most assistive robotics research focuses on helping the elderly to perform daily tasks

more easily (like intelligent wheelchairs or easily operated robotic arms), or to monitor the

elderly to ensure their safety and well-being. Yet robotic solutions for improving the physical

condition of the elderly can be very useful. We describe a method to teach a humanoid robot

to perform physical exercises for the purpose of implementing a robotic physical exercise

coach. We have observed an actual training program running in an elderly care facility, and

provided a taxonomy of exercises. Our initial results reveal that one third of these exercises

can be easily performed by the robot, one third can be partially performed, and one third

requires some additional tricks to overcome the physical limitations in the robot. We use

audio feedback to deal with these cases in particular.

We have compared the success of the robot in providing coaching by letting different

groups of subjects observe either a human coach or the robot. The system then converts the

performed gestures of the subjects into a skeleton representation, and compares joint angles

to the ground truth (i.e. the angle representation of the human coach) to compare the two

demonstration methods.

We have carried out three experimental studies with three different user groups which

are young subjects, elderly people who reside in the nursing home and a small middle aged

population who have never experienced an exercise activity during their lifetimes. The young

subjects found the movements of the robot too slow and recommended to speed up the ex-

ercise motions. They also stated that the system is interesting and enjoyable. The subjects

of the second group with an average age of 75 were the residents of the nursing home who

attend the exercise sessions held in the nursing home three times in a week. According to the

our observations and tracking results, the subjects were able to replicate the exercise motions

with the robot successfully. However, the four subjects were bored and uninterested to the

system after the exercise intervention. They stated that the robot lacks of sufficient social

aspects to motivate them to exercise with a robot. The childish appearance of our robot may

prevent them to take it seriously. Moreover, we beheld that as the subjects get older their
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interest in the system also increases. The eldest two subjects enjoyed the system and said

that they can benefit from such a system for exercising in their room without waiting for the

collective exercise sessions held in the nursing home. For the third group of subjects, the

important outcome is that the domain knowledge in exercise activities affects the perception

of the exercise motions performed by the robot. They performed the motions in the same

way as the robot does which causes incorrect replications of the motions the robot can per-

form partially. On the contrary, the subjects of the other two groups were not affected this

mismatch. This group of users also find the system useful. The reason behind this may be

that they have not had an opportunity to attend such an ongoing exercise activity which may

be an alternative to our system.

A proper assessment of an elderly assistance scenario requires monitoring of the el-

derly over long periods of interaction, as well as follow-up assessments, typically spanning

one or two years of observations in total to get a thorough understanding of the physical

implications [75]. We work with an elderly care facility, where the robotic fitness coach

was warmly received by the inhabitants. Our plans for near future include enriching the

robotic system with various social abilities and assessing interaction aspects for perceived

usefulness, perceived ease of use, and for variables that relate to social interaction [47].

6.1. Contributions

We can list our contributions to the literature of fitness coach robot systems as follows:

• None of the currently developed system adopts a learning mechanism for exercise mo-

tions. They require preset joint angle values which can be inconvenient for each new

gesture added to the exercise session. We develop a system which allows us to teach

new gestures by demonstration. Hence, the motions are closer to the human’s than

the designed ones considering directly the embodiment of the robot. We investigate

the perception shortcomings of these exercise motions which can not be performed

as observed by the human demonstrator due to the inabilities of the robot. We inte-

grate feedback mechanism and vocal explanations to fill the gap originated from the

inabilities of the robotic system.
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• We form a list which contains a number of senior exercise motions with their descrip-

tions. A feasibility study on realizing these gestures on the Nao robot is also carried

out and the results are included in the form. These gestures are selected from the exer-

cise sessions held in a nursing home so our system is convenient to create a real world

scenario.

• We also evaluate our system with the elderly residents of a nursing home who attend

the exercise sessions which are supervised by a physiotherapist. We consult the phys-

iotherapist for the motions which should be performed in a short exercise intervention

in order to converge our experimental studies to a real world scenario.

• We have written two conference papers, one was presented and published [76] and the

other one is accepted to be presented and will be published in the proceedings [77].

6.2. Future Work

As a future work, we aim to develop a robot with further cognition capabilities. Gesture

recognition plays significant role in order to make the imitations more robust and smooth.

Developmental learning can also be consulted if the robot can extract and identify motion

primitives of the gesture performed by the human demonstrator. A set of primitive motions

can be composed from the existing ones and new primitives can be added to this set as they

are recognized from new posture sequences of the demonstrator. Gesture recognition also

allows to compose text messages autonomously which is used to explain the gesture verbally.

Feedback mechanism can be developed to give feedbacks not only considering the last

posture of the motion but also whole joint sequences which compose the motion. Cognition

of intention of the user during exercise session and avoidance from extensive verbal feed-

backs which may result in annoyed subjects are also another future challenges which are

planned to realize in the project.

We did not put human-robot interaction performance of the robot in our central focus

for this project. On the other hand, social abilities of robot affect his perception as an exercise

coach which in turn changes the perceived usefulness of the system. In order to analyze the

success of the system in making the subject imitate the gestures correctly and motivate on
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exercising, HRI factors which may prevents the subject to benefit from the system as it should

be, should be considered and implemented in the system.

We plan to continue our user studies in five different sections in order to control the

effects of various hidden factors on the performance of the system. The scenarios considered

are as follows:

• The elderly is observed when he exercises with a human exercise coach. This study is

required in order to determine on the physical capabilities of the elderly. The perfor-

mance of the system should be evaluated upon this base.

• The Nao robot guide the elderly only providing vocal commands to explain the ges-

tures. No visual performance is realized. This study is required to analysis the effect

of providing vocal commands besides visual demonstrations on the perception of ges-

tures.

• The Nao robot performs gestures besides providing vocal commands.

• The system is controlled remotely by applying the Wizard of Oz methodology. This

study may be helpful to compare the autonomous robot to its best performing, interac-

tive version.

