
PERFORMANCE EVALUATION OF CLASSIFICATION METHODS FOR

ONLINE ACTIVITY RECOGNITION ON SMART PHONES

by

Mustafa Köse

B.S., Mathematics, Boğaziçi University, 2009

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2012

iii

ACKNOWLEDGEMENTS

First of all, I would like to thank to my thesis coadviser Ozlem Durmaz Incel.

I am appreciative to her for her continuous support, guidance and efforts since the

beginning of this thesis. It was good opportunity for me to work with her during this

process. I am also grateful to my thesis supervisor Prof. Cem Ersoy not only for his

guidance during this thesis, but also for his continuous support since the beginning of

my graduate study. Additionally, I want to thank to Assist. Prof Albert Ali Salah

and Assist. Prof Aysegul Erman Tuysuz for their evaluations and contributions for

this thesis as well. I am also thankful to my family for their love and patience during

my stressful times. I am surely grateful for all my friends’ support, especially for their

effort during test runs. Lastly, Ebru and Elcin; I am grateful for all your continuous

support during my hardest times.

This research is supported by the Turkish State Planning Organization (DPT)

under the TAM Project, number 2007K120610, and by the Bogazici University Re-

search Fund under the grant agreement number “6056”.

iv

ABSTRACT

PERFORMANCE EVALUATION OF CLASSIFICATION

METHODS FOR ONLINE ACTIVITY RECOGNITION ON

SMART PHONES

Human activity recognition using sensory data has become an active field of re-

search in the domain of pervasive and mobile computing. It involves the use of different

sensing technologies to automatically collect and classify user activities for different ap-

plication domains. In fact, smart phones with their sensing capabilities can also be used

as a platform for human activity recognition. Although many studies have been intro-

duced so far, there are few which consider online training and classification of activities

as well as evaluating the online performance of existent classifiers. In this thesis, our

aim is to analyse the performance of different classification methods for online activity

recognition on smart phones using the built-in accelerometers considering important

limitations of the phones, such as battery usage and limited computational power. For

this purpose, we developed a mobile application on Android platform which performs

online classification. We conducted experiments to investigate the performance of the

system under the effect of several important factors including sampling rate and window

size on several Android smart phones. The tests are performed on different subjects

for activities of walking, running, sitting, standing and biking. We evaluated the per-

formance of the activity recognition system using the Naive Bayes classifier, and next

we utilized Clustered KNN and Decision Tree algorithms. According to the results,

Näıve Bayes provides not satisfactory results whereas Clustered KNN gives promising

results compared to the previous studies and even with the ones which consider offline

classification. Additionally, Decision Tree results are also comparable with the results

of Clustered KNN.

v

ÖZET

SINIFLANDIRMA YÖNTEMLERİNİN AKILLI

TELEFONLAR ÜZERİNDE ÇEVRİMİÇİ EYLEM TANIMA

İÇİN BAŞARIM DEĞERLENDİRMESİ

İnsan eylemlerinin görsel ve hareket algılayıcı verileri ile tanınması konusu hareket-

li ve sürekli/yaygın hesaplama alanında çalışılan güncel araştırma konularından biri

olarak yer almaktadır. Bu konu, temel olarak, farklı algılama teknolojileri kullanılarak

insan eylemleri ile ilgili veri toplanmasını ve toplanan veri ile eylemlerin sınıflandı-

rılmasını içermekte, aynı zamanda sağlık, destekli yaşam, spor ve eğlence gibi uygu-

lama alanlarını hedeflemektedir. Bu alanda pek çok araştırma olmasına rağmen, mev-

cut sınıflandırıcıların başarımlarını karşılaştıran ve aynı zamanda eylemleri çevrimiçi

eğitim ve sınıflandırma yöntemleri ile tanımlayan çok az örnek çalışma bulunmaktadır.

Bu tezin amacı, insan eylemlerinin akıllı telefonlar üzerindeki ivmeölçer algılayıcısı

kullanılarak tanınmasıdır. Amacımız, yürüme, koşma, oturma, ayakta durma, bisik-

lete binme gibi temel insan hareketlerinin telefon üzerinde veri işlenmesi ile sınıflandı-

rılmasıdır. Literatürde yer alan çalışmalardan farklı olarak, veri toplama, eğitim kümesi

modelleme ve aktivite sınıflandırması çevrimiçi olarak yapılmaktadır. Bunun yanında,

Naif Bayes, kümelenmiş KNN ve Karar Ağacı sınıflandırma algoritmalarının çevrimiçi

başarımları karşılaştırılmıştır. Bu amaçla hedeflediğimiz telefon modelleri ile uyumlu

bir Android uygulaması geliştirilmiş ve literatürde yer alan çalışmalardan farklı olarak,

birden fazla telefon modeli ile performans değerlendirmesi yapılmıştır. Sınıflandırma al-

goritmalarının başarımları, farklı deneklerle test edilmiş ve sonuçlara göre, kümelenmiş

KNN tekniği diğer sınıflandırma algoritmalarını doğruluk ve çalışma süresi açısından

daha yüksek başarım sergilemiştir. Ayrıca, örnekleme zamanı, pencere büyüklüğü ve

bunun gibi önemli sistem parametrelerinin başarım üzerindeki etkisi de incelenmiştir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . ix

LIST OF SYMBOLS . xi

LIST OF ACRONYMS/ABBREVIATIONS . xii

1. INTRODUCTION . 1

2. BACKGROUND . 5

2.1. Acceleration and Accelerometers for Activity Recognition 5

2.2. Activity Recognition Steps . 6

2.3. Related Works . 9

3. ACTIVITY RECOGNITION PROCESS . 18

3.1. Built-in Accelerometer of Android Platform 18

3.2. Steps of the Implemented Activity Recognition Process 20

3.3. Classification Methods . 24

3.3.1. Näıve Bayes . 25

3.3.2. Minimum Distance and KNN 26

3.3.3. Clustered KNN . 28

3.3.4. Decision Tree . 30

3.4. Android Implementation of Activity Recognition Process 32

3.4.1. Activity Logger . 32

3.4.2. Activity Trainer and Recognizer 34

4. PERFORMANCE EVALUATION . 39

4.1. Performance Parameters and Metrics 40

4.2. Experiment Design . 43

4.2.1. Preliminary Test . 43

4.2.2. Final Test Setup . 47

4.3. Performance Evaluation of Classifiers 49

vii

4.3.1. Performance of Näıve Bayes . 50

4.3.2. Performance of Clustered KNN 51

4.3.3. Performance of Decision Tree 54

4.3.4. Overall Performance Evaluation of Classifiers 54

4.4. Effect of Sliding Window Segmentation on the Performance 57

4.5. Resource Usage of the Application . 58

4.6. Online vs Offline Classification . 60

4.7. User and Device Dependency for Training Sets 62

5. CONCLUSIONS AND FUTURE WORK . 65

APPENDIX A: APPLICATION LOG FILES 67

REFERENCES . 68

viii

LIST OF FIGURES

Figure 2.1. Activity recognition steps. 6

Figure 2.2. Illustration of different windowing approaches. 7

Figure 3.1. Accelerometer built-in sensor axes on Android platform. 18

Figure 3.2. System Overview. 21

Figure 3.3. Timing windows with 2 seconds at 100Hz. 23

Figure 3.4. Normalized Euclidean Distance. 27

Figure 3.5. Preprocessing for the average feature. 29

Figure 3.6. Classification process for average feature. 30

Figure 3.7. Interface of Activity Logger. 33

Figure 3.8. Interface of Activity Classifier. 36

Figure 4.1. Workload and System Parameters. 39

Figure 4.2. Snapshots from the experiments. 49

Figure 4.3. Consecutive timing windows of 0.5 sec for running activity. 56

ix

LIST OF TABLES

Table 3.1. Representation of Training Data. 34

Table 3.2. Existing Voice Orders at Activity Recognizer Application. 37

Table 4.1. Test Scenario. 40

Table 4.2. Classifier Based System Parameters. 42

Table 4.3. Confusion Matrix. 42

Table 4.4. Preliminary Test Parameters. 44

Table 4.5. Tests performed on private training set. 45

Table 4.6. Tests performed on different training data set. 45

Table 4.7. Tests performed on private training set by a different subject. . . . 46

Table 4.8. Setup parameters for the first group of final tests. 48

Table 4.9. Comparison of Clustered KNN, NB and DT without biking. 50

Table 4.10. Impact of window size and sampling interval on the accuracy rates

of classifiers without biking. 50

Table 4.11. Comparison of Clustered KNN, NB and DT with biking. 51

x

Table 4.12. Impact of window size and sampling interval on the accuracy rates

of classifiers with biking. 51

Table 4.13. Overall Confusion Matrix of Clustered KNN without biking. 52

Table 4.14. Average accuracy rates of clustered KNN(%) without biking. . . . 52

Table 4.15. Sliding Window Effect on DT without Biking. 58

Table 4.16. Sliding Window Effect on DT with Biking. 59

Table 4.17. CPU & Memory usage of activity classifier and other applications. 60

Table 4.18. Online vs Offline Classification - Decision Tree. 61

Table 4.19. Online vs Offline Classification - Näıve Bayes. 62

Table 4.20. Accuracy(%) Results of Mixed Training Sets. 63

xi

LIST OF SYMBOLS

A Accelerometer Data Matrix

A Accelerometer set containing all accelerometer data collected

Ak Accelerometer set containing all accelerometer data of activity

type k

Ad Acceleration applied to the device

C Candidate Accelerometer Data

Fs Forces applied to sensor

FN The number of False Negative classifications

xii

LIST OF ACRONYMS/ABBREVIATIONS

ALC Adaptive Linear Classifier

CHMM Chain Hidden Markov Model

CKNN Clustered K Nearest Neighbour

DT Decision Tree

DFT Discrete Fourier Transform

GMM Gaussian Mixture Models

HMM Hidden Markov Model

NB Näıve Bayes

NN Nearest Neighbour

KNN K Nearest Neighbour

MD Minimum Distance

TI True Inferred

TP True Positive

TT Total of Ground Truth

SFS Sequential Forward Selection

SFFS Sequential Floating Forward Selection

SI International System of Units

SVM Support Vector Machines

WMLT Weka Machine Learning Toolkit

1

1. INTRODUCTION

Human activity recognition using sensory data has become an active field of

research in the domain of pervasive and mobile computing. It involves the use of

different sensing technologies to automatically collect and classify user activities for

different application domains. Target application areas include medical applications

(monitoring and diagnosis), home monitoring and assisted living (child and elderly care,

monitoring and emergency help, assistance for people with cognitive disorders), sports

and leisure applications (daily sport activities, martial arts) [4]. Initially, vision-based

sensing [5], using cameras has been the focus of research studies on human activity

recognition and more recently inertial sensing [6], using movement-based sensors that

can be attached to the user’s body has been investigated [7]. Motivated by the recent

studies and with the release of smart phones equipped with a rich set of sensors, such

as accelerometer, GPS, microphone, human activity recognition using mobile phone

sensing is being researched [4, 8–16].

Algorithms used in the classification of activities originate from statistical ma-

chine learning techniques. However, a trendy algorithm in machine learning research

may not exhibit a superior performance in the field of activity recognition [17], es-

pecially on the mobile phone platform with limited resources, considering the limited

processing power and battery. Moreover, when we look at the literature on activ-

ity recognition using inertial sensors, we observe that most of the studies first collect

sensory data and apply classification algorithms offline on the collected data, using a

large part of the collected data for training. It is clear that larger the amount of over-

lap between the training data and the testing data, better recognition results will be

achieved (unless the over-fitting problem occurs). Offline processing certainly exploits

this advantage.

Offline processing can be used for applications where online recognition is not

necessary. For instance, if we are interested in following the daily routine of a person,

such as in [11], the sensors can collect the data during a day; the data can be uploaded

2

to a server at the end of the day and can be processed offline for classification purposes.

However, for applications such as a fitness coach where the user is given a program with

a set of activities, their duration and sequence, we might be interested in what the user

is currently doing and/or if he is performing the activities with a correct sequence [11].

Another application can be the recruitment for participatory sensing applications [18].

For instance, the application might be interested in collecting information from users

that are ‘currently walking’ in a particular part of a city. Another example application

is given in [19]. The application creates an online activity map of a city by recognizing

the transportation modes of the users, biking, travelling with a train, with a vehicle,

etc. Therefore, online recognition of activities becomes important, especially for real-

world applications running on smart phones to provide the context of the users.

Training requirements of the proposed systems differ in terms of being online or

offline. In the literature, training phase is usually performed offline. Even though a

proposed system does online classification, training phase can be handled with offline

processing. Usually, proper training models are being created in offline training so

that these static models can be used in an online classification phase [10]. Offline

training phase is not an easy task and it is the common need of an activity recognition

system since such systems require large, well-defined and proper training sets to create

appropriate models. Such training sets are collected over a long period of time (couple

of days, weeks or even years depending on the related work) with dedicated and a

sufficient number of test subjects as presented in [20]. Additionally, collected data sets

can be too large to be processed online on other devices like smart phones because

of their limited capabilities. Considering these challenges, research on human activity

recognition systems explore the ways for online training [21]. Online training can be

used in systems where it is needed to create a user-friendly structure which does not

need user intervention or long training sessions at activity recognition steps. Such

systems can also increase the attention of the users to the subject and their adoption

of such applications. It is a known fact that if a system is not preferred and used by

end users, it does not have any value. Hence, we believe that the future of activity

recognition depends on systems which work either with limited data or which do not

require long training sessions.

3

There are various underlying challenges for activity recognition. Human be-

haviour is the first of them. People can perform multiple tasks at the same time which

can affect the activity recognition process negatively. Additionally, various continu-

ous sequences of performing tasks and their periodic variations may result in incorrect

classifications. Because of these reasons, accuracy and reliability of sensor data play an

important role in activity recognition. Other challenges in this topic are sensor place-

ment and resource constraints. It is well known and clearly shown that orientation and

placement of the sensors on the body plays an important role on the success of activity

recognition and on the accuracy of results [4]. When mobile phones are considered

in terms of processing and sensing capabilities, the most important constraint is the

battery limitation. Besides that, devices should have enough memory space in terms

of both software components and data needed to be stored. Additionally, they should

be computationally capable to execute training and classification algorithms.

In this thesis, we focus on activity recognition using the embedded accelerometers

on smart phones. Our objective is the classification of basic movements of a user, such

as walking, running, sitting, standing and biking. As mentioned before, in contrast

to the offline processing of data, we focus on online classification of these activities

and evaluate the performance of classifiers such as Näıve Bayes, Clustered KNN and

Decision Tree. For this purpose, we developed an activity recognition system and

implemented these classifiers on the Android platform.

Besides online recognition of activities, the training phase is also performed on

the phone instead of processing the data offline to learn the model parameters. As

stated earlier, it is known that training phase of a classification method used in activity

recognition is costly and there is a general interest in providing an activity recognition

system that does not need training [21] or requires only limited training by the end

user. In this study, we are interested in the performance of classifiers with limited

training data considering the limited memory available on the phones. In the proposed

system, training data can be collected only in a few minutes and can be used directly

for classification steps which reduce the burden on the users. Being one of the first

Android applications used for activity recognition is another important motivation for

4

this thesis. Another contribution is that the performance evaluation is carried out by

using several smart phone models with different capabilities instead of focusing on one

model.

Performance of the classifiers is tested with ten different subjects in two batches

of experiments by using the main accelerometer features such as minimum, maximum,

average, average acceleration in the Y-direction and standard deviation. Test results

show that the Clustered KNN approach mostly outperforms other classifiers in terms

of recognition and execution time on the phones. The impact of sensor sampling rate

and window size, which is used for segmenting the data, on the performance of activity

recognition is also analyzed. Moreover, we also compared offline processing results of

the same classifier set with online classification results with the help of Weka Machine

Learning Toolkit [22]. We analyzed user dependency of the system by mixing the

training sets of different users. Lastly, effect of using sliding windows for segmenting

the data during the online activity recognition process is investigated.

The rest of the thesis is organized as follows. In Chapter 2, we present the back-

ground of our study and related works in order to understand the research field of

activity recognition and future expectations. Firstly, we provide important definitions

used in the thesis. Next, we detail activity recognition steps and different methodolo-

gies proposed in the literature. Later, related studies are presented together with a

taxonomy and comparisons. In Chapter 3, activity recognition steps and processes used

in the thesis are detailed by also providing a background for the proposed methods.

