
SELF-TRAINED DISCRIMINATIVE CONSTITUENCY PARSER WITH

HIERARCHICAL JOINT LEARNING APPROACH

by

Arda Çelebi

B.S., Computer Engineering and Information Science, Bilkent University, 2002

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2012

iii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my thesis supervisor Assist. Prof.

Arzucan Özgür for her guidance and support in this work. I appreciate her very much

for being so helpful, understanding and patient to me.

I would also like to thank Assoc. Prof. Brian Roark and Ph.D. Suzan Üsküdarlı

for kindly accepting to be in my thesis committee and for their support and guidance

afterward.

I am also indebted to the many faculty who provided me computers to run my

experiments throughout my thesis. Thanks to Assoc. Prof. Murat Saraçlar, Prof.

Ethem Alpaydın and Assoc. Prof. Tunga Güngör.

I am deeply thankful for the help and support I have received from other fellow

graduate students. My thanks goes to Haşim Sak, Göker Erdoğan and Murat Semerci.

Above all, I consider myself lucky to have such a wonderful family. My whole

family stood by me at all times and supported all my decisions in every possible way.

I’m deeply grateful to my mother and father for trusting me fully and believing in my

success. Mankind hasn’t been able to come up with the word or sentence that I can

express my love for them. Nevertheless, I don’t need to tell them what they already

know.

iv

ABSTRACT

SELF-TRAINED DISCRIMINATIVE CONSTITUENCY

PARSER WITH HIERARCHICAL JOINT LEARNING

APPROACH

Determining the syntactic structure of a sentence is a fundamental step towards

understanding what is conveyed in that sentence. The syntactic parse tree of a sentence

can be used in several tasks such as information extraction, machine translation, sum-

marization and question answering. Therefore, syntactic parsing has been one of the

most studied topics in the literature. Today’s top performing parsers employ statistical

approaches and achieve over 90% accuracy. While statistical approaches reach their

highs in supervised settings, semi-supervised approaches like self-training of parsers is

starting to emerge as a next challenge. Such parsers train on their own outputs with

the goal of achieving better results by learning on their own. However, only a small

number of self-trained parsers have met this goal so far. In this thesis, we tackle the

problem of self-training a feature-rich discriminative constituency parser, which to our

knowledge has never been studied before. We approach the self-training problem with

the assumption that we can’t expect the whole parse tree given by a parser to be com-

pletely correct but, rather, some parts of it are more likely to be. We hypothesize that

instead of feeding the parser the whole guessed parse trees of its own, we can break

them down into smaller ones, namely n-gram trees, and perform self-training on them.

We thus have an n-gram parser and transfer the distinct expertise of the n-gram parser

to the full sentence parser by using the Hierarchical Joint Learning (HJL) approach.

The resulting parser is called a jointly self-trained parser. We first study joint learning

in completely supervised setting and observe slight improvement of the jointly trained

parser over the baseline. When the real n-gram trees are replaced with guessed ones,

the resulting jointly self-trained parser performs no differently than the baseline.

v

ÖZET

HİYERARŞİK BİRLİKTE ÖĞRENME YÖNTEMİYLE

KENDİ KENDİNİ EĞİTEN AYIRDEDİCİ SÖZDİZİM

ÇÖZÜMLEYİCİSİ

Cümlede geçen kelimelerin dilbilgisi kurallarına uygun olarak o cümleyi nasıl

meydana getirdiklerini bulmak o cümleyi anlamak için en önemli adımlardan biridir.

Sözdizim çözümleyicisi ile elde edeceğimiz bu bilgiyle örneğin cümle içinden istenilen

bilgileri çıkartabilir veya o cümleyi başka bir dile çevirebiliriz. Bundandır ki sözdizim

çözümleyicileri doğal dil işleme alanında en çok çalışılan konulardandır. Bugün en

iyi çözümleyiciler denetimli istatistiksel yöntemleri kullanarak %90 başarı seviyelerini

aşsalar da, kendi kendisini eğitebilen yarı-denetimli modelle çalışan çözümleyiciler ile

yapılan başarılı çalışma sayısı çok azdır. Bu tür çözümleyiciler eğitim verilerini kendi

çıktıları ile genişletip kendi kendilerine öğrenerek daha iyi sonuç almaya çalışırlar. Bu

tezde amacımız daha önce literatürde yapılmamış birçok öznitelik kullanarak kendi

kendisini eğitebilen ayırtedici sözdizim çözümleyicisi geliştirmektir. Bunu yapmak

için çözümleyicinin çıktı olarak verdiği sözdizim ağacının tamamının doğru olmadığı

fakat bazı parçalarının, ki biz bunlara n-gram ağaçları diyoruz, doğru olabileceğini

varsayıyoruz. Buna göre hipotezimiz ise bu parçalar ile çözümleyicinin kendi kendisini

eğitebilmesiyle daha iyi sonuç alabileceğimizdir. n-gram’ların çözümlemesini buna özgü

n-gram çözümleyicisi ile yapacağımızdan, asıl çözümleyicinin kendi kendisini eğitmesi

yerine n-gram çözümleyicisi asıl çözümleyicinin çıktısı ile eğitilecektir. Bu esnada da bu

iki çözümleyicinin hiyerarşik birlikte öğrenme yöntemiyle birbirlerine öğrendiklerini ak-

tarmaları sağlanarak asıl çözümleyicinin beraberce kendi kendisine öğrenmesi sağlanır.

Sadece gerçek eğitim verileri ile yapılan deneylerde asıl çözümleyicinin başarısının n-

gram çözümleyici ile eğitildiğinde arttığı, eğitim verisine asıl çözümleyicinin çıktıları

eklendiğinde ise beraberce kendi kendisini eğitemediği gözlemlenmiştir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . ix

LIST OF TABLES . x

LIST OF SYMBOLS . xiii

LIST OF ACRONYMS/ABBREVIATIONS . xiv

1. INTRODUCTION . 1

1.1. Problem Statement . 2

1.2. Motivation and Objective . 3

1.3. Road Map . 4

2. BACKGROUND AND RELATED WORK 5

2.1. Natural Language Parsing . 5

2.1.1. Grammar . 7

2.1.2. Grammar Binarization and Markovization 8

2.1.3. Grammar Annotation . 9

2.1.4. Evaluation . 10

2.2. n-gram Trees . 12

2.3. Hierarchical Joint Learning and Parsing 13

2.4. Self-Training for Parsing . 14

2.5. Data . 16

2.5.1. Penn Treebank . 16

2.5.2. Reuters Corpus . 17

3. DISCRIMINATIVE CONSTITUENCY PARSING ON FULL SENTENCES 18

3.1. Parsing with Conditional Random Fields 18

3.1.1. Objective Function and Parameter Estimates 19

3.2. Optimizing the Parser . 21

3.2.1. Parallelization . 21

3.2.2. Chart Caching . 22

vii

3.3. Features . 22

3.3.1. Lexicon Features . 23

3.3.2. Grammar Features . 24

3.3.3. Distributional Similarity Clusters 25

3.3.4. Unknown Word Classes . 26

3.4. Data . 26

3.5. Experiments . 27

3.5.1. Accuracy Analysis on Constituents 28

3.5.2. Length- and Height-based Accuracy Analysis of Constituents . . 29

3.6. Discussion . 31

4. N-GRAM PARSING . 32

4.1. n-gram Trees . 32

4.2. Data . 34

4.3. Features . 37

4.4. Experiments . 38

4.4.1. Accuracy Analysis of Constituents 41

4.4.2. Length- and Height-based Accuracy Analysis of Constituents . . 43

4.4.3. Analysis of Incomplete Constituents 45

4.5. Discussion . 46

5. HIERARCHICAL JOINT LEARNING OF N-GRAM AND FULL PARSING

TASKS . 48

5.1. Hierarchical Joint Learning . 48

5.1.1. Formal Model . 49

5.2. Hierarchical Joint Learning of Full and n-gram Parsing 51

5.3. Data . 51

5.4. Experiments . 52

5.4.1. Accuracy Analysis on Constituents 54

5.4.2. Length- and Height-based Accuracy Analysis of Constituents . . 56

5.5. Discussion . 57

6. SELF-TRAINING WITH N-GRAM TREES 59

6.1. Self-training Pipeline . 59

viii

6.2. Data . 60

6.3. Experiments . 60

6.3.1. Accuracy Analysis on Constituents 62

6.3.2. Length- and Height-based Accuracy Analysis of Constituents . . 63

6.4. Discussion . 65

7. CONCLUSION . 67

7.1. Future Work . 68

REFERENCES . 71

ix

LIST OF FIGURES

Figure 1.1. Sample constituency tree from the Penn treebank. 1

Figure 1.2. Sample n-gram tree where n=4. 3

Figure 2.1. Sample CFG rule and its representation in a tree structure. 8

Figure 2.2. Sample binarized parse tree. 9

Figure 2.3. Sample tree and its labelled spans. 10

Figure 2.4. Sample tree substitution grammar rules. 12

Figure 2.5. Sample lexicalized tree adjoining grammar rules. 13

Figure 4.1. All generatively accurate 4-gram trees extracted from the complete

parse tree. 33

Figure 4.2. Algorithm to extract and store n-gram trees from a parse tree. . . 34

Figure 5.1. A graphical representation of the hierarchical model. 48

x

LIST OF TABLES

Table 2.1. F1 scores of high-performance parsers on the Penn treebank. . . . 7

Table 2.2. Summarization of self-training performances. 15

Table 2.3. Number of sentences for each subversion of the Penn treebank. . . 16

Table 3.1. Lexicon feature templates that we used in this thesis. 23

Table 3.2. Word prefixes that we used in lexicon feature creation. 24

Table 3.3. Word suffixes that we used in lexicon feature creation. 24

Table 3.4. Grammar feature templates that we used in this thesis. 25

Table 3.5. Results on the development set of the Penn treebank. 27

Table 3.6. Results on the test set of the Penn treebank. 28

Table 3.7. Performance on the most common constituents in the WSJ15 dev

set. 29

Table 3.8. Performance on the constituents by length in the WSJ15 dev set. . 30

Table 3.9. Performance on the constituents by height in the WSJ15 dev set. . 30

Table 4.1. Number of n-gram trees in each training set. 35

Table 4.2. Number of n-gram trees in each development and test set. 36

xi

Table 4.3. Percentage of most common constituents in each training set. . . . 36

Table 4.4. Percentage of the most common constituents in each development

set. 37

Table 4.5. Average number of features in each model. 39

Table 4.6. F1 scores of the n-gram models on each development and test set. . 40

Table 4.7. Performance of the n-gram parsers (trained with 20000 instances)

on the development set. 40

Table 4.8. F1 scores on the most common constituents for each n-gram model

from the development set. 41

Table 4.9. Performance of the n-gram models on the most common constituents

in the test set. 42

Table 4.10. Length-based accuracy on constituents for each n-gram model. . . 43

Table 4.11. Height-based accuracy on constituents for each n-gram model. . . . 44

Table 4.12. Accuracy on the incomplete constituents in each n-gram models . . 45

Table 5.1. Averaged F1 scores of full sentence parser jointly trained with each

n-gram model. 53

Table 5.2. Statistics on the top performing jointly trained parsers along with

the baseline parser. 54

xii

Table 5.3. F1 scores on the most common constituents for each n-gram model

from the development set. 55

Table 5.4. Length-based accuracy on constituents of jointly trained full parser. 56

Table 5.5. Height-based accuracy on constituents of the jointly trained full

parser. 57

Table 6.1. F1 scores of the jointly trained full parser with self-training n-gram

models. 61

Table 6.2. F1 scores on the most common constituents for each n-gram model

from the development set. 63

Table 6.3. Length-based accuracy on constituents of the jointly trained full

parser. 64

Table 6.4. Height-based accuracy on constituents of the jointly trained full

parser. 64

xiii

LIST OF SYMBOLS

D(i)
b Batch Data in ith Iteration

L Likelihood

m Model

r One-level subtree

Zs Partition Function

D Training Data

Dm Training Data of mth Model

s Sentence

M Set of Models

σ2
d Domain Variance

ρ Grammar Rule

θm,i ith Parameter of mth Model

θ∗,i ith Parameter of the Top Model

η Learning Rate

ηk Learning Rate at kth Iteration

µ Mean

µi Mean for ith Parameter of the Top Model

τ Pass Count

θ Parameters

θm Parameters of mth Model

θk Parameters at kth Iteration

η0 Starting Learning Rate

θ∗ Top Model Parameters

σ2
∗ Top Model Variance

σ2 Variance

σ2
m Variance of mth Model

xiv

LIST OF ACRONYMS/ABBREVIATIONS

ADJP Adjective Phrase

ADVP Adverb Phrase

CCG Combinatory Categorial Grammar

CFG Context Free Grammar

CLSP The Center for Language and Speech Processing

CRF Conditional Random Field

CRF-CFG Conditional Random Field Context Free Grammar

CYK Cocke-Younger-Kasami

DG Dependency Grammar

DT Determiner

DOP Data Oriented Parsing

HJL Hierarchical Joint Learning

HPSG Head-driven Phrase Structure Grammar

IE Information Extraction

JJ Adjective

LFG Lexical Functional Grammar

MT Machine Translation

NA Not Available

NANC The North American News Text Corpus

NIST National Institute of Standards and Technology

NLP Natural Language Processing

NN Nominal Noun

NP Noun Phrase

OOV Out-of-Vocabulary

PCFG Probabilistic Context Free Grammar

POS Part-of-Speech

PP Prepositional Phrase

QA Question Answering

xv

QP Quantifier Phrase

RCV1 The Reuters Corpus Volume 1

S Simple declarative clause

SBAR Clause introduced by a subordinating conjunction

SGD Stochastic Gradient Descent

TAG Tree Adjoining Grammar

TSG Tree Substitution Grammar

VP Verb Phrase

WSJ Wall Street Journal

WSJALL All parse trees in the Penn Treebank

WSJOver15 Parse trees with more than 15 words in the Penn Treebank

WSJ15 Parse trees with no more than 15 words in the Penn Treebank

WSJ40 Parse trees with no more than 40 words in the Penn Treebank

1

1. INTRODUCTION

Computers are far from being able to understand what is conveyed in a natural

language sentence. Detecting the subject or other syntactic structures of a given sen-

tence, which is called syntactic parsing, is one of the required steps to reach that goal.

Therefore, it has been one of the most studied topics in the field of Natural Language

Processing (NLP).

Figure 1.1. Sample constituency tree from the Penn treebank.

Parsing a sentence involves determining how the words in a given order are con-

nected to each other to form that sentence based on the syntax of its language. The

syntax describes the rules that govern any sentence structure. During training, a parser

observes all the possible syntactic structures seen in the training data set and builds

up a model of the syntax. Then, when a new sentence is given, it considers all possible

combinations of syntactic rules allowed by that syntax and chooses the best possible

combination that describes the whole sentence structure.

Syntax is defined by a grammar formalism, such as context free grammar (CFG)

[1, 2], head-driven phrase-structure grammar (HPSG) [3], dependency grammar (DG)

[4], or number of others. In this thesis, our parser employs the CFG formalism. As

groups of words in CFG formalism form intermediate structures called constituents,

parsers using CFG are called constituency parsers. Figure 1.1 shows a sample con-

stituency tree from the Penn treebank [5]. It exemplifies how consecutive words are

grouped together to form phrases like a noun phrase (NP), as well as how phrases

2

become parts of other phrases.

Early parsers in the literature employed rule-based approaches but they were un-

able to cope with the high level of disambiguity due to the large number of possible

parse trees for a single sentence. Over time, researchers have adopted statistical ap-

proaches. Such techniques score parse trees and select the best possible one. Hence,

they are more suitable for ambiguity resolution. Initially, generative approaches [3, 6]

were introduced, which use maximum likelihood estimation to calculate the probabil-

ity of context-free grammars. Then, discriminative approaches [7, 8] that consider the

conditional distribution over the parse trees given a sentence are proposed. More lately,

reranking approaches [9, 10] are used as an accompanying second model to the parsing

model in order to rerank the top n possible parse tree for a sentence and choose the

best one. In the parsing literature, the state-of-the-art constituency parsers achieve an

accuracy between 80-95% on various data sets with different characteristics.

Today, we may be far from being able to determine what is conveyed in a sentence.