• The virtual Nao robot displayed on a screen is used as an exercise coach. This study is

required to measure the effect of the physical embodiment on the overall performance

of the system.
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APPENDIX A: KINEMATIC MODEL OF THE NAO HUMANOID

ROBOT

A.1. Joint Information of the Nao Humanoid Robot

Table A.1. Joint limits of the Nao robot.

Part Joint Name Range (in radians)

Head
HeadYaw [-2.08 , 2.08]

HeadPitch [-0.67 , 0.51]

Left Arm

LShoulderPitch [-2.08 , 2.08]

LShoulderRoll [-0.31 , 1.32]

LElbowYaw [-2.08 , 2.08]

LElbowRoll [-1.54 , -0.03]

LWristYaw [-1.82 , 1.82]

Left Leg

LHipYawPitch [-1.14 , 0.74]

LHipRoll [-0.37 , 0.79]

LHipPitch [-1.77 , 0.48]

LKneePitch [-0.09 , 2.11]

LAnklePitch [-1.18 , 0.92]

LAnkleRoll [-0.39 , 0.76]

Right Arm

RShoulderPitch [-2.08 , 2.08]

RShoulderRoll [-1.32 , 0.31]

RElbowYaw [-2.08 , 2.08]

RElbowRoll [0.03 , 1.54]

RWristYaw [-1.82 , 1.82]

Right Leg

RHipYawPitch [-1.14 , 0.74]

RHipRoll [-0.73 , 0.41]

RHipPitch [-1.77 , 0.48]

RKneePitch [-0.10 , 2.12]

RAnklePitch [-1.18 , 0.93]

RAnkleRoll [-0.78 , 0.38]
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Table A.2. DH parameters for the left arm of the Nao robot.

i αi ai θi di

1 -π/2 0 β1 L1

2 π/2 0 π/2+β2 0

3 π/2 0 π+β3 L1

4 -π/2 0 β4 0

A.2. Forward Kinematics for the Nao Humanoid Robot

A.2.1. DH Parameters for the Left Arm of the Nao Humanoid Robot

DH parameters for the left arm of Nao are shown in Table A.2 and transformation

matrix from the base coordinate system to that of the end effector is as follows:

NaoT =


T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

0 0 0 1

 (A.1)

T11 = cos(β4)×cos(β1)×sin(β2)×cos(β3)−cos(β4)×sin(β1)×sin(β3)−cos(β1)×

cos(β2)× sin(β4)

T12 = −sin(β4) × cos(β1) × sin(β2) × cos(β3) + sin(β4) × sin(β1) × sin(β3) −

cos(β1)× cos(β2)× cos(β4)

T13 = −cos(β1)× sin(β2)× sin(β3)− sin(β1)× cos(β3)

T14 = cos(β1)× cos(β2)× L1
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T21 = −cos(β2)× cos(β3)× cos(β4)− sin(β2)× sin(β4)

T22 = cos(β2)× cos(β3)× sin(β4)− sin(β2)× cos(β4)

T23 = cos(β2)× sin(β3)

T24 = sin(β2)× L1

T31 = −cos(β4) × sin(β1) × sin(β2) × cos(β3) − cos(β4) × cos(β1) × sin(β3) +

sin(β1)× cos(β2)× sin(β4)

T32 = sin(β4)×sin(β1)×sin(β2)×cos(β3)+sin(β4)×cos(β1)×sin(β3)+sin(β1)×

cos(β2)× cos(β4)

T33 = sin(β1)× sin(β2)× sin(β3)− cos(β1)× cos(β3)

T34 = −sin(β1)× cos(β2)× L1

β1 = LeftShoulderP itch, β2 = LeftShoulderRoll, β3 = LeftElbowY aw, β4 =

LeftElbowRoll, L1 = UpperArmLength

A.2.2. DH Parameters for the Left Leg of the Nao Humanoid Robot

Table A.3. DH parameters for the left leg of the Nao robot.

i αi ai θi di

1 -3π
4

0 β1 − π/2 0

2 π/2 0 β2 0

3 −π/2 0 β3+π/4 0

4 0 0 β4 -L1

5 0 0 β5 -L2

6 -π/2 0 β6 0

7 0 0 0 -L3
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DH parameters of the left leg of Nao are also shown in Table A.3 and transformation

matrix from the base coordinate system to that of the end effector is as follows:

NaoT =


T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

0 0 0 1

 (A.2)

T11 = −cos(β6)×cos(β5)×cos(β4)×cos(β3)×cos(β1)×sin(β2)−1/2×cos(β6)×

cos(β5)×cos(β4)×cos(β3)×sin(β1)×cos(β2)×21/2−1/2×cos(β6)×cos(β5)×cos(β4)×

sin(β1)×21/2×sin(β3)−cos(β6)×cos(β5)×sin(β4)×cos(β1)×cos(β2)+1/2×cos(β6)×

cos(β5)× sin(β4)× sin(β1)× sin(β2)× 21/2 + cos(β6)× sin(β5)× sin(β4)× cos(β3)×

cos(β1)× sin(β2) + 1/2× cos(β6)× sin(β5)× sin(β4)× cos(β3)× sin(β1)× cos(β2)×

21/2 + 1/2× cos(β6)× sin(β5)× sin(β4)× sin(β1)×21/2× sin(β3)− cos(β6)× sin(β5)×

cos(β4)×cos(β1)×cos(β2)+1/2×cos(β6)×sin(β5)×cos(β4)×sin(β1)×sin(β2)×21/2+

sin(β6)× sin(β3)× cos(β1)× sin(β2) + 1/2× sin(β6)× sin(β3)× sin(β1)× cos(β2)×

21/2 − 1/2× sin(β6)× sin(β1)× 21/2 × cos(β3)

