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B.S., Computer Engineering, Bilkent University, 2010

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering
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Özgür for participating in my thesis jury, their criticism and valuable feedback.

I would like to offer my gratitude to the Scientific and Technological Research
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ABSTRACT

CROSS-POSE FACIAL EXPRESSION RECOGNITION

Automatic facial expression recognition is a popular research topic due to its

interesting applications in a wide variety of areas. The existing studies have achieved

high accuracies in various formulations of the same problem. One direction which is

not fully explored is multi-view facial expression recognition. Variations caused by

different poses impose extra burden on the task of recognizing expressions, which is

already a difficult problem due to large differences across subjects. In this thesis, we

present a method to recognize six prototypic facial expressions of an individual across

different pose angles. We use Partial Least Squares (PLS) to map the expressions from

different poses into a common subspace, in which correlation between them is max-

imized. Recently, PLS has been successfully used for pose invariant face recognition

problem. We show that, PLS can be effectively used for facial expression recognition

across poses by training on coupled expressions of the same identity from two differ-

ent poses. This way of training lets the learned bases model the differences between

expressions of different poses by excluding the effect of the identity. We first align the

faces and then extract block features around two eyes and the mouth on the aligned

image. We experiment with Gabor filters and direct intensity values for local face rep-

resentation. We demonstrate that two representations perform similarly in case frontal

is the input pose, but Gabor representation outperforms intensity representation for

other pose pairs. We also perform a detailed analysis of the parameters used in the

experiments to show their effects on the results and to find the optimal ones for the

expression recognition problem.
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ÖZET

FARKLI BAKIŞ AÇILARI ARASI YÜZ İFADESİ TANIMA

Yüz ifadelerinin otomatik olarak tanınması, geniş kullanım alanlarına bağlı

olarak oldukça populer bir araştırma konusudur. Var olan çalışmalar, bu problemin

farklı türlerinde oldukça yüksek başarı oranları elde ettiler. Bu problemin, üzerinde

daha az çalışılmış bir alanı da çoklu açılardan yüz ifadesi tanımadır. Farklı bakış

açıları, farklı kişilerden kaynaklanan değişikliklerden dolayı zaten zor olan ifade tanıma

problemini daha da zorlaştırır. Bu çalışmada, bir kişinin farklı bakış açılarından

altı temel yüz ifadesini tanımak için bir yöntem öneriyoruz. Farklı bakış açılarından

yüz ifadelerini, aralarındaki korelasyonun en yüksek olduğu ortak bir alt uzaya at-

mak için Kısmi En Az Kare Farkı yöntemini kullanıyoruz. Son zamanlarda, KEAKF

yöntemi, bakış açısından bağımsız yüz tanıma problemi için başarılı bir şekilde kul-

lanıldı. Eğitimde, bir insanın farklı açılardan yüz ifadeleri arasında bir ilişki kurulması

yoluyla, aynı yöntemin, yüz ifadesi tanıma problemi için de başarılı bir şekilde kul-

lanılabileceğini gösteriyoruz. Bu tür bir eğitim, kişisel farklardan bağımsız bir şekilde

bakış açısı farklarını modeller. Yüz imgelerini önce hizalama adımından geçiririz, daha

sonra hizalanmış yüzler üzerinde, gözler ve ağızdan yerel bloklar halinde öznitelikler

çıkarırız. Öznitelik olarak, Gabor öznitelikleri ve piksel değerlerini kullandık. Ön yüz

girdi bakış açısı olarak kullanıldığında, Gabor ve piksel değerlerinin yakın sonuçlar

ürettiğini, ama diğer bakıç açısı ikilileri için Gabor özniteliklerinin daha iyi sonuçlar

verdiğini deneylerimizde gösterdik. Ayrıca, kullanılan parametrelerin sonuçlar üzerindeki

etkisini göstermek ve en iyi değerlerini bulmak için, parametrelerin detaylı analizlerini

içeren deneyler yaptık.



vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
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1. INTRODUCTION

Automated analysis of facial expressions has been an active research topic in

computer vision over the last years. Facial expressions constitute an essential part of

non-verbal communication between human beings. Interpretation of these expressions

gives a great deal of information about the thoughts and emotional state of an individ-

ual. Automatic extraction of this information is possible with computer systems that

can analyze facial expressions.