Nevertheless before coming to that, the syntactic analysis of a sentence can be used

by various high-level NLP tasks, such as summarization, Information Extraction (IE),

Question Answering (QA) and Machine Translation (MT). The accuracy of all these

high-level tasks directly depend on the accuracy of the parser. Hence, parsing plays an

essential role in high-level NLP tasks.

1.1. Problem Statement

While statistical approaches for the supervised parsers reach their highs, semi-

supervised approaches like self-training of parsers is starting to emerge as a next chal-

lenge in the field.

A self-trained parser starts its training with a seed set. At some point during

its training, it uses what it has learned so far to process newly given sentences and

adds the outputted parse trees into its existing training set. It continues to train on an

extended training set. If it exceeds the accuracy of the original model, which is trained

3

on the initial seed training set only, self-training, that is learning from its own output,

is achieved. Most of the research done on self-trained parsers failed to improve the

original performance. Most recently, McClosky et al. [11] achieved an absolute 1.1 F1

score improvement over the original model with a generative parser and a discriminative

reranker. Despite this encouraging success, to our knowledge, there hasn’t been any

research that achieved self-training of a parser that runs on a discriminative approach

with no reranker. This might be due to the fact that discriminative approaches are

more complex to train with respect to the generative models.

1.2. Motivation and Objective

In this thesis, we mainly tackle the problem of self-training of a discriminative

parser. We approach the self-training problem with the assumption that we can’t

expect the whole parse tree given by a parser to be completely correct but, rather,

some parts of it are more likely to be. We hypothesize that instead of feeding the

parser the whole guessed parse trees of its own, we can break down these parse trees

into smaller subtrees and perform self-training on them. Throughout this thesis, we

refer to those subtrees as n-gram trees.

Figure 1.2. Sample n-gram tree where n=4.

Figure 1.2 shows an example n-gram tree (n=4) extracted from a complete parse

tree in Figure 1.1 with our n-gram tree extraction algorithm described in Chapter

4. Due to their “not-complete” nature, we consider the n-gram parsing task different

from the full sentence parsing task. Thus, we build special n-gram parsers to model

them. This means that self-training is performed by an n-gram parser, instead of the

full sentence parser. At this point, we employ a Hierarchical Joint Learning approach,

4

which is described by Finkel et al. [12], to train the n-gram parser and the full sentence

parser with each other simultaneously. By doing this, we allow the full sentence and

self-trained n-gram parsers to “transfer” their knowledge to each other during training.

This also includes the transfer of updated knowledge of the n-gram parser gained from

its own output.

In summary, our objective is to improve the accuracy of a state-of-the-art dis-

criminative parser by using self-training. Instead of using the actual discriminative

model of the parser, we use an n-gram based mode that, we believe, can boost the

accuracy of the actual model in a joint learning setup.

1.3. Road Map

A brief overview of this thesis follows. First, in the next chapter, we start with

giving relevant background information and point out the related works done in the

literature. In Chapter 3, we describe how we build our discriminative parser ground-up,

which becomes our baseline for the rest of the experiments in this thesis. In the same

chapter, we analyze our experimental results in detail on full sentences parsed with

our baseline parser. Then, in Chapter 4, we explain the concept of n-gram parsing

and the definition of n-gram trees in the context of this thesis. In this chapter, we

approach n-gram parsing as a stand-alone parsing task and analyze the results within

themselves, as well as with respect to the baseline. After establishing the full sentence

and n-gram parsing tasks, Chapter 5 explains how to build an environment where we

can jointly train these two types of parser together. We explain the Hierarchical Joint

Learning (HJL) approach and analyze the results of the jointly trained full sentence

parser. Following that, in Chapter 6 , we show how to change the system from Chapter

5 so as to feed the n-gram parser the output of the full sentence parser and achieve

a self-trained n-gram parser as well as a jointly self-trained full sentence parser. We

conclude the thesis with further discussion and future work in Chapter 7.

5

2. BACKGROUND AND RELATED WORK

2.1. Natural Language Parsing

Parsing natural language is the process of characterizing the syntactic descrip-

tions of a sentence. The initial studies on parsing were rule-based approaches with

two important algorithms: CYK [13, 14, 15] and Earley [16]. Both use dynamic pro-

gramming to build charts of a given sentence, considering all possible grammatical

descriptions of that sentence allowed by the grammar formalism that the parser uses.

However, manually designing grammar rules for such systems is a very tedious task.

Furthermore, as the number of possible parses for a given sentence increases, it be-

comes impractical to implement rule-based parsers due to not being able to consider

all possible cases, except for restricted domain-specific tasks. Nowadays, rule-based

approaches have been replaced by statistical ones.

Parsers running on statistical approaches try to learn the repeating patterns in

the syntactic structures of sentences and capture that information in the form of a sta-

tistical model in order to use it later to guess the syntactic structure of a new sentence.

Such parsers are capable of ambiguity resolution by first assigning scores to different

possible parses and then choosing the highest scored one as the best possible syntactic

structure of a given sentence. The first statistical parsers [17, 18, 19] considered sta-

tistical parsing as the task of tagging part-of-speeches (POSes), and connecting and

labelling constituents. Then, Charniak [6] introduced the probabilistic context free

grammars (PCFGs). PCFG parsers use a probabilistic approach to disambiguate dif-

ferent parse trees for the same sentence. However, its strength of ambiguity resolution

is limited as described by Briscoe and Carroll [20]. One of the reasons stems from

not using word information. Hence, they are called unlexicalized parsers. Collins [3]

extended the idea of PCFGs to lexicalized grammars by decorating the grammar rules

with head words. Even though such lexicalized parsers achieve high accuracies, they

use a large set of features, which cause scalability issues. In this thesis, we use an

unlexicalized grammar to prevent such issues and, to still reach the accuracy level of

6

lexicalized parsers, we annotate our grammar rules with extra information.

Statistical models are grouped as generative and discriminative models. The

generative models learn a model of the joint probability of the input and the labels.

For example, PCFG-based generative models consider the distribution of input strings

P (x) as well as trees, that is labels, given strings P (y|x). However, while the conditional

distribution P (y|x) is considered to be important for parsing, the marginal distribution

P (x) is not. Hence, generative models waste some of their parameters to model the

marginal distribution P (x). That is where discriminative models differs from generative

models. Ratnaparkhi [7] introduced the first discriminative model for parsing. It

employs a maximum entropy based classifier to choose a parsing action based on the

current state and the parsing history. Later on, Charniak [8] presented his maximum

entropy-inspired parser.

Relatively more recent studies focused on reranking algorithms, where a baseline

model generates a set of candidate output parses and a second model reranks the top

n candidates by using more complex features. Such reranking approaches started with

the discriminative reranker of Collins [9]. Following that, Charniak and Johnson [10]

came up with the maximum entropy based reranker. The most recently introduced

reranking algorithm is the forest-based reranking method of Huang [21].

As described in more detail in Section 2.1.4, evaluation of all these mentioned

parsers were reported on the Penn treebank corpus [5]. In addition to using the whole

corpus, which is referred to as WSJALL, parsers are also trained and evaluated on

sentences with no more than 15 words and 40 words, that is WSJ15 and WSJ40 sets

respectively. Table 2.1 shows the reported F1 scores for the parsers on each set. It

also gives which specific property each parser has along with whether they employ

generative(G) or discriminative(D) approach. To our knowledge, the best scoring parser

on the Penn treebank achieves 92.6% F1 score on the WSJALL set [22]. Apart from

these top ranking parsers, we also included the discriminative parser of Finkel et al.

[12], from which we implemented our discriminative parser. As illustrated in Table 2.1,

their parser is not one of the top parsers in terms of accuracy. Nevertheless, the fact

7

that we need to implement a discriminative parser to show that self-training can be

done with discriminative parsers was an important factor for choosing their design.

Moreover, their parser’s relatively lower accuracy also gives us a chance to improve

their design further.

Table 2.1. F1 scores of high-performance parsers on the Penn treebank.

Parser WSJ15 WSJ40 WSJALL G/D Specific Property

Charniak [6] - 87.4 86.6 g PCFG

Collins [3] - 90.2 89.7 g Head-driven PCFG

Ratnaparkhi [7] - - 86.9 d Max. Ent. based

Charniak [8] - 90.1 89.5 d Max. Ent. inspired

Collins [9] - 90.3 89.7 g Discr. reranking

Charniak & Johnson [10] - 91.0 - g Max.Ent.based rerank

Huang [21] - - 91.7 g Forest-based reranking

McClosky [11] - - 92.1 g Rerank & self-training

Zhang et al. [22] - - 92.6 - Multi-parser

Finkel et al. [12] 89.9 89.0 - d Cond. Random Fields

2.1.1. Grammar

The syntax of a language describes the rules and principles that govern any sen-

tence structure. It is defined by a grammar formalism and parsers use this grammar to

process sentences. In the literature, there are a number of different grammar formalisms

which include context free grammar (CFG) [1, 2], head-driven phrase-structure gram-

mar (HPSG) [3], dependency grammar (DG) [4], lexical functional grammar (LFG)

[23], combinatory categorial grammar (CCG) [24] and tree adjoining grammar (TAG)

[25]. Most of the research in the parsing literature have focused on constituency, such

as CFG, and dependency grammars. In this thesis, our parser uses the CFG formalism.

Context-free grammar, which is also referred to as phrase structured grammar,

is used to describe constituency relations. Hence, parsers using CFG are called con-

stituency parsers. With CFG, we can show how phrases can be decomposed, or from

8

Figure 2.1. Sample CFG rule and its representation in a tree structure.

another stand point, be produced in generative manner. Each CFG rule is of the form

V → w, where V is single nonterminal symbol, and w can be single or a sequence

of terminals and non-terminal symbols in any order. For example, NP → DT JJ NN

describes how noun phrase (NP) is decomposed into or generated from a determiner

(DT), an adjective (JJ) and a noun (NN). CFG rules can also be shown in a tree

structure as illustrated in Figure 2.1.

Grammars can be either manually constructed or automatically extracted from

an annotated corpus. In this thesis, we extracted CFG rules from the training set of

the Penn treebank [5], as described in Section 2.5.1.

2.1.2. Grammar Binarization and Markovization

Derived from the early rule-based approaches, most of the parsers employ dy-

namic programming techniques in order to control the time complexity of the written

program. One such technique used by constituency parsers, is called grammar bina-

rization. It makes sure that the time complexity of the program doesn’t exceed O(n3),

while preserving the parsing accuracy. That is why we use grammar binarization

throughout this thesis.

Binarization of the grammar rules involves converting those with more than two

children constituents into multiple rules, each having two children. Figure 2.2 shows an

example context-free grammar rule with three children constituents and its binarized

form in which the last two children of the original rule become part of a new rule,

headed by the newly constructed constituent @NP -DT . Appending -DT to the end

9

Figure 2.2. Sample binarized parse tree.

tells us that the previous child is a DT . The number of previous children included in

the state is referred to as the level of horizontal Markovization. Deciding on that level

is a design decision. In our experiments, we apply one level of horizontal markovization.

In the parsing terminology, constituents are called states in the constructed chart.

Since @NP -DT is actively being constructed, such constituents are called active states.

Just like appending -DT , states can also be augmented with information of ancestors

further up in the tree. This is called vertical markovization, or grandparent annotation

if only one level is included. In our experiments, we use one level vertical markovization.

The following section further explains which annotations we used in our experiments.

2.1.3. Grammar Annotation

Adding additional information to the grammar rules is called grammar annota-

tion. It is used to specialize the grammar further with increased context information in

order to increase the accuracy of the parser. Currently, most high performing parsers

are lexicalized parsers which use grammars that are annotated with word information.

However, despite their high performance, lexicalized parsers use too many features,

which prevents practical good optimization. On the other hand, unlexicalized parsers

offer more practical solutions in terms of a computationally more acceptable opti-

mization. However, the context-free assumption of the naive Penn treebank makes

unlexicalized models very weak because parse trees do not contain extra information

regarding their context. Johnson [26] showed that the performance of an unlexicalized

PCFG on the Penn treebank could be improved enormously by simply annotating each

10

state with its parent category. Such annotation schemes are even considered as partly

complimentary to information derivable from lexicalization [8].

Klein and Manning [27] used a large set of simple yet linguistically motivated an-

notations that increase the accuracy of an unlexicalized parser to a degree of the state-

of-the-art lexicalized counterparts. In all our experiments, we use most of these annota-

tion schemes. These include UNARY-INTERNAL, UNARY-DT, UNARY-RB, TAG-

PA, SPLIT-AUX, SPLIT-CC, SPLIT-%, TMP-NP, GAPPED-S, POSS-NP, SPLIT-

VP, BASE-NP, and RIGHT-REC-NP. Detailed description of these annotations can

be found in [27].

2.1.4. Evaluation

Borrowed from the Information Retrieval field, parsers are evaluated with pre-

cision, recall, and F1 score metrics. In order to calculate these metrics, first labelled

spans are extracted from the outputted parse trees. Figure 2.3 shows an example parse

tree with three labelled spans extracted from it. However, parsing accuracy does not

measure how a parser assign part-of-speech (POS) tags to words. Hence, labelled spans

do not include spans, like noun tag covering the word ‘dog’.

Figure 2.3. Sample tree and its labelled spans.

After extracting the labelled spans from the outputted parse trees, they are com-

pared with actual labelled spans obtained from the golden trees. In this thesis, for

development and testing purposes, we use the parse trees from the development and

test sections of the Penn treebank as golden trees.

11

Precision =
of correct labelled spans

of labelled spans in parser output
(2.1)

Recall =
of correct labelled spans

of labelled spans in golden tree
(2.2)

F1 Score =
2 x Precision x Recall

Precision + Recall
(2.3)

Regarding what each metric means, precision (Equation 2.1) shows what per-

centage of the outputted parse tree is correct, while recall (Equation 2.2) calculates

what percentage of true constituents are actually found by the parser. F1 score, on the

other hand, takes the harmonic mean of these two metrics as shown in Equation 2.3.

This way, when we talk about the accuracy of the parser, we use one metric instead

of two, unless needed. In this thesis, we also report labelling and identification errors.

These two measures are directly related to the precision and recall metrics, respectively.

Labelling error occurs when the parser’s output is wrong, whereas identification error

occurs when the correct constituent is not given by the parser.

In the literature, along with the fundamental metrics described above, it is also

customary to measure the percentage of completely correct trees, the average number

of brackets crossing with actual correct spans, and the percent of guessed trees that

have no crossing brackets with respect to corresponding gold tree. Bracket crossing

happens when a span given by the parser crosses a true span of the golden tree. For

example, a parser may output the parse tree (A (B C)), while the golden tree is ((A B)

C), in which case the span that covers B and C crosses the span that covers A and B

12

in the golden tree. In order to calculate all these metrics including precision, recall and

F1 score, we use the evalb script1 which is commonly used in the parsing literature.

2.2. n-gram Trees

To be explained in more detail in Section 4.1, an n-gram tree is, in basic terms,

a portion of parse tree that covers consecutive n words. To the best of our knowledge,

in the literature, n-gram parsing has never been considered as a stand-alone parsing

task because n-gram trees have no particular use on their own. However, they have

been used as features for statistical models in either lexicalized or unlexicalized forms.

For example, McClosky et al. [11] used them to train the reranking model of the

self-training pipeline.

There are other studies related to our notion of n-gram trees in the literature.

One of them is stochastic tree substitution grammars (TSG) used in Data Oriented

Parsing (DOP) models in Bod et al. [28]. TSG is similar to context-free grammars,

with the only difference that a TSG is composed of subtrees of arbitrary length. Sub-

stitution operation is used to combine these subtrees and create a partial parse tree

and, eventually a full parse tree for a given sentence. Figure 2.4 shows a set of TSG

trees. Unlike TSG trees, our n-gram trees always have words at the terminal nodes.

Figure 2.4. Sample tree substitution grammar rules.

Another related concept is the Tree Adjoining Grammar (TAG) and the concept

of local trees proposed by Joshi et al. [29]. In TAG, each elementary tree is anchored

to a lexical item. Figure 2.5 gives three sample TAG trees, with anchored words men,

1evalb script is available at http://nlp.cs.nyu.edu/evalb/

13

eat and think, respectively. This elementary tree or local tree contains all arguments of

the anchored word and each local tree is independent from the others. As in the case

of TSG trees, TAG local trees also differ from our n-gram trees by not having words

at all terminal nodes but one.

Figure 2.5. Sample lexicalized tree adjoining grammar rules.