Next, we present details of classification methods which are used in this thesis. Lastly,

we finish the chapter by providing the details of the system proposed and implementa-

tion of the Android application. In Chapter 4, we first present the experiment design

to evaluate the performance of the proposed online activity classification system. Next,

we provide the results of our experiments, carried with different test subjects, in terms

of the performance of classifiers using different sets of parameters. In Chapter 5, we

provide our conclusions and directions for future research.

5

2. BACKGROUND

In this chapter, we first give an overview on the details of the activity recognition

process, including the usage of accelerometer for activity recognition and the steps

for the classification of activities. Next, related studies on acitivity recognition using

mobile phones are summarized and classified.

2.1. Acceleration and Accelerometers for Activity Recognition

Acceleration is defined to be the rate of change in velocity over time. There are

two kinds of acceleration called average and instantaneous. Average acceleration is

determined over a finite time interval whereas instantaneous acceleration is the deriva-

tive of the velocity with respect to time where velocity is the change in displacement

with time at a given instant. Constant acceleration is the special case when average

acceleration and instantaneous acceleration values are equal. Free-fall acceleration is

the constant acceleration which is caused by gravitational force. Lastly, the accelera-

tion of an object relative to an observer, whose net acceleration is zero, is called proper

acceleration and it is measured by an accelerometer.

Accelerometer is the sensor device which measures proper acceleration of the ob-

ject where it is attached. It produces a time series of each axes in 3D (x(t), y(t), z(t))

for each clock cycle. An accelerometer measures weight per unit of mass. For example,

an accelerometer measures a value of g in the upward direction when remaining sta-

tionary on the ground because masses on earth have weight m×g. On the other hand,

an accelerometer which is in free-fall gives a value of zero acceleration since it is at rest

in a frame of reference in which objects are weightless although its speed is increasing.

Accelerometers can measure vibrations, shocks, tilt, impacts and motion of an object.

6

2.2. Activity Recognition Steps

In the literature, there are many different methods to receive activity informa-

tion from raw sensor data. Main steps can be categorized as Preprocessing, Segmenta-

tion, Feature Extraction, Dimensionality Reduction and lastly Classification which are

given in Figure 2.1. These steps can be used either all together or according to the

requirement, only some of them can be selected and applied during activity recognition

process. In Figure 2.1, input represents the raw sensor data whereas output represents

the activity information.

Figure 2.1. Activity recognition steps [4].

Preprocessing. This step contains noise removal and representation of raw data.

Initial samples received from any type of sensor are called raw data. Because of the

nature of sensors, gathered raw data has a potential noise which prevents us to detect

usual behaviour of activity patterns. Because of this reason a preprocessing stage

should be applied to the raw data before using it in activity recognition process. There

are different methods for noise removal processes such as non-linear, low-pass [23] or

high-pass, Laplacian [24] and Gaussian [25] filters.

Segmentation. Retrieving useful information from continuous stream data is a

difficult problem. For this purpose, different segmentation methods can be applied

to time-series data which enhance signal behaviour and enable us to gather useful

7

information from continuous stream of data. Sliding windows can be considered as

one of the segmentation methods. Some examples of stream processing are illustrated

in Figure 2.2. Explicit segmentation can be used at two level approaches such as

splitting and merging. By this way, the streaming data is divided into chunks before

classification starts. The drawback of this approach is to decide the appropriate size

for each chunk which increases the complexity. Additionally, one always needs to wait

for future data to make decisions on the previously splitted data. As an example,

in [26], newly collected data is added to the previous sample set until fit-error rate of

the current segment does not exceed the threshold value set by the user.

Figure 2.2. Illustration of different windowing approaches [3].

On the other hand, dividing the whole sequence to equal time windows further

decreases the computational complexity. Because of this reason, it is presented as a

suitable approach in activity recognition studies dealing with continuous streaming

data sampled with constant rates. However, one has to deal with finding the optimal

time intervals for targeted activities in this approach which directly affects the system

performance. The last approach presented in the figure is to divide the streaming data

based on the count of the sensor events.

Other approaches like top-down, iterative end point fits, bottom-up [26] and/or

any combination of them can be used for this purpose. According to the previous

studies, sliding window and bottom-up approaches are the ones which have lower com-

plexity whereas combination of them called SWAB [27] has slightly higher complexity

8

but its performance is as good as the Bottom-up algorithm.

Feature Extraction. Features can be defined as the abstractions of raw data since

they are reduced sets of original raw data which basically represent main characteristics

and behaviours of it. The reduced subset of large input data can be called as a feature

vector and it is the main input for classification algorithms and contain important hints

for the activity to be recognized.

Features can be grouped as time-domain, frequency-domain, time-frequency do-

main and heuristic features. Time domain features such as mean, variance, root mean

square, minimum or maximum are the mostly preferred features in activity recognition

using mobile phones as indicated in Table 2.1. They basically represent signal statistics

and waveform characteristics. Frequency domain features represent periodic behaviour

of the sample such as the FFT coefficients, spectral energy or spectral entropy. Time-

frequency domain features like wavelet coefficients can be used to illustrate both time

and frequency characteristics of complex signals which are mostly used in studies to

detect transitions between activities. There are also examples of heuristic features such

as inter-axis correlation, signal vector magnitude and signal magnitude area which are

widely used [23].

Dimensionality Reduction. The aim of dimensionality reduction is to reduce

the computational complexity and increase the performance of the activity recognition

process. After the previous steps, collected data can be used directly in the classification

step. But some part of data may not even contribute to the results of the classification

process. It may just create a burden on the complexity of the process and just slows

down training and classification processes, hence the dimensionality reduction is applied

to overcome these issues.

For this purpose, different methods are proposed in the literature which can be

grouped as feature selection methods and feature transform methods. Feature selection

9

methods separate most discriminative features whereas feature transform methods com-

bine two or more features which are not effective individually, but meaningful when

they are combined. SVM Based Feature Selection [28], K-Means Clustering and For-

ward Backward Sequential Search [29] are the well-known feature selection techniques.

K-Means Clustering is a method which groups selected samples in a compact set by

considering the distance metric. The idea is to gather some selected data in a compact

set which are located close to each other while excluding all other samples [30].

Classification. The last and the most important step is the classification [4].

Training data sets which are processed at previous steps can be used as an input

parameter for the classification step. There are various classification methods which

are widely used in the literature. Decision Tree, Decision Tables [8], Hidden Markov

Models [9], Näıve Bayes [10], Nearest Neighbor, Support Vector Machines [31] and

Gaussian Mixture Models are the well-known and widely-used classification techniques.

Additionally, in some of the studies threshold-based techniques are preferred for this

purpose [24]. Moreover, artificial neural networks-based activity recognition systems

[32] previously became a hot topic.

2.3. Related Works

Previous studies are mainly concentrated on the performances of the proposed

algorithms and methods. In the following parts, we first summarize the related studies

and then provide a taxonomy along with a detailed comparative table.

In [8], a novel design framework, called EEMSS, for energy efficient mobile sensing

is proposed. A hierarchical sensor management strategy is used to recognize user states

as well as to detect state transitions. User states may contain a combination of features

such as motion (running, walking), location (staying at home or on a free-way) and

background condition (loud or quiet) which all together describe user’s current context.

This study particularly focuses on energy efficient sensing, considering the fact that

embedded sensors on mobile phones are the major sources for power consumption.

10

As an example, fully charged Nokia N95 can support telephone conversations more

than 10 hours whereas it can function only around 6 hours while GPS is turned on

without taking into consideration whether it is taking samples or not. Because of this

reason, sensor sources must be used efficiently to recognize activities on mobiles. There

are two important points proposed throughout this paper in order to reduce power

consumption. The first one is to turn off unused sensors automatically according to

user states. For this purpose, an XML-style state descriptor is taken as input and

used by the sensor assignment functional block. In this way, selected sensors are

sampled during a specific state whereas differently selected sensors are tracking any

possible user state transitions. The second point which is important again in terms

of power consumption is ‘sensor duty cycle’ which negatively affects the recognition

latency metric while decreasing the overall power consumption and extending device

battery lifetime. The state transition system implemented on Nokia N95 can define the

following states currently; walking, vehicle, resting, home talking, home entertaining,

working, meeting, office loud, place quiet, place speech, place loud. The sensors being

used for activity recognition are accelerometer, Wifi detector, GPS and microphone.

EEMSS is able to detect states with approximately 92.56% accuracy by processing

testing data offline and improves the battery lifetime by over 75% compared to an

existing application, Cenceme [12].

In a similar study, Reddy et al. proposed a different model for activity recog-

nition [9]. In this article, they designed, implemented and evaluated a transportation

mode classification system which runs on a mobile phone by using 3-axis accelerome-

ter and GPS sensors. Simply, they focused on outdoor activities and classified them

into following five groups such as walking, stationary, biking, running, and motorized

transport. The proposed classification system does not consider a specific mobile phone

orientation which makes it convenient to use. In order to reduce energy consumption,

sensor readings are enabled only if a user goes outside by being triggered through a

connected base station change. In this study, they evaluated different classification al-

gorithms, such as Naive Bayes, Chain Hidden Markov Model, Support Vector Machine,

Nearest Neighbour, Hidden Markov Model (HMM), Decision Tree (DT), and compared

these classifiers with each other. According to the evaluation, DT followed by HMM

11

provided the best results and because of this reason they decided to use DT and HMM

together at the final evaluation instead of others. The classification algorithm com-

bines GPS speed data and variance and frequency components of accelerometer signals.

Weka machine learning toolkit (WMLT) [22] and generalized HMM library is employed

to train the classifier and then the classifier is transported to work on Nokia N95. The

final classifier is programmed by using Python for Symbian S60. Overall, the system

provides nearly 93% accuracy.

In [12], authors present design, implementation and evaluation of a social net-

working application, called Cenceme. Basically, users are able to share their contextual

information through social platforms like Facebook and MySpace using this application.

Cenceme benefits from offline computational powers of back-end servers for training

whereas it additionally performs online classification. In this study, authors have fo-

cused on sitting, standing, walking and running activities as well as audio info of the

environment. For this purpose they used accelerometer, Bluetooth, audio sensors and

GPS which are embedded in Nokia N95. Classifiers used in this study can be grouped

as audio and activity classifiers. Audio classifier benefits from Discrete Fourier Trans-

form (DFT) and FFT algorithms and its feature vector consists of mean and standard

deviation of DFT power. On the other hand, feature vectors at activity classifier are

mean, standard deviation and number of peaks per unit time. Simple 3 level decision

tree performs classifications online on the Nokia platform and classifies activities into

walking, running, standing and sitting states. Additionally, back-end classification de-

rives contextual information from collected data. Performance of the proposed system

is tested with 22 subjects over three weeks period on the Nokia N95 platform. The

overall system performance in terms of recognizing online activities is not stated clearly.

However, they emphasize the misclassification of standing and sitting cases.

Different from the previous studies, in [10], a classification algorithm is aimed to

run on the iPhone platform. For this purpose three iPhone applications are developed

called as iLog, iModel, iClassify respectively. iLog is used for data collection for dif-

ferent activities in real time. iModel is a desktop tool for learning and testing models.

Data saved by iLog can be imported into iModel which is a Java application built on

12

WMLT. By using iModel labeled data can be used to test an existing model or to learn

a new model. Lastly, iClassify can be used to classify walking, jogging, bicycling on

a stationary bike, and sitting activities in real time in iPhone applications. In terms

of methodology and execution times of classification steps, this study differs from the

previous two studies. There is an offline data processing step to learn data models and

addition to iPhone 3-axis accelerometer sensor, Nike+iPod Sports Kit is used to collect

data which imports the collected data periodically to iPhone via Bluetooth connection.

iClassify can report activity classifications once per second. It performs nearly 97%

accuracy in recognizing activities.

The following references [11–14] have similarities with the studies stated before

in terms of methodology and ideas. Additionally, there are still few examples of works

which use only wearable mobile sensors for activity recognition such as in [8,9,11–13].

The rest of the studies use extra sensors to recognize activities like Nike+iPod Toolkit,

motion bands.

Considering the training phase for the classification algorithms, there are only

few examples of related works aiming user independent or limited training of proposed

systems. In [33], authors introduced a system called Darwin which aims to decrease the

training burden on users, and increase user experience on smart phone while proposing

a reliable classification system. Their work is based on model pooling which is sim-

ple sharing and exploitation of classification models which are already built by other

phones. By this way, there is no need to generate training models from scratch so that

timeliness of classification decreases substantially. The proposed system works both

outside and inside and it is implemented on Nokia N97 and Apple iPhone. Tests are

performed with eight people and they achieved accuracy ranges between 80% and 90%.

Another important work in this area is presented in [34]. In this work, authors

emphasize the known mistakes and difficulties during labelling the training data. It is

known that collecting consistent and reliable data is a very difficult task since some

contexts may be marked by users with wrong labels which creates a neccessity for

instructing the users before performing any training. In these cases, although the la-

13

belled data are unreliable, it still contains valuable information. For this purpose, they

propose Community-Guided Learning (CGL) which is a framework that trains existing

classifiers with unreliably labelled data submitted by different users. Proposed system

achieves average performance of 88.7% accuracy and 89.3% in terms of f-measure.

Some of the related works selected from previous studies are summarized in terms

of their general properties in Table 2.1 which can be referenced for comparison pur-

poses. The studies are classified according to the methods, and basic properties like

activities, external or internal sensors being used, restriction on phone placement or

orientation of the sensors, platform, classification algorithms and methods and ad-

ditionally features being used, number of subjects used for performance evaluation

purposes, and performance metrics. As we mentioned, in most of these studies static

models are generated through offline training and these models are tested in terms of

classification on mobile phones unlike our approach in this thesis. General performance

metric is the recognition accuracy which is highly affected from system parameters as

indicated in the compared studies.

The most commonly used sensor is the acceleration sensor. WiFi, GPS or any

other sensors are added to improve the sensing power and accuracy of the results.

Sitting, Standing, Walking, Running, Driving, and Bicycling are the common activ-

ities being targeted to be recognized in the applications. Additionally, commercial

targeted applications include more activities to be recognized as in [12]. There are

also other studies which target to recognize contextual information, such as location,

environmental audio data, of the users as in [31]. Most of the classification algorithms

which have online processing capabilities are implemented on Nokia N95 which is one

of the first mobile phones with sensing capabilities. Only in [10], classification algo-

rithm is implemented for iPhone. Additionally, Cenceme application detailed in [12]

is firstly implemented for Nokia phones and it is later ported for iPhone as well. Most

of the classification algorithms implemented on Nokia phones benefit from WMLT in

the offline training phase. On the other hand, there are only few works in which the

performance of the system is evaluated on a different device model as in [35].

14

As mentioned, we are interested in developing a real-world application where

the user installs the application and does not require to deal with the burden of the

training phase, such that the application can be pretrained, or trained quickly without

the requirement of a long training phase, and is ready-to-use. The alternative to our

approach is delivering an application that initially does not work but learns the user’s

behaviour upon use, which certainly can be a complex and tedious process, as identified

in [36]. So our question is “Can we recognize the activities with only a limited set of

training data and even without any training data in a user-independent way?” This

question is investigated in Chapter 4 where we evaluate the performance of classifiers

in a user-independent manner.

T
ab

le
2.

1.
C

om
p
ar

is
on

of
R

el
at

ed
W

or
k
s.

R
e
f

S
e
n
s
o
r

D
e
v
ic

e
A

c
t
iv

it
ie

s
N

r
.

o
f

U
s
e
r
s

F
e
a
t
u
r
e
s

C
la

s
s
ifi

c
a
t
io

n

T
e
c
h
n
iq

u
e
s

O
r
ie

n
t
a
t
io

n
R

u
n

E
n
v
ir

o
n
m

e
n
t

P
e
r
fo

r
m

a
n
c
e

R
e
s
u
lt

s

[3
5
]

A
c
c
e
le

ro
m

e
te

r
S
o
n
y

E
ri

c
ss

o
n

w
7
1
5

T
ra

n
si

ti
o
n
s’

re
c
o
g
-

n
it

io
n

b
e
tw

e
e
n

th
e

st
a
te

s
o
f

st
a
n
d
-t

o
-s

it

a
n
d

si
t-

to
-s

ta
n
d

1
2

su
b
-

je
c
ts

S
ta

n
d

u
p

-
S
it

D
o
w

n
tr

a
n
si

ti
o
n
s

W
a
v
e
fo

rm
s

A
n
y
w

h
e
re

T
ra

in
e
d

a
t

d
e
sk

-

to
p

a
n
d

c
la

ss
ifi

e
d

a
t

p
h
o
n
e

1
)O

n
e

su
b

je
c
t

re
c
o
g
n
it

io
n

ra
te

1
0
0
%

2
)

N
o

fa
ls

e

d
e
te

c
ti

o
n

d
e
te

c
te

d
.