T12 = sin(β5)× cos(β4)× cos(β3)× cos(β1)× sin(β2) + 1/2× sin(β5)× cos(β4)×

cos(β3)× sin(β1)× cos(β2)× 21/2 + 1/2× sin(β5)× cos(β4)× sin(β1)× 21/2× sin(β3) +

sin(β5)× sin(β4)× cos(β1)× cos(β2)− 1/2× sin(β5)× sin(β4)× sin(β1)× sin(β2)×

21/2+cos(β5)×sin(β4)×cos(β3)×cos(β1)×sin(β2)+1/2×cos(β5)×sin(β4)×cos(β3)×

sin(β1)× cos(β2)×21/2 + 1/2× cos(β5)× sin(β4)× sin(β1)×21/2× sin(β3)− cos(β5)×

cos(β4)× cos(β1)× cos(β2) + 1/2× cos(β5)× cos(β4)× sin(β1)× sin(β2)× 21/2

T13 = −sin(β6)×cos(β5)×cos(β4)×cos(β3)×cos(β1)×sin(β2)−1/2×sin(β6)×

cos(β5)×cos(β4)×cos(β3)×sin(β1)×cos(β2)×21/2−1/2×sin(β6)×cos(β5)×cos(β4)×

sin(β1)×21/2×sin(β3)−sin(β6)×cos(β5)×sin(β4)×cos(β1)×cos(β2)+1/2×sin(β6)×

cos(β5)× sin(β4)× sin(β1)× sin(β2)× 21/2 + sin(β6)× sin(β5)× sin(β4)× cos(β3)×
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cos(β1)× sin(β2) + 1/2× sin(β6)× sin(β5)× sin(β4)× cos(β3)× sin(β1)× cos(β2)×

21/2 + 1/2× sin(β6)× sin(β5)× sin(β4)× sin(β1)×21/2× sin(β3)− sin(β6)× sin(β5)×

cos(β4)×cos(β1)×cos(β2)+1/2×sin(β6)×sin(β5)×cos(β4)×sin(β1)×sin(β2)×21/2−

cos(β6)× sin(β3)× cos(β1)× sin(β2)− 1/2× cos(β6)× sin(β3)× sin(β1)× cos(β2)×

21/2 + 1/2× cos(β6)× sin(β1)× 21/2 × cos(β3)

T14 = −L3×cos(β6)×cos(β5)×cos(β4)×cos(β3)×cos(β1)×sin(β2)−1/2×L3×

cos(β6)× cos(β5)× cos(β4)× cos(β3)× sin(β1)× cos(β2)× 21/2− 1/2×L3× cos(β6)×

cos(β5)×cos(β4)×sin(β1)×21/2×sin(β3)−L3×cos(β6)×cos(β5)×sin(β4)×cos(β1)×

cos(β2)+1/2×L3×cos(β6)×cos(β5)×sin(β4)×sin(β1)×sin(β2)×21/2+L3×cos(β6)×

sin(β5)×sin(β4)×cos(β3)×cos(β1)×sin(β2)+1/2×L3×cos(β6)×sin(β5)×sin(β4)×

cos(β3)×sin(β1)×cos(β2)×21/2+1/2 timesL3×cos(β6)×sin(β5)×sin(β4)×sin(β1)×

21/2×sin(β3)−L3×cos(β6)×sin(β5)×cos(β4)×cos(β1)×cos(β2)+1/2×L3×cos(β6)×

sin(β5)×cos(β4)×sin(β1)×sin(β2)×21/2+L3×sin(β6)×sin(β3)×cos(β1)×sin(β2)+

1/2×L3× sin(β6)× sin(β3)× sin(β1)× cos(β2)×21/2−1/2×L3× sin(β6)× sin(β1)×

21/2×cos(β3)−L2×cos(β4)×cos(β3)×cos(β1)×sin(β2)−1/2×L2×cos(β4)×cos(β3)×

sin(β1)× cos(β2)×21/2−1/2×L2× cos(β4)× sin(β1)×21/2× sin(β3)−L2× sin(β4)×

cos(β1)×cos(β2)+1/2×L2×sin(β4)×sin(β1)×sin(β2)×21/2−L1×cos(β3)×cos(β1)×

sin(β2)−1/2×L1×cos(β3)×sin(β1)×cos(β2)×21/2−1/2×L1×sin(β1)×21/2×sin(β3)

T21 = 1/2×cos(β6)×cos(β5)×cos(β4)×cos(β3)×sin(β1)×sin(β2)×21/2−1/2×

cos(β6)× cos(β5)× cos(β4)× cos(β3)× cos(β1)× cos(β2) + 1/2× cos(β6)× cos(β5)×

cos(β4)×cos(β3)×cos(β2)−1/2×cos(β6)×cos(β5)×cos(β4)×sin(β3)−1/2×cos(β6)×

cos(β5)× cos(β4)× sin(β3)× cos(β1) + 1/2× cos(β6)× cos(β5)× sin(β4)× sin(β1)×

cos(β2)× 21/2 + 1/2× cos(β6)× cos(β5)× sin(β4)× cos(β1)× sin(β2)− 1/2× cos(β6)×

cos(β5)×sin(β4)×sin(β2)−1/2×cos(β6)×sin(β5)×sin(β4) timescos(β3)×sin(β1)×

sin(β2)× 21/2 + 1/2× cos(β6)× sin(β5)× sin(β4)× cos(β3)× cos(β1)× cos(β2)− 1/2×

cos(β6)× sin(β5)× sin(β4)× cos(β3)× cos(β2) + 1/2× cos(β6)× sin(β5)× sin(β4)×

sin(β3)+1/2×cos(β6)×sin(β5)×sin(β4)×sin(β3)×cos(β1)+1/2×cos(β6)×sin(β5)×

cos(β4)×sin(β1)×cos(β2)×21/2+1/2×cos(β6)×sin(β5)×cos(β4)×cos(β1)×sin(β2)−

1/2×cos(β6)×sin(β5)×cos(β4)×sin(β2)−1/2×sin(β6)×sin(β3)×sin(β1)×sin(β2)×

21/2 + 1/2× sin(β6)× sin(β3)× cos(β1)× cos(β2)− 1/2× sin(β6)× sin(β3)× cos(β2)−
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1/2× sin(β6)× cos(β3)− 1/2× sin(β6)× cos(β3)× cos(β1)