2.3. Hierarchical Joint Learning and Parsing

Hierarchical models provide a scheme to do multi-task learning, which is a simul-

taneous learning approach where we try to learn a problem along with other related

problem(s) at the same time, hoping that the other related problems help learn more

about the main problem due to the commonality among the tasks. In the NLP field,

the concept of domain adaptation is considered related since one model from one do-

main helps the other model from another domain. There have been studies on domain

adaptation by building models of multi-domain learning from Daume III and Marcu

[30] as well as Finkel and Manning [31].

More related to the parsing, Finkel and Manning [31] used hierarchical joint

learning (HJL) approach to improve the joint model of parsing and named entity

recognition. In their hierarchical learning setup, the joint model, which is trained on

parse trees augmented with named entity information, is combined with base models

of CRF-based parser and semi-CRF-based named entity recognizer. Even though the

two base models do not have shared features, each has shared features with the joint

model. As the prior of the hierarchical model encourages the learned weights for the

different models to be similar to one another, when base model is trained on its own

type data set, shared feature parameters of the joint model are influenced by their

14

correspondents from the base model. After the completion of training, they evaluate

the joint model on the OntoNotes corpus [?] and measure substantial error reduction

on both tasks, up to 6-8 gain on the F1 score. They also observe that the hierarchical

model helps smaller data sets more than large ones.

2.4. Self-Training for Parsing

In the literature on syntactic parsing, almost all of the studies have been based

on supervised or semi-supervised methods, with a couple of exceptions of unsupervised

approaches, such as Klein and Manning [32]. Even though supervised methods achieve

the best results, in the absence of sufficient annotated data, they can be outperformed

by semi-supervised methods.

Self-training and co-training are two approaches for semi-supervised learning. Co-

training involves two different learners that can see the data from different perspectives

so that if one of them is confident about something, that becomes the labelled data for

the other learner. Whereas in self-training, small amount of labelled data is used to

annotate unlabelled data, which becomes the labelled data for the learner at the next

cycle of its training. In this thesis, we study a self-trained constituency parser.

Charniak [6] considers the first self-training approach by first training his parser

on the Penn treebank [5] and parsing 30 million words of unparsed Wall Street Journal

text. Then he uses both already labelled and newly labelled data for training. However,

his self-trained model fails to outperform the original model.

Bacchiani and Roark [33] trained the Roark’s parser on trees from the Brown

treebank and then self-train and tested on data from Wall Street Journal. While they

show some improvement on F1 score going from 75.7 to 80.5, their parsing results were

lower than the state-of-the-art levels.

Steedman et al. [34] investigated both self-training and co-training in the 2002

CLSP Summer Workshop at Johns Hopkins University. They considered several dif-

15

ferent parameter settings. In all cases, the number of sentences parsed per iteration of

self-training was 30 sentences, which is relatively small. They performed many itera-

tions of self-training. The largest seed size (amount of labelled training data) they used

was 10000 sentences from the Wall Street Journal (WSJ), though many experiments

used only 500 or 1000 sentences. They found that under these parameters, self-training

did not yield a significant gain unless the baseline results were sufficiently bad, as in

the case of [33].

Reichart and Rappoport [35] showed that one can self-train with a generative

parser only if the seed size is small. The conditions are similar to [34], but only one

iteration of self-training is performed. In this scenario, unknown words (words seen in

the unlabelled data but not in training) were a useful predictor of when self-training

improves performance.

Table 2.2. Summarization of self-training performances.

Parser Type Seed Size Iterations Improved?

Charniak [6] Generative Large Single No

McClosky et al. [11] Gen.+Discr. Large Single Yes

Steedman et al. [34] Generative Small Multiple No

Rappoport [35] Generative Small Single Yes

In McClosky et al. [11], they used a generative parser and a discriminative

reranker and trained their system on the Penn treebank and used that trained parser to

parse the North American News Text Corpus (NANC), which contains approximately

24 million sentences from various news sources such as the Los Angeles Times, the

New York Times etc. After getting the parsed version of the NANC data set, they

combined it with the Penn treebank data set and trained their parser on that combined

data set for the second time. They observed that by retraining the first stage, they

achieved better performance for both models. They obtained absolute 1.1 F1 score

improvement (12% error reduction) over the previous best result on the Penn treebank.

Error analysis revealed that most improvement comes from sentences with lengths

16

between 20 and 40 words. Surprisingly, improvements were also correlated with the

number of conjunctions but not with the number of unknown words in the sentence.

2.5. Data

This section introduces the two data sets that we use throughout this thesis. In

following chapters, we give more detailed explanation and describe how we use these

data sets according to our needs.

2.5.1. Penn Treebank

In the literature, the Penn treebank [5] is a widely used data set for the con-

stituency parsing task. It contains approximately one million words (40000 sentences)

of manually annotated sentences from the Wall Street Journal. It consists of 23 sec-

tions. In the literature, 23rd section is used for development, whereas 22nd section is

for testing purposes. The other 21 sections are used for training. In the evaluation

process of this thesis, we follow this split in order to get comparable results w.r.t. other

results from the literature.

In addition to using all provided training data set of the Penn treebank, most

of the research provides parser evaluations on smaller scale training sets, which are

chosen based on the lengths of sentences in words. For example, it is general practice

to use sentences with 15 words or less for both training and testing, which we refer to

as WSJ15. To make the task a little bit harder, sentences with 40 words or less can

also be used, i.e. WSJ40 in that case.

Table 2.3. Number of sentences for each subversion of the Penn treebank.

Portion Training Set Dev. Set Test Set

WSJ15 9753 421 603

WSJ40 36740 1578 2245

WSJALL 39803 1700 2416

17

Table 2.3 gives the number of training, development and test sentences for each

subversion of the Penn Treebank data set. Apart from this typical partitions, for the n-

gram parsing task, we also define another subversion called WSJOver15, which contains

those sentences having more than 15 words, that is completely exclusive of WSJ15 set.

By doing this, we make sure that our n-gram models are trained on a different set,

which is especially important when we jointly train n-gram and full parsing models.

More detail is provided in Section 4.2.

2.5.2. Reuters Corpus

The Reuters Corpus Volume 1 (RCV1) [36] is an archive of 806791 English lan-

guage news stories that is available to the research community via NIST, the National

Institute of Science and Technology. It contains stories in English produced by Reuters

journalists between 20/8/1996 and 19/8/1997. RCV1 is used in research and develop-

ment of natural language processing, information retrieval or machine learning systems,

most specifically for text categorization and clustering.

In this thesis, we use RCV1 for two different purposes. The first one is for learning

word clusters based on distributional similarity as described in Section 3.3.3 and the

second one is for extracting sample sentences to be used at self-training in Chapter 6.

18

3. DISCRIMINATIVE CONSTITUENCY PARSING ON

FULL SENTENCES

The first step towards the self-trained parser in this thesis is to build our baseline

parser, which all the parsers proposed in the upcoming chapters are compared with.

This chapter describes how we build our baseline parser based on the work of Finkel

et al. [12]. It is a discriminative constituency parser as it uses context-free grammar

formalism and employs Conditional Random Fields (CRFs) approach as a statistical

model to score the possible parse trees and choose the best possible one for the out-

put. In the following sections, we first explain how a discriminative model like CRFs

approach is adopted for parsing and then talk about the implementation details. We

discuss the results on the Penn treebank at the end of this chapter.

3.1. Parsing with Conditional Random Fields

Proposed by Lafferty et al. [37], Conditional Random Fields (CRFs) is a log-linear

model for segmenting and labelling sequence data. Unlike generative models, which

optimize the joint likelihood of the training samples, CRFs is a discriminative model

which directly optimizes the conditional likelihood of an unobserved variable given the

observed data. Adopting the same comparison to parsing, constituency parsers with

generative models maximize the joint likelihood of the parse tree and the sentence

together and they do that by employing probabilistic context free grammar (PCFG)

introduced by Charniak [6]. On the other hand, discriminative parsers maximize the

conditional likelihood of the parse tree given the sentence, that is P(t| s;θ).

P (t|s; θ) =
1

Zs

∏
r∈t′

φ(r|s; θ) (3.1)

Equation 3.1 describes how to calculate the conditional likelihood of a parse tree t

given sentence s. In this equation, CRF-based context-free grammar (CRF-CFG) is

represented with local clique potentials φ(r|s; θ), where r is one-level subtree of a parse

19

tree t. Unlike conventional grammar rules, r also includes information about start and

end positions of words that it spans, as well as the split position for the binary rules.

Zs, on the other hand, is the partition function.

Zs =
∑
t∈τ(s)

∏
r∈t′

φ(r|s; θ) (3.2)

As given in Equation 3.2, the partition function Zs is calculated over all possible

parse trees τ(s) for a given sentence and then used to normalize the probabilities

in Equation 3.1. In case of generative models, however, probabilities are normalized

locally, unlike the way partition function does it globally.

φ(r|s; θ) = exp
∑
i

θifi(r, s) (3.3)

Local clique potentials are used to score rules in the Inside-Outside algorithm. Their

values are not probabilities but non-negative numbers due to their exponential form.

They are calculated by taking the exponent of the dot product of the feature vector

f(r, s) and parameter vector θi. The feature vector fi(r, s) is simply an indicator

function that tells whether feature i is active for given rule r and sentence s.

3.1.1. Objective Function and Parameter Estimates

Given a set of training examples, the goal is to choose parameter values θi that

minimize the conditional log likelihood of those examples, which is the objective func-

tion L.

In order to estimate the parameter values, there are various optimization methods

in the literature such as generalized iterative scaling or conjugate gradient methods.

However, since the inference step of such methods takes time, it is not practical to

use them when we need to do inference many times. In such cases, it is best to use

stochastic optimization techniques, as they are considered to be efficient, especially

when the objective function requires computationally expensive calculations. In our

20

case, the objective function is the log-likelihood of the training data D along with an

additional L2 regularization term to prevent over-fitting.

L(D; θ) =
∑

(t,s)∈D

(∑
r∈t

〈f(r, s), θ〉 − logZs,θ

)
−
∑
i

θ2i
2σ2

(3.4)

When the partial derivative of our objective function with respect to model parameters

is taken, the resulting gradient is basically the difference between the empirical counts

and the model expectations.

∂L
∂θi

=
∑

(t,s)∈D

(∑
r∈t

fi(r, s)− Eθ[fi|s]

)
− θi
σ2

(3.5)

For stochastic gradient descent (SGD), we update the parameters based on a batch of

samples randomly drawn from the training set. We calculate the partial derivatives for

each batch, assuming that summing the partial derivatives of all batches adds up to

the partial derivative of the overall data D.

E

[n∑
i

L̂
(
D(i)
b ; θ

)]
= L(D; θ) (3.6)

Having said that, we use the partial derivative of the batch to update the model

parameters, controlled by the learning rate η. The learning rate function is modelled

based on Finkel et al. [12]. It is designed such that θi is halved after τ passes through

the training set. We use τ = 5.

ηk = η0
τ

τ + k
(3.7)

θk+1 = θk − ηk∇L
(
D(k)
b ; θk

)
(3.8)

In order to calculate the partial derivatives in the inside-outside algorithm, for each

rule, we multiply the outside score of the parent, the inside score of the children, and

21

the score of that rule and then divide that value by Zs to get the globally normalized

probability of that rule in that particular position. Then, we use the probability of

each rule to calculate the expected feature values, which will be inserted into Equation

3.5 to get the partial derivatives and then to update the model parameters.

3.2. Optimizing the Parser

Any kind of stochastic parser considers hundreds of thousands of possibilities and

picks the best of them. During this process, optimization of memory and time usage is

critical to achieve a parser that runs and outputs in a reasonable time. The following

subsections explain two techniques that we use in the implementation of our parser.

3.2.1. Parallelization

In the Conditional Random Fields approach, parameter updates are done by using

the differences between empirical and expected values of those parameters. Empirical

values are directly calculated by traversing over the golden trees, whereas expected

values are calculated during the outside-stage of the inside-outside algorithm. Since

we are able to calculate the expected values from each sentence separately, we employ

a parallelization approach as follows. We create multiple threads and assign one sen-

tence to each thread. Then, in the main thread, we sum up all the expected values

calculated by each thread from their responsible sentence. We establish inter-process

communication by memory created by the main thread and shared with the children

processes.

For the experiments, we fire as many threads as the size of the batch. For full

sentence parsing, for example, we create 15 threads as we use batches of 15 sentences.

On the other hand, in n-gram parsing described in the next chapter, we have a bigger

batch, hence firing 30 threads. The gain from the parallelization approach differs, based

on the number of processes, their speeds as well as the lengths of the longest sentences

in the batch.

22

3.2.2. Chart Caching

When a parser generates a parse forest, it may include hundreds of thousands

of ways of forming up a parse tree on a given sentence, hence the name parse for-

est. Considering all possible cases and calculating the expected values on such a big

structure might cause time- and memory-based problems. Apart from memory-based

issues, which might be addressed with compact data structures, we are more interested

in reducing the time we spend. In most of the cases produced constituents do not

contribute to any complete parse tree, becoming dangling constituents not reachable

from the ROOT constituent sitting at the top of the forest. Therefore, one solution

is to cache the parts of the parse forest which lead to a complete parse of the given

sentence. This way, when the same sentence is seen in the next iterations, the parser

can look up the cache and quickly determine whether the grammar rule it is about to

apply will be a part of a complete parse tree at the end.

This type of caching was also done by Finkel et al. [12]. However, our imple-

mentation is different from theirs. While they saved the charts into files, we keep the

cached charts in the memory, which is expected to be a much faster solution. In our

experiments, we observe that chart caching contributes to between 20-25% decrease in

the run time of the full sentence parser. However, in case of the n-gram parsing task,

described in the next chapter, the same approach provides between 5-10% decrease

in the run time. This is due to the fact that the size of the forest for n-grams are

considerably small and, thus, the number of dangling constituents in the forest is very

low.

3.3. Features

As given in Equation 3.3, features are used at scoring all CFG-CFG rules that are

generated over a given sentence. Most of the features we use for parsing throughout

this thesis are borrowed from the study of Finkel et al. [12] along with the actual

parser framework. The features are divided into lexicon and grammar features based

on the type of grammar rules they are used for. The following subsections explain

23

these features along with the concepts used in the feature definitions.

3.3.1. Lexicon Features

Lexicon features are used to score the grammar rules that are involved with

tagging words. Their definition may include words, part-of-speech (POS) tags, as well

as their alternative forms. As we traverse over the golden trees in the training set, at

the preterminal level, we use our lexicon feature templates to create lexicon features.

Table 3.1 shows the complete list of the lexicon feature templates that we use in this

thesis.

Table 3.1. Lexicon feature templates that we used in this thesis.

〈tag〉 〈tag, dist-sim(word+1)〉

〈base(tag)〉 〈base(tag), dist-sim(word)〉

〈tag, word〉 〈base(tag), dist-sim(word−1)〉

〈tag, lower-case(word)〉 〈base(tag), dist-sim(word+1)〉

〈base(tag), word〉 〈parent(tag), word〉

〈base(tag), lower-case(word)〉 〈tag, unk-class(word)〉

〈tag, dist-sim(word)〉 〈base(tag), unk-class(word)〉

〈tag, dist-sim(word−1)〉 〈base(tag), prefix(word), suffix(word)〉

To form a feature instance from these templates, in addition to using the bare

part-of-speech tags, we can also use the base and parent annotations of these tags,

as our grammar allows. As described in Section 2.1.1, in our grammar all states are

annotated with parent information. Hence the base of a state corresponds to the

original tag, whereas the parent annotation of the state corresponds to the parent tag.

Apart from using the lower-cased form of a word or the previous and next words in

the given sentence, we also substitute the word with its corresponding distributional

similarity cluster and unknown class, which will be described in the following sections.

This enables us to handle out-of-vocabulary (OOV) words better by using their abstract

forms.

24

Table 3.2. Word prefixes that we used in lexicon feature creation.