3
)R

e
c
o
g
n
it

io
n

ra
te

7
0
%

.

R
e
c
o
g
n
it

io
n

ra
te

v
a
ri

e
s

b
e
tw

e
e
n

su
b

je
c
ts

w
e
a
ri

n
g

w
id

e
tr

o
u
se

rs
o
r

je
a
n
s.

S
u
b

je
c
ts

w
e
a
ri

n
g

je
a
n
s

h
a
v
e

%
9
0

a
c
c
u
ra

c
y

[3
1
]

G
a
rm

in

e
T

re
x

V
e
n
tu

re

G
P

S
,

S
u
u
n
to

X
6
H

R

w
ri

st
-t

o
p

c
o
m

p
u
te

r

E
m

b
la

A
1
0

1
9
-

c
h
a
n
n
e
l

re
c
o
rd

e
r,

iP
a
q

P
D

A
,

N
o
k
ia

N
9
5

O
u
td

o
o
r

b
ic

y
c
li
n
g
,

so
c
c
e
r

p
la

y
in

g
,

ly
in

g
,

n
o
rd

ic
w

a
lk

in
g
,

ro
w

in
g

w
it

h
th

e

ro
w

in
g

m
a
c
h
in

e
,

ru
n
n
in

g
,

si
tt

in
g
,

st
a
n
d
in

g
,w

a
lk

in
g

1
2

su
b
-

je
c
ts

H
ip

a
n
d

w
ri

st
a
c
c
e
le

ra
ti

o
n

si
g
n
a
ls

a
n
d

th
e

h
e
a
rt

ra
te

si
g
n
a
l

M
D

,
K

N
N

(k
=

1
0
),

S
V

M
.

F
e
a
tu

re
S
e
le

c
ti

o
n
:

S
F

S
,

S
F

F
S
,

A
L

C

H
ip

,
W

ri
st

,

H
e
a
rt

T
ra

in
e
d

a
t

d
e
sk

-

to
p

a
n
d

c
la

ss
ifi

e
d

a
t

p
h
o
n
e

R
a
n
g
in

g
b
tw

.
7
0
%

a
n
d

8
0
%

d
e
p

e
n
d
in

g
o
n

th
e

c
la

ss
ifi

e
r

a
n
d

fe
a
tu

re
se

le
c
-

ti
o
n

m
e
th

o
d
s

u
se

d

[8
]

A
c
c
e
le

ro
m

e
te

r,

m
ic

ro
p
h
o
n
e
,

w
ifi

,
G

P
S

N
o
k
ia

N
9
5

W
a
lk

in
g
,

v
e
h
ic

le
,

re
st

in
g
,

h
o
m

e
ta

lk
in

g
,

h
o
m

e
e
n
te

rt
a
in

in
g
,

w
o
rk

in
g
,

m
e
e
ti

n
g
,

o
ffi

c
e
-l

o
u
d
,

p
la

c
e
-

q
u
ie

t,
p
la

c
e
-s

p
e
e
c
h
,

p
la

c
e
-l

o
u
d

1
0

su
b
-

je
c
ts

3
C

h
a
ra

c
te

ri
st

ic
fe

a
tu

re
s

th
a
t

d
e
-

fi
n
e
s

e
a
c
h

o
f

st
a
te

:
lo

c
a
ti

o
n
,

m
o
-

ti
o
n
,

b
a
c
k
g
ro

u
n
d

so
u
n
d
,

W
ifi

:
M

a
c

a
d
d
re

ss
e
s

o
f

n
e
ig

h
b

o
u
r

d
e
v
ic

e
s,

G
P

S
:

th
re

sh
o
ld

s
fo

r
m

o
v
e
s

F
F

T
b
a
se

d
D

T
A

n
y
w

h
e
re

T
ra

in
e
d

a
t

d
e
sk

-

to
p

a
n
d

c
la

ss
ifi

e
d

a
t

p
h
o
n
e

%
9
2
.5

a
c
c
u
ra

c
y
,

%
7
5

b
a
t-

te
ry

li
fe

ti
m

e
g
a
in

[9
]

A
c
c
e
le

ro
m

e
te

r,

G
P

S

N
o
k
ia

N
9
5

S
ta

ti
o
n
a
ry

,
w

a
lk

in
g
,

b
ik

in
g
,

ru
n
n
in

g
,

m
o
to

ri
z
e
d

tr
a
n
sp

o
rt

1
6

su
b
-

je
c
ts

M
a
g
n
it

u
d
e

o
f

3
a
x
is

o
f

a
c
c
e
le

ro
m

-

e
te

r,
m

e
a
n
,

v
a
ri

a
n
c
e
,

e
n
e
rg

y
,

D
F

T

e
n
e
rg

y
c
o
e
ffi

c
ie

n
t

b
tw

1
-1

0
H

z

b
a
se

d
o
n

m
a
g
n
it

u
d
e

o
f

fo
rc

e
v
e
c
to

r

o
f

a
c
c
e
le

ro
m

e
te

r,
sp

e
e
d

o
f

G
P

S

D
T

fo
ll
o
w

e
d

b
y

fi
rs

t
o
rd

e
r

d
is

c
re

te
H

M
M

W
it

h
o
u
t

st
ri

c
t

o
ri

e
n
ta

ti
o
n

o
r

p
o
si

ti
o
n

re
q
u
ir

e
m

e
n
ts

T
ra

in
e
d

a
t

d
e
sk

-

to
p

a
n
d

c
la

ss
ifi

e
d

a
t

p
h
o
n
e

A
c
c
u
ra

c
y

9
3
.6

%
.

In
o
u
t-

d
o
o
r

se
tt

in
g
,

ru
n
n
in

g
c
la

s-

si
fi

e
r

re
su

lt
e
d

8
.2

7
h
o
u
rs

o
f

o
p

e
ra

ti
o
n

C
o
n
ti
n
u
ed

o
n

n
e
x
t
p
a
g
e

16

T
ab

le
2.

1.
C

om
p
ar

is
on

of
R

el
at

ed
W

or
k
s

(c
on

t.
).

C
o
n
ti
n
u
ed

fr
o
m

p
re
v
io
u
s
p
a
g
e

R
e
f

S
e
n
s
o
r

D
e
v
ic

e
A

c
t
iv

it
ie

s
N

r
.

o
f

U
s
e
r
s

F
e
a
t
u
r
e
s

C
la

s
s
ifi

c
a
t
io

n

T
e
c
h
n
iq

u
e
s

O
r
ie

n
t
a
t
io

n
R

u
n

E
n
v
ir

o
n
m

e
n
t

P
e
r
fo

r
m

a
n
c
e

R
e
s
u
lt

s

[1
0
]

A
c
c
e
le

ro
m

e
te

r,

N
ik

e
ip

o
d

S
p

o
rt

K
it

Ip
h
o
n
e

w
a
lk

in
g
,

jo
g
g
in

g
,

b
i-

c
y
c
li
n
g

o
n

a
st

a
ti

o
n
-

a
ry

b
ik

e
,

a
n
d

si
tt

in
g

8
su

b
-

je
c
ts

1
2
4

F
e
a
tu

re
s;

N
ik

e
+

ip
o
d

P
a
c
k
e
t

P
a
y
lo

a
d

F
e
a
tu

re
s,

A
c
c
e
le

ro
m

e
te

r

M
a
g
n
it

u
d
e

fe
a
tu

re
s

s.
t

m
e
a
n
,

st
d

d
e
v
ia

ti
o
n
,

m
in

v
a
lu

e
,

m
a
x

v
a
lu

e
,

m
in

-m
a
x
,

m
a
x
-m

in
,

A
c
c
e
le

ro
m

e
te

r

F
re

q
u
e
n
c
y

F
e
a
tu

re
s

s.
t.

2
5
6

p
o
in

t

D
F

T
o
v
e
r

la
st

1
.2

5
se

c

N
ä
ıv

e
B

a
y
e
si

a
n

N
e
tw

o
rk

N
ik

e
+

ip
o
d

in
th

e
sh

o
e
,

n
o

c
o
n
st

ra
in

t

fo
r

ip
h
o
n
e

T
ra

in
e
d

a
t

d
e
sk

-

to
p

a
n
d

c
la

ss
ifi

e
d

a
t

p
h
o
n
e

A
c
c
u
ra

c
y

w
it

h
p

e
rs

o
n
,

c
ro

ss
p

e
rs

o
n
.

O
v
e
ra

ll

a
c
c
u
ra

c
y

9
7
%

.

[1
1
]

A
c
c
e
le

ro
m

e
te

r
N

o
k
ia

N
9
5

S
it

ti
n
g
,

st
a
n
d
in

g
,

w
a
lk

in
g
,

ru
n
n
in

g
,

d
ri

v
in

g
,

b
ic

y
c
li
n
g

4
su

b
-

je
c
ts

V
e
rt

ic
a
l

a
n
d

H
o
ri

z
o
n
ta

l
F
e
a
tu

re
s

s.
t.

m
e
a
n
,s

ta
n
d
a
rd

d
e
v
ia

ti
o
n
,

z
e
ro

c
ro

ss
in

g
ra

te
,

7
5
%

p
e
rc

e
n
ti

le
,

in
-

te
rq

u
a
rt

il
e

ra
n
g
e
,

p
o
w

e
r

sp
e
c
tr

u
m

c
e
n
tr

o
id

a
n
d

fr
e
q
u
e
n
c
y

d
o
m

a
in

e
n
-

tr
o
p
y

D
T

,
re

fi
n
e
d

b
y

a
si

m
il
a
ri

ty

m
a
tc

h
fr

o
m

k
-m

e
a
n
s

c
lu

st
e
ri

n
g

re
su

lt
s

a
n
d

sm
o
o
th

e
d

b
y

H
M

M
-b

a
se

d

V
it

e
rb

i
A

lg
.

(W
e
k
a
,

D
T

,
N

B
,

K
N

N
,

S
V

M
)

c
o
m

p
a
re

d
.

1
0
-f

o
ld

c
ro

ss

v
a
li
d
a
ti

o
n
.

A
n
y
w

h
e
re

O
ffl

in
e

p
ro

c
e
ss

in
g

9
0
%

w
it

h
V

/
H

F
e
a
tu

re
s

a
n
d

D
T

,
8
9
%

w
it

h
M

a
g
n
.

F
e
a
tu

re
s

a
n
d

K
N

N
,

8
9
%

w
it

h
M

a
g
n
.

F
e
a
tu

re
s

a
n
d

S
V

M

[1
3
]

A
c
c
e
le

ro
m

e
te

r
N

o
k
ia

N
9
5

S
te

p
C

o
u
n
t

M
a
g
n
it

u
d
e

o
f

a
c
c
e
le

ra
ti

o
n

v
e
c
to

r
H

il
l

d
e
te

c
ti

o
n

a
n
d

th
re

sh
-

o
ld

c
a
lc

u
la

ti
o
n

b
y

a
p
p
ly

in
g

B
u
tt

e
rw

o
rt

h
F

il
te

r

P
o
c
k
e
t,

B
e
lt

c
li
p
,

H
a
n
d

T
ra

in
e
d

a
t

d
e
sk

-

to
p

a
n
d

c
la

ss
ifi

e
d

a
t

p
h
o
n
e

[1
4
]

M
o
ti

o
n
B

a
n
d

c
o
n
ta

in
in

g

m
a
g
n
e
-

to
m

e
te

r,

g
y
ro

sc
o
p

e
,

a
c
c
e
le

ro
m

e
-

te
r

N
o
k
ia

6
6
3
0

R
e
st

in
g
,

ty
p
in

g
,

g
e
s-

ti
c
u
la

ti
n
g
,

w
a
lk

in
g
,

ru
n
n
in

g
,

c
y
c
li
n
g

3
su

b
-

je
c
ts

T
ra

in
e
d

w
it

h
fe

e
d

fo
rw

a
rd

n
e
u
ra

l
n
e
tw

o
rk

a
n
d

c
la

ss
i-

fi
e
d

w
it

h
n
e
u
ra

l
n
e
tw

o
rk

W
ri

st
,

A
n
k
le

,

H
ip

T
ra

in
e
d

a
t

d
e
sk

-

to
p

a
n
d

c
la

ss
ifi

e
d

a
t

p
h
o
n
e

8
0
%

a
v
e
ra

g
e

a
c
c
u
ra

c
y

C
o
n
ti
n
u
ed

o
n

n
e
x
t
p
a
g
e

T
ab

le
2.

1.
C

om
p
ar

is
on

of
R

el
at

ed
W

or
k
s

(c
on

t.
).

C
o
n
ti
n
u
ed

fr
o
m

p
re
v
io
u
s
p
a
g
e

R
e
f

S
e
n
s
o
r

D
e
v
ic

e
A

c
t
iv

it
ie

s
N

r
.

o
f

U
s
e
r
s

F
e
a
t
u
r
e
s

C
la

s
s
ifi

c
a
t
io

n

T
e
c
h
n
iq

u
e
s

O
r
ie

n
t
a
t
io

n
R

u
n

E
n
v
ir

o
n
m

e
n
t

P
e
r
fo

r
m

a
n
c
e

R
e
s
u
lt

s

[1
2
]

A
c
c
e
le

ro
m

e
te

r,

a
u
d
io

se
n
-

so
rs

,

b
lu

e
to

o
th

a
n
d

G
P

S

N
o
k
ia

N
9
5

S
it

ti
n
g
,

st
a
n
d
in

g
,

w
a
lk

in
g
,

ru
n
n
in

g

2
2

su
b
-

je
c
ts

A
u
d
io

C
la

ss
ifi

e
r

fe
a
tu

re
v
e
c
to

r
c
o
n
-

si
st

s
o
f

m
e
a
n

a
n
d

st
d
.

d
e
v
ia

ti
o
n

o
f

D
F

T
p

o
w

e
r.

A
c
ti

v
it

y
C

la
ss

ifi
e
r

fe
a
-

tu
re

s;
m

e
a
n
,

st
d
.

d
e
v
ia

ti
o
n
,

n
o
.

o
f

p
e
a
k
s

p
e
r

u
n
it

ti
m

e
‘f

o
o
ts

te
p

fr
e
q
.’

S
p
li
t-

le
v
e
l

c
la

ss
ifi

c
a
ti

o
n

a
n
d

p
o
w

e
r-

a
w

a
re

d
u
ty

c
y
c
li
n
g
.

A
u
d
io

C
la

ss
ifi

e
r:

1
)

F
e
a
tu

re
E

x
tr

a
c
ti

o
n
:

D
F

T
(F

F
T

u
n
d
e
r

d
e
v
e
l-

o
p
m

e
n
t)

2
)C

la
ss

ifi
c
a
ti

o
n
:

M
a
c
h
in

e
L

e
a
rn

in
g

A
lg

o
ri

th
m

‘d
is

c
ri

m
in

a
n
t

a
n
a
ly

si
s’

D
iff

e
re

n
t

p
la

c
e
s

h
a
v
e

d
iff

e
re

n
t

e
ff

e
c
ts

.

C
e
n
c
e
m

e
a
p
p

a
n
d

sy
st

e
m

c
o
n
si

st
s

o
f

a

so
ft

w
a
re

ru
n
n
in

g

o
n

N
o
k
ia

N
9
5

a
n
d

b
a
c
k
-e

n
d

in
fr

a
st

ru
c
tu

re

h
o
st

e
d

o
n

se
rv

e
r

m
a
c
h
in

e
s.