T22 = −1/2 × sin(β5) × cos(β4) × cos(β3) × sin(β1) × sin(β2) × 21/2 + 1/2 ×

sin(β5)× cos(β4)× cos(β3)× cos(β1)× cos(β2)− 1/2× sin(β5)× cos(β4)× cos(β3)×

cos(β2)+1/2×sin(β5)×cos(β4)×sin(β3)+1/2×sin(β5)×cos(β4)×sin(β3)×cos(β1)−

1/2× sin(β5)× sin(β4)× sin(β1)× cos(β2)× 21/2− 1/2× sin(β5)× sin(β4)× cos(β1)×

sin(β2)+1/2×sin(β5)×sin(β4)×sin(β2)−1/2×cos(β5)×sin(β4)×cos(β3)×sin(β1)×

sin(β2)× 21/2 + 1/2× cos(β5)× sin(β4)× cos(β3)× cos(β1)× cos(β2)− 1/2× cos(β5)×

sin(β4)×cos(β3)×cos(β2)+1/2×cos(β5)×sin(β4)×sin(β3)+1/2×cos(β5)×sin(β4)×

sin(β3)× cos(β1) + 1/2× cos(β5)× cos(β4)× sin(β1)× cos(β2)× 21/2 + 1/2× cos(β5)×

cos(β4)× cos(β1)× sin(β2)− 1/2× cos(β5)× cos(β4)× sin(β2)

T23 = 1/2×sin(β6)×cos(β5)×cos(β4)×cos(β3)×sin(β1)×sin(β2)×21/2−1/2×

sin(β6)× cos(β5)× cos(β4)× cos(β3)× cos(β1)× cos(β2) + 1/2× sin(β6)× cos(β5)×

cos(β4)×cos(β3)×cos(β2)−1/2×sin(β6)×cos(β5)×cos(β4)×sin(β3)−1/2×sin(β6)×

cos(β5)× cos(β4)× sin(β3)× cos(β1) + 1/2× sin(β6)× cos(β5)× sin(β4)× sin(β1)×

cos(β2)× 21/2 + 1/2× sin(β6)× cos(β5)× sin(β4)× cos(β1)× sin(β2)− 1/2× sin(β6)×

cos(β5)×sin(β4)×sin(β2)−1/2×sin(β6)×sin(β5)×sin(β4) timescos(β3)×sin(β1)×

sin(β2)× 21/2 + 1/2× sin(β6)× sin(β5)× sin(β4)× cos(β3)× cos(β1)× cos(β2)− 1/2×

sin(β6)× sin(β5)× sin(β4)× cos(β3)× cos(β2) + 1/2× sin(β6)× sin(β5)× sin(β4)×

sin(β3)+1/2×sin(β6)×sin(β5)×sin(β4)×sin(β3)×cos(β1)+1/2×sin(β6)×sin(β5)×

cos(β4)×sin(β1)×cos(β2)×21/2+1/2×sin(β6)×sin(β5)×cos(β4)×cos(β1)×sin(β2)−

1/2×sin(β6)×sin(β5)×cos(β4)×sin(β2)+1/2×cos(β6)×sin(β3)×sin(β1)×sin(β2)×

21/2− 1/2× cos(β6)× sin(β3)× cos(β1)× cos(β2) + 1/2× cos(β6)× sin(β3)× cos(β2) +

1/2× cos(β6)× cos(β3) + 1/2× cos(β6)× cos(β3)× cos(β1)

T24 = −1/2×L1× sin(β3)× cos(β1)− 1/2×L3× sin(β6)× cos(β3) + 1/2×L1×

cos(β3)×cos(β2)−1/2×L2×sin(β4)×sin(β2)+1/2×L2×sin(β4)×sin(β1)×cos(β2)×

21/2 + 1/2× L1 × cos(β3)× sin(β1)× sin(β2)× 21/2 − 1/2× L3 × cos(β6)× sin(β5)×

sin(β4)× cos(β3)× sin(β1)× sin(β2)× 21/2 + 1/2×L3× cos(β6)× sin(β5)× sin(β4)×

cos(β3)×cos(β1)×cos(β2)−1/2×L3×cos(β6)×sin(β5)×sin(β4)×cos(β3)×cos(β2)+

1/2×L3×cos(β6)×sin(β5)×sin(β4)×sin(β3)+1/2×L3×cos(β6)×sin(β5)×sin(β4)×
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sin(β3)× cos(β1) + 1/2×L3× cos(β6)× sin(β5)× cos(β4)× sin(β1)× cos(β2)× 21/2 +

1/2×L3×cos(β6)×sin(β5)×cos(β4)×cos(β1)×sin(β2)−1/2×L3×cos(β6)×sin(β5)×

cos(β4)× sin(β2)−1/2×L3× sin(β6)× sin(β3)× sin(β1)× sin(β2)×21/2 + 1/2×L3×

sin(β6)×sin(β3)×cos(β1)×cos(β2)+1/2×L2×cos(β4)×cos(β3)×sin(β1)×sin(β2)×

21/2− 1/2×L2× cos(β4)× cos(β3)× cos(β1)× cos(β2) + 1/2×L3× cos(β6)× cos(β5)×

cos(β4)× cos(β3)× sin(β1)× sin(β2)× 21/2− 1/2×L3× cos(β6)× cos(β5)× cos(β4)×

cos(β3)×cos(β1)×cos(β2)+1/2×L3×cos(β6)×cos(β5)×cos(β4)×cos(β3)×cos(β2)−

1/2 × L3 × cos(β6) × cos(β5) × cos(β4) × sin(β3) − 1/2 × L1 × sin(β3) − 1/2 × L3 ×