7-chars counter-

5-chars extra-, inter-, intra-, intro-, micro-, multi-, retro-, super-,

trans-, ultra-, under-

4-chars auto-, anti-, fore-, giga-, mega-, mini-, mono-, nano-, over-,

para-, poly-, post-, self-, semi-, tele-

3-char bio-, dis-, mal-, mid-, mis-, neo-, non-, out-, pre-, pro-, sub-, tri-, top-

2-char ab-, ad-, bi-, by-, co-, de-, en-, ex-, il-, im-, in-, ir-, no-, re-, up-, un-

One particular feature template that we added on top of the ones borrowed from

[12] considers the base tag with a prefix-suffix pair extracted from the word which that

tag covers. We introduce this feature template to deal with OOV words better. The

idea is that the prefix and suffix of a word together help us define the type of that

word better. With these features, we model a relation between the base tag and what

prefix and suffix together may correspond to it. Table 3.2 and 3.3 lists these prefixes

and suffixes that we look for for each word. If a word doesn’t contain any of them,

then the value for the corresponding affix is set to NA, indicating the absence.

Table 3.3. Word suffixes that we used in lexicon feature creation.

4-chars -ness, -less, -ious, -able, -ible, -ical, -ship, -sion, -tion, -ance,

-ence, -hood, -ling

3-chars -ion, -ied, -ily, -lly, -sly, -ies, -ise, -ize, -ses, -ous, -ish, -ful, -ate, -ves

-ing, -ify, -ity, -ist, -ism, -acy, -dom, -ive, -ant, -ent, -ery, -ess, -est,

-ile, -let, -ish, -ful, -ate, -ing, -ify, -ity, -ism, -ist, -acy, -dom, -ive, -ure

2-chars -en, -ed, -al, -ly, -or, -er, -ty, -ic, -es, -ar, -ce, -cy, -fy, -ry, -th

1-char -s, -y

3.3.2. Grammar Features

Grammar features are used to score all grammar rules except the ones used for

tagging words. They represent non-local properties of the parse structure, whereas

lexicon features involve more local properties. Based on their definition, garmmar rules

can associate different properties spanning number of words and subtrees. Table 3.4

shows the grammar feature templates employed in this thesis. Note that there are also

25

two subtypes of features. One that is only applicable to binary rules, and another that

is applicable to unaries which span one word.

Table 3.4. Grammar feature templates that we used in this thesis.

ρ

〈base(parent(rulep)), dist-sim(words)〉
〈base(parent(rulep)), dist-sim(worde)〉
base(rule)

dist. sim. bigrams below rule and base parent tag

dist. sim. trigrams below rule and base parent tag

Binary-specific feature templates :

〈base(parent(rulep)), dist-sim(words−1), dist-sim(ws)〉
〈rule, words〉, if right child is a PP

Unaries which span one word :

〈rule, word〉
〈rule, dist-sim(word)〉
〈base(parent(rule)), dist-sim(word)〉
〈base(parent(rule)), word〉

In these feature templates, rule represents a particular rule along with span/split

information, while ρ is the rule itself. And base(rule) means simplified rule with base

states and no span/split information. Also, rulep corresponds to the right hand side,

that is the parent of the grammar rule. Since our grammar is binarized we have a split

point unless it is a unary rule. Hence wb and we are the first and last words covered

by that rule, respectively, whereas ws is the first word after the split.

3.3.3. Distributional Similarity Clusters

Out-of-vocabulary (OOV) words present a challenge for the parser, not only in

terms of accuracy but also because of the fact that the parser has to consider all

possible ways of tagging those unknown words. As Finkel et al. [12] used in their

research, distributional similarity clusters is one way of coping with OOV words. This

technique clusters words based on their distributional similarity in a given large corpus

of raw text. Outputted clusters are used as abstract syntactic categories in our feature

templates.

26

For our experiments, we used the implementation provided by [38]. We gathered

an unlabelled data set of over 280 million words by combining Reuters RCV1 corpus

(200M), Penn treebank (1M), and a large set of newswire articles downloaded over the

Internet. We used default parameter settings and set the number of clusters to 200, as

done in [12]. Even though we were unable to work with the same set of text corpora

that they used in [12], we tried to keep the size and type of content comparable to

theirs.

3.3.4. Unknown Word Classes

In addition to the distributional similarity clusters, we also make use of the or-

thogonal shapes of words in order to come up with more abstract form of words. Such

forms are called unknown word classes. These classes are acquired by transforming the

word character-to-character to more generic form by using the following rules.

• Spelled out versions of Greek letters are replaced with ‘g’

• Digits are replaced with ‘d’

• Upper-cased letters are replaced with ‘X’

• Lower-cased letters are replaced with ‘x’

• Punctuation remains

• Instances where the same character (g/d/x/X) is repeated more than three times

in a row are truncated to only include the first three characters.

By such transformation, we can better identify words or compound words that

are generated based on a specific format, especially when they contain numerical ex-

pressions.

3.4. Data

In our experiments, we use the Penn treebank described in Section 2.5.1. How-

ever, due to computational and time constraints bounded by this thesis, we use only

27

sentences that have no more than 15 words, that is the WSJ15 set. Regarding prepro-

cessing, we start with the original version of the Penn treebank and remove unnecessary

annotations like ∗NONE∗ constituents and functional tags, except -TMP on tempo-

ral noun phrases. We extracted the grammar set from the training set of the WSJ15

and then annotated them with extra information as described in Section 2.1.3. We use

the development and test sets of the WSJ15 for the evaluation.

3.5. Experiments

This section describes our experimental setup and the analysis of the results. For

the evaluation of our baseline, we do detailed analysis of the causes of errors from

different angles in order to enable us to make better comparison of the baseline and

proposed parsers in the upcoming chapters.

We follow the experimental setup described by Finkel et al. [12]. We train our

discriminative parser with all lexicon and grammar features described in Section 3.3.

Our preliminary experiments show that when the learning factor η is set to 0.1 and

the variance σ2 to 0.1, our parser reaches the highest accuracy on the development

set after 20 passes over the training set. At each pass, our parser randomly chooses a

batch of sentences with replacement from the training set and updates the parameter

values after processing each batch. Tables 3.5 and 3.6 show the results we get with

our parser on the development and test sets of the Penn treebank, respectively. These

tables also include corresponding results from [12] for comparison.

Table 3.5. Results on the development set of the Penn treebank.

Parser Precision Recall F1 Score Exact Avg CB No CB

Our Parser 87.49 88.09 87.79 53.33 0.30 83.10

Finkel et al. [12] 90.4 89.3 89.9 59.5 0.24 88.3

Shown in Table 3.5, our parser achieves F1 score of 87.79 on the development

set of the WSJ15, which is low compared to 89.9 obtained by [12]. While there is

28

about absolute 1% difference on the recall measure, the difference of 3% at the preci-

sion metric between the two systems contributes to the performance difference. This

means that, even though our parser is almost as good as the parser of Finkel et al. at

labelling constituents correctly, it also outputs many incorrect constituents along with

the correct ones, causing the precision drop.

Table 3.6. Results on the test set of the Penn treebank.

Parser Precision Recall F1 Score Exact Avg CB No CB

Our Parser 86.35 86.35 86.35 50.67 0.36 79.87

Finkel et al. [12] 91.1 90.2 90.6 61.3 0.22 87.9

On the test set shown in Table 3.6, however, the difference between the two

systems is getting larger. While our parser reaches F1 score of 86.35, it is 90.6 for

[12]. This time, in addition to outputting more incorrect constituents as seen in the

development set, our parser also struggles to find the correct constituents, hence the

recall difference of 4%.

3.5.1. Accuracy Analysis on Constituents

We analyze further the output of our parser for the development set of the WSJ15.

First, we investigate at which type of constituents our parser fails most. The results

for most common constituent types in Table 3.7 indicates that noun phrases (NPs)

are involved in most of the errors in the output, which is not surprising considering

that most of the constituents are noun phrases. 34.7% of wrongly labelled constituents

are NPs, while 40.9% of correct constituents that our parser fails to identify are NPs.

After NPs, verb phrases (VPs) contribute to most of the labelling and identification

errors. Apart from these two, F1 score of adjective phrases (ADJPs) points out the

most problematic constituent for the baseline parser, despite their relatively small effect

to the overall results.

29

Table 3.7. Performance on the most common constituents in the WSJ15 dev. set.

Constituent Their % in Their % in F1 Score

Labelling Errors Identification Errors

NP 34.7 40.9 88.77

VP 20.4 14.9 89.81

PP 9.6 9.4 88.79

S 12.7 10.7 90.91

SBAR 3.5 3.2 80.56

ADVP 8.2 5.5 79.42

ADJP 6.3 7.9 59.31

QP 0.7 1.0 94.21

3.5.2. Length- and Height-based Accuracy Analysis of Constituents

As we jointly train the baseline full sentence parser with the n-gram parser in the

upcoming chapters, we decide to analyze how accurately the baseline parser performs

on constituents with different lengths and at different heights in the parse tree. Hence

our second analysis involves measuring the identification accuracy of constituents based

on their length and then their located height.

As we use the WSJ15, lengths of the constituents can range from one to 15. We

divide the constituents into four groups: constituents that span only one word, except

the preterminals on top of the words; short constituents of length two to four; mid-sized

constituents of length five to nine; and long constituents of length 10-15. Table 3.8

lists the identification accuracy of the golden constituents for each constituent type.

Long constituents, which correspond to 12.6% of all constituents, are identified with

the highest accuracy by the baseline parser. In fact, from a separate analysis, we also

measured that the baseline parser correctly identifies 96.4% of the top constituents in

the given parse trees. On the other hand, while almost half of the golden constituents

are short, 89.5% of them are identified correctly. Following these two, mid-size and

one-word constituents come with around the same accuracy level of 85%. In case of

the constituents that cover only one word, even though we exclude preterminals, the

30

low accuracy indicates how tough it is to identify them.

Table 3.8. Performance on the constituents by length in the WSJ15 dev. set.

Constituent % of Identification

Length Range Constituents Accuracy (%)

1 (One-word) 19.13 85.01

2-4 (Short) 44.37 89.54

5-9 (Mid-sized) 23.91 85.17

10-15 (Long) 12.59 93.19

Height-based accuracy analysis on the constituents and how we divide them again

into four groups is shown in Table 3.9. Results indicate that the accuracy of identi-

fying golden constituents drops at the shallows of the parse trees compared to the

constituents above the preterminals and in mid-range in the parse tree. Regarding the

constituents located above the height of 10, they include only a smal fraction of the

constituents and being able to identify all of them doesn’t mean much for our current

evaluation.

Table 3.9. Performance on the constituents by height in the WSJ15 dev. set.

Constituent % of Identification

Height Range Constituents Accuracy (%)

2 (Above Preterminals) 42.12 88.14

3-4 (Shallows) 30.15 86.76

5-9 (Mid-range) 26.28 88.86

10-15 (Highs) 1.45 100.0

When we jointly train the baseline full sentence parser with the n-gram models,

since n-gram trees are relatively shallower trees, it would be interesting to examine

their effect on these statistics of the baseline parser.

31

3.6. Discussion

Evaluation of the results obtained using the development and test sets of the

WSJ15 set shows a considerable difference between our baseline parser and the one we

adapted from Finkel et al. [12]. Even though we follow the design specifications of

their parser, we were unable to match their accuracy. The reason might be due to small

implementation details that are not mentioned in their publication, which might cause

some part of that difference. Moreover, the data set we use to calculate distributional

similarity clusters of the words is also different. Considering that distributional simi-

larity cluster based features lead to 6-7 point increase in the F1 score, having different

training sets for this task might also play a sizeable part at the end.

Our further analysis also reveals that most of the errors our baseline parser makes

originate from noun and verb phrases. Adjective phrases are especially problematic.

One possible reason of this is the fact that adjectives can be placed under both noun

and adjective phrases, which might prevent the statistical model to do better on them.

Our length- and height-based analysis of how accurately our baseline parser identifies

constituents reveals that most errors happen with the mid-sized constituents and the

ones located at the shallows of the parse tree.

32

4. N-GRAM PARSING

In the parsing literature, parsers are designed and trained to process sentences

either completely as conventional parsers do or partially [39, 40]. n-gram parsing,

however, is essentially no different than conventional parsing, yet, the input is defined

as n consecutive words in the order that they occur in a natural language sentence.

Even though there may be no point in building an n-gram parser, in this thesis, we

treat n-gram parsing as an accompanying task for full sentence parsing within the setup

of the Hierarchical Joint Learning (HJL) described in the next chapter. This chapter

discusses n-gram parsing as a stand-alone parsing task and analyze the data properties

and experimental results in order to better understand this task and compare, to some

degree, with full sentence parsing. Throughout the thesis, we consider 3-, 4-, 5-, 6-, 7-,

8- and 9-gram parsing in order to examine the characteristics of n-gram parsing and

their interaction with the full parsing model at different sizes.

4.1. n-gram Trees

An n-gram tree is part of a parse tree that spans n consecutive words in a sentence.

As discussed in Section 2.2, different interpretations of n-gram trees are used in a

number of studies in the literature. This section defines n-gram trees used in the

context of this thesis.

Figure 4.1 shows all 4-gram trees extracted from the complete parse tree. In

order to fit lengthwise, cutting the left or right hand-side of some constituents might

be required, while extracting the subtree covering the consecutive words. That cut may

sometimes remove the head of the constituent. The requirement during this extraction

is to make sure that every syntactic constituent in the extracted n-gram tree keeps

its head in the process. We apply this constraint in order to make sure that every n-

gram tree is generatively accurate, following the head-driven constituency production

process of Michael Collins [3].

33

Figure 4.1. All generatively accurate 4-gram trees extracted from the complete parse

tree.

Figure 4.2 shows the pseudo-code used to extract n-gram trees from a complete

parse tree. It starts traversing the sentence from the first word and tries to preserve

the subtree covering n consecutive words from the starting point. While doing that, it

may trim the tree from the sides. After trimming, it checks whether each constituent

in the extracted subtree has a head child. If not, it aborts the process and continues

with the next n consecutive words. If all heads are preserved, it marks the trimmed

constituents with -INC functional tag and filters out any incomplete chain of unary

rules that can be reached from the ROOT . In this process, we also keep the parent

information of the top constituent as an additional context information.

34

Require: n, width of the n-gram trees

Require: tree, parse tree of a sentence

len← length of given sentence

i← 0

while i < len− n do

subtree← get subtree that covers [i, i+ n] span

trimmed← trim subtree’s constituents outside the [i, i+ n] span, if any

if trimmed has any constituent with no head child then

i++ and continue

end if

markedtree← mark all trimmed constituents as incomplete

filtered← filter out incomplete unary rule chain from the ROOT, if any

save filtered tree as n-gram tree

i++

end while

Figure 4.2. Algorithm to extract and store n-gram trees from a parse tree.

4.2. Data

As described in Section 2.5.1, the Penn treebank [5] is a widely used data set

for research in constituency parsing. To perform both n-gram tree and full sentence

parsing with the Penn treebank, we divide its training set into two parts; sentences

having no more than 15 words (WSJ15) and the remaining sentences (WSJOver15).

The n-gram extraction algorithm was run on the training set of the WSJOver15.

Table 4.1 shows the number of extracted eligible n-gram trees. As discussed in Sec-

tion 4.1, not all n-gram trees are generatively accurate. Considering that we have 9753

training sentences for full parsing in WSJ15, the number of training instances for the

n-gram parsing task is considerably higher. Nevertheless, due to computational con-

straints, it is impractical to use all extracted n-gram trees at the same time. Instead,

we manage to use at most 20000 training instances for each model. Having hundreds

35

Table 4.1. Number of n-gram trees in each training set.

Model Data Set # of Trees

(Avg. Height)

3-gram WSJOver15 384699 (3.37)

4-gram WSJOver15 318819 (4.05)

5-gram WSJOver15 267155 (4.69)

6-gram WSJOver15 227505 (5.28)

7-gram WSJOver15 195229 (5.83)

8-gram WSJOver15 168075 (6.35)

9-gram WSJOver15 145040 (6.84)

Full WSJ15 9753 (6.26)

of thousands of training instances allows us to not only randomly create the training

set but also create multiple training sets for better evaluation. Hence, we randomly

create five different training sets for each experiment that we make. When it comes to

evaluation, we run the same experiment five times and get the average of the results,

which enables us to make the evaluations more accurate.

Table 4.1 also shows the average height of n-gram trees for each training set.

The calculation of average height is done by using the maximum number of edges from

the ROOT to a preterminal node in the parse tree. As expected, height increases

as n increases. Note that average height of full sentences is lower than the height of

even 8-gram trees. This is due to the fact that those n-gram trees are extracted from

WSJOver15 which contains relatively bigger parse trees that WSJ15 has.