[3
2
]

A
c
c
e
le

ro
m

e
te

r
S
a
m

su
n
g

S
C

H
-

M
4
9
0

R
e
st

in
g
,

w
a
lk

in
g
,

ru
n
-

n
in

g

6
su

b
-

je
c
ts

A
R

c
o
e
ffi

c
ie

n
ts

,
K

e
rn

e
l

D
is

c
ri

m
i-

n
a
n
t

A
n
a
ly

si
s

is
u
se

d
fo

r
fe

a
tu

re
e
x
-

tr
a
c
ti

o
n

A
rt

ifi
c
ia

l
N

e
u
ra

l
N

e
tw

o
rk

s
S
h
ir

t’
s

p
o
c
k
e
t,

je
a
n
s’

p
o
c
k
e
t

a
n
d

c
o
a
t’

s

in
n
e
r

p
o
c
k
e
t

T
ra

in
e
d

a
t

d
e
sk

-

to
p

a
n
d

c
la

ss
ifi

e
d

a
t

p
h
o
n
e

A
c
c
u
ra

c
y

9
6
%

18

3. ACTIVITY RECOGNITION PROCESS

In this chapter, we explain the steps of activity recognition performed in this

thesis. We start with explaining the details of accelerometer usage on the Android

platform and continue with how the activity recognition process was implemented,

along with the details of features extracted, segmentation and classifiers used.

3.1. Built-in Accelerometer of Android Platform

In this thesis, we focused on Android devices and performed our tests by using

their built-in accelerometer sensor. The accelerometer is capable of working on different

sampling rates which can be given specifically by the user and generate values in x, y,

z directions. Figure 3.1 gives an idea of the axes of the built-in Android sensor.

Figure 3.1. Accelerometer built-in sensor axes on Android platform [48].

The coordinate-system is defined relative to the screen of the phone in its default

orientation. The axes are not swapped when the orientation of the screen changes. The

19

X axis is horizontal and points to the right, the Y axis is vertical and points up and

the Z axis points towards the outside of the front face of the screen. In this system,

coordinates behind the screen have negative Z values. All values are being provided

in SI units (m/s2). Acceleration values are provided on Android phones through an

interface called Sensor Manager in the following array format;

• values[0]: Acceleration minus Gx on the x-axis.

• values[1]: Acceleration minus Gy on the y-axis.

• values[2]: Acceleration minus Gz on the z-axis.

The sensor measures the acceleration applied to the device (Ad). Conceptually, it does

so by measuring forces applied to the sensor itself (Fs) using the relation:

Ad = −

∑
Fs

mass
(3.1)

In particular, the force of gravity is always influencing the measured acceleration:

Ad = −g −

∑
Fs

mass
(3.2)

Because of this reason, when the device is sitting on the table (and not accelerating),

accelerometer reads a magnitude of g = 9.81m/s2. Similarly when the device is at free-

fall and therefore accelerating towards to the ground at 9.81m/s2, its accelerometer

reads a magnitude of 0m/s2. Some examples are listed below;

• When the device lies flat on a table and is pushed on its left side toward the right,

the x acceleration value is positive.

• When the device lies flat on table, the acceleration value is +9.81, which cor-

respond to the acceleration of the device (0m/s2) minus the force of gravity

(−9.81m/s2).

• When the device lies flat on a table and is pushed toward the sky with an accel-

eration of Am/s2, the acceleration value is equal to A+ 9.81 which correspond to

20

the acceleration of the device (+Am/s2) minus the force of gravity (−9.81m/s2).

Sampling. It is a process that reduces a continuous signal to a discrete signal

with a given sampling rate. On Android platform, sampling rates are adjustable.

Android API Level 3 and above enables developers to change event delivery rates by

passing the rate parameter to the Sensor Manager interface. Basically, the Sensor

Manager interface controls all existing sensors on the device. One can register a sensor

event listener with a specific sensor and specific rate to the sensor manager. The rate

is the time interval at which sensor events are being delivered. The rate must have one

of the following values.

• SensorManager.SENSOR DELAY FASTEST : get sensor data as fast as possible.

• SensorManager.SENSOR DELAY GAME : rate suitable for games.

• SensorManager.SENSOR DELAY NORMAL : rate (default) suitable for screen

orientation changes.

• SensorManager.SENSOR DELAY UI : rate suitable for the user interface.

There are no standard values for these rates. They are highly dependent on the device

model, their capabilities and performance. Except these static values, one can provide

the desired delay between events in microseconds to the sensor interface. However, it

is clearly stated in [48] that these values are only a hint to the system. Events may

be received faster or slower than the specified rate. Usually, events are received faster

which is highly dependent on device and inner-sensor capabilities.

3.2. Steps of the Implemented Activity Recognition Process

In this thesis, we applied a combination of the selected methods which are detailed

in Section 2.2. We selected applied methods carefully which are most suitable to be

performed on smart phones considering limited capabilities. We should emphasize that

our aim is to propose a user friendly activity recognition system which performs each

step in real-time. While doing it, application performance should never be affected

21

from computational complexities of the proposed methods.

Figure 3.2. System Overview.

The proposed system contains three blocks as indicated in Figure 3.2 which are

Data Collection, Training and Activity Recognition respectively. We implemented two

different Android applications responsible for each block which are described in Section

3.4. First application is responsible with the Data Collection block whereas second ap-

plication is responsible with Training and Activity Recognition blocks. Since we use

supervised learning techniques, our system requires labeled data collection for approx-

imately three to five minutes for each activity before starting the recognition. Data

collection and training blocks are functioning independently from each other so that

each process can be repeated at any time, whereas training and activity recognition

blocks are executed sequentially. All of the blocks including the activity database reside

on the smart phone.

Data Collection steps contain data segmentation and preprocessing as indicated

22

in Figure 3.2. At the end of the data collection process, the processed activity data

are stored in the activity database on the smart phone for training and classification

purposes. During the Training phase, the collected raw data are read from the ac-

tivity database and necessary features are extracted firstly. Later, model parameters

are calculated for each classifier. Model parameters are used as input parameters to-

gether with streaming data for the Activity Recognition phase. Streaming data are first

segmented into timing windows and later, preprocessing, feature extraction and clas-

sification steps are applied respectively for each window. System output is indicated

at last step (11) which is the activity classes. Details of the main steps for the activity

recognition are explained in the following paragraphs.

During the segmentation step, illustrated as step 7 in Figure 3.2, we used con-

tinuous non-overlapping timing windows presented in Section 2.2. As stated before,

this type of windows are suitable when an accelerometer sensor with constant sampling

rates is used. Other types of windows are not preferred considering the computational

advantage of static windows. We also evaluate the impact of the length of timing

windows as one of the most important system parameters which affect the overall per-

formance as indicated in Section 4.3. In Figure 3.3, an illustration of the windowing

approaches used in this thesis is presented. The collected raw data are segmented into

predefined length of non-overlapping, continuous timing windows. As soon as a timing

window finishes (T1), data collection process continues within the next timing window

(T2). The next steps after segmentation, namely feature extraction, dimensionality

reduction and classification start whenever a window is completed. According to Fig-

ure 3.3, feature extraction and classification of time window T1 start at the beginning

of T2. Because of this reason, remaining steps of T1 must fit into slot T2, otherwise

activity recognition steps would iterate to other windows which causes degradation in

the system performance. This is one of the main challenges which should be solved

on the target platforms. Additionally, we also applied sliding windows with changing

overlapping ratios. The effect of this improvement was tested online and results are

compared with those with non-overlapping windows in Section 4.4.

Later, with the preprocessing step (1 and 8 in Figure 3.2) and apply a simple

23

Figure 3.3. Timing windows with 2 seconds at 100Hz.

discretized low pass filter to smoothen the signals coming from the accelerometer which

is described in Equation 3.3. The smoothing factor α is calculated as t
t+∆T

wheras t is

the time constant of the low-pass filter and ∆T is the event delivery rate.

yi = αxi + (1− α)yi−1 where α ,
t

t+ ∆T

(3.3)

In the feature extraction step, given as step 9 in Figure 3.2, we used simply

extracted time domain features: mean, maximum, minimum and standard deviation

since we perform both training and classification phases online on the smart phone.

This decision is mainly because of the limited capabilities of mobile phones as discussed

previously. Since these features were commonly used in the previous studies, using the

same feature set makes it easier to compare our findings with the similar studies. More-

over, because of the fact that this thesis is mainly focused on classifier performances

rather than the performance of feature selection techniques, the detailed evaluation of

feature selection methods is out of the scope of this work. Feature selection methods

and effect of other features with different combinations on system performance are

being investigated in another ongoing thesis [49].

24

Lastly, for the classification step 10 in Figure 3.2, we used Näıve Bayes, clustered

KNN and Decision Tree classifiers which are described in Section 3.3. Their perfor-

mances are compared in Section 4.3. Among other classifiers, KNN is challenging to

be performed online because of its high complexity. For this purpose, we applied the

dimensionality reduction step by using the K-Means Clustering method during KNN

tests which we call Clustered KNN. Implementation details are provided in Section

3.3.3.

3.3. Classification Methods

Processed data during activity recognition steps identified in Section 2.2 can be

used as input parameters for the classification step. In this section, we describe the

selected classification methods in detail. For the performance evaluation, we mainly

selected Näıve Bayes, Min Distance, KNN and Decision Tree classifiers considering

limited processing and storage on smart phones. Other classifiers like HMM, GMMs or

ANN are excluded mainly because of their computational complexity either at training

or classification steps. In the future, online classification systems may benefit from

the strengths of such classifiers as smart phone capabilities improve1 but the current

limitation of smart phones in the market does not allow us to use such classifiers.

As we mentioned previously, the training phase is performed offline in most of the

related works (Table 2.1) which benefit from strengths of such classifiers. By this way,

previously generated static models can be applied afterwards during online tests on the

phone. Since we target to apply both training and classification steps on the phone

itself, we mainly focused on these classifiers.

Additionally, it is also difficult to find comparisons of such classifiers using the

same parameter settings in the same study in the literature. Often, one of the clas-

sifiers is selected and all tests are performed only with the selected classifier. There

are few studies which compare and present performance of more than one classifier

implemented on similar platforms [9]. Because of this reason, we additionally aim to

1Newly released Samsung Galaxy SIII smart phones has 1.4GHz Quad Core Processor with An-
droid v4.0.4(Ice Cream Sandwich) OS

25

present comparisons of selected classifiers in terms of their performance in this thesis.

3.3.1. Näıve Bayes

Näıve Bayes is a probabilistic classification model. Basically, it is based on the

Bayesian theorem with independence assumptions. It ignores possible dependencies,

namely correlations, among the inputs and reduces a multivariate problem to a group

of univariate problems. Since we don’t know underlying principle which generates the

data, we are not able to calculate it deterministically. Decisions can be made only based

on observable values, in our case training data. According to Bayesian rule probability

of the reading X being a member of a class Ci can be formulated as follows;

P (Ci|X) =
P (X|Ci)× P (Ci)

P (X)
(3.4)

P (C = 1) is called prior probability that C takes the value 1, which in our case

corresponds to the probability that a reading is from Ci regardless of the X value. It

is called prior probability since it is the knowledge we have as to the value of Ci before

looking at observables X, satisfying

∑
c

P (C) = 1 (3.5)

P (X|Ci) is called the class likelihood and is the conditional probability that an event

belonging to Ci has the associated observation value X. In other words, it is the

probability of seeing X as the input when it is known to belong to class Ci . It is what

the training data tell us about the class.

P (X) is called the evidence which is the marginal probability that an observation

X is seen, regardless of which class it belongs. It can be formulated as follows;

P (X) =
∑
c

P (X,C) =
∑
i

P (X,Ci)× P (Ci) (3.6)

26

Combining the prior probability and likelihood in the name of Bayes’ rule, we can

calculate the posterior probability of the concept, P (Ci|X), after having seen the ob-

servation, X.

posterior =
prior × likelihood

evidence
(3.7)

Once we have the posterior probability for each class, then we can finalize the decision.

Bayes classifier chooses the class with the highest posterior probability to minimize the

error. Choose Ci if P (Ci|X) = maxkP (Ck|X). More details are available in [50].

In this thesis, we have utilized an NB implementation which was already used in

one of the previous studies [15]. However, in that study for offline processing purposes

the algorithm was implemented in Matlab so that we needed to import the same code

to Java which can be used for our online classification purposes on Android phones.

One minor improvement made in [15] was to exploit the temporal correlation of the

readings. Since the readings are frequent, two subsequent readings are likely to be

generated by the same action. Therefore a multiplication step is added to the system,

in which we multiplied the probability that a reading is a member of class i with a

coefficient α, only if the previous reading was determined to be a member of that class.

This is called the feed forwarding approach.

Additionally, the previous implementation was just grouping the activities as fall

or not falls. It is revised so that the new framework is able to distinguish multiple

activities and mark them respectively which correspond, in our case, to five different

activities. At the end of the classification process, we get precision, recall, accuracy

and f measure values immediately.

3.3.2. Minimum Distance and KNN

The minimum distance classifier is used to classify test data according to training

data set to minimize the error rate between test and training data sets. The distance

of the data to training sets is defined as an index so that the one with the minimum

27

distance is identical to the maximum similarity. There are different methods being used

for this procedure such as Euclidean, Normalized Euclidean and Mahalanobis distance.

Differences between Euclidean and normalized Euclidean distances are illustrated

in Figure 3.4 which is adapted from [51]. According to this figure, unknown pixel data

X is nearer to class B by the Euclidean distance, but it is better to clasify to class A

when the normalized Euclidean distance is used.

Figure 3.4. Normalized Euclidean Distance.

In this thesis, we always used the Euclidean Distance to evaluate the distance be-

tween any two points. Basically, the Euclidean distance between any two points p and q

is the length of the line segment connecting them (p̄q); so d(q(i), c(j)) , q(i)−c(j) if the

sequences are one dimensional and d(q(i), c(j)) ,
√

(q(i)1 − c(j)1)2 + (q(i)2 − c(j)2)2

if the sequences are two dimensional etc.

K-Nearest Neighbor classification is similar to the minimum distance procedure.

Basically, the testing data are being compared with all training data in terms of their

distances. The Euclidean distance can be used during this procedure. After distance

28

calculations, k nearest neighbors to the test data are being selected. The decision is

made for the class set which has more sample in the last data set with k samples in it.

Although this method is analytically tractable, simple to be implemented, it requires

large storage requirements. Besides that, high computational burden and being highly

susceptible to the curse of dimensionality are the other disadvantages of the K-Nearest

Neighbor.

3.3.3. Clustered KNN

In the literature, it has been reported that the minimum distance classifier does

not perform well when used alone [9]. Additionally, KNN results are always better

than the minimum distance in terms of accuracy. However, KNN is not an online

classifier since it requires high computational burden and especially considering the

limited resources on smart phones, it does not appear as a preferable method.

Considering these mentioned facts, we propose to combine the advantages of the

two classification methods and propose to use Clustered KNN for online classification.

According to the new method, called Clustered KNN, the training data are first pre-

processed and four features, which are average, minimum, maximum, and standard

deviation, are extracted. After this step, we apply additionally the dimensionality re-

duction step, namely K-means clustering to these extracted feature sets. During this

process, we aim to limit the sizes of minimum, maximum and average sets so that we

decrease the computational complexity of the online system during the classification

step. Predefined cluster sizes are selected as 10, 50 and 100 in this thesis.

Preprocessing in Clustered KNN. In the preprocessing step, our objective is to

define activity sets from the training data based on the mentioned features. For the

training data sets, we do not have any limitation in terms of the sample count. Addi-

tionally, we aim to decrease the burden of comparisons with the training set generated

within the preprocessing step for an online classifier. In this way, instead of compar-

ing all the data in the training set, we compare the test data only with the compact

29

training data set that we selected from the original training set which represents the

original data. During the preprocessing step, compact training sets are created for

Figure 3.5. Preprocessing for the average feature.

each feature and for each activity. For each feature, except the standard deviation, K

data points are selected from the training data. This process is summarized in Figure

3.5 for the average feature and just for one activity. In general, for the minimum

feature set, K minimum data points are selected from the training data. Similarly,

we create a maximum set by selecting the K maximum data points. For the third

set, called average set, the average value of the training data is calculated and the

nearest K data points are included. These sets are created for each activity seperately.

Lastly, we create another set by calculating standard deviation of each activity using

the previously collected training data. As an example, if K is selected as 10, we have

in total 40 samples after the preprocessing step for four activities per feature except

the standard deviation. K value is an important system parameter and when K is

smaller, the computational complexity and classification execution times decrease. On

the other hand, we expect a decrease in accuracy of the results with smaller K values.

Because of this reason, there is an important tradeoff between accuracy and execution

time considering the value for K which impact is analyzed in Section 4.5.

Classification in Clustered KNN. In the classification step, we collect test data

during a predefined window size, i.e. we segment the data.2 After the window is filled,

classification starts, and average, minimum, maximum, standard deviation values of

2Same segmentation procedure is also applied to other classifiers whose performance is evaluated
in Chapter 4

30

Figure 3.6. Classification process for average feature.

the data in the window is calculated. These values are compared one by one with the

values in the compact training sets which were created during the preprocessing step.