Automatic facial expression analysis finds interesting applications in several ar-

eas. The best known application is the robots that can understand and even show facial

expressions in Human Computer Interaction (HCI) systems. There are also many po-

tential commercial applications such as intelligent customer services, call centers, game

and entertainment industries. Various research areas including psychology, psychiatry,

and behavioral sciences benefit from the findings of the automatic facial expression

analysis.

Due to these wide variety of uses, automatic analysis of facial expressions has

attracted great attention from researchers. Most of the facial expression recognition

systems attempt to recognize a set of prototypic emotional expressions, that is happi-

ness, surprise, anger, sadness, fear, and disgust. This practice follows from the studies

of Ekman and Friesen [1] and Ekman [2] that propose that basic emotions have corre-

sponding prototypic facial expressions. Other studies use Facial Action Coding System

(FACS) [3,4] for describing facial expressions by Action Units (AUs). Activity of facial

muscles or muscle groups and their intensities are measured and assigned to different

predetermined AU classes. These classes can be divided into upper and lower face ac-

tion units. Upper face AUs are related to eyes, their surrounding areas, and eyebrows;

while lower face AUs define deformations of mouth and cheeks.

Automatic recognition of expressions can be a very challenging task, since there

are many underlying factors that affect the appearance of facial expressions. One



2

factor is the presence of subject differences such as texture of the skin, hair style,

age, gender, and ethnicity. All these factors have a large influence on the appearance

of the face, and consequently, on facial expressions. In addition to the differences in

appearance, there might be differences in expressiveness; that is, individuals perform

expressions differently from each other. Expressiveness specifically refers to the the

degree of facial plasticity, morphology, frequency of intense expression, and overall

rate of expression [5]. These individual differences are an important aspect of identity

and characteristic facial actions may be used as a biometric property to improve the

accuracy of the facial recognition algorithms [6].

Another factor that makes automatic facial expression recognition a hard problem

is the presence of pose variations. The difficulty comes from the fact that the pose

change causes a non-linear transformation of the 2D face image. Moreover, some areas

of the face become self-occluded and some areas might have a very different appearance

from different viewpoints. Most of the existing studies focus on recognizing expressions

from frontal or nearly frontal view facial images. Different approaches that handle pose

variations are necessary for recognizing expressions from arbitrary viewpoints, since the

appearance of facial expressions significantly changes from one pose to another.

There are some other factors that are common to all computer vision problems

such as variations caused by illumination changes, scene complexity, image acquisition

and resolution, reliability of ground truth and databases. To sum up, facial expression

recognition has a large problem space with multiple dimensions. There might be sev-

eral problem formulations and different methodologies can be developed to solve these

problems.

1.1. Motivation

In this thesis, we focus on multi-view facial expression recognition. Expression

recognition systems have to deal with arbitrary viewpoints to be able to work under the

uncontrolled conditions like the real-word situations. Most of the existing multi-view

studies discretize the viewpoints into a set of intervals and use a separate model for
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each viewpoint. Each model functions as a recognizer for a particular pose angle and

needs representative data from that pose angle for its training.

The problem starts in the collection of the data. Most of the available datasets

for facial expression recognition are taken from frontal or near frontal views. Even

when we record expressions of people for data collection purposes, they naturally show

expressions from the frontal view. If we also want to recognize expressions from ar-

bitrary viewpoints, we need to collect more data. An exhaustive dataset, with all

expression-viewpoint combinations need to be collected from each individual, for train-

ing a pose-specific system. One way to go is using 3D models, which is a cumbersome

process.

Our motivation is developing a pose-independent expression recognition system

without the need for data from all viewpoints. For example, we have only frontal data of

each person displaying six prototypic expressions and we want to be able to recognize

expressions of that person from arbitrary viewpoints. This requires establishing a

relation between expressions of an individual from different viewpoints, and we realize

that by learning a mapping from one pose to another.

1.2. Literature Review

Facial expression recognition is a widely studied research topic in computer vision.