cos(β6)×cos(β5)×cos(β4)×sin(β3)×cos(β1)+1/2×L3×cos(β6)×cos(β5)×sin(β4)×

sin(β1)× cos(β2)× 21/2 + 1/2×L3× cos(β6)× cos(β5)× sin(β4)× cos(β1)× sin(β2)−

1/2× L3 × cos(β6)× cos(β5)× sin(β4)× sin(β2)− 1/2× L3 × sin(β6) timessin(β3)×

cos(β2)−1/2×L3×sin(β6)×cos(β3)×cos(β1)+1/2×L2×cos(β4)×cos(β3)×cos(β2)−

1/2×L2× cos(β4)× sin(β3)× cos(β1) + 1/2×L2× sin(β4)× cos(β1)× sin(β2)− 1/2×

L1 × cos(β3)× cos(β1)× cos(β2)− 1/2× L2 × cos(β4)× sin(β3)

T31 = 1/2×cos(β6)×cos(β5)×cos(β4)×cos(β3)×sin(β1)×sin(β2)×21/2−1/2×

cos(β6)× cos(β5)× cos(β4)× cos(β3)× cos(β1)× cos(β2)− 1/2× cos(β6)× cos(β5)×

cos(β4)×cos(β3)×cos(β2)+1/2×cos(β6)×cos(β5)×cos(β4)×sin(β3)−1/2×cos(β6)×

cos(β5)× cos(β4)× sin(β3)× cos(β1) + 1/2× cos(β6)× cos(β5)× sin(β4)× sin(β1)×

cos(β2)× 21/2 + 1/2× cos(β6)× cos(β5)× sin(β4)× cos(β1)× sin(β2) + 1/2× cos(β6)×

cos(β5)×sin(β4)×sin(β2)−1/2×cos(β6)×sin(β5)×sin(β4) timescos(β3)×sin(β1)×

sin(β2)× 21/2 + 1/2× cos(β6)× sin(β5)× sin(β4)× cos(β3)× cos(β1)× cos(β2) + 1/2×

cos(β6)× sin(β5)× sin(β4)× cos(β3)× cos(β2)− 1/2× cos(β6)× sin(β5)× sin(β4)×

sin(β3)+1/2×cos(β6)×sin(β5)×sin(β4)×sin(β3)×cos(β1)+1/2×cos(β6)×sin(β5)×

cos(β4)×sin(β1)×cos(β2)×21/2+1/2×cos(β6)×sin(β5)×cos(β4)×cos(β1)×sin(β2)+

1/2×cos(β6)×sin(β5)×cos(β4)×sin(β2)−1/2×sin(β6)×sin(β3)×sin(β1)×sin(β2)×

21/2 + 1/2× sin(β6)× sin(β3)× cos(β1)× cos(β2) + 1/2× sin(β6)× sin(β3)× cos(β2) +

1/2× sin(β6)× cos(β3)− 1/2× sin(β6)× cos(β3)× cos(β1)

T32 = −1/2 × sin(β5) × cos(β4) × cos(β3) × sin(β1) × sin(β2) × 21/2 + 1/2 ×

sin(β5)× cos(β4)× cos(β3)× cos(β1)× cos(β2) + 1/2× sin(β5)× cos(β4)× cos(β3)×

cos(β2)−1/2×sin(β5)×cos(β4)×sin(β3)+1/2×sin(β5)×cos(β4)×sin(β3)×cos(β1)−
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1/2× sin(β5)× sin(β4)× sin(β1)× cos(β2)× 21/2− 1/2× sin(β5)× sin(β4)× cos(β1)×

sin(β2)−1/2×sin(β5)×sin(β4)×sin(β2)−1/2×cos(β5)×sin(β4)×cos(β3)×sin(β1)×

sin(β2)× 21/2 + 1/2× cos(β5)× sin(β4)× cos(β3)× cos(β1)× cos(β2) + 1/2× cos(β5)×

sin(β4)×cos(β3)×cos(β2)−1/2×cos(β5)×sin(β4)×sin(β3)+1/2×cos(β5)×sin(β4)×

sin(β3)× cos(β1) + 1/2× cos(β5)× cos(β4)× sin(β1)× cos(β2)× 21/2 + 1/2× cos(β5)×

cos(β4)× cos(β1)× sin(β2) + 1/2× cos(β5)× cos(β4)× sin(β2

T33 = 1/2×sin(β6)×cos(β5)×cos(β4)×cos(β3)×sin(β1)×sin(β2)×21/2−1/2×

sin(β6)× cos(β5)× cos(β4)× cos(β3)× cos(β1)× cos(β2)− 1/2× sin(β6)× cos(β5)×

cos(β4)×cos(β3)×cos(β2)+1/2×sin(β6)×cos(β5)×cos(β4)×sin(β3)−1/2×sin(β6)×

cos(β5)× cos(β4)× sin(β3)× cos(β1) + 1/2× sin(β6)× cos(β5)× sin(β4)× sin(β1)×

cos(β2)× 21/2 + 1/2× sin(β6)× cos(β5)× sin(β4)× cos(β1)× sin(β2) + 1/2× sin(β6)×

cos(β5)×sin(β4)×sin(β2)−1/2×sin(β6)×sin(β5)×sin(β4) timescos(β3)×sin(β1)×

sin(β2)× 21/2 + 1/2× sin(β6)× sin(β5)× sin(β4)× cos(β3)× cos(β1)× cos(β2) + 1/2×

sin(β6)× sin(β5)× sin(β4)× cos(β3)× cos(β2)− 1/2× sin(β6)× sin(β5)× sin(β4)×

sin(β3)+1/2×sin(β6)×sin(β5)×sin(β4)×sin(β3)×cos(β1)+1/2×sin(β6)×sin(β5)×

cos(β4)×sin(β1)×cos(β2)×21/2+1/2×sin(β6)×sin(β5)×cos(β4)×cos(β1)×sin(β2)+

1/2×sin(β6)×sin(β5)×cos(β4)×sin(β2)+1/2×cos(β6)×sin(β3)×sin(β1)×sin(β2)×

21/2− 1/2× cos(β6)× sin(β3)× cos(β1)× cos(β2)− 1/2× cos(β6)× sin(β3)× cos(β2)−

1/2× cos(β6)× cos(β3) + 1/2× cos(β6)× cos(β3)× cos(β1)