K nearest samples to the test data are selected from the training sets and voting is

made by checking the final list of activities. We label the data in the related window

as the activity for which we have the maximum amount of data in the final K set. For

instance, if K is 10 and the final list is as 1 1 5 3 (1 vote for running, 1 vote for walking,

5 votes for sitting and 3 votes for standing) for the average feature, then the activity

is labeled as sitting according to the average feature. This process is summarized in

Figure 3.6 for the average feature. The same process is applied to minimum and

maximum data sets as well. We make one last comparison for the standard deviation

coming from the related window with the standard deviation of each training set for

different activities. The one which is closer to the standard deviation of that window

is selected as the recognized activity by the standard deviation feature. At the end, we

have four labels coming from voting results of each feature. We label the window as the

activity for which we have the highest number of votes and finalize the classification.

3.3.4. Decision Tree

A decision tree is a decision support tool that uses a tree-like graph or model

of decisions and their possible consequences, including event outcomes, resource costs,

31

and utility. It consists of nodes and branches which enables us to help make reason-

able choices and decisions by assigning specific numerical values to each alternative

considering uncertainties, costs and payoffs. Decision trees are widely used in cogni-

tive science, artificial intelligence, data mining, statistics, medical diagnosis, formal

problem solving, machine learning or game theory.

In the literature, there are many decision-tree algorithms. The main decision tree

algorithms can be listed as follows:

• ID3 algorithm [52]

• C4.5 algorithm [53]

• C5.0 algorithm [54]

• CHi-squared Automatic Interaction Detector (CHAID) [55] which performs multi-

level splits when computing classification trees

• Multivariate adaptive regression splines (MARS) [56]: extends decision trees to

better handle numerical data

ID3 is one of the first DT implementation developed by Ross Quinlan. Algorithms C4.5

and C5.0 are iterations of ID3 and have some improvements on each other. Algorithms

constructing decision trees are using the top-down approach by choosing the next best

variable at each step which splits the existing sets at that step into well defined ho-

mogenous subsets. There are different methods to decide the next best variables. ID3,

C4.5 and C5.0 DT algorithms use Information Gain as given in Equation 3.8 which

is based on the concept of entropy in information theory.

IE(f) = −
m∑
i=1

fi log2 fi (3.8)

There are many reasons for us to choose the decision tree for classification. Its simplicity

to understand and interpret, remarkable performance at related works [9], possibility

to validate the results easily with simple statistical tests, robustness and performance

are the main advantages of decision trees. In this thesis, we aim to benefit from such

32

advantages of the decision tree classifier. The most important feature is that the de-

cision tree is able to handle even large data sets easily by using standard computing

resources which has utmost importance in terms of this work considering online classi-

fication and training processes. In this thesis, we have used C4.5 DT algorithm based

on jaDTi which is a Java implementation of decision trees. Its source code is freely

available in [53].

3.4. Android Implementation of Activity Recognition Process

In this work, two separate applications are implemented for different purposes

which are called as Activity Logger and Activity Recognizer respectively. Activity

Logger application is being used to collect sample data for each activity and Activity

Recognizer application is being used to classify user activities according to the training

data collected by the other application. Different methods and techniques specifically

explained at previous sections are used during classification steps.

3.4.1. Activity Logger

As stated above, purpose of this application is to collect sample data for each

activity separately. Interface of the application is user-friendly and does not require

any expertise to be used. Before starting the application, user selects the activity to

be performed, press the start button, puts the phone into the pocket and starts to

perform the related activity. Any data being collected after that time is being labeled

with the activity that the user selected. It expects the user to perform only that type

of activity until the stop button is pressed. The user interface of the application is

presented in Figure 3.7.

The application collects only the acceleration data by using the Sensor Service

interface. A low-pass filter is applied to the raw data to isolate the force of gravity and

measure real acceleration values of the device as stated in Section 2.2. The accelerom-

eter sensor is registered to Sensor Manager interface with a static sampling rate of 50

Hz.

33

Figure 3.7. Interface of Activity Logger.

For each activity, the application creates different training data files in which raw

data from the 3-axes of the accelerometer is being logged after preprocessing step. All

readings are gathered in one folder under the SD card named as HumanTracking. At

any time, any file under this folder can be reached and sampled data can be analysed.

Each activity-associated data set is written to separate text files which are named as

training ActivityLabel under this folder. Before starting the activity recognition tests,

a few minutes of training data for each activity should be collected by each subject.3

The training data that belong to the activity can be collected at any time without the

need of continuously performing the related activity. If a user continues to collect data

after a while, new data are written starting from the end of the previously collected

data set instead of replacing the already existing data in the file. Figure 3.1 presents

the format of the training data being written to the associated file which is called in this

specific case as training 1.txt. Each column in these files is separated with a space and

each of them represents x, y, z acceleration values and the activity label respectively.

3In fact, we also performed tests when no user training data is available but the training data
from other users are used.

34

Table 3.1. Representation of Training Data.

1 -8.5862665 -14.459362 -7.5402246 1

2 -12.040388 -20.681137 -10.4168415 1

3 -10.384153 -22.642466 -3.1272316 1

4 0.8281174 -20.528587 1.6889238 1

5 -10.144435 -19.76585 -5.088562 1

3.4.2. Activity Trainer and Recognizer

This application basically processes the training data and performs the classifi-

cation. Training data sets created by the activity logger application are processed at

each start up of the application only once. By this way, users can collect the train-

ing data any time and they can start to use the activity recognition application right

after training data sets are created or updated without the need of any extra manual

operation. These two processes highly depend on the classification method which will

be used for activity recognition. The main purpose of the training data processing at

the start up is to prepare application for the classification method which will be used

online. First, the application extracts the necessary features of training sets for each

activity according to the classification method being used and calculates the model

parameters for each classifier. Depending on the size of the training set and the pro-

cessor performance of the phone, this step may take only a few minutes at most. These

training periods match perfectly with our goal in this thesis by making the application

more user-friendly and easy to use by everyone.

As mentioned, we have designed the training process to be fired at each start

up of the application since new training data can be collected at any time by the

user. Expanding the training data sets will increase the accuracy. However, because

of the limited computation power and memory of the smart phones, we had to restrict

sizes of training files. According to our initial tests with T-Mobile Android phones,

maximum 5000 lines of training data in each file would be a good compromise which

35

can be parsed and processed by the phone easily. However, more powerful phones

in the current market like Samsung Galaxy SII can process larger training files with

20000 up to 30000 lines easily which leads to better results. In our system, we have

restricted the size of the training files up to 5000 lines to be able to compare the results

of any phone included in our study. However, in the future, we are planning to set the

minimum Android API level (expression of an application’s compatibility with one or

more versions of the Android platform) for this application to be used so that we can

benefit from the strengths of advanced smart phones. We are also planning to apply

changes in the data collection process. Our idea is to collect and replace new data

only if it perfectly fits the previously collected data sets and exclude the ones which

are regarded/considered as noisy data, even though we have a limitation on the sizes

of the training set. By this way, our aim is to create more useful labelled training data.

As stated previously, NB, clustered KNN and DT classifiers are implemented in

this thesis. For NB, each training data set is being read from associated files and mean,

covariance arrays are calculated respectively during the preprocessing step to be used

later during the online classification. On the other hand, for clustered KNN and DT,

average, min, max data sets and standard deviation are calculated to be used later at

online classification steps.

In the second stage, activity recognition is performed using the selected classifier.

Main layout of the Activity Recognizer application is presented in Figure 3.8. The user

interface of the application allows the user to select the system parameters, such as the

sensor sampling rate, window size, order interval (explained later in this section) and

extracted features. These features are mainly added for test phases to track the perfor-

mance of the classification methods. After providing the necessary system parameters

to the application, one can manage it simply by using start and stop buttons.

Possible input values for each input field at Activity Recognizer application are

explained below:

36

Figure 3.8. Interface of Activity Classifier.

Window Size. It is provided to the system in terms of seconds. It is the time

interval during which data are being collected without any classification. Application

forces users to select one of the existing values at drop down menu which are 0.5, 1

and 2 seconds respectively. Other values could be added but as we explain in Section

4.2, these intervals are reported to be the most suitable intervals to recognize standing,

walking, running, sitting and biking activities.

Sample Rate. It is the sampling rate provided directly to the internal accelerom-

eter sensor. During initial tests, we used static sampling rate values of Android API

like GAME, UI or NORMAL. Later, the system was modified so that we provide the

desired delay between events in microseconds directly. Input values at layout can be

selected as one of the predefined values in the drop down menu which are defined as

10, 50, 100 all indicating the delay between two events in unit of milliseconds. The

accelerometer sensor is being registered to Sensor Manager interface directly with the

values being taken from this user input.

Order Interval. We have created a test scenario before performing the system

tests. According to this scenario, all tests are performed in a specific sequence with a

37

specific activity order in a predetermined period of time. Activity order is defined as

RUNNING , WALKING, BIKING, STANDING, SITTING. All experiment subjects

performed these activity sets respectively. The predefined time during which activity

is performed is called Order Interval in this thesis. The Order Interval parameter can

be provided by user in unit of seconds to the system.

In order to monitor the recognition performance of the classifier, the ground truth

data, i.e. which activity is actually performed by the user, is logged. For this purpose,

the application gives voice commands repeatedly to the user to perform an activity.

Application itself gives voice orders for each activity to be performed whenever an

order interval is completed. Voice orders which are currently defined in the system are

presented in Table 3.2. Finally, using these ground truth values, i.e., activity tags, the

activity recognition performance and other performance metrics of the classifiers are

calculated.

Table 3.2. Existing Voice Orders at Activity Recognizer Application.

STATIC VALUE VOICE COMMAND

TEXT TO SPEECH RUN Start running!

TEXT TO SPEECH STANDING Start standing!

TEXT TO SPEECH BIKING Start biking!

TEXT TO SPEECH SITTING Start sitting!

TEXT TO SPEECH WALKING Start walking!

Important sampling data are collected in separate log files for further analysis, and

written under the HumanTracking folder with different file names. They are easily

accessible under the SD card so that one can check these files easily after processing is

completed. Log files are detailed in Appendix A.

After user clicks on the stop button, overall results are calculated and written

directly to the files detailed in Appendix A. After all results are derived, a pie chart

38

with percentages of the overall classification is being shown on the main layout as

presented in Figure 3.8. Lastly, all running services, as well as the sensor service stop

running.

39

4. PERFORMANCE EVALUATION

In this chapter, we aim to evaluate the performance of the proposed system

based on selected system and workload parameters as indicated in Figure 4.1. First we

present the performance metrics used in the thesis. Later, we elaborate on preliminary

tests and their results which give us the direction for our final tests. Based on the

preliminary tests we designed our final experiments through which we evaluate the

performance of the classifiers and performance of the overall system in terms of CPU

and battery usage. Lastly, we compare our results with tests performed offline both

in classification and training phases. We conclude this chapter by providing the final

results which evaluate user dependency of training data sets.

Figure 4.1. Workload and System Parameters.

Main tests were performed in two batches with a different set of activities. First

tests were performed with running, walking, standing, and sitting whereas in the second

group of tests we added the biking activity. Test designs will be detailed in Section

4.2 with the selected system and workload parameters. In all the tests, subjects firstly

collected training data for each activity, around 4-5 minutes for each set, using the

Activity Logger application described in Section 3.4.1. Later, voluntary subjects were

asked to repeat a predefined test scenario which is presented in Table 4.1. During

these tests, subjects used Activity Recognizer application which automatically gives

the activity order to the subject with a voice command whenever a transaction should

40

be performed. As mentioned, we were able to hold ground truth of performed activities

during tests and collect reliable results. With the help of the ground truth, we are able

to evaluate the real performance of the proposed system as well.

Table 4.1. Test Scenario.

Order Action

1 Running

2 Walking

3 Standing

4 Sitting

5 Biking

4.1. Performance Parameters and Metrics

In this section, we describe the factors which may affect the outcome of the

recognizer. We use the two-phase experiment design described in [57]. In the first phase

which we call the preliminary test phase, we aimed to create a stable test environment

by selecting a proper set of system factors. Then in the second phase of experiments,

the factors which may affect the outcome are investigated deeply.

Factors which may affect the results are presented in Figure 4.1. In this figure,

activities and different users can be grouped as workload parameters whereas sampling

rate, phone models, classifiers, features, window size, order interval and K value for

Clustered KNN can be defined as system parameters. After our initial studies, we

identified several factors that may affect the performance of the activity recognition

process on smart phones:

• Phone Model: Device model is highly important in the sense of sensors being em-

bedded to the device and device capabilities. Sensor hardware changes according

to the model and its manufacturer which may directly affect the performance

as different sensors may have different accuracy and noise characteristics. Ad-

41

ditionally, computational power of the device should be enough to handle the

selected system parameters and test cases appropriately. Thus, device selection

is important.

• Activity: It is the target action being performed during tests which we try to

recognize. Selected activity sets are also important in terms of accuracy of the

system. We aim to recognize the activities that are mostly investigated in similar

studies (given in Table 2.1) for comparison purposes. Adding new activities to

the current system may affect the recognition performance.

• Classifier: Classification is the most important step at activity recognition pro-

cess as stated in Section 3.3. Type of selected classifiers play an important role

on the system results. We have selected classifiers which are most suitable with

the online system we proposed.

• Feature: Features are the signatures of the activities which have an important

effect to identify the activities and affects the results directly.

• Sampling Rate: It is the rate at which the data is gathered. It affects the ability

of the accelerometer to capture the necessary information for target activities.

• Window Size: It is the duration during which we only collect data without per-

forming any classification. Each human activity has a pattern except stationary

activities. Because of this reason, collected data during a window plays an im-

portant role to identify activities.

• Order Interval: Order Interval is the duration of activity to be performed.

• Test Cycle: Test cycle consists of activities to be performed according to a pre-

defined test scenario. Depending on our tests, one cycle consists of either four or

five activities.

• K Value: It is the cluster size used for Clustered KNN tests. This parameter is

directly associated with computational complexity of the system and accuracy of

the results.

Table 4.2 indicates the classifier-based system parameters being applied during

our tests. As presented, we applied K value as the cluster size parameter only during

clustered KNN tests to decrease the computational complexity of KNN classifier.

42

Table 4.2. Classifier Based System Parameters.

CLASSIFIER SYSTEM PARAMETERS

Näıve Bayes Window Size, Sample Rate

Min Distance Window Size, Sample Rate

Clustered KNN K Value, Window Size, Sample Rate

Decision Tree Window Size, Sample Rate

Throughout the tests, performance evaluations of our models are made using

precision, recall, F-measure, or accuracy. These values can be computed using the

confusion matrix shown in Table 4.3.

Table 4.3. Confusion matrix showing TP , TT and TI for each class [58].

INFERRED

1 2 3 4

1 TP1 ε12 ε13 ε14 TT1

GROUND
2 ε21 TP2 ε23 ε24 TT2

3 ε31 ε32 TP3 ε34 TT3

TRUTH
4 ε41 ε42 ε43 TP4 TT4

TI1 TI2 TI3 TI4 Total

More detailed confusion matrices will be provided later in the results section while

providing our test results. In the confusion matrix, the rows show the ground truth

labels as provided by a human annotator, while the columns show the labels inferred

by the model. The diagonal of the matrix shows true positives (TP). The sum of each

row provides us the total ground truth of each label (TT). Lastly, the sum of each

column gives us total of inferred labels (TI). The precision and the recall are separately

calculated for each class and then the average is taken over all existing classes.

In Equation 4.1, precision is calculated as follows:

Precision =
1

N

N∑
i=1

TPi
TIi

(4.1)

43

where N is the number of classes. Similarly, recall can be computed as given in Equa-

tion 4.2;

Recall =
1

N

N∑
i=1

TPi
TTi

(4.2)

F-Measure calculation is based on precision and recall values which is provided in

Equation 4.3.

F −Measure =
2× precision× recall
precision+ recall

(4.3)

Accuracy =

N∑
i=1

TPi

Total
(4.4)

Since we deal with unbalanced data sets, it is important to use these particular

measures. Some classes may appear much more frequent than other classes whereas our

measure takes the average precision and recall over all classes and therefore considers

the correct classification of each class equally important. Additionally, the overall

accuracy is used for comparison which is calculated over all classes by using the true

positive values and the total data given in Equation 4.4. The accuracy represents the

percentage of correctly classified time slices.