We extract n-gram trees for training purposes from the WSJOver15. However, in

case of development and testing purposes of n-gram parsing, we use the development

and test sets of the WSJ15. We do this in order to make the results more comparable

to the results from the baseline. Table 4.2 gives the number of n-gram trees extracted

from the development and test sets of the WSJ15.

Another analysis viewpoint is to look at the distribution of constituent types in

36

Table 4.2. Number of n-gram trees in each development and test set.

Model Data set # of Dev. Trees # of Test Trees

(Avg. Height) (Avg. Height)

3-gram WSJ15 1742 (3.33) 2495 (4.36)

4-gram WSJ15 1341 (4.02) 1916 (5.06)

5-gram WSJ15 1050 (4.65) 1506 (5.72)

6-gram WSJ15 807 (5.23) 1158 (6.34)

7-gram WSJ15 635 (5.75) 891 (6.89)

8-gram WSJ15 486 (6.17) 667 (7.37)

9-gram WSJ15 349 (6.58) 491 (7.84)

Full WSJ15 421 (6.06) 603 (7.00)

each data set. Since n-gram trees are relatively smaller compared to the full parse trees

and contain mostly local subtrees, it is worth examining which constituents are more

likely to be seen in the n-gram data sets.

Table 4.3. Percentage of most common constituents in each training set.

Model NP VP PP ADJP ADVP S SBAR QP

3-gram 21.20 10.82 6.25 1.04 1.03 4.68 1.43 0.96

4-gram 20.69 10.87 6.44 1.05 1.07 4.93 1.64 0.85

5-gram 20.39 10.87 6.45 1.06 1.10 5.11 1.75 0.80

6-gram 20.11 10.81 6.49 1.04 1.10 5.21 1.84 0.79

7-gram 19.86 10.78 6.49 1.02 1.11 5.29 1.92 0.78

8-gram 19.68 10.74 6.50 1.01 1.11 5.35 1.99 0.77

9-gram 19.54 10.68 6.50 1.00 1.10 5.39 2.04 0.76

Full (WSJ15) 18.74 9.51 4.21 1.05 1.69 6.91 1.00 0.60

In Table 4.3, the percentages of the most common non-terminal constituent types

in each data set are shown. According to these numbers compared to the full sentence

data set, the n-gram tree data set contains more noun (NP), verb (VP) and prepo-

sitional (PP) phrases, while having less adverb (ADVP) and sentence (S) phrases in

terms of percentage. From another standpoint, the percentages of the top constituents

37

like S and SQ are lower in the n-gram data sets, which is reasonable considering the

fact that the n-gram tree extraction process disfavors the top spanning constituents,

while favoring short subtrees. Nevertheless, the percentage of the SBAR constituent

doubles in n-gram tree sets. We believe this can be explained with their structural

resemblance to the prepositional phrases which we see more in n-gram trees.

The same analysis is also performed on the development sets for each model.

The numbers indicate different characteristics from the ones we get from the training

set because while we extract training n-grams from WSJOver15 set, we use WSJ15

for the extraction of development n-gram trees. Note that our n-gram tree extraction

algorithm preserves smaller tree structures and discards large ones. This explains

the reason why the percentages of long-range constituents like VP and S from the

WSJOver15 set are lower, while the same constituents are relatively smaller in WSJ15

set.

Table 4.4. Percentage of the most common constituents in each development set.

Model NP VP PP ADJP ADVP S SBAR QP

3-gram 18.80 12.94 4.69 1.08 1.55 6.62 0.88 1.24

4-gram 18.16 12.98 4.99 1.07 1.65 7.11 1.10 1.00

5-gram 18.12 12.76 5.16 1.06 1.72 7.30 1.19 0.83

6-gram 18.24 12.51 5.20 1.07 1.61 7.27 1.20 0.89

7-gram 18.16 12.07 5.42 1.01 1.51 7.26 1.36 1.00

8-gram 18.07 11.84 5.52 1.00 1.35 7.21 1.41 1.09

9-gram 18.10 11.36 5.73 0.97 1.17 7.18 1.47 1.23

Full (WSJ15) 17.74 8.95 4.44 0.95 1.59 6.68 0.90 0.75

4.3. Features

The n-gram parsing task is essentially the same as the full sentence parsing task.

Hence the feature templates described in Section 3.3 are also applicable for this task.

Having the same set of features with full parsing is especially important considering the

fact that the Hierarchical Joint Learning (HJL) approach described in Chapter 5 de-

38

pends on the existence of shared features between the tasks. Due to that commonality

is how multiple tasks can share their experience and get help from each other.

n-gram and full sentence parsing are identical and use the same set of feature

templates. However, in order to better help each other, it is best to have some differ-

ent features for each task and enable to tasks to look at the problem from different

viewpoints and support each other at the points where one of them is not good at.

This means that the n-gram parsing task may require different features, specific to

the n-gram parsing domain. The first such differentiation is the -INC functional tag,

which is used to mark incomplete constituents generated by the n-gram tree extraction

process explained in Section 4.1. Such a functional tag creates a new grammar rule,

which eventually leads to new features generated by the very same feature templates.

So far we haven’t added any other differentiating features for the n-gram parsing task

yet.

As a future work, we would also like to consider not applying some feature tem-

plates for n-gram parsing. The motivation behind this is that some feature templates

may be unnecessarily complex for n-gram parsing such that they cause overtraining as

the size of the training set increases. Note that this is yet another way of differentiating

n-gram parsing from full parsing.

For each n-gram model, we consider multiple training sets by increasing the

number of training instances. Table 4.5 lists the average number of features for each

training set. Note that we have five different versions of each set so that we get the

results with each and take their averages in order to do better evaluation. Hence, in

Table 4.5 we report the average number of features for each training set.

4.4. Experiments

For our n-gram parsing experiments, we use the same experimental setup of the

baseline parser, but with more optimized parameter settings for the n-gram parsing

domain. As described earlier, we work on seven different n-grams with increasing

39

Table 4.5. Average number of features in each model.

Model 1000 2000 5000 10000 20000

3-gram 28571 45433 81514 124534 185473

4-gram 39256 63201 115609 178022 269570

5-gram 50760 82086 150485 232988 354689

6-gram 61726 100280 185234 288009 440212

7-gram 72651 119345 220496 344598 527970

8-gram 83941 138008 256880 401733 613574

9-gram 95996 156698 293898 458137 695144

sizes from three to nine. By taking into account the future experiments to be done

in Chapters 5 and 6, we also consider multiple training sets by increasing their sizes

from 1000 to 20000 instances. Moreover, we create five versions of each training set by

randomly picking them from hundreds of thousands of eligible n-gram trees extracted

from the WSJOver15 set. Hence, all experimental results given in this section are

calculated by taking the average of five runs for each experiment.

We use the same set of lexicon and grammar features of the baseline parser

described in Section 4.3. From preliminary experiments, we decide to set the learning

factor η to 0.05 and variance σ2 to 0.1. However, unlike doing 20 iterations as in

the case of full sentence parsing, we observe that 10 iterations are enough for n-gram

parsers to reach their best performances. For the stochastic gradient descent approach,

we choose a batch size of 30, instead of 15, since the training instances are relatively

smaller compared to the ones in the full parsing task.

Table 4.6 shows the average F1 scores obtained by all seven n-gram parsers on

the n-gram development and test sets described in Section 4.2. Since there hasn’t been

any other research done on n-gram parsing, we are unable to compare our results.

Due to the time constraints, we couldn’t run the experiments on bigger training sets.

Nevertheless, from the trend of increasing accuracy, it is highly likely that these are

not the highest scores we can get for each n-gram model. Nevertheless, these results

40

Table 4.6. F1 scores of the n-gram models on each development and test set.

Results for Dev. Set of the WSJ15 Results for Test Set of the WSJ15

Model 1K 2K 5K 10K 20K 1K 2K 5K 10K 20K

3-gram 71.95 76.01 80.72 83.86 86.49 72.68 77.13 80.98 84.78 87.14

4-gram 69.71 74.71 80.56 83.69 85.72 71.48 76.28 81.94 84.84 87.38

5-gram 69.51 75.68 80.48 83.61 86.60 71.86 76.51 81.81 84.72 87.04

6-gram 69.03 76.35 80.82 84.48 86.54 71.58 76.47 81.44 85.05 86.95

7-gram 70.96 75.99 81.91 84.24 87.24 71.50 76.73 81.87 84.73 86.57

8-gram 71.31 77.49 81.39 84.26 86.95 72.21 76.11 80.53 84.53 86.34

9-gram 72.37 76.67 82.49 84.08 87.01 71.70 76.76 81.26 84.07 86.44

show us a couple of interesting points regarding n-gram parsing. The first thing to

notice is that when using very small training sets like the size of 1000, n-gram parsers

perform very poorly. Unlike the full sentence parser, the n-gram parsers require a lot

of training data. Another thing to notice is that the larger and more n-gram trees we

use, the better results we get on the development set, which is reasonable considering

the fact that larger n-gram trees exhibit less ambiguity and they produce more features

per tree.

Table 4.7. Performance of the n-gram parsers (trained with 20000 instances) on the

development set.

Model Precision Recall F1 Score Exact Avg CB No CB TagAcc

3-gram 86.37 86.60 86.49 73.13 0.02 98.15 86.80

4-gram 85.55 85.89 85.72 66.50 0.08 94.86 87.88

5-gram 86.91 86.29 86.60 61.68 0.10 93.02 89.95

6-gram 86.68 86.41 86.54 54.76 0.16 89.33 90.67

7-gram 87.49 87.00 87.24 51.29 0.21 86.52 92.17

8-gram 87.11 86.81 86.95 49.08 0.28 82.96 92.59

9-gram 87.50 86.53 87.01 46.12 0.35 79.45 92.97

More details for each n-gram parser trained on 20000 instances are shown in

41

Table 4.7. While the F1 scores are relatively close to each other, the percentages of the

exact parse trees found by the n-gram parsers drop rapidly as n increases. This trend

is also the same for the average number of crossing bracket cases and the percentage

of outputted trees with no crossing brackets. Another thing to notice from Table 4.7

is that precision increases as n increases, while recall stays relatively at the same level

for all models. This means that increasing the size of the n-gram tree helps more

about preventing mistakes than producing correct trees. The last column of Table 4.7

also shows that as n increases, tagging accuracy increases as well. This might be

considered as yet another sign of increasing context information and its contribution

for more accurate parsing.

4.4.1. Accuracy Analysis of Constituents

Table 4.8. F1 scores on the most common constituents for each n-gram model from

the development set.

Model NP VP PP S SBAR ADVP ADJP QP

3-gram 89.26 89.86 92.04 84.69 56.31 73.19 46.50 75.27

4-gram 88.02 89.79 90.72 83.52 61.43 73.23 48.23 75.77

5-gram 88.35 90.42 89.81 85.77 72.39 76.31 52.22 72.96

6-gram 87.65 91.04 89.03 86.11 71.49 75.16 52.00 74.34

7-gram 87.80 91.73 88.40 87.39 77.91 76.87 50.09 84.45

8-gram 87.22 92.29 87.81 87.18 76.43 77.84 49.05 86.73

9-gram 87.79 91.76 87.33 87.46 76.37 72.21 53.66 86.43

Full 88.77 89.81 88.79 90.91 80.56 79.42 59.31 94.21

As in the case of the evaluation of the full sentence parser in Section 3.5, we

also analyze how n-gram parsers perform at the constituent level by calculating the

F1 scores for each constituent type. Table 4.8 shows average F1 scores of the most

common constituents for each n-gram model trained with 20000 instances. Comparing

the scores with the corresponding ones obtained with the full sentence parser reveals

a couple of points. In case of the noun (NP) and verb (VP) phrases, it is interesting

to note that while NPs are getting harder to process, it is clearly the opposite case

42

of the VPs. In fact, like NPs, accuracy on the prepositional phrases (PPs) is also

dropping, and like VPs, performance on the sentence phrases (S) is getting better,

too. A reasonable explanation for this is that as the size of the n-grams increases, it

becomes easier to handle long constituents like VPs and Ss because the parser sees

more of them, whereas while n increases, it also introduces longer NPs and PPs which,

in this case, increases the complexity of processing such phrases. Regarding the other

constituents, their accuracy increases as well. This is again related to the increase

in the number of training instances for such phrases. Comparing the numbers more

closely, it is evident that n-gram parsers are having a difficult time processing long

constituents like S and SBAR. Especially, these two constituents might be the main

cause of why 4-gram model is the worst. Another interesting point is the accuracy on

QPs, which is quite low compared to the performance of the full sentence parser on

them.

Table 4.9. Performance of the n-gram models on the most common constituents in

the test set.

Mdl NP VP PP S SBAR ADVP ADJP QP

3-g 30.4/31.5 25.2/15.9 6.4/5.2 15.2/15.9 5.5/6.2 4.9/7.3 5.3/10.0 5.3/4.4

4-g 31.0/31.8 24.4/14.8 7.0/6.5 16.3/17.4 6.6/6.1 5.0/7.3 4.8/9.0 3.5/3.6

5-g 34.5/31.0 22.6/16.0 9.6/7.0 12.9/18.2 4.6/5.4 5.0/7.0 5.1/8.5 4.2/3.1

6-g 36.1/32.7 18.6/15.8 10.3/7.4 13.3/16.8 4.7/5.6 5.7/6.2 5.0/8.8 4.6/2.9

7-g 38.9/34.0 19.7/13.5 10.5/10.1 12.5/16.7 3.7/5.7 5.2/5.6 4.1/9.2 3.7/1.7

8-g 39.5/34.9 16.5/13.1 11.3/10.3 12.4/16.6 4.6/5.7 5.5/4.4 5.5/9.1 3.3/1.6

9-g 35.7/36.3 18.2/12.5 12.3/11.7 12.4/15.6 4.5/5.8 6.4/3.9 4.9/8.3 3.7/2.0

Full 34.7/40.9 20.4/14.9 9.6/9.4 12.7/10.7 3.5/3.2 8.2/5.5 6.3/7.9 0.7/1.0

In addition to calculating F1 scores, we also calculate what percentage each con-

stituent contributes to the labelling and identification errors, as we also did for the

full sentence parser in Section 3.5. Table 4.9 shows these two percentages respectively,

separated by a slash. For example, in case of the performance of the 3-gram parser on

NPs, the numbers from the table tells that 30.4% of the wrongly labelled constituents

are NPs, while they contribute to 31.5% of the unidentified golden constituents. These

43

percentages indicate the same trends as F1 scores reveal, however, it is interesting to

notice how NPs and PPs are getting more and more problematic as the n-gram trees

get bigger, surpassing the full sentence parser levels with the 5-gram parser.

Considering all these statistics on constituents, we may expect that when the

full sentence parser is jointly trained with the n-gram model, it might benefit from

the performance of n-gram parsers on verb phrases, especially as we use bigger n-

gram trees. On the other hand, n-gram parsers trained on smaller n-gram trees might

help the full parser with the NPs and PPs. And considering their high percentage of

contribution to the errors, smaller n-grams are expected to give the best boost to the

full sentence parser in the hierarchical joint learning setups described in the upcoming

chapters.

4.4.2. Length- and Height-based Accuracy Analysis of Constituents

Like it is done for the evaluation of the full sentence parser, we also analyze how

each n-gram parser performs based on the length and the height of the constituent in

the parse tree. As described in Section 3.5, we group constituents into four groups for

both analysis. The results obtained by each n-gram parser are given in Table 4.10 and

4.11, respectively.

Table 4.10. Length-based accuracy on constituents for each n-gram model.

Model L=1 L=2-4 L=5-9

3-gram 82.0 89.1 -

4-gram 82.1 87.6 -

5-gram 82.2 86.8 89.9

6-gram 82.6 85.8 90.4

7-gram 83.5 86.9 88.5

8-gram 82.9 86.6 89.1

9-gram 83.3 86.2 88.5

Full 85.0 89.5 85.2

44

Length-based analysis of the accuracy on the constituents reveals that the n-

gram parsers are unexpectedly not very good at constituents that cover just one word.

One reason might be the difficulty of the task, especially in case of absent surrounding

context information. It is also noted that even the full sentence parser is having a

difficulty with them. On the other hand, n-gram models are also not very good with

short constituents covering two to four words and the performance decreases as n

increases. We can’t think of any particular reason for this and, thus, it requires further

analysis. In case of the mid-size constituents covering five to nine words, n-gram parsers

perform considerably better than the full sentence parser.