T34 = −1/2 × L1 × sin(β3) × cos(β1) + 1/2 × L3 × sin(β6) × cos(β3) − 1/2 ×

L1× cos(β3)× cos(β2) + 1/2×L2× sin(β4)× sin(β2) + 1/2×L2× sin(β4)× sin(β1)×

cos(β2)× 21/2 + 1/2× L1 × cos(β3)× sin(β1)× sin(β2)× 21/2 − 1/2× L3 × cos(β6)×

sin(β5)× sin(β4)× cos(β3)× sin(β1)× sin(β2)× 21/2 + 1/2×L3× cos(β6)× sin(β5)×

sin(β4)×cos(β3)×cos(β1)×cos(β2)+1/2×L3×cos(β6)×sin(β5)×sin(β4)×cos(β3)×

cos(β2)−1/2×L3×cos(β6)×sin(β5)×sin(β4)×sin(β3)+1/2×L3×cos(β6)×sin(β5)×

sin(β4)×sin(β3)×cos(β1)+1/2×L3×cos(β6)×sin(β5)×cos(β4)×sin(β1)×cos(β2)×

21/2 + 1/2×L3× cos(β6)× sin(β5)× cos(β4)× cos(β1)× sin(β2) + 1/2×L3× cos(β6)×

sin(β5)× cos(β4)× sin(β2)− 1/2×L3× sin(β6)× sin(β3)× sin(β1)× sin(β2)× 21/2 +

1/2×L3×sin(β6)×sin(β3)×cos(β1)×cos(β2)+1/2×L2×cos(β4)×cos(β3)×sin(β1)×

sin(β2)× 21/2− 1/2×L2× cos(β4)× cos(β3)× cos(β1)× cos(β2) + 1/2×L3× cos(β6)×
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cos(β5) × cos(β4) × cos(β3) × sin(β1)sin(β2) × 21/2 − 1/2 × L3 × cos(β6) × cos(β5) ×

cos(β4)×cos(β3)×cos(β1)×cos(β2)−1/2×L3×cos(β6)×cos(β5)×cos(β4)×cos(β3)×

cos(β2) + 1/2×L3× cos(β6)× cos(β5)× cos(β4)× sin(β3) + 1/2×L1× sin(β3)− 1/2×

L3 × cos(β6)× cos(β5)× cos(β4)× sin(β3)× cos(β1) + 1/2× L3 × cos(β6)× cos(β5)×

sin(β4)× sin(β1)× cos(β2)× 21/2 + 1/2×L3× cos(β6)× cos(β5)× sin(β4)× cos(β1)×

sin(β2)+1/2×L3×cos(β6)×cos(β5)×sin(β4)×sin(β2)+1/2×L3×sin(β6)×sin(β3)×

cos(β2)−1/2×L3×sin(β6)×cos(β3)×cos(β1)−1/2×L2×cos(β4)×cos(β3)×cos(β2)−

1/2×L2× cos(β4)× sin(β3)× cos(β1) + 1/2×L2× sin(β4)× cos(β1)× sin(β2)− 1/2×

L1 × cos(β3)× cos(β1)× cos(β2) + 1/2× L2 × cos(β4)× sin(β3)

β1 = HipY awPitch, β2 = HipPitch, β3 = HipRoll, β4 = KneePitch, β5 =

AnkleP itch, β6 = AnkleRoll, L1 = ThighLength, L2 = TibiaLength, L3 = FootHeight
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APPENDIX B: INFORMED CONSENT FORM USED IN THE

EXPERIMENTS

Table B.1. Informed consent form used in the experiments.

Katılımcı Bilgi ve Onam Formu

Araştırmacıyı destekleyen kurum: Boğaziçi Üniversitesi

Araştırmanın adı: Yaşlı Kişilere Günlük Egzersiz Aktivitelerinde Yardımcı Olacak Egzersiz Eğitmeni Robo-

tunun Geliştirilmesi

Proje Yürütücüsü/Araştırmacının adı: Prof. Dr. H. Levent Akın , Binnur Görer

Adresi: Boğaziçi Üniversitesi, Bilgisayar Mühendisliği ETA37, 34342 Bebek İstanbul

E-mail adresi: akin@boun.edu.tr, binnur.gorer@boun.edu.tr

Telefonu: +90 212 359 7096

Sayın Katılımcı,

Boğaziçi Üniversitesi Bilgisayar Mühendisliği Bölümü öğretim üyesi Prof. Dr. H. Levent Akın’ın

danışmanlığında yürütmekte olduğum yüksek lisans tezi kapsamında yaşlı kişilere günlük egzersiz hareket-

lerinde yardımcı olacak bir egzersiz eğitmeni robotu geliştirmekteyim. Bu çalışmanın amacı yaşlı kimselerin

ikamet ettikleri yerlerde bir insan gözetmenine ihtiyaç duymaksınız günlük egzersiz aktivitelerini bir robot

yardımı ile yapmalarını sağlamaktır. Günlük egzersiz hareketlerinin yaşlı kişilerin kas ve kemik sağlığını ko-

rumasının yanında idrak ve algılama yeteneklerinin de kullanılmasına yarar sağladığı bilinmektedir. Ayrıca

robotun yaşlı kişiye eşlik etmesi yalnız yaşayan bireylerin psikolojik olarak kendilerini iyi hissetmelerini de

sağlayabilmektedir. Bu çalışma ile yukarıda bahsedilen amaçlara uygun olarak geliştirilmeye çalışılan bir robot

egzersiz eğitmeninin performans değerlendirilmesi yapılması istenmektedir.