4.2. Experiment Design

4.2.1. Preliminary Test

Before starting with the main tests, we have performed preliminary tests to ob-

serve the main difficulties of working in the Android environment. Firstly, we have

implemented the NB classifier and performed initial simple tests with different varia-

tions by using different window sizes, sampling rates and different subjects. Test setup

44

and parameters are provided in Table 4.4.

Table 4.4. Preliminary Test Parameters.

Parameter Value

Activity Running, Walking, Sitting, Standing

Phone Model T-Mobile G2 Touch

Classifier NB

Feature Average

Window Size Changing window size depending on Sample Rate

Sample Rate Game, Normal, UI

Order Interval 5,10,30,60 (sec)

Test Cycle Count 1,3,5

Windowing Non-overlapping, continous

All initial test results are gathered in Tables 4.5, 4.6 and 4.7 respectively. Table

4.5 shows the classification results of performed activities of a subject which is trained

online by the same subject. In Table 4.6, we provide the results of the system which

is trained with different set of data collected from two senior undergraduate students

and tested by the subject who performed the first tests. Table 4.7 indicates the results

of the system which is trained and tested by a different subject, i.e., the training and

testing were done by the same person again but this subject used a phone which was

a different model. In all tests we used the Naive Bayes classifier. Window sizes are

selected according to sampling rates which represent the data size collected during

that window in Tables 4.5, 4.6 and 4.7. We used static sampling rates of the Android

platform during these initial tests which were stated in Section 3.1. When we look at

the results, we could not get any similar behaviour based on system parameters with

different subjects. We have contradictory results between two subjects considering the

sampling rates and the window sizes. Additionally, we observe very poor performances

at some specific cases. Based on the detailed analysis, we derived the following main

conclusions which shaped the final test setup.

45

Table 4.5. Tests performed on private training set.

Sampling

Rate

Window

Size

Accuracy F Measure Precision Recall

11 0.39 0.42 0.45 0.39

GAME 22 0.38 0.40 0.41 0.38

(20 msec) 44 0.29 0.21 0.17 0.28

26 0.39 0.39 0.40 0.39

NORMAL 52 0.41 0.42 0.44 0.41

(200 msec) 104 0.37 0.34 0.32 0.37

16 0.44 0.44 0.44 0.44

UI 32 0.42 0.42 0.43 0.42

(60 msec) 64 0.37 0.29 0.24 0.37

Table 4.6. Tests performed on different training data set.

Sampling

Rate

Window

Size

Accuracy F Measure Precision Recall

11 0.44 0.41 0.37 0.45

GAME 22 0.27 0.30 0.32 0.27

(20 msec) 44 0.45 0.41 0.38 0.45

26 0.39 0.36 0.33 0.40

NORMAL 52 0.41 0.38 0.34 0.42

(200 msec) 104 0.33 0.34 0.35 0.34

16 0.41 0.37 0.33 0.42

UI 32 0.27 0.24 0.22 0.28

(60 msec) 64 0.26 0.24 0.22 0.27

46

Table 4.7. Tests performed on private training set by a different subject.

Sampling

Rate

Window

Size

Accuracy F Measure Precision Recall

11 0.46 0.53 0.62 0.46

GAME 22 0.50 0.57 0.66 0.50

(20 msec) 44 0.38 0.46 0.58 0.38

26 0.31 0.47 0.56 0.40

NORMAL 52 0.54 0.50 0.58 0.44

(200 msec) 104 0.30 0.09 0.08 0.12

16 0.40 0.42 0.44 0.40

UI 32 0.51 0.59 0.66 0.64

(60 msec) 64 0.47 0.51 0.52 0.50

The most important result that we observed after the preliminary tests was the

difference of total number of collected and processed data between devices. With differ-

ent devices we have had really different results. These differences were mainly caused

by using already defined sampling rates of sensor manager and device capabilities since

these values are just hint for the system and highly depending on the performance of

the phone models [48]. Because of this reason, we decided to use static sampling rates

in our main test sets and revised the sampling rate such that it could be given by the

user input to the system in terms of the time unit (millisecond) between each sensor

event. 10, 50 and 100 milliseconds are decided to be used for the next tests. While

deciding on the sampling rates, we choose 10 msec sampling interval as the basis since

most of the smart phones are not even capable of rising sensor events with this interval.

On the other hand, sampling rates between 10 Hz and 100 Hz are indicated as the most

suitable rates in the literature for human activity recognition.

Another important change is applied to the window size. During the initial tests

we used window sizes which are defined according to the static sampling rate of Android

devices. Basically, it counts the sample size collected and finishes windowing as soon

47

as the predefined size is achieved. So after the change on sampling rates, we started

to use the time interval in unit of seconds which is more suitable for our tests. To

control window sizes, a new thread was implemented at the application level. The

same thread is controlling the classification as well. According to the new model, test

data are being collected during a window of size x seconds; which is provided by the

user. After the window is completed, all collected data during that interval is being

classified. We may call the data collected during the window size as the test data set.

Possible window sizes are selected as 0.5, 1, 2 seconds in our main tests.

Another important conclusion we derived after our initial test runs was the im-

portance of the order interval on the accuracy of the results. During our initial tests we

selected different order intervals which ranges between 5 and 60 seconds. It has been

observed that as the order interval increases towards 60 seconds, accuracy of the results

improved in parallel. The main reason of this change at accuracies was the transitions

between activities during tests. We have more transitions during a test where the order

interval is selected as five seconds than the one which has the order interval selected

as 60 seconds. Each transition between activities causes unbalanced data in test set

for corresponding windows which results in wrong results. Because of this reason, we

decided to use a longer order interval which is 60 seconds during our final tests. We

did not increase the order interval further since increasing the order interval prolongs

the tests and does not improve the final results. It is already difficult to continuously

perform related activities for 60 seconds long considering especially running and biking

cases. We also improved our system by defining guard intervals around each transition.

Basically, the first and the last two windows for each order interval is ignored and not

included in the performance evaluation process.

4.2.2. Final Test Setup

As we mentioned, tests were performed in two batches with different set of activ-

ities. During the first group of tests, subjects performed four different activities which

are running, standing, sitting and walking. These tests were performed with seven

different subjects whose average age is 27 (2 female, 5 male). Each subject performed

48

the same predefined activity pattern running, walking, standing, sitting during the

classification step. Each test set is performed for four minutes where each activity is

performed for 60 seconds. Setup system parameters are listed in Table 4.8.

Table 4.8. Setup parameters for the first group of final tests.

Parameter Value

Activity Running, Walking, Sitting, Standing

Phone Model Samsung Galaxy SII, Samsung Galaxy W, Turkcell MaxiPlus5

Classifier NB, DT, Clustered KNN

Feature avg, min, max, std dev., avg. acc. at Y axis

Window Size 0.5, 1, 2 (sec)

Sample Rate 10, 20, 100 (Hz)

K Value 10, 50 ,100

Order Interval 60 (sec)

Test Cycle Count 1

Windowing Non-overlapping, continuous

During the second batch of tests, subjects performed one more additional activity

which is biking. These tests are performed with nine different subjects whose average

age is 29 (2 female, 7 male). During these tests, each subject performed the same

predefined activity pattern running, walking, standing, sitting and biking. Each ex-

periment lasted five minutes where each activity was performed for 60 seconds. Setup

parameters for the second group of tests are the same as indicated in Table 4.8 except

activity parameters. All subjects carried the mobile phone in the front pocket of their

pants during both test and training phases. The same test scenario is repeated nine

times with different system parameters based on the window size and the sampling

rate. Additionally, K value is varied as 10, 50, and 100 for clustered KNN tests which

resulted in 27 tests in total. Window sizes are selected as 0.5, 1, 2 seconds whereas

10, 50, and 100 msec are used for the sampling interval. With these changes, our ob-

jective was to examine the effect of the window size and the sampling interval on the

performance of the activity recognition.

49

Each subject performed all the tests on the same Android platform, although

different subjects could use different phone models. At the end of the classification

process, precision, recall, accuracy and F-measure metrics are calculated and results

are written in a final result file. As mentioned, classification results are also shown

with a graphical pie chart on the phone screen (Figure 3.8).

All activities during the tests are performed in an indoor4 laboratory environment

as shown in Figure 4.2 except the biking activity. Biking experiments are performed

in an outdoor environment with all the subjects using the same bike.

Figure 4.2. Snapshots from the experiments.

4.3. Performance Evaluation of Classifiers

In this section, we explain the results obtained by comparing the performance of

the classifiers. Individual performance of the classifiers will be evaluated under each

subsection separately. Moreover, as stated before, two batches of tests are performed

and their results will be given separately.

4We could perform the tests in an outdoor environment as well but because of the weather con-
ditions we preferred to perform the tests in an indoor environment.

50

4.3.1. Performance of Näıve Bayes

Performance of NB without biking activity. We observe that the accuracy rates

ranged from 40% to 66% when we apply the Näıve Bayes classification method which

is highly dependent on the system parameters as given in Table 4.10. Näıve Bayes

achieved a 66% average accuracy rate for all subjects with different sampling rates

and window sizes. Similarly, the performance in terms of F-measure was close to 65%

as indicated in Table 4.9. Moreover, the best performance results are obtained with

window size of 2 seconds with smaller sampling rates as presented in Table 4.10.

Table 4.9. Comparison of Clustered KNN, NB and DT without biking.

CLUSTERED KNN NAIVE BAYES DECISION TREE

ACCURACY 92.13% 66.33% 85.52%

PRECISION 92.45% 68.05% 83.56%

RECALL 92.09% 65.10% 81.22%

F-MEASURE 92.27% 65.26% 82.37%

Table 4.10. Impact of window size and sampling interval on the accuracy rates of

classifiers without biking.

Window size(sec) 0.5 1 2

Sampling Interval(msec) 10 50 100 10 50 100 10 50 100

Clustered KNN 91.1 90.0 91.4 91.9 92.1 90.8 88.9 89.4 91.0

Decision Tree 80.2 85.0 81.8 70.0 79.5 74.1 77.2 78.6 85.5

Näıve Bayes 40.9 53.8 52.3 41.7 52.5 51.4 53.7 64.2 66.3

Performance of NB with biking activity. After adding the biking activity to the

test set, we observed considerable decrease in the activity recognition process in terms

of accuracies. It ranges between 33% and 47% in these cases with different window sizes

and sampling rates. According to the results, NB performed in average 46% accuracy

51

while recognizing five different activities as indicated in Table 4.11. Its F-Measure

performance is nearly 44% according to the results. Similarly with first tests, best

results are achieved whenever the window size is selected as 2 seconds as indicated in

Table 4.12.

Table 4.11. Comparison of Clustered KNN, NB and DT with biking.

CLUSTERED KNN NAIVE BAYES DECISION TREE

ACCURACY 72.91% 46.34% 75.33%

PRECISION 77.82% 41.69% 67.32%

RECALL 78.06% 46.42% 73.14%

F-MEASURE 77.82% 43.68% 69.95%

In conclusion, Naive Bayes revealed poor results compared to other classifiers

with online classification and training. Mainly, poor results derive from the limited

and small training data sets which are a part of the methodology we follow in this

thesis. This result is derived from observations stated in Section 4.6, where we explain

the performance of Naive Bayes with offline training using 10-fold cross validation.

Table 4.12. Impact of window size and sampling interval on the accuracy rates of

classifiers with biking.

Window size(sec) 0.5 1 2

Sampling Interval(msec) 10 50 100 10 50 100 10 50 100

Clustered KNN 44.2 57.1 66.7 48.8 66.1 70.4 58.4 72.1 72.9

Decision Tree 63.1 70.6 67.0 54.9 68.3 71.9 66.3 71.1 75.3

Näıve Bayes 33.0 43.9 42.7 34.7 41.6 38.9 42.0 46.3 43.4

4.3.2. Performance of Clustered KNN

Performance of Clustered KNN without biking activity. The confusion matrix

for clustered KNN is presented in Table 4.13 to evaluate the classification performance

52

of the classifier for each activity. Compared to the performance of activities of run-

ning, standing and sitting, the classifier presents slightly worse performance for walking

where it is sometimes classified as running or standing. However, the overall perfor-

mance for clustered KNN is around 92% accuracy considering all activities as presented

in Table 4.14.

Table 4.13. Overall Confusion Matrix of Clustered KNN without Biking.

CLASSIFICATION

RUNNING WALKING STANDING SITTING

GROUND
RUNNING 94.1% 4.1% 1.2% 0.6%

WALKING 15.7% 72.9% 10.8% 0.6%

TRUTH
STANDING 5.8% 1.0% 91.6% 1.6%

SITTING 1.6% 0.2% 2.6% 95.6%

We also evaluated the impact of K value on the classification performance of clus-

tered KNN. As expected, increasing the K value affected the accuracy rates positively.

We observed on average 87% accuracy with K = 10 whereas it increased to 91% when

K is selected as 50. Although the accuracy rates were not affected from further increase

of K values, classification times significantly increased because of this change5 . Table

4.14 summarizes the performance of clustered KNN in terms of average accuracy rates

with changing K values.

Table 4.14. Average Accuracy Rates of Clustered KNN(%) without Biking.

Window size(sec) 0.5 1 2

Sampling Interval(msec) 10 50 100 10 50 100 10 50 100

K = 10 87.9 87.8 87.7 88.4 90.3 89.5 88.6 87.8 89.3

K = 50 91.1 90.0 91.4 91.9 92.1 90.8 88.9 89.4 91.0

5We observed classification times up to 210 msec with Samsung GalaxyII whenever we selected
K value as 50 whereas it increased up to 330 msec with K equals to 100

53

Considering all the performance results, we observed the best results with K value

selected as 50. We further analysed the effect of the sampling rate and the window size

on accuracies. In general, slightly bad results are observed in cases when the window

size is selected as 2 seconds whereas the best results are obtained with the window size

of 1 second. For the window sizes studied, as shown in Table 4.14, sampling interval

does not have a significant impact on the accuracy results. When we consider the

overall effect of all system parameters, we obtained the best results in the case where

K is selected as 50, the window size is selected as 1 second and the sampling interval

is selected as 50 msec. According to the tests performed with seven different subjects,

we obtained an average 92% accuracy rate for this case. Table 4.14 summarizes the

accuracy results with changing parameter values.

Performance of Clustered KNN with biking activity. First test batch clearly

indicated that increasing K value affects the results positively so that in the second

batch of tests, we only used Clustered KNN with K value set as 50. K value is not

selected as 100 since it increased the computation times a lot which caused degradation

at application performance although it revealed almost the same performance results

as K equals to 50.

Adding the biking activity to the test set affected the clustered KNN performance

negatively and the system accuracy is decreased from 92% to 73% (We discuss the

impact of adding the biking activity in Section 4.3.4). Performance of the Clustered

KNN is presented in Table 4.12 with changing system parameters of window size and

sampling rate. According to the final results, Clustered KNN gave the best results

whenever the window size is selected as 2 seconds with the sampling interval 100 msec.

Differently from the previous results one can easily see that variance of the results

increased substantially in the case where we added the biking activity.

As indicated in Table 4.2, the K value, the window size and the sampling in-

terval is determined as system parameters for the clustered KNN method. Compared

to Näıve Bayes, on average, clustered KNN achieved a much better classification per-

54

formance, around 92% accuracy, precision, recall and F-measure without biking and

73% accuracy with biking activity. Test results show that the accuracy rates for online

classification with Clustered KNN method are highly comparable with the previous

studies referenced in this thesis and even with the ones which are considering offline

classification.

4.3.3. Performance of Decision Tree

Performance of Decision Tree without biking activity. Decision Tree results are

presented in Table 4.9 for comparison purposes. We used the same system parameters

except the K value during Decision Tree tests. According to the test results, we have

the worst results with window size 1 second as indicated in Table 4.10. On the other

hand, the Decision Tree performed better whenever we select the window size as 0.5

seconds. We have also highly comparable results whenever we used the window size as

2 seconds. All sampling rates at 0.5 second window size resulted in better performance

which ranges between 81% and 85%. We have the best results with the window size of

2 seconds and sampling interval 100 msec which performed nearly 86% accuracy.

Performance of DT with biking activity. Adding biking to the activity set de-

creased the Decision Tree performance as observed with other classifiers. The overall

results are detailed in Table 4.12. In general, results improved whenever we increase

the sampling interval and the window size while using Decision Tree as the classifier.

The best results are obtained with the window size of 2 seconds and the sampling

interval of 100 msec which performed nearly 75% accuracy.