Table 4.11. Height-based accuracy on constituents for each n-gram model.

Model H=2 H=3,4 H=5-9 H=10-15

3-gram 86.9 86.4 84.2 -

4-gram 86.2 85.3 87.6 -

5-gram 86.4 84.7 89.2 -

6-gram 86.7 83.3 90.2 -

7-gram 87.9 83.6 88.7 100.0

8-gram 87.4 82.4 90.7 100.0

9-gram 87.6 82.1 89.3 96.55

Full 88.1 86.8 88.9 100.0

Considering how accurately each n-gram parser identifies constituents based on

their height in the golden tree might not only give us clue about the characteristics of

the n-gram parsing task, but also allows us to see how it might affect the full parser

when they are jointly trained in the upcoming chapters. Table 4.11 indicates that

with smaller n-grams, the parser performs poorly above the preterminal (H=2). But

it gets better as n-gram trees get bigger. The same is true at the mid-range (H=5-9).

However, it is the opposite case at the shallows (H=3,4). The bigger n-gram trees we

use, the worse it performs on constituents located at the height of three and four in the

parse tree. One possible explanation might be that the complexity of such constituents

at that height is increasing as n increases. At the highs (H=10-15), n-gram parsers

perform excellently as the full sentence parser does.

45

4.4.3. Analysis of Incomplete Constituents

Described in Section 4.3, n-gram models differentiate from the full sentence pars-

ing model with the concept of the incomplete constituents, which are introduced by

the n-gram tree extraction algorithm given in Section 4.1. As we cut the constituents

from the sides, it creates grammatically incomplete constituents, even though we make

sure that the head constituent is intact, keeping the constituent generatively accurate.

In order to measure their level of contribution to the number of errors, we calculate

the accuracy for incomplete constituents. Table 4.12 shows these statistics from the

development set of each n-gram parser. It first gives the percentages of incomplete

constituents with respect to all constituents in each set. Then, it lists the accuracies,

in other words recalls of each n-gram parser on the incomplete constituents. The last

column shows what percentage of unidentified constituents in overall is actually the

incomplete constituents.

Table 4.12. Accuracy on the incomplete constituents in each n-gram models

% of Incomplete Incomplete % of Unidentified

Constituents Constituent Incomplete Const.

Model in Golden Trees Accuracy w.r.t. All Unidentifieds

3-gram 22.0 86.65 26.2

4-gram 17.4 85.78 21.1

5-gram 14.5 84.20 16.7

6-gram 12.3 83.41 15.2

7-gram 10.8 83.32 13.9

8-gram 9.5 83.92 11.5

9-gram 8.7 84.94 10.4

From the results in Table 4.12, we observe that as size of the n-gram tree is

getting bigger till 7-gram, accuracy on the incomplete constituents drops and then it

starts to improve. Their contribution to the number of errors drops as n increases, but

that is more attributed to the fact that their percentage with respect to all constituents

drops as n increases. Despite its high performance, more than quarter of the errors

46

done by the 3-gram parser involves incomplete constituents.

4.5. Discussion

The task of n-gram parsing is in essence the same as the task of full sentence

parsing. The major difference lies in the different feature templates and the charac-

teristics of the data set. Even though n-grams are shorter than full sentences and we

have many more training instances of them, this chapter reveals that parsing n-grams

is not an easier job than parsing full sentences. The first reason that comes to mind is

the absence of surrounding context. Especially for smaller n-gram trees, this increases

the level of ambiguity. Despite such inherent characteristics, another source of poor

performance for the n-gram parsers is the relatively low percentage of certain types of

constituents like S, SBAR, and QP in the training set. That is actually why we keep

incomplete constituents. If we discarded any n-gram that contains such constituents,

the percentage of such phrases would drop considerably and that hurts the accuracy

levels, not to mention the negative effect of this to the level of help that n-gram parsers

provide to the full sentence parser in the course of joint learning described in the up-

coming chapters.

Our further analysis also indicates that n-gram parsers are strangely not very

good at handling short constituents as well as the ones seen towards the bottom of the

parse tree. It might have to do with the increased complexity of these specific tasks

in the absence of contextual information. It would be interesting to examine these

findings further and determine the reasons before introducing new features specific to

these types of deficiencies.

Another thing to notice is the performances of the n-gram parsers on incomplete

constituents, which might also be considered as another source of the ambiguity for

the n-gram parsing task. Their high contribution to the identification errors for 3- and

4-gram parsers exemplifies the increasing ambiguity level as n-gram trees get smaller.

To sum up, the results show that the accuracy levels of the n-gram parsers is close

47

to the level we reach with the full sentence parser. However they require a larger set of

training data compared to the full sentence parser. Even though this does not seem like

a problem due to the abundance of the extracted n-gram trees, using large numbers

of training instances increases the running time. Despite the mentioned deficiencies,

the obtained performance is promising for the applications that can make use of the

n-gram parsers.

48

5. HIERARCHICAL JOINT LEARNING OF N-GRAM

AND FULL PARSING TASKS

In Chapter 3, we build a discriminative constituency parser as our baseline parser

to parse full sentences. In Chapter 4, we use the same setup with additional feature

templates to parse n-grams. In this chapter, we combine these two different types of

models with the Hierarchical Joint Learning (HJL) approach. As introduced by Finkel

et al. [31], HJL provides a multi-task training environment in which related tasks help

each other learn more their task due to the commonality among the tasks. Here, our

goal is to examine whether we can improve our baseline parser with the help of n-gram

parsers using the HJL approach.

5.1. Hierarchical Joint Learning

HJL makes use of multiple related base models along with their corresponding

training data sets. The only requirement for HJL to work is that the base models need

to have the common features with some other base models, while they can still have

private features of their own.

Figure 5.1. A graphical representation of the hierarchical model.

Shown in Figure 5.1 is a graphical representation of a hierarchical joint model.

Nodes at the bottom corresponds to each base model with their own set of parameters

49

θ and a variance σ2. On the other hand, the top node connected to the bases represents

the top-level model with again its own set of parameters, a variance and a mean. This

connection corresponds to the shared features between the base models through the

top model and it encourages the learned weights for the different models to be similar

to one another.

5.1.1. Formal Model

As described in [31], we have a set M of base models with corresponding log-

likelihood functions Lm(Dm; θm), where Dm is the model-specific training data and

θm is the model-specific feature vector for the mth model. These likelihood functions

do not include priors over the θs, instead these feature vectors are all drawn from a

hierarchical prior which connects these base models. The parameters θ? for this prior

have the same dimensionality as the model-specific parameters θm and are drawn from

another, top-level prior. We use zero-mean Gaussian for this top-level prior as in [12].

Note that since each specific data set can have its own set of features, those features that

are specific to one model have no affect on other model’s likelihood function because

they supposedly cannot be seen in the other model’s training set.

Having defined the hierarchical model, the log-likelihood of this model is given

as follows.

Lhier−joint(D; θ) =
∑
mεM

(
Lm(Dm; θm)−

∑
i

(θm,i − θ∗,i)2

2σ2
m

)
−
∑
i

(θ∗,i − µi)2

2σ2
∗

(5.1)

The first part of Eq. 5.1 adds up the log-likelihood of each model and subtracts the

prior likelihood of that model’s parameters, based on a Gaussian prior centered around

the top-level parameters θ?, and with model-specific variance σm. The second part in

the equation calculates the prior likelihood of the top-level parameters θ? according to

a Gaussian prior with variance σ? and mean µ, which is set to zero. In other words,

the feature weights of each base model tend to get closer to the top-level parameters

50

and, thus, to each other through the top-level. While the variance σ? controls how

much the hierarchical model cares about feature weights diverging from µi, the model-

specific variance σm controls the divergence of domain-specific parameters from each

other. Hence the lower σm is, the more similar values the shared features among the

base models have, and visa versa.

In order to calculate the optimum parameters of this model, we take the partial

derivatives for the parameters of each base model m and for the top-level parameter θ,

which are respectively:

∂Lhier(D; θ)

∂θm,i
=
∂Lhier(Dm, θm)

∂θm,i
− θm,i − θ∗,i

σ2
d

(5.2)

∂Lhier(D; θ)

∂θ∗,i
=

(∑
mεM

θ∗,i − θm,i
σ2
m

)
− θ∗,i − µi

σ2
∗

(5.3)

Gradient descent and L-BFGS are two well-known optimization algorithms. How-

ever, their requirement of using the entire training set to compute the objective function

(both its actual value and partial derivative) is computationally not practical. Hence,

stochastic gradient descent, which uses a small subset (batch) of each training set to

compute the estimate of the real objective function is used. The stochastic versions of

both equations above for batch size of one are given in [12] as follows, where |Dm(d)| is

the number of instances {d} selected from the model-specific training set Dm:

∂Lhier−stoch(D; θ)

∂θm(d),i

=
∂Lm(d)({d}; θm(d))

∂θm(d),i

− 1

|Dm(d)|

(
θm(d),i − θ∗,i

σ2
d

)
(5.4)

∂Lhier−stoch(D; θ)

∂θ∗,i
=

1

|Dm(d)|

(
θ∗,i − θm(d),i

σ2
m

)
− 1∑

mεM |Dm|

(
θ∗,i
σ2
∗

)
(5.5)

When the batch size is greater than one, the value of each function is calculated for

51

each datum and then all of these values are summed up.

5.2. Hierarchical Joint Learning of Full and n-gram Parsing

In our hierarchical joint learning setup, we jointly learn full sentence parsing and

n-gram parsing in the same way as described in [31]. However, in our case, it is not

required to have a joint model as in [31]. Because in [31], Finkel et al. have two

fundamentally different models for parsing and named-entity recognition and, hence,

they created a joint model of these two models, which has features from both tasks.

That is how they form commonality between two disjoint tasks. In our case, n-gram

and full sentence parsers use almost the same set of feature templates. Hence, they

inherently have common features.

We train the models in the hierarchical learning setup and optimize the parame-

ters with stochastic manner. At each batch, we randomly pick N instances, which may

include instances from the training set of any model, and calculate updated parameter

values for both base models and the top model at the end of each batch. As one model

learns the feature weights from its own training set, the hierarchical prior transfers

that change in the parameter value, by causing the corresponding shared feature from

the other model get influenced by that change. At the end of training, we retain the

parameter values of the full sentence parser and evaluate it on the Penn treebank [5],

as previously done in Chapter 3.

5.3. Data

To be consistent with previous experiments, for the two different parsing models

we use the same data sets from Chapters 3 and 4, that is the WSJ15 set for full sentence

parsing and the WSJOver15 set for each n-gram model. While using the complete set

of WSJ15 for the full parsing model, in order to examine how the size of the n-gram

training set affects the result of joint learning, we use four different sets for each n-

gram model with increasing numbers of training instances. We randomly pick 1000,

2000, 5000, and 10000 training instances and create three sets of each so that at the

52

end we can take the average of the results and get more accurate estimation on the

experiments.

5.4. Experiments

In this experimental setup, we use the full sentence parsing model from Chapter

3 and all n-gram models from Chapter 4 one-by-one. Based on the hierarchical joint

learning approach, for each conducted experiment, a top model is created, which con-

sists of all features that exist in both the full and the n-gram model. Each of these

three models has their own set of parameters but they affect each other through the

parameter update formulas defined by the HJL approach.

As there are multiple simultaneously trained models, the number of parameter

setting combinations is quite high. For the full and n-gram models, we use the same

variance values from the previous corresponding chapters, that is 0.1. We also set the

top model variance σ∗
2 to 0.1. We set the learning factor for the n-gram and the top

model to 0.1, while using 0.05 for the full parsing model. With this, we make sure

that the full parsing model starts to learn in slower pace than usual so that it doesn’t

directly get into the effect of the accompanying n-gram model. For all experiments in

this chapter, we perform 20 iterations as our preliminary experiments show that this

would be enough to get the best performance for the jointly trained full sentence parser.

Within each iteration, we apply the stochastic gradient descent approach by updating

the parameters after processing a batch of 40 training instances. The training instances

are selected from the training set of all models in the experiment. As the training

instances are selected uniformly, the ratio of instances from each model depends on the

relative sizes of the training sets.

With these parameter settings, we train the full model with each n-gram model

one by one. We use four different training sets for the n-gram model in order to

evaluate the effect of the n-gram model size. We execute each experiment three times

with three versions of training sets, all randomly picked. Table 5.1 shows the averaged

F1 scores obtained by the jointly trained full sentence parser on the development and

53

test sets of the WSJ15. The rows correspond to the accompanying n-gram model in

the joint learning, whereas the columns represent the size of the training set for the

n-gram model. Note that we use the same training set for the full model from Chapter

3, which contains 9753 instances.

Table 5.1. Averaged F1 scores of full sentence parser jointly trained with each n-gram

model.

Results for Dev. Set of the WSJ15 Results for Test Set of the WSJ15

Model(s) 1K 2K 5K 10K 1K 2K 5K 10K

B+3-gram 87.60 87.69 87.97 87.91 86.37 86.07 86.23 86.21

B+4-gram 87.93 87.98 87.99∗ 87.70 86.52 86.42∗∗∗ 86.44 86.54

B+5-gram 87.72 87.67 88.00 87.72 86.36 85.84 86.35 86.33

B+6-gram 87.88 87.73 88.12∗∗ 87.66 86.55 85.95 86.24 86.31

B+7-gram 87.83 87.94 88.05 87.72 86.58 86.16 86.24 86.42

B+8-gram 87.93 87.91 87.96 87.78 86.57∗∗ 86.45 86.16 86.43

B+9-gram 88.19∗ 87.89 87.89 87.86 86.46 86.42 86.44 86.59∗∗∗

Scores in bold in Table 5.1 indicate that the value is significantly2 better than

the baseline value. When the results on the development set are compared with the

F1 score of 87.79 of the baseline full sentence parser from Chapter 3, we observe slight

improvement at certain configurations. More specifically, the jointly trained full parser

outperforms the baseline parser when it is trained alongside an n-gram parser that

uses a small training set, like 5000 instances. However, observed improvements on the

development and test set do not happen with the same configuration. Based on the

results taken on the development set, we can conclude that the observed improvement

on the jointly trained full parser dissipates as the n-gram models use larger training

sets. In case of the test set, there is no such established pattern.

When evaluating and comparing the jointly trained full parser with the baseline

at their peak performances, we can also examine how fast or slow the jointly trained

2The superscript * adjacent to the F1 scores indicates that its significance is p<0.01. In case of
the ** and ***, it is p<0.005 and p<0.001, respectively.

54

full parser reaches its peak compared to the baseline parser. Considering the fact that

till iteration 10, the baseline parser achieves an F1 score of 87.52 at most and the results

in Table 5.1 are taken with 10 iterations, it can be said that the jointly trained full

parser reaches its best performance faster compared to the baseline parser.

Table 5.2. Statistics on the top performing jointly trained parsers along with the

baseline parser.

Model(s) Precision Recall F1 Score Exact Avg CB 0 CB

B+9G:1K 88.15 88.22 88.19 54.22 0.28 84.34

B+6G:5K 87.93 88.31 88.12 54.53 0.30 83.54

B+4G:5K 87.64 88.33 87.99 54.17 0.30 83.32

Baseline (B) 87.49 88.09 87.79 53.33 0.30 83.10

Table 5.2, which compares the top performing jointly trained full parsers with

respect to the baseline parser, reveals another difference. The increase in the precision

measure is higher than the increase in the recall measure. The interpretation of this

finding is that joint learning helps the parser slightly more about preventing mistakes

than teaching new things.

5.4.1. Accuracy Analysis on Constituents

In order to better analyze how the jointly trained full parser is affected by the

accompanying n-gram model, we also evaluate the performance of the parser on the

most common constituents. The same analysis is also done for the baseline parser in

Chapter 3 and each n-gram parser in Chapter 4. Thanks to those analysis, we could

compare and see more clearly what changes after the joint learning process.

Table 5.3 shows the averaged F1 scores for the most common constituents ob-

tained by the jointly trained full parser on the development set for each different

n-gram model. We choose the ones that are trained with 5000 instances in order to

make them more comparable with each other and, also, most of them are the best

55

performing ones.

Table 5.3. F1 scores on the most common constituents for each n-gram model from

the development set.