Bu araştırmaya katılmayı kabul ettiğiniz takdirde robotumuz size bir dizi egzersiz hareketleri gösterip siz-

den onu taklit etmenizi isteyecektir. Hareketi gösterme esnasında sesli olarak da size hareketi anlatacaktır. Bir

hareket bittikten sonra, bir sonraki harekete geçmeden önce size mevcut hareketi doğru ya da yanlış yaptığınızla

ilgili geri bildirimde bulunarak egzersiz hareketini en doğru biçimde tekrar etmenize çalışacaktır. Egzersiz

boyunca robotun sizinle herhangi bir fiziksel teması bulunmayacaktır. Robot belirli bir alanda hareket ede-

cektir, bu açıdan herhangi bir tehlike oluşturmamaktadır. Bir egzersiz dizisinin 20-25 dakikada tamamlanması

düşünülmektedir ve bu seanslar sizin ikamet ettiğiniz yerde gerçekleştirilecektir.
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Table B.1. Informed consent form used in the experiments (cont.).

Egzersiz seansı boyunca robot size geri bildirimlerde bulunabilmek ve sizinle senkronize bir şekilde seansa

devam edebilmek için derinlik algılayıcı kamera ile sizi izleyecektir. Bu kamera ile herhangi bir görüntü alma

ya da kaydetme işlemi yapılmayacaktır. Sadece vücudunuzun duruş pozisyonu ve eklemlerinizin açı değerleri

hesaplanarak kaydedilecek ve sizin hareketi tekrar etmedeki başarınıza göre robotun hareketi gösterme ve anlat-

madaki performansı değerlendirilecektir. Bu kayıtlarda kimlik bilgisi yerine numara kullanılacaktır. Seçilmiş

bazı örnekler kimlik belirtilmeden bilimsel nitelikteki sunumlarda kullanılabilir.

Son olarak, sizden egzersiz seansını ve robotun performansını değerlendirmenizi isteyeceğiz. Bunu herkes için

standart bir hale dönüştürebilmek adına 8 soruluk bir anketimiz olacak. Anketimizin öncesinde sistemimizin

başarısına olan etkisini incelemek adına yaş ve cinsiyet bilgilerinizi de öğrenmek isteyeceğiz.

Bu araştırmaya katılmak tamamen isteğe bağlıdır. Katıldığınız takdirde çalışmanın herhangi biraşamasında

herhangi bir sebep göstermeden onayınızı çekmek hakkına da sahipsiniz. Bu araştırmada sağlığınıza zarar

verecek herhangi bir durumun oluşmayacağını ve şahsi herhangi bir bilginizin kullanılmayacağını hatırlatmak

isteriz. Araştırma projesi hakkında ek bilgi almak istediğiniz takdirde lütfen Boğaziçi Üniversitesi Bilgisayar

Mühendisliği Bölümü Araştırma Görevlisi Binnur Görer ile temasa geçiniz (Telefon: +90 212 359 7096, Adres:

Boğaziçi Üniversitesi, Bilgisayar Mühendisliği Bölümü ETA 37, 34342 Bebek, İstanbul).

Ben, (katılımcının adı) ..................., yukarıdaki metni okudum ve katılmam istenen çalışmanın kapsamını ve

amacını, gönüllü olarak üzerime düşen sorumlulukları tamamen anladım. Çalışma hakkında soru sorma imkanı

buldum. Bu çalışmayı istediğim zaman ve herhangi bir neden belirtmek zorunda kalmadan bırakabileceğimi

ve bıraktığım takdirde herhangi bir ters tutum ile karşılaşmayacağımı anladım.

Bu koşullarda söz konusu araştırmaya kendi isteğimle, hiçbir baskı ve zorlama olmaksızın katılmayı kabul

ediyorum.

Formun bir örneğini aldım / almak istemiyorum (bu durumda araştırmacı bu kopyayı saklar).

Katılımcının Adı-Soyadı:..........................

İmzası:...........................................

Adresi (varsa Telefon No, Fax No):................

Tarih (gün/ay/yıl):...............................

Katılımcının Vasisinin Adı-Soyadı:................

İmzası:...........................................

Tarih (gün/ay/yıl):...............................
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Table B.1. Informed consent form used in the experiments (cont.).

Araştırmacının Adı-Soyadı:........................

İmzası:...........................................

Tarih (gün/ay/yıl):...............................
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APPENDIX C: QUESTIONNAIRES

C.1. Questionnaire Applied in the User Study with Young Subjects

Table C.1. Questionnaire applied in the user study with young subjects.

Egzersiz Robotu Değerlendirme Anketi

Mesleğiniz:

Cinsiyetiniz:

Yaş Aralığınız:

1. Dikkatim dağılmış hissettim. � 1 (doğru değil) - 5 ( doğru)

2. Sıkıldım. � 1 (doğru değil) - 5 ( doğru)

3. Eğlendim. � 1 (doğru değil) - 5 ( doğru)

4. Oldukça konsantre olmuş hissettim. � 1 (doğru değil) - 5 ( doğru)

5. Uygulamanın konusu ile ilgiliydim. � 1 (doğru değil) - 5 ( doğru)

6. Güldürücüydü. � 1 (doğru değil) - 5 ( doğru)

7. Benim için zengin bir deneyim olduğunu düşünüyorum. � 1 (doğru değil) - 5 ( doğru)

8. Zorlayıcı bir görev gibi hissettim. � 1 (doğru değil) - 5 ( doğru)

9. Egzersiz hareketlerini yapmaya teşvik edilmiş hissettim. � 1 (doğru değil) - 5 ( doğru)

10. Seans boyunca çevremle olan bağlantımı oldukça azalttığını hisset-

tim.