4.3.4. Overall Performance Evaluation of Classifiers

Considering all the results, we can conclude that Clustered KNN performed the

best whenever we exclude the biking activity. It nearly performed 92% accuracy to

detect the remaining four activities. On the other hand, the Decision Tree achieved also

good results with 85% accuracy in the same environment whereas it performed nearly

55

the same or better accuracies than Clustered KNN when we include the biking activity

which resulted in 75% accuracy rates. Additionally, it should be noted that although

the Decision Tree performs better in terms of accuracy in this particular case, clustered

KNN outperformed the Decision Tree in terms of other metrics like precision, recall

and f-measure as indicated in the overall results in Table 4.11. Lastly, Näıve Bayes

exhibited the worst performance in all cases.

Adding the biking activity slightly changed the behaviour of classifiers. First of

all, accuracy rates of all classifiers decreased substantially because of the nature of

biking activity. Most of the times, classifiers performed misclassification by mainly

confusing running, biking and sitting activities. These results are mainly because of

the uncontrolled experiments performed by the subjects. In the second group of tests,

we did not provide any pre-training to the subjects to be able to measure the test

results in a real environment. In most of the cases, we observed that the subjects start

the biking activity with initial pedalling whereas they start to sit without pedalling

after an initial velocity is achieved. This causes misclassification of biking and sitting

cases. On the other hand, subjects start to get on and pedal faster whenever they pass

an uphill on the way. This leads classifiers to confuse running and biking cases.

When we look at the overall results without biking, we observe that the window

size we used is a more dominant system parameter than the sampling rates. In general,

smaller window sizes (0.5 sec) achieved better results regardless of the considerable

effect of the sampling rates. We observed that the running and walking activities are

better distinguished with this window size which are misclassified most of the times

during tests. In Figure 4.3, we plot the acceleration data for running activity with

three consecutive timing windows at 0.5 second as an example. It can be seen that

same pattern is preserved during consecutive windows.

Additionally, we observe that the sampling rate became a more dominant system

parameter after adding the biking activity. In this case, smaller sampling rates (10 Hz)

revealed better results. Basically, increasing sampling rates also detailed the nature of

the activities but for the selected features and activity set, it created a negative effect

56

Figure 4.3. Consecutive timing windows of 0.5 sec for running activity.

on the results so that we could distinguish biking, running and walking activities better

at smaller sampling rates from each other. It is also an important advantage for the

energy efficiency of the proposed system.

Moreover, we can say that classifiers achieved better results with bigger window

sizes after we added the biking activity. This is mainly because of the periodicity of the

biking activity. From the previous studies, we know that some activities are recognized

better with window sizes of 1 and 2 seconds [30] based on features selected for the

classification phase. According to our results, we achieved the best results when the

window size is selected as 2 seconds.

When we compare our findings with the related works detailed in Section 2.3, we

can conclude that our results are comparable and similar. As an example, in [9], the

proposed activity recognition system achieved 93%. They analysed similar activities

like stationary, biking, walking, running but in addition to the accelerometer sensor,

57

they used the advantage of the GPS sensor which provides the velocity information

of the subjects so that they could achieve slightly better accuracies. Since we also

consider the energy efficiency of the system and target also indoor activities, we do not

use the GPS sensor. Additionally in [10], unlike our study, training models are created

with an offline processing phase which increased the accuracy of the results. However,

our results are still comparable with their results. When we benefit from the offline

processing power, we observe that we also achieve similar results from the same data

set we collected as detailed in Section 4.6.

4.4. Effect of Sliding Window Segmentation on the Performance

In this section, we evaluate the effect of the sliding window on the performance of

the decision tree, based on previous results presented in Section 4.3. For this purpose,

we implemented a simple sliding window algorithm with different overlapping ratios

such as 25%, 50% and 75%. In this implementation, we overlap the old data that

belong to the previous window with the new data of the current window considering

their arrival times. We simply applied the first-in first-out approach. After generating

the new sample set, we applied the same activity recognition steps as being done in

the previous tests which are detailed in Section 2.2.

We evaluated the impact of parameter changes on the performance based on two

experiments. We firstly tested the effect of sliding window with four activities which

are walking, running, standing and sitting. Results in terms of accuracy with changing

system parameters like the window size and the sampling rate are presented in Table

4.15. The first three rows in the table shows the accuracy rates whenever we apply

the sliding window with different overlapping ratio. The last row indicates the original

results without the sliding window which are already presented in Section 4.3. In gen-

eral, we observe 2.66% increase in accuracy rates after we applied overlapping windows.

The main conclusion is that overlapping the sliding window affects the performance

of the system more positively as the window size increases. As we stated in Section

4.3, better accuracies are achieved in smaller window sizes in which selected activity

patterns better fit to such windows. On the other hand, windows with two seconds are

58

not able to catch activity patterns well so that it is not able to distinguish the selected

activities. Overlapping windows eliminate this disadvantage which causes bigger in-

creases in the system performance at larger window sizes. A major improvement (over

5%) is observed with the largest window size (2 sec) at higher sampling rates where

the accuracy results improved and approached to the previous results with the smaller

sampling rate (10 Hz).

Table 4.15. Sliding Window Effect on DT without Biking.

Window size(sec) 0.5 1 2

Sampling Interval(msec) 10 50 100 10 50 100 10 50 100

75% OVERLAPPING 78.59 86.42 84.14 72.01 80.61 78.39 81.92 82.94 83.34

50% OVERLAPPING 79.96 86.09 84.26 72.40 80.48 78.55 81.43 83.63 84.05

25% OVERLAPPING 80.32 86.47 83.54 73.52 80.02 78.25 81.64 84.06 84.57

NON-OVERLAPPING 80.16 85.50 81.79 69.99 79.45 74.10 77.19 78.61 85.52

In the second group of tests, we added the biking activity as well. Results are

presented in Table 4.16. The first three row again present the accuracy rates of the

proposed system when we applied the sliding window whereas the last row indicates

the original accuracy rates without the sliding window effect. According to the results,

we have considerable improvements up to 3.1% in the cases where we had the worst

results previously. On the other hand, we observe 0.77% improvement considering all

results which is negligible.

4.5. Resource Usage of the Application

Besides the classification performance, we also evaluated the performance of clus-

tered KNN in terms of execution times. As expected, classification execution times are

considerably reduced as the K parameter is decreased. Moreover, classification times

are highly dependent on the device model and capabilities as well.

Tests performed on Samsung Galaxy SII showed that the classification times are

59

Table 4.16. Sliding Window Effect on DT with Biking.

Window size(sec) 0.5 1 2

Sampling Interval(msec) 10 50 100 10 50 100 10 50 100

75% OVERLAPPING 64.18 70.90 67.10 55.48 69.51 73.23 67.14 73.70 73.60

50% OVERLAPPING 65.20 71.18 65.80 55.78 68.71 70.79 66.03 73.53 71.83

25% OVERLAPPING 66.06 71.28 66.20 57.29 69.09 71.62 66.99 72.89 73.81

NON-OVERLAPPING 63.11 70.63 66.99 54.86 68.34 71.93 66.32 71.09 75.33

increased up to 300 msec whereas it decreased to 50 msec when K is selected as 10.

File management and logging times are included to these results as well. On the other

hand, the execution times on the less capable T-Mobile G2 Touch varied between 200

and 900 msec for different parameters. The CPU capability is important: Samsung

Galaxy SII has a 1.2 GHz dual-core system on a chip (SoC) processor whereas T-Mobile

G2 Touch has a 528 MHz ARM11 processor.

During our tests with different classifiers, we observed that the classification times

are close to each other and mainly depend on the capabilities of the phone processors.

On the other hand, the file read and write process is contributing more on recognition

times which differ a lot from device to device. Because of this reason, we excluded

Samsung Galaxy GIO and T-Mobile G2 phone models by taking into consideration

above results which revealed very poor performance during file read and write process.

We completed our tests with Samsung Galaxy SII, Samsung Galaxy W and Turkcell

MaxiPlus5 smart phones.

Additionally, we also evaluated the resource consumption of the application. The

first part of Table 4.17 summarizes the CPU and memory usage of the Activity Rec-

ognizer application with different classification methods. All measurements are taken

from Samsung Galaxy SII. Resource usage of activity classifier highly depends on the

classification methods being used at runtime.

60

According to the results, CPU and memory usage never exceeded 47% and 22

MB respectively. Application using clustered KNN consumes less resources among

others. On the other hand, Näıve Bayes and Decision Tree have considerably higher

CPU usage. Text to Speech (TTS) Service, which is being used for voice commands

to guide the user about which activity to be performed during runtime, is included in

the table for comparison purposes as well.

Table 4.17. CPU & Memory Usage of Activity Classifier and other applications.

Activity Recognizer

CPU Usage Memory Usage

Clustered KNN 29% 21.9 MB

Decision Tree 47% 19.9 MB

Näıve Bayes 42% 12.6 MB

TTS Service 13% 12.4 MB

Benchmark Applications

System 10% 28.8 MB

Norton Mobile 4% 19.4 MB

Internet 2% 37.0 MB

Google Maps 1% 31.2 MB

For benchmarking, resource usage values for common applications are presented

in the second part of Table 4.17. According to these results, the performance of the Ac-

tivity Recognizer application is comparable with frequently used applications in terms

of resource efficiency.

4.6. Online vs Offline Classification

In this section, we compare the performance of the classifiers in terms of online

and offline processing. Our aim is to investigate how close the results we achieved with

online tests to the results of activity recognition whenever we process the same data

sets offline with the same classifiers and selected features while using the computational

61

power and capabilities of desktop computers. For this purpose, we used the raw data

(both training and test data) which is logged during our online tests with the biking

activity. We performed offline tests with the help of Weka Machine Learning Toolkit

(WMLT) [22].

We performed exactly the same tests with the same system parameters offline

for comparison purposes for each subject. Unlike online tests, this time we applied

unlimited complete training sets of each subject to train the system. Additionally, we

benefit from the offline processing power of a standard computer by using 10 fold cross

validation during the classification steps.

According to the results given in Table 4.18, we observe considerable increase

in accuracies of DT which ranges between 23% and 40%. On average, we have 35%

improvement for all results whenever we apply DT offline with 10-fold cross validation

with the help of WMLT.

Table 4.18. Online vs Offline Classification - Decision Tree.

Online Offline

Accuracy 75.83% 93.04%

Precision 67.32% 93.11%

Recall 73.14% 92.85%

F-Measure 69.95% 92.97%

Additionally, we performed the same tests for Näıve Bayes as well since we had

very poor results whenever we used Näıve Bayes in the online classification step. Similar

to Decision Tree, we performed 10-fold cross validation with complete training sets of

each subject. After offline classification, we observed a noticeable increase at all metrics

as shown in Table 4.19. These results showed that Näıve Bayes is not a preferable

online classifier whereas it performs far better results whenever it is executed offline

with larger training sets.

62

Table 4.19. Online vs Offline Classification - Näıve Bayes.

Online Offline

Accuracy 46.34% 77.11%

Precision 41.69% 77.97%

Recall 46.42% 77.99%

F-Measure 43.68% 77.98%

We should remind that the offline results are the best results we may achieve. As

smart phones in the market continue to evolve rapidly, those results are likely to be

achieved in a near future.

4.7. User and Device Dependency for Training Sets

In this section, we evaluate the user and device dependency of the proposed

system. For this purpose, we selected four subjects who performed the same tests

previously with their own training data. The overall results are presented in Table

4.20. In this table, each row represents the subject who performed the tests. On the

other hand, each column in the table represents whose training data is used during

the testing period. The fifth column with “***” indicates the training set of a subject

from which only his own training data are excluded.

All subjects have similar physical features in terms of their weight, length and

age. On the other hand, subjects used different phone models during tests. Y and W

performed the test with the same Android Galaxy W smart phone whereas subject X

performed the tests with different smart phone but used the same phone model. On

the other hand, subject Z performed the tests with Samsung Galaxy SII.

All of the tests were performed with the decision tree algorithm and with the

default system parameters which are window size of 2 sec and sampling interval of

100 msec. As presented previously in Table 4.11, we had the best accuracy with these

63

Table 4.20. Accuracy(%) Results of Mixed Training Sets.

X Y Z W *** XYZW AVG

X 98.4 39.3 20.0 37.1 20.1 39.9 31.3

Y 37.1 77.1 50.7 70.7 48.6 56.4 52.7

Z 38.4 52.2 74.7 66.7 68.8 52.2 55.7

W 55.4 76.3 21.6 68.3 64.0 61.9 55.8

parameters with an average of 75%. We observed interesting results after training sets

are mixed such that the average accuracy results decreased substantially to 48% in

this case. We observed only in one specific case an improvement. Subject W results

improved with the subject Y training set such that biking activity is better distin-

guished when subject W training sets are used. Previously, it was being misclassified

as walking or running.

There are a few cases which should be emphasized in terms of the results. Except

individual training sets, mixture of training data of multiple users are the cases which

mainly contributes to the average results in which the accuracy ranges between 40%

and 62%. In general, we observe worst results when subject X used training sets of

other subjects since subject X has very distinct activity patterns compared to other

subjects. According to previous tests with his own training data, he achieved one of

the best performance among all subjects. On the other hand, we observe over 70%

accuracy rate with the tests of subject W and Y. We should note that, these two

subjects W and Y performed the tests with the same phone which is the key factor

increasing accuracy of the results. Additionally, training set of subject Z lowered the

results till 20% since his training data are collected with another phone model where

hardware changes of the phone directly affected the results. However, similarity at the

results of subject Z and Y is also remarkable although they have used different phone

models.

In general, results reveal that the proposed system is highly user dependent which

we assumed in the beginning of this thesis. We believe that mobile phones are personal

64

belongings so that such applications would be used for private purposes. Because of this

reason, we do not feel any inconvenience of user dependency of the proposed system.

However, results are promising and giving an insight to us such that the training data

coming from two distinct subjects with same physical features and using the same

phone model can be used for each other which is an important hint to be able to

create user independent training data sets, as also mentioned in [33]. Sharing data sets

between users with similar behaviours could certainly decrease the burden of training

on the new users such that they can start to use the application immediately without

the requirement of data collection.

65

5. CONCLUSIONS AND FUTURE WORK

In the literature, there are only a few works on online activity recognition using

the sensors on smart phones. In this thesis, we proposed an activity recognition system

working on Android platforms that supports online training and classification while

using only the accelerometer data for classification. For this purpose, we selected

the most suitable methods for activity recognition steps which can be applied online.

Our target was to recognize most common human activities such as walking, sitting,

standing, running and biking based on our literature survey.

Accordingly, we first evaluated the online classification performance of the Näıve

Bayes classifier. Later, we investigated the performance of other classifiers such as

clustered KNN and Decision Tree in the same proposed system. We compared their

performances considering the most effective system parameters like the window size

and the sampling rate. According to the results, Clustered KNN method exhibited a

much better performance than the Näıve Bayes classifier in terms of accuracy, battery

usage and resources needed on mobile platforms. On the other hand, its performance is

nearly the same as the Decision Tree classifier. These results reveal that compared to

the previous studies and even with the ones which are considering offline training and

classification, clustered KNN provides promising results. Additionally, we investigated

the effects of other system factors like the sliding window and the mixed training

data on the system performance. According to the results, sliding window with X%

overlapping ratio does not have any significant effect on system performance. On the

other hand, other tests performed with mixed training data showed that the proposed

system is user-dependent which is mainly related with different accelerometer hardware

used in different device models.

As a future work, we are interested in investigating the effects of using different

features on our system and mainly concentrate on the training phase. We plan to

create a system which can increase the training data size continuously and create better

training sets by renewing them with new training data even if we put the data size

66

limitation for online training purposes. By this way, the training set will be improved

as long as a user collects new data. Additionally, we want to search for possibilities

to use other complex classifiers online in our current system by using newly released

smart phones with improved processing and computation power.

67

APPENDIX A: APPLICATION LOG FILES

Files created after Näıve Bayes Classification. Rawdata.txt contains all raw

data being sampled by accelerometer sensor. Its format is the same as training files

shown in Figure 3.1. Additionally, there is a time stamp at the beginning of each data

so that we can measure exact sampling times of each data as well. Classification.txt

contains all data classified by the application (format: x y z classified activity label).

Truth.txt contains all data with the ground truth activity label. Results.txt contains

all results like accuracy, true inferred, true positive, total of ground truth, precision

and recall.