Model(s) NP VP PP S SBAR ADVP ADJP QP

B+3-gram 88.91 89.87 89.39 90.20 80.09 80.05 64.51 92.44

B+4-gram 88.82 90.30 89.43 90.26 81.00 79.51 61.65 92.14

B+5-gram 89.10 90.21 89.23 90.22 79.44 79.56 61.23 92.68

B+6-gram 89.19 90.15 89.30 90.26 80.55 79.75 63.18 93.07

B+7-gram 89.04 90.19 89.15 90.35 80.73 79.31 62.93 93.03

B+8-gram 88.96 90.17 88.90 90.27 80.91 79.26 61.11 92.48

B+9-gram 88.86 90.14 89.06 90.12 79.45 79.07 62.38 92.74

Baseline (B) 88.77 89.81 88.79 90.91 80.56 79.42 59.31 94.21

The results shown in Table 5.3 indicate couple of interesting reasons behind the

slight performance improvement of the jointly trained full parser. The first one is the

slight improvement on noun phrases (NPs) as the n-grams are getting bigger, which

is especially visible with the highest performing configuration among them, that is

the 6-gram model. Like NPs, prepositional (PPs) and verb (VPs) phrases are also

better processed with almost all n-gram models. However, the biggest improvement is

seen with the adjective phrases (ADJPs), especially with the smaller n-grams. Even

though the percentage of ADJPs is low compared to the others like NPs and PPs,

this improvement is worth mentioning especially given the fact that the same analysis

on the stand-alone n-gram parsers reveals that they are not that good with ADJPs.

Another thing to notice is the degrading performance over the QPs, which is expected

given that we know how bad the n-gram parsers are with them. In case of SBAR, there

is no particular pattern that tells us when they are handled better than the baseline

does. Nevertheless, compared to the way that the jointly trained parser handles Ss,

they are relatively better processed.

56

5.4.2. Length- and Height-based Accuracy Analysis of Constituents

Our another analysis technique involves looking at the performance of the parser

on constituents with different length and at different heights. We perform the same

analysis for the full sentence parser in Chapter 3 and the n-gram parsers in Chapter 4.

Hence the analysis of the jointly trained full parser with respect to the same criteria

is expected to reveal more things about how n-gram models affect the full parser.

Obtained with the jointly trained full parsers, the averaged accuracies for each type of

constituent in terms of length and height are given in Tables 5.4 and 5.5, respectively.

Table 5.4. Length-based accuracy on constituents of jointly trained full parser.

Model(s) L=1 L=2-4 L=5-9 L=10-15

B+3-gram 85.57 89.34 85.27 93.26

B+4-gram 85.70 89.38 85.61 93.81

B+5-gram 85.05 89.43 85.02 92.87

B+6-gram 85.67 89.30 85.56 94.04

B+7-gram 85.32 89.41 85.45 93.51

B+8-gram 85.73 89.06 85.81 93.81

B+9-gram 85.68 89.27 85.50 93.74

Baseline (B) 85.0 89.5 85.2 93.2

The comparison of results with respect to the length of constituents reveals that

when the baseline parser is trained along with the n-gram parser, it almost always

performs better on all types of constituents, especially with the ones that span one

word only (L=1). They all struggle with the ones that cover 2-4 words (L=2-4). We

have no explanation for that, even though it is obvious that it cannot be direct effect

of an n-gram model. The parser jointly trained with the 6-gram parser obtains high

performance compared to the baseline in all cases , except for the one with L=2-4.

Especially, its performance on the longest constituents (L=10-15) especially stands

out. However, considering all these, there is no distinct pattern that indicates whether

using smaller and larger n-gram trees results in better or worse results.

57

Table 5.5. Height-based accuracy on constituents of the jointly trained full parser.

Model(s) H=2 H=3,4 H=5-9 H=10-15

B+3-gram 88.53 86.45 88.80 100.0

B+4-gram 88.50 86.75 89.23 100.0

B+5-gram 87.32 86.58 88.35 100.0

B+6-gram 88.46 86.94 88.99 100.0

B+7-gram 88.37 86.90 88.75 100.0

B+8-gram 88.38 86.62 89.26 100.0

B+9-gram 88.49 86.60 89.09 100.0

Baseline (B) 88.1 86.8 88.9 100.0

The second analysis is done based on at what height the constituent is located.

According to the averaged accuracies given in Table 5.5, the n-gram models help the

full parser do a slightly better job with the constituents that are located above the

preterminals (H=2). The same slight improvement, however, is not that much observ-

able for constituents located at higher locations in the parse tree. Nevertheless, the

jointly trained parser with the 6-gram parser achieves higher performance than the

baseline in all cases. The highest improvement is seen when H=2. It is also worth

mentioning the high performance with the 8- and 9-gram parsers when H=5-9.

5.5. Discussion

In this chapter, we take the full sentence parser from Chapter 3 and n-gram

parsers from Chapter 4 and put them into the Hierarhical Joint Learning (HJL) setup

of Finkel et al. [31]. By doing this, we hope that n-gram models help the jointly

trained full parser achieve better results than the original baseline full parser. In our

analysis, we observe slight improvement over the baseline scores. We also find out

that the new jointly trained full parser is better at processing noun phrases (NPs),

prepositional phrases (PPs), and especially adjective phrases (ADJPs). Based on more

detailed analysis over the constituents, we also observe that it performs better with

constituents that span one word and located over the preterminals. Looking into the

58

statistics more carefully also reveals that the jointly trained full sentence parser achieves

its best performance faster than the baseline parser, indicating yet another benefit of

this process.

Despite the slight improvement we get with the jointly trained parser, the fact

that we obtain the best results with the n-gram models that are trained on small sets

of instances, like 5f000, is discouraging. As discussed in Section 4.2, even though the

available size of training sets for n-gram models are considerably higher than the size

of the full sentence training set, not being able to use such large training set nullifies

that advantage.

As future work, there are number of things that can be done. For example, what

would happen when we use multiple n-gram parsers in this setup is the first question

that comes to mind. Moreover, considering that we have multiple models in this

setup and many ways to set their parameters, we may try large number of parameter

combinations to reach the best result that this setup can deliver.

59

6. SELF-TRAINING WITH N-GRAM TREES

In Chapters 3 and 4, we experiment with full sentence and n-gram parsing tasks,

respectively. In Chapter 5, we train both parsers together in a supervised setting in

order to boost the accuracy of the full sentence parser. In this chapter, we alter this

supervised setting by replacing a portion of the used training n-gram trees with the

ones extracted from the output of the full sentence parser. In other words, instead of

the common approach using the complete guested trees of the full sentence parser for

self-training, we use the n-gram trees extracted from those trees, which are expected to

be more accurate than the complete ones based on our initial assumption. In addition

using the Hierarchical Joint Learning Approach, we expect to transfer the distinct

expertise of the n-gram parser to the full sentence parser. This way, while self-training

the n-gram parser, we also indirectly self-train the full sentence parser, which we call

a jointly self-trained parser at the end.

6.1. Self-training Pipeline

To build the self-training pipeline, we extend the setup of the previous chapter by

making it a two stage process. First, we train n-gram and full models for N iterations.

Then, the system stops in order to parse the given sentences to generate new training

data for self-training of the n-gram parser in the setup. The number of parsed sentences

depends on how many n-gram trees are required as new additions to the training set

of the n-gram model. So far, other than n-gram trees, we did not consider full parse

trees as new training instances, however. As new n-gram training instances arrive, the

training set of the n-gram model increases, which affects the joint learning equations

for the base and top model parameters given in Section 5.1.1. This time n-gram models

start to have more influence on the full model as they have more data compared to the

beginning. After the n-gram training sets are expanded with guessed n-grams, training

continues for M more iterations. As in the previous chapter, at the end, we retain the

parameter values of the full parser and evaluate it on the development and test sets of

the Penn treebank.

60

6.2. Data

As we mirror the experiments from the previous chapter, we use the same data

sets for the full sentence and n-gram parsing tasks. For the self-training purpose,

we use sentences that are similar to the ones seen in the Penn treebank. Therefore,

we use Reuters RCV1 corpus which contains newswire articles from Reuters about

finance and economy. Previously done self-training studies used sentences from the

Wall Street Journal, which is also the source of the Penn Treebank. However at the

time of experiments, we didn’t have the access to this data. Nevertheless, in order to

make the sentences from RCV1 compatible with the format of the WSJ15 data set,

we perform tokenization and sentence splitting as well as further preprocessing which

discards any sentence that contains no more than one word that does not occur in the

training set of the Penn treebank. We allow one word to be unknown to keep the data

set still challenging for the parser. Then, we choose those sentences that have no less

than three words and no more than 15 words. The minimum size of a sentence is set

based on our smallest n-gram model, which is 3-gram model. Even though Reuters

RCV1 corpus contains about 810000 articles, the number of sentences extracted with

this process is irrelevant since our pipeline only uses a fraction of it to generate the

required self-training data.

6.3. Experiments

We set up the experiments so that we can assess the contribution of the self-

training data by comparing the results with the corresponding ones where all the used

n-gram trees for training are real. We copy each experiment from the previous chapter

but substitute a subset of the real n-gram trees with guessed ones extracted from the

output of the full sentence parser. For example, in the previous chapter, one set of

experiments use 2000 real n-gram trees for training the n-gram parser in the joint

learning setup. Here, instead of using 2000 real n-gram trees, we start with 1000 real

n-gram trees and add 1000 new ones later. The new n-gram trees are extracted from

the output of the full sentence parser, which is the one trained along with the n-gram

parser in joint learning setup. In case of the experiments with 5000 n-gram trees

61

from the previous chapter, we again start with 1000 real ones and add 4000 extracted

ones later on. We keep the seed n-gram training set small, which gets even smaller

as more extracted trees are used. In this way, we can evaluate the increasing size of

self-training data both with respect to the results from the stand alone full sentence

parser of Chapter 3, which achieves F1 score of 87.79, and the jointly trained parsers

from the previous chapter.

Table 6.1 shows results with different n-gram models and increasing size of self-

training data. Note that we copy development set results from Table 5.1, where we

train the n-gram parser with 2000, 5000 and 10000 n-gram trees. Other columns list

F1 scores when we use 1000 real n-gram trees and expand with 1000, 4000, and 9000

guessed n-gram trees respectively in course of the self-training process. In order to get

these results, we run the first stage for five iterations, where no self-training is present

in the system. We then pause and generate self-training data from the output of the

full sentence parser, which is also trained for five iterations in the same setup. After

generating the self-training data at once we continue training for 10 iterations, adding

up to 15 iterations in total. We also run each experiment with two randomly chosen

n-gram training sets and then take the averages.

Table 6.1. F1 scores of the jointly trained full parser with self-training n-gram models.

Models 2+0K 1+1K 5+0K 1+4K 10+0K 1+9K

B + 3-gram 87.88 87.79 87.97 88.12 87.91 87.80

B + 4-gram 87.89 87.72 87.99 87.70 87.70 87.57

B + 5-gram 87.79 87.78 88.00 87.73 87.72 76.55

B + 6-gram 88.12 87.72 88.12 87.81 87.66 74.39

B + 7-gram 88.05 87.79 88.05 87.84 87.72 87.15

B + 8-gram 88.13 87.98∗ 87.96 87.87 87.78 87.78

B + 9-gram 87.96 87.66 87.89 87.69 87.86 67.95

The score in bold in Table 6.1 indicates its significance3 over the baseline score.

3The superscript * adjacent to the F1 scores indicates that its significance is p<0.01. In case of
the ** and ***, it is p<0.005 and p<0.001, respectively.

62

Based on the results, it is evident that when we use guessed n-gram trees instead of

real ones, accuracy improvement of the jointly trained parser disappears. Compared

with the results from the previous chapter, in almost all cases except one, the jointly

self-trained parser performs similar or worse than not only the jointly trained parser

but also the baseline. In only two cases, where we use 1000 guessed 8-gram trees and

5000 3-gram trees, it achieves better than the baseline. And, surprisingly, the second

one is even better than the one when all n-gram trees are real. Even though we haven’t

been able to try various parameter settings for this setup, from these results, it can be

concluded that when we use the full sentence parser’s output to self-train the n-gram

parsers, it becomes a lot harder than just doing supervised joint learning.

6.3.1. Accuracy Analysis on Constituents

In order to better understand what went wrong with this setup, we further in-

vestigate how the jointly self-trained parser performs on each type of constituent and

compare the results with the performance of the baseline. The results from the configu-

ration where the full parser is trained with an n-gram parser that expands its training

set with 5000 guessed instances are given in Table 6.2. Compared to the ones ob-

tained with the jointly trained parser in Table 5.3, there is no particular pattern of

which type of n-grams achieve better or worse for particular constituents. Nevertheless,

when reading between the lines, there are couple of things to notice.

The very first thing to notice is that all parsers fail with S and ADVP constituents,

which is also the case with the supervised setup. However, in case of SBAR, the

numbers with 5- and 6-gram parsers are not consistent with the ones given in Table 5.3,

especially with the 5-gram parser which had the worst accuracies with SBAR in the

supervised setting. At this point, it has to be noted that within the time frame of this

thesis, we have been able to run each experiment only twice. Hence, we may need to

have more runs for each experiment to get smoother results.

When we look at the results of the jointly self-trained parser that is trained with

6-gram parser, which was the best performing setup from the previous chapter, it can

63

Table 6.2. F1 scores on the most common constituents for each n-gram model from

the development set.

Models NP VP PP S SBAR ADVP ADJP QP

B + 3-gram 89.23 90.40 89.29 90.43 80.30 79.17 60.90 94.12

B + 4-gram 88.95 89.61 89.05 89.87 79.57 78.34 60.45 94.96

B + 5-gram 88.86 89.99 88.51 90.36 81.28 77.60 58.95 93.28

B + 6-gram 89.05 90.04 88.97 89.65 81.24 78.52 59.69 94.12

B + 7-gram 89.17 90.11 89.75 89.68 78.87 78.03 58.67 92.88

B + 8-gram 88.98 90.24 88.94 89.98 79.85 79.33 60.21 93.28

B + 9-gram 88.84 89.99 89.65 89.69 75.18 77.94 60.00 94.12

Baseline (B) 88.77 89.81 88.79 90.91 80.56 79.42 59.31 94.21

be observed that it performs better than the baseline in case of noun (NP), verb (VP),

and prepositional (PP) phrases, as well as SBARs. However, its poor performance with

Ss might be the main reason why it cannot get significantly better F1 score than the

baseline. Recall from Table 4.4 that number of S constituents in the development set is

more than the number of PPs and close to the number of VPs. Hence, the performance

on S-type constituents is decisive.

6.3.2. Length- and Height-based Accuracy Analysis of Constituents

As in the case of previous chapters, we again analyze the constituency accuracy

based on their lengths and their heights in the parse tree. These two sets of results

obtained with the full parser which is trained with an n-gram parser that expands its

training set with 5000 guessed instances are given in Tables 6.3 and 6.4, respectively.

When we compare the length-based results of the jointly self-trained parsers with

the baseline one-by-one, we observe that this parser generally has more problems in

most of the cases. For example, when the parser is jointly trained with an n-gram parser

in a supervised setup, it performs better than the baseline in case of the constituents

that cover only one word (L=1). However, this observation doesn’t hold in general for

the jointly self-trained parser. For L=2-4, the results are consistent with the ones from

64

Table 6.3. Length-based accuracy on constituents of the jointly trained full parser.

Model(s) L=1 L=2-4 L=5-9 L=10-15

B + 3-gram 85.46 89.48 85.26 93.06

B + 4-gram 83.95 89.06 84.78 93.42

B + 5-gram 85.12 88.83 84.97 93.66

B + 6-gram 84.91 89.38 84.58 93.65

B + 7-gram 85.07 89.15 85.00 93.65

B + 8-gram 85.15 89.51 84.45 93.18

B + 9-gram 85.54 88.91 84.88 93.18

Baseline (B) 85.1 89.5 85.2 93.2

the previous chapter. In both cases, the resulting parser is worse than the baseline at

handling such constituents. Maybe the most distinguishable difference coming out of

using guessed n-gram trees instead of real ones is visible in case of mid-size constituents,

that is L=5-9. While the jointly trained parser from the previous chapter handles these

constituents better than the baseline, here it is the opposite in almost all cases.

Table 6.4. Height-based accuracy on constituents of the jointly trained full parser.