� 1 (doğru değil) - 5 ( doğru)

11. Mutlu hissettim. � 1 (doğru değil) - 5 ( doğru)

12. Zihnimde başka şeyler vardı. � 1 (doğru değil) - 5 ( doğru)

13. Kendimi iyi hissettim. � 1 (doğru değil) - 5 ( doğru)

14. Tüm dikkatimi bir şeye yoğunlaştırdığımı düşünüyorum. � 1 (doğru değil) - 5 ( doğru)

15. Dış dünya ile bağlantımı kopardığımı düşünüyorum. � 1 (doğru değil) - 5 ( doğru)

16. Uygulamanın amacı benim için sıkıcıydı. � 1 (doğru değil) - 5 ( doğru)

17. Seans süresince oldukça efor sarfettiğimi düşünüyorum. � 1 (doğru değil) - 5 ( doğru)

18. Estetik açıdan hoşa giden bir yanı vardı. � 1 (doğru değil) - 5 ( doğru)

19. Zor olduğunu düşünüyorum. � 1 (doğru değil) - 5 ( doğru)

20. Uygulamayı yaratıcı buldum. � 1 (doğru değil) - 5 ( doğru)

21. Zamanı çok takip edemedim. � 1 (doğru değil) - 5 ( doğru)

22. Bir şeyler öğrendiğimi hissettim. � 1 (doğru değil) - 5 ( doğru)

23. Yorucu olduğunu düşünüyorum. � 1 (doğru değil) - 5 ( doğru)

24. Memnun oldum. � 1 (doğru değil) - 5 ( doğru)

25. Yeni şeyler keşfettiğimi düşünüyorum. � 1 (doğru değil) - 5 ( doğru)
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C.2. Questionnaire Applied in the User Study with Elderly Subjects

Table C.2. Questionnaire applied in the user study with elderly subjects.

Egzersiz Robotu Değerlendirme Anketi

Adınız:

Yaşınız:

Mesleğiniz:

1. İlk defa mı bir robot görüyorsunuz? Hayırsa daha önce gördüğünüz robotu biraz anlatır mısınız?

(Sizinle iletişime geçebilen bir robot muydu?)

2. Egzersiz seansını ne kadar ...

eğlenceli � 1 (hiç değil) - 10 (oldukça fazla)

ilginç � 1 (hiç değil) - 10 (oldukça fazla)

tatmin edici � 1 (hiç değil) - 10 (oldukça fazla)

sıkıcı � 1 (hiç değil) - 10 (oldukça fazla)

heyecan verici � 1 (hiç değil) - 10 (oldukça fazla)

kullanışlı � 1 (hiç değil) - 10 (oldukça fazla)

faydalı � 1 (hiç değil) - 10 (oldukça fazla)

değerli � 1 (hiç değil) - 10 (oldukça fazla)

buldunuz?

3. Robotu ne kadar ...

sevimli � 1 (hiç değil) - 10 (oldukça fazla)

arkadaşça � 1 (hiç değil) - 10 (oldukça fazla)

sıcak � 1 (hiç değil) - 10 (oldukça fazla)

kendinize yakın � 1 (hiç değil) - 10 (oldukça fazla)

akıllı � 1 (hiç değil) - 10 (oldukça fazla)

kabiliyetli � 1 (hiç değil) - 10 (oldukça fazla)

yardımsever � 1 (hiç değil) - 10 (oldukça fazla)

buldunuz?

4. Böyle bir robot arkadaş ister miydiniz? � 1 (hiç istemem) - 7 (çok isterim)

Robotla iyi vakit geçirebileceğinizi düşünüyor musunuz? � 1 (hiç sanmam) - 7 (kesinlikle)

Kişisel bir iletişim kurabilecek kadar yakın hissettiniz mi? � 1 (hiç sanmam) - 7 (kesinlikle)

Robotla daha çok vakit geçirmek ister miydiniz? � 1 (hiç istemem) - 7 (çok isterim)

5. Robotla iletişim halinde iken onu sosyal bir varlık olarak

düşündünüz mü?

� 1 (hiç sanmam) - 10 (kesinlikle)

Robotun sizinle gerçekten iletişim kurduğunu düşünüyor

musunuz?

� 1 (hiç sanmam) - 10 (kesinlikle)

Robotu ne kadar sosyal buldunuz? � 1 (hiç) - 10 (çok)

Size ne kadar bir makine izlenimi verdi? � 1 (hiç) - 10 (çok)
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Table C.2. Questionnaire applied in the user study with elderly subjects (cont.).

6. Egzersiz hareketlerini robotla yapmaktan hoşlandınız mı? � 1 (hiç sanmam) - 10 (kesinlikle)

Tanıdıklarınıza da tavsiye eder misiniz? Ne kadar? � 1 (hiç sanmam) - 10 (kesinlikle)

Gelecekte bir robot egzersiz eğitmen ile egzersizlerinize de-

vam etmeyi düşünür müsünüz?

� 1 (hiç sanmam) - 10 (kesinlikle)

Robotla egzersiz yaparken kendinizi ne kadar motive olmuş

hissettiniz?

� 1 (hiç) - 10 (çok)

7. Robotun, egzersiz hareketini görsel olarak anlatmadaki

başarısını değerlendiriniz.

� 1 (çok başarısız) - 10 (çok başarılı)

8. Robotun, egzersiz hareketini sesli olarak anlatmadaki

başarısını değerlendiriniz.

� 1 (çok başarısız) - 10 (çok başarılı)

9. Robotun egzersiz hareketini görsel olarak anlatmasının

yanında sesli olarak da açıklamasını da faydalı buldunuz mu?

� Evet - Hayır

10. Robotun kol ve bacak hareket gruplarından hangisini

daha başarılı bir şekilde gösterebildiğini düşünüyorsunuz?

� Kol - Bacak

11. Robotun size verdiği geri bildirimleri ne kadar başarılı

buldunuz?

� 1 (başarısız) - 3 (başarılı)

Bugünkü mutluluk durumunuzu aşağıdaki hangi resimle

ilişkilendirirsiniz?

� 1 - 7
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