Files created after clustered KNN Classification. traininglogger.txt contains all

data after preprocessing step which is fired at application start up. Rawdata.txt con-

tains all raw data being sampled by accelerometer sensor. Classification.txt file contains

average, minimum, maximum, standard deviation values of each sample set. It also

contains classification result of each data set. Results.txt shows voting result for each

activity. Each column in this text file represents RUNNING, STANDING, BIKING,

SITTING, and WALKING respectively. The last column shows total execution times

for each classification.

Files created after DT Classification. activity.db file contains filtered informa-

tion after processing step is completed. Extracted feature values are written to this file

with the labelling of each activity. Rawdata.txt contains all raw data being sampled by

accelerometer sensor. Classification.txt file contains average, minimum, maximum,

standard deviation values of each window and the label of classified activity. Last

column of this file represents classification execution times which is also useful infor-

mation for performance evaluation. decisiontree.txt indicates generated decision tree

after training phase which is being used during classification process to take decisions.

68

REFERENCES

1. Kose, M., O. D. Incel and C. Ersoy, “Online Human Activity Recognition on Smart

Phones”, Workshop on Mobile Sensing: From Smartphones and Wearables to Big

Data (colocated with IPSN 2012), pp. 11–15, Beijing, China, 2012.

2. Kose, M., O. D. Incel and C. Ersoy, “Performance Evaluation of Classification

Methods for Online Activity Recognition on Smart Phones”, 20th Signal Process-

ing and Communications Applications Conference (SIU), pp. 1–4, Mugla, Turkey,

2012.

3. Krishnan, N. C. and D. J. Cook, “Activity Recognition on

Streaming Sensor Data”, Pervasive and Mobile Computing , 2012,

http://www.sciencedirect.com/science/article/pii/S1574119212000776.

4. Avci, A., S. Bosch, M. Marin-Perianu, R. Marin-Perianu and P. Havinga, “Activity

Recognition Using Inertial Sensing for Healthcare, Wellbeing and Sports Applica-

tions: A Survey”, 23th International Conference on Architecture of Computing

Systems, ARCS 2010 , pp. 167–176, 2010.

5. Pentland, A., “Looking at People: Sensing for Ubiquitous and Wearable Comput-

ing”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22,

pp. 107–119, 2000.

6. Krishnan, N. C., C. Juillard, D. Colbry and S. Panchanathan, “Recognition of

Hand Movements Using Wearable Accelerometers”, Journal of Ambient Intelli-

gence Smart Environment , Vol. 1, No. 2, pp. 143–155, 2009.

7. Zeng, H. and Y. Zhao, “Sensing Movement: Microsensors for Body Motion Mea-

surement”, Sensors , Vol. 11, No. 1, pp. 638–660, 2011.

8. Wang, Y., J. Lin, M. Annavaram, Q. A. Jacobson, J. Hong, B. Krishnamachari

69

and N. Sadeh, “A Framework of Energy Efficient Mobile Sensing for Automatic

User State Recognition”, Proceedings of the 7th international conference on Mobile

systems, applications, and services , MobiSys ’09, pp. 179–192, ACM, New York,

NY, USA, 2009.

9. Reddy, S., M. Mun, J. Burke, D. Estrin, M. Hansen and M. Srivastava, “Using

Mobile Phones to Determine Transportation Modes”, ACM Transactions on Sensor

Networks , Vol. 6, No. 2, pp. 13:1–13:27, 2010.

10. Saponas, T. S., J. Lester, J. Froehlich, J. Fogarty and J. Landay, iLearn on the

iPhone: Real-Time Human Activtity Classification on Commodity Mobile Phones ,

Tech. Rep. UW-CSE-08-04–02, 2008.

11. Yang, J., “Toward Physical Activity Diary: Motion Recognition Using Simple

Acceleration Features with Mobile Phones”, Proceedings of the 1st international

workshop on Interactive multimedia for consumer electronics IMCE ’09 , pp. 1–10,

2009.

12. Miluzzo, E., N. D. Lane, K. Fodor, R. Peterson, H. Lu, M. Musolesi, S. B. Eisen-

man, X. Zheng and A. T. Campbell, “Sensing Meets Mobile Social Networks: The

Design, Implementation and Evaluation of the CenceMe Application”, Proceedings

of the 6th ACM conference on Embedded network sensor systems , SenSys ’08, pp.

337–350, ACM, New York, NY, USA, 2008.

13. Mladenov, M. and M. Mock, “A Step Counter Service for Java-Enabled Devices

Using a Built-in Accelerometer”, Proceedings of the 1st International Workshop

on Context-Aware Middleware and Services: affiliated with the 4th International

Conference on Communication System Software and Middleware (COMSWARE

2009), CAMS ’09, pp. 1–5, ACM, New York, NY, USA, 2009.

14. Fabian, A., N. Gyorbiro and G. Homanyi, “Activity Recognition System for Mobile

Phones Using the MotionBand Device”, Proceedings of the 1st international con-

ference on MOBILe Wireless MiddleWARE, Operating Systems, and Applications ,

70

MOBILWARE ’08, pp. 41:1–41:5, ICST (Institute for Computer Sciences, Social-

Informatics and Telecommunications Engineering), ICST, Brussels, Belgium, 2007.

15. Yavuz, G., M. Kocak, G. Ergun, H. O. Alemdar, H. Yalcin, O. D. Incel and C. Er-

soy, “A Smartphone Based Fall Detector with Online Location Support”, Proceed-

ings of PhoneSense 2010 , Zurich, Switzerland, 2010.

16. Lane, N., M. Mohammod, M. Lin, X. Yang, H. Lu, S. Ali, A. Doryab, E. Berke,

T. Choudhury and A. Campbell, “BeWell: A Smartphone Application to Monitor,

Model and Promote Wellbeing”, Pervasive Health 2011 , 2011.

17. Blanke, U., D. Larlus, K. Van Laerhoven and B. Schiele, “Standing on the Shoul-

ders of Other Researchers - A Position Statement”, Proc. of the Workshop ’How

to do good activity recognition research? Experimental methodologies, evaluation

metrics, and reproducibility issues’ (Pervasive 2010), Helsinki, Finland, 2010.

18. Reddy, S., D. Estrin and M. Srivastava, “Recruitment Framework for Participa-

tory Sensing Data Collections”, Proceedings of the 8th International Conference on

Pervasive Computing , pp. 138–155, Springer Berlin Heidelberg, Berlin, Heidelberg,

2010.

19. Toplan, E., Y. E. Ustev, O. D. Incel and C. Ersoy, “Citisense: Capturing the City

Dynamics with Activity and Transport Mode Recognition”, Third International

Workshop on Sensing Applications on Mobile Phones (PhoneSense), 2012.

20. Kiukkonen, N., B. J., O. Dousse, D. Gatica-Perez and L. J., “Towards Rich Mobile

Phone Data Sets: Lausanne Data Collection Campaign”, Proc. ACM Int. Conf.

on Pervasive Services (ICPS, Berlin), 2010.

21. Fitz-Walter, Z. and D. Tjondronegoro, “Simple Classification of Walking Activities

Using Commodity Smart Phones”, OZCHI ’09 Proceedings of the 21st Annual

Conference of the Australian Computer-Human Interaction Special Interest Group:

Design: Open 24/7 , pp. 409–412, 2009.

71

22. Machine Learning Group at University of Waikato, Weka Machine Learning

Toolkit , 2012, http://www.cs.waikato.ac.nz/ml/index.html, accessed at July

2012.

23. Karantonis, D. M., M. R. Narayanan, M. Mathie, N. H. Lovell and B. G. Celler,

“Implementation of a Real-Time Human Movement Classifier Using a Triaxial

Accelerometer for Ambulatory Monitoring”, IEEE Transactions on Information

Technology in Biomedicine, pp. 156–167, 2006.

24. Bigargaddi, N., A. Sarela, L. Klingbeil and M. Karunanithi, “Detecting Walking

Activity in Cardiac Rehabilitation by Using Accelerometer”, International Con-

ference on Intelligent Sensors, Sensor Networks and Information Processing’ 07 ,

pp. 555–560, 2007.

25. Krishnan, N. C., D. Colbry, C. Juillard and S. Panchanathan, “Real Time Human

Activity Recognition Using Tri-Axial Accelerometers”, In Sensors Signals and In-

formation Processing Workshop.

26. Maurya, M. R., R. Rengaswamy and V. Venkatasubramanian, “Fault Diagnosis

Using Dynamic Trend Analysis: A Review and Recent Developments”, Engineering

Applications of Artificial Intelligence archive, Vol. 20, pp. 133–146, Mar 2007.

27. Keogh, E. J., S. Chu, D. Hart and M. J. Pazzani, “An Online Algorithm for

Segmenting Time Series”, Proceedings of the 2001 IEEE International Conference

on Data Mining, ICDM 2001 , pp. 289–296, IEEE Computer Society, Washington,

DC, USA, 2001.

28. Wang, S., J. Yang, N. Chen, X. Chen and Q. Zhang, “Human Activity Recognition

with User-Free Accelerometers in the Sensor Networks”, International Conference

on Neural Networks and Brain, ICNN&B ’05 , Vol. 2, pp. 1212–1217, Beijing,

China, 2005.

29. Pirttikangas, S., K. Fujinami and T. Nakajima, “Feature Selection and Activity

72

Recognition from Wearable Sensors”, Ubiquitous Computing Systems, Third Inter-

national Symposium, UCS 2006 , pp. 516–527, 2006.

30. Huynh, T. and B. Schiele, “Analyzing Features for Activity Recognition”, 2005

joint conference on Smart objects and ambient intelligence: innovative context-

aware services: usages and technologies (sOcEuSAI2005), pp. 159–163, ACM Press

New York, NY, USA, ACM Press New York, NY, USA, Grenoble, France, 2005.

31. Könönen, J., J. Mantyjarvi, H. Simila, J. Parkka and M. Ermes, “Automatic Fea-

ture Selection for Context Recognition in Mobile Devices”, Pervasive and Mobile

Computing , Vol. 6, pp. 181–197, 2010.

32. Khan, A., Y. Lee, S. Lee and T. Kim, “Human Activity Recognition via An

Accelerometer-Enabled-Smartphone Using Kernel Discriminant Analysis”, Future

Information Technology (FutureTech), 2010 5th International Conference on, pp.

1–6, 2010.

33. Miluzzo, E., C. T. Cornelius, A. Ramaswamy, T. Choudhury, Z. Liu and A. T.

Campbell, “Darwin Phones: The Evolution of Sensing and Inference on Mobile

Phones”, Proceedings of the 8th international conference on Mobile systems, appli-

cations, and services , MobiSys ’10, pp. 5–20, ACM, New York, NY, USA, 2010.

34. Peebles, D., H. Lu, N. D. Lane, T. Choudhury and A. T. Campbell, “Community-

Guided Learning: Exploiting Mobile Sensor Users to Model Human Behavior”,

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, pp.

–1–1, 2010.

35. Bieber, G., P. Koldrack, C. Sablowski, C. Peter and B. Urban, “Mobile Physical

Activity Recognition of Stand Up and Sit Down Transitions for User Behaviour

Analysis”, Proceedings of the 3rd International Conference on Pervasive Technolo-

gies Related to Assistive Environments, PETRA, 2010.

36. Lukowicz, P., A. Pentland and A. Ferscha, “From Context Awareness to Socially

73

Interactive Computing”, IEEE International Conference on Pervasive Computing

and Communications , Vol. 11, Lugano, Switzerland, 2012.

37. Tapia, E. M., Using Machine Learning for Real-Time Activity Recognition and

Estimation of Energy Expenditure, Ph.D. Thesis, Massachusetts Institute of Tech-

nology, 2008.

38. Berchtold, M., M. Budde, D. Gordon, H. Schmidtke and M. Beigl, “ActiServ:

Activity Recognition Service for Mobile Phones”, Wearable Computers (ISWC),

2010 International Symposium on, pp. 1–8, 2010.

39. Consolvo, S., D. W. McDonald, T. Toscos, M. Y. Chen, J. Froehlich, B. Harrison,

P. Klasnja, A. LaMarca, L. LeGrand, R. Libby, I. Smith and J. A. Landay, “Activ-

ity Sensing in the Wild: A Field Trial of Ubifit Garden”, CHI ’08 Proceedings of the

twenty-sixth annual SIGCHI conference on Human factors in computing systems ,

pp. 1797–1806, 2008.

40. Iso, T. and K. Yamazaki, “Gait Analyzer Based on a Cell Phone with a Single

Three-Axis Accelerometer”, MobileHCI ’06 Proceedings of the 8th conference on

Human-computer interaction with mobile devices and services , pp. 141–144, 2006.

41. Farrahi, K. and D. Gatica-Perez, “Daily Routine Classification from Mobile Phone

Data”, MLMI ’08 Proceedings of the 5th international workshop on Machine Learn-

ing for Multimodal Interaction, pp. 173–184, 2008.

42. Denning, T., A. Andrew, R. Chaudhri, C. Hartung, J. Lester, G. Borriello and

G. Duncan, “BALANCE: Towards a Usable Pervasive Wellness Application with

Accurate Activity Inference”, HotMobile ’09 Proceedings of the 10th workshop on

Mobile Computing Systems and Applications , 2009.

43. Choujaa, D. and N. Dulay, “TRAcME: Temporal Activity Recognition Using Mo-

bile Phone Data”, EUC ’08 Proceedings of the 2008 IEEE/IFIP International Con-

ference on Embedded and Ubiquitous Computing , Vol. 1, pp. 119–126, 2008.

74

44. Anderson, I., J. Maitland, S. Sherwood, L. Barkhuus, M. Chalmers, M. Hall,

B. Brown and H. Muller, “Shakra: Tracking and Sharing Daily Activity Levels

with Unaugmented Mobile Phones”, Mobile Networks and Applications , Vol. 12,

pp. 185–199, 2007.

45. Sohn, T., A. Varshavsky, A. LaMarca, M. Y. Chen, T. Choudhury, I. Smith, S. Con-

solvo, J. Hightower, W. G. Griswold and E. de Lara, “Mobility Detection Using

Everyday GSM Traces”, UbiComp’06 Proceedings of the 8th international confer-

ence on Ubiquitous Computing , pp. 212–224, 2006.

46. Papliatseyeu, A. and O. Mayora, “Mobile Habits: Inferring and Predicting User Ac-

tivities with a Location-Aware Smartphone”, 3rd Symposium of Ubiquitous Com-

puting and Ambient Intelligence, Vol. 51, pp. 343–352, 2008.

47. Wittke, M., U. Jänen, A. Duraslan, E. Cakar, M. Steinberg and J. Brehm, “Activity

Recognition Using Optical Sensors on Mobile Phones”, GI Jahrestagung , Vol. 154

of LNI , pp. 2181–2194, GI, 2009.

48. Google, Android Developer Tutorial , 2012, http://developer.android.com, ac-

cessed at June 2012.

49. Erman Dogan, Efficient Feature Extraction For Activity Recognition on Mobile

Phones , M.S. Thesis, Bogazici University, 2012.

50. Alpaydin, E., Introduction to Machine Learning , MIT Press, Cambridge, USA,

2nd edn., 2010.

51. Japan Association of Remote Sensing, Remote Sensing Notes , JARS, 1999.

52. Quinlan, J. R., “Induction of Decision Trees”, Machine Learning , Vol. 1, No. 1,

pp. 81–106, 1986.

53. Jean-Marc François, jaDTi Decision Trees: a Java implementation, 2004,

75

http://www.run.montefiore.ulg.ac.be/~francois/software/jaDTi/, accessed

at November 2004.

54. RuleQuest Research, RuleQuest Data Mining Tools , 2010,

http://www.rulequest.com/, accessed at July 2010.

55. Greenwood, P. E. and M. S. Nikulin, A Guide to Chi-Squared Testing , Wiley-

Interscience, New York, NY, USA, 1996.

56. Izenman, A. J., Modern Multivariate Statistical Techniques : Regression, Classifi-

cation, and Manifold Learning , New York Springer, New York, NY, USA, 2008.

57. Jain, R. K., The Art of Computer Systems Performance Analysis: Techniques for

Experimental Design, Measurement, Simulation, and Modeling , Wiley, New York,

NY, USA, 1 edn., 1991.

58. van Kasteren, T. L. M., Activity Recognition for Health Monitoring Elderly Using

Temporal Probabilistic Models , Ph.D. Thesis, University of Amsterdam, 2011.