Model(s) H=2 H=3,4 H=5-9 H=10-15

B + 3-gram 88.49 86.58 88.77 100.0

B + 4-gram 87.84 86.30 88.06 100.0

B + 5-gram 87.84 86.55 88.51 100.0

B + 6-gram 88.10 86.68 88.38 100.0

B + 7-gram 88.10 86.68 88.49 100.0

B + 8-gram 88.31 86.63 88.15 100.0

B + 9-gram 88.03 86.82 88.04 100.0

Baseline (B) 88.1 86.8 88.9 100.0

The height-based analysis of the jointly self-trained parser on the most common

constituent types, is shown in Table 6.4. If we compare these results with the ones

obtained in the previous chapter, one thing stands out quickly. That is, for the con-

65

stituents that are just above the preterminal level (H=2), the supervised jointly trained

parser of the previous chapter performs better than the self-trained one of this chapter.

This is also true for H=5-9. Other than that, unlike the length-based results, where

we see some improvement over the baseline for certain constituents, here the results

are almost the same or worse than the ones obtained with the baseline parser.

6.4. Discussion

This chapter is the final step of the road to the self-trained discriminative con-

stituency parser. Instead of directly feeding the parser its own output, we first intro-

duced the concept of n-gram trees in Chapter 4 and build an n-gram parser. Then, we

train our full sentence parser with the n-gram parser together in a Hierarchical Joint

Learning setup described in Chapter 5. Finally, we altered the joint learning setup in

this chapter by feeding the n-gram parser with the output of the full sentence parser

instead of using real n-gram trees. However, the results obtained with the jointly

self-trained parser are not statistically significantly better than the baseline parser.

Our analysis shows that using guessed n-gram trees still helps the full sentence

parser achieve better performance than the baseline parser in certain cases, such as

when parsing noun, verb, and prepositional phrases. Like the supervised jointly trained

parser, in most of the cases, it handles the one-word constituents better than the

baseline. However, it is not as good as before in case of longer constituents. It is

possible that the quality of such constituents coming from the guessed parse trees is

not good, thus it affects the full sentence parser badly. Moreover, when we analyze the

constituent accuracy based on their located height in the parse tree, in almost all cases

the jointly self-trained parser achieves similar or worse results than the baseline parser.

This shows that when we use guessed n-gram trees, we loose he advantage of n-gram

parser teaching the full sentence parser how to do better with constituents located

above the preterminals. Also, in general, the guessed parse trees do not help the full

sentence parser in any specific way for parsing constituents based on their height.

In general our results show no improvement over the baseline. This might be due

66

to the fact that we haven’t been able to try all possible scenarios. Due to the joint

learning setup, there are many ways of setting the parameters in order to reach the best

result that this particular setup can deliver. We would also like to run experiments to

see the performance of the self-trained n-gram parser on its own, that is outside this

joint learning setup. Analysis of these experiments might give us more clues to make

the jointly self-trained parser better.

67

7. CONCLUSION

In the context of this thesis, initially we built a baseline full sentence parser, which

is a discriminative parser based on the Conditional Random Field approach. We follow

the work of Finkel et al. [12] in order to design and implement the experimental setup

of our baseline parser. We also give detailed analysis of results, such as how accurately

our baseline parser handles different types of constituents and what percentage of

labelling and identification errors are caused by which constituents. The purpose of

giving such detail is to prepare a test bed for the evaluation of new parsers introduced

in the upcoming chapters. Our analysis reveals that the baseline parser fails most with

noun phrases. In addition it is also not very good at identifying constituents spanning

only one word.

After establishing our baseline, we introduce the concept of n-gram parsing in

Chapter 4, which is essentially the same task as full sentence parsing, but performs

on n consecutive words rather than all the words of a sentence. We conduct the same

analysis on n-gram parsing and find out that n-gram parsing is difficult task due to

absent surrounding context and the incomplete constituents that are generated by the

n-gram extraction process. That is why the n-gram parsers perform slightly worse than

the baseline in most of our evaluations. Nevertheless, we see that the n-gram parsers

are generally better than the baseline parser when it comes to processing noun and

prepositional phrases.

As we build the baseline and n-gram parsers, we start training them together in

Chapter 5 within the setup of the Hierarchical Joint Learning (HJL) approach intro-

duced by Finkel et al. [31]. Our analysis indicates that the jointly trained full parser

slightly outperforms the baseline parser with the help of the accompanying n-gram

model in the joint learning process. We observe that the new jointly trained full parser

becomes better at handling noun and prepositional phrases as n-grams are getting

bigger. This shows that the HJL approach is successful at transferring the ability of

the n-gram parsers onto the baseline full parser, since the stand-alone n-gram parsers

68

perform better than the baseline on such phrases.

In the last chapter, we take the HJL experimental setup of Chapter 5 and replace

the n-gram training instances with guessed n-gram trees extracted from the output

of the baseline full parser. While we perform supervised learning in Chapter 5, we

switch to unsupervised learning and our parser starts to self-train itself with its own

output. However, the full parser does not directly do self-training on its own, but the

accompanying n-gram parser in the HJL setup does that. Hence, in a sense, the whole

HJL setup can be considered as doing self-training within itself because every model in

the setup is expected to get benefit from the new generated training data. Our results

show that the resulting jointly self-trained parser performs similarly to the baseline

parser.

7.1. Future Work

Within the time frame of this thesis, we implemented a discriminative con-

stituency parser from scratch and adopted that for n-gram parsing. Then we set up

the Hierarchical Joint Learning environment and then changed it to do self-training. In

fact, we explored only a small portion of the parameter combinations that give the best

results for each experiment type. Hence, each chapter of this thesis requires further

optimization, starting with the baseline.

One area for optimization is to figure out ways to assess the quality and usefulness

of each parameter and reduce the size of the parameter space. Currently our baseline

parser uses more than 600000 features and their optimization takes a lot of time.

Considering that this is just for the sentences that have no more than 15 words, it is

quite clear that we need more scalable design for our discriminative parser. Other than

designing better feature templates, we may look for more adaptive feature selection

mechanisms as well as making the training phase faster by iterating less.

Related to picking the best features, we may also represent the parameters as

nodes of a network and employ social network analysis techniques to figure out which

69

parameters “interact” with each other most. We may use the observed relations for

filtering the features or for creating more representative feature definitions.

To improve n-gram parsing, we should definitely add new types of features that

differentiate n-gram parsing from the conventional full sentence parsing. One possible

improvement is using more contextual information in the features. We may use the

deep analysis of the full sentence and n-gram parsers and design features that improve

any observed deficiency. We can also make n-gram parsers more scalable so that we can

use all the training set we have by using computationally reasonable time and memory.

Another thing to improve is to make more detailed analysis of the results and figure

out where n-gram parsing experiences the most ambiguity.

In case of the improvement of the joint learning setup, we can do deep analysis

of the shared features and investigate which of them cause better or worse results. It

is possible that some may degrade the performance while others are more suitable for

being used as shared feature. Another thing to improve is to use more n-gram trees

for better results. Currently the jointly trained parser achieves better results than the

baseline when the n-gram parser uses 1000 or 5000 n-gram trees in that joint learning

setup. However, this is just a fraction of the training sets of the n-gram trees. This is

also the case for self-training setup. For both cases, we need to investigate what makes

us use such small amount of training data and how to improve it. Apart from these

new studies, we can also try using more than one n-gram parser in the joint learning

setup. Different n-gram models may help the full sentence parser in different ways and

improve its accuracy more.

For the last chapter in our thesis, we just scratched the surface. There are a

lot of things left for future research. The first thing that comes to mind is to look

at how the n-gram parsers self-train on their own as a stand-alone task and how to

improve their performance. We also haven’t been able to explore all possible parameter

combinations to get the best performance this setup can deliver, which is again left

as a future work. Apart from these, we would also like to make self-training a more

continuous process rather than expanding the training set at once and doing a couple

70

of more iterations on top of that. It might be possible to use new training instances to

jitter the parameter values to prevent over-fitting as we do more and more iterations.

In other words, we would like to investigate such case where we run our parser for large

number of iterations without experiencing any over-fitting issue.

In addition to all of these improvements to the existing system, we also consider

other possibilities like dividing long sentences into small n-grams and then parsing

them with n-gram parser(s) before combining the results to get the parse tree of the

long sentence given in the first place. This can be seen as extension of the n-gram

parsing concept.

So, this thesis hopefully pave the way for many research opportunities that make

the self-trained discriminative constituency parser the state-of-the-art parser in the

syntactic parsing literature.

71

REFERENCES

1. Chomsky, N., Syntactic Structures , Mouton de Gruyter, Berlin, 1957.

2. Collins, M., “Three Generative, Lexicalised Models for Statistical Parsing”, Pro-

ceedings of the 35th Meeting of the Association for Computational Linguistics

(ACL), pp. 16–23, 1997.

3. Collins, M., Head-driven Statistical Models for Natural Language Parsing , Ph.D.

Thesis, University of Pennsylvania, 1999.

4. McDonald, R., K. Crammer and F. Pereira, “Online Large-margin Training of

Dependency Parsers”, Proceedings of the Association for Computational Linguistics

(ACL), pp. 91–98, 2005.

5. Marcus, M., B. Santorini and M. A. MarcinKiewicz, “Building a Large Annotated

Corpus of English: The Penn Treebank”, Computational Linguistics , Vol. 19, No. 2,

pp. 313–330, 1993.

6. Charniak, E., “Statistical Parsing with a Context-free Grammar and Word Statis-

tics”, Proceedings of The Fourteenth National Conference on Artificial Intelligence

(AAAI), pp. 598–603, 1997.

7. Ratnaparkhi, A., “Learning to Parse Natural Language with Maximum Entropy

Models”, Machine Learning , Vol. 34, pp. 151–175, 1999.

8. Charniak, E., “A Maximum-Entropy-Inspired Parser”, Proceedings of the North

American Association of Computational Linguistics (NAACL), 2000.

9. Collins, M., “Discriminative Reranking for Natural Language Parsing”, Proceedings

of the Seventeenth International Conference on Machine Learning (ICML), pp.

175–182, 2000.

72

10. Charniak, E. and M. Johnson, “Coarse-to-fine N-best Parsing and MaxEnt Dis-

criminative Reranking”, Proceedings of the 43rd Annual Meeting on Association

for Computational Linguistics (ACL), pp. 173–180, 2005.

11. McClosky, D., E. Charniak and M. Johnson, “Effective Self-training for Parsing”,

Proceedings of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies (ACL-HLT), 2006.

12. Finkel, J. R., A. Kleeman and C. D. Manning, “Efficient, Feature-based Condi-

tional Random Field Parsing”, Proceedings of the Association for Computational

Linguistics: Human Language Technologies (ACL-HLT), 2008.

13. Kasami, T., “An Efficient Recognition and Syntax-analysis Algorithm for Context-

free Languages”, Technical Report, Air Force Cambridge Research Lab, 1965.

14. Younger, D. H., “Recognition and Parsing of Context-free Languages in Time n3”,

Information and Control , Vol. 10, No. 2, pp. 189–208, 1967.

15. Cocke, J. and J. T. Schwartz, “Programming Languages and Their Compilers:

Preliminary Notes”, Technical Report, Courant Institute of Mathematical Sciences,

New York University , 1970.

16. Earley, J., “An Efficient Context-free Parsing Algorithm”, Communications of the

Association for Computational Linguistics (ACL), Vol. 13, No. 2, pp. 94–102, 1970.

17. Black, E., F. Jelinek, J. Lafferty, D. M. Magerman, R. Mercer and S. Roukos,

“Towards History-based Grammars: Using Richer Models for Probabilistic Pars-

ing”, Proceedings of the 31st Annual Meeting of the Association for Computational

Linguistics (ACL), 1993.

18. Jelinek, F., J. Lafferty, D. M. Magerman, R. L. Mercer, A. Ratnaparkhi and

S. Roukos, “Decision Tree Parsing using a Hidden Derivation Model”, Proceed-

ings of the Human Language Technology (HLT), 1994.

73

19. Magerman, D. M., “Statistical Decision-tree Models for Parsing”, Proceedings of

the 33rd Annual Meeting of the Association for Computational Linguistics (ACL),

1995.

20. Briscoe, T. and J. Carroll, “Generalized Probabilistic LR Parsing of Natural Lan-

guage (Corpora) with Unication-based Grammars”, Computational Linguistics ,

Vol. 19, No. 1, pp. 25–59, 1993.

21. Huang, L., “Forest Reranking: Discriminative Parsing with Non-local Features”,

Proceedings of Ninth International Workshop on Parsing Technology , pp. 53–64,

2005.

22. Zhang, H., M. Zhang, C. L. Tan and H. Li, “K-best Combination of Syntactic

Parsers”, Proceedings of the Empirical Methods on Natural Language Processing

(EMNLP), pp. 1552–1560, 2009.

23. Kaplan, R. M. and J. Bresnan, “Lexical-functional Grammar: A Formal System for

Grammatical Representation”, In J. Bresnan, editor, The Mental Representation

of Grammatical Relations , pp. 173–281, 1982.

24. Steedman, M. J., The Syntactic Process , MIT Press, Cambridge, Massachusetts,

2000.

25. Schabes, Y., “Stochastic Lexicalized Tree-adjoining Grammars”, Proceedings of

the International Conference on Computational Linguistics (ICCL), pp. 426–432,

1992.

26. Johnson, M., “PCFG Models of Linguistic Tree Representations”, Computational

Linguistics , Vol. 24, 1998.

27. Klein, D. and C. D. Manning, “Accurate Unlexicalized Parsing”, Proceedings of the

41st Annual Meeting on Association for Computational Linguistics (ACL), Vol. 1,

pp. 423–430, 2003.

74

28. Bod, R., R. Scha and K. Sima’an, “Data Oriented Parsing”, CSLI Publications,

Stanford University , 2003.

29. Joshi, A., L. Levy and M. Takahashi, “Tree Adjunct Grammars”, Journal of the

Computer and System Sciences , Vol. 10, No. 1, pp. 136–163, 1975.

30. III, H. D. and D. Marcu, “Domain Adaptation for Statistical Classifiers”, Journal

of Artificial Intelligence Research, 2006.

31. Finkel, J. R. and C. D. Manning, “Hierarchical Joint Learning: Improving Joint

Parsing and Named Entity Recognition with Non-Jointly Labeled Data”, Proceed-

ings of the Association for Computational Linguistics (ACL), 2010.

32. Klein, D. and C. D. Manning, “Corpus-based Induction of Syntactic Structure:

Models of Dependency and Constituency”, Proceedings of the 42th Annual Meeting

of the Association for Computational Linguistics (ACL), 2004.

33. Roark, B. and M. Bacchiani, “Supervised and Unsupervised PCFG Adapation to

Novel Domains”, Proceedings of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies (NAACL-HLT), pp.

205–212, 2003.

34. Steedman, M., S. Baker, J. Crim, S. Clark, J. Hockenmaier, R. Hwa, M. Osborne,

P. Ruhlen and A. Sarkar, “CLSP WS-02 Final Report: Semi-Supervised Training

for Statistical Parsing.”, Technical Report, Johns Hopkins University , 2003.

35. Reichart, R. and A. Rappoport, “Self-training for Enhancement and Domain Adap-

tation of Statistical Parsers Trained on Small Datasets”, Proceedings of the 45th

Annual Meeting of the Associations of Computational Linguistics (ACL), pp. 616–

623, 2007.

36. Rose, T., M. Stevenson and M. Whitehead, “The Reuters Corpus Volume 1 -

from Yesterday’s News to Tomorrow’s Language Resources”, Proceedings of the 3rd

75

International Conference on Language Resources and Evaluation (LREC), 2002.

37. Lafferty, J., A. McCallum and F. Pereira, “Conditional Random Fields: Proba-

bilistic Models for Segmenting and Labeling Sequence Data”, Proceedings of the

Eighteenth International Conference on Machine Learning (ICML), pp. 282–289,

2001.

38. Clark, A., “Combining Distributional and Morphological Information for Part-

of-Speech Induction”, Proceedings of the tenth Annual Meeting of the European

Association for Computational Linguistics (EACL), Vol. 1, pp. 59–66, 2003.

39. Abney, S., “Part-of-Speech Tagging and Partial Parsing”, Corpus-Based Methods

in Language and Speech Processing, Kluwer Academic Publishers , 1999.

40. Molina, A., F. Pla, L. Moreno and N. Prieto, “APOLN: A Partial Parser of Unre-

stricted Text”, Proceedings of the Spanish Symposium on Pattern Recognition and

Image Analysis (SNRFAI), 1999.