The existing studies have achieved high accuracies in various formulations of the same

problem. Extensive reviews of these approaches can be found in [5,7–9]. In this section,

we first review multi-view facial expression recognition methods in the literature and

then give examples of using Partial Least Squares in multi-view facial image analysis.

1.2.1. Multi-view Facial Expression Recognition

The pose change is a challenging problem in the research of facial expression

recognition. To overcome this problem, some multi-view approaches have been devel-

oped. Here, we present an overview of these studies on multi-view facial expression
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Table 1.1. Multi-view Facial Expression Recognition in the Literature.

Study Scheme Features Dim. Reduction Classification

[10] pose-specific 2D displacement vectors PCA, LDA, LPP QBN, Parzen, SVM, knn

[11] two-step and composite Hog, LBP, SIFT PCA, LDA, LPP NN

[12] two-step variants of LBP, LGBP - multi-class SVMs

[13] - SIFT PCA minimizing Bayes error

[14] - dense SIFT a new discriminant analysis RCM

[15] - SIFT - πSIFT

[16] two-step, AAMs SIFT, DCT F-score multi-class SVMs

[17] mapping coordinates of landmarks - LR, SVR, RVR, GPR

recognition. A summary of the methods reviewed are shown in Table 1.1.

In [10], Hu et al. train different classifiers for each pose to compare the per-

formance of non-frontal view classifiers with the frontal view ones. For representing

expression classes, they use geometric 2D displacement of facial feature points around

the mouth, eyes, and eyebrows between expression and neutral faces of a person at cor-

responding angles. After normalizing the features to zero mean and unit variance, they

train different classifiers and compare their results including Linear Bayes Normal clas-

sifier, Quadratic Bayes Normal classifier, Parzen classifier, Support Vector Machines

(SVM) with linear kernel, and k-nearest neighbor (k-NN) classifier. They also use Prin-

cipal Components Analysis (PCA), Linear Discriminant Analysis (LDA), and Locality

Preserving Projection (LPP) with k-NN. They obtain lower error rates for non-frontal

views. The authors conclude that the reason for non-frontal views to achieve better

results than the frontal view might be that frontal faces contain redundancy due to the

symmetry of the face, while faces rotated by around 45 degrees additionally contain

depth information.

In [11], they utilize two different classification schemes. The first one is a 2-step

cascade classification, which is first, a pose classifier, then pose specific expression clas-

sifiers are used and the second one is composite classification, which treats each pose-

emotion combination as a class. They compare different feature descriptors extracted

at ground-truth facial landmark points and dimensionality reduction techniques for

these schemes. They use Histogram of Oriented Gradients (HoG), Local Binary Pat-

terns (LBP), and Scale Invariant Feature Transform (SIFT) as feature descriptors.
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They first apply a feature selection method, and then perform classification by using

Nearest Neighbor classifier. They experiment with PCA, LDA, and LPP as feature

selection methods. LPP produces the lowest error rate with SIFT and LBP features.

Also, experiments based on a combination of SIFT+LPP, HoG+LPP and LBP+LPP

classifiers are performed, and these combinations produce the best results.

Similar to their first scheme, Moore and Bowden utilize a two-step classifica-

tion approach in [12]. They analyze different forms of LBP including uniform rota-

tion invariant LBP, rotation invariant LBP, uniform LBP obtained from the gradient

magnitude image, standard LBP, multi-scale LBP, and Local Gabor Binary Patterns

(LGBP).They use multi-class SVMs as pose specific classifiers. Their experiments show

that multi-scale LBP and LGBP perform the best and their combination improves re-

sults further.

In [13], Zheng et al. develop a unified Bayes theoretical framework by using SIFT

descriptors extracted from annotated landmarks as features. PCA is used to reduce

the dimensionality of the feature vector. They formulate the recognition problem by

minimizing an upper bound of the Bayes error. They use power iteration approach to

find optimal solutions.

In [14], the authors use dense SIFT descriptors, which were extracted on a grid

of patches on the face image. The covariance of the SIFT features is then used for

calculating the Region Covariance Matrix (RCM) to model the facial deformations.

They propose a new discriminant analysis theory to reduce dimensionality and preserve

the most discriminative information by minimizing an estimated multi-class Bayes error

derived under the Gaussian Mixture Models (GMM).

In [15], Soyel et al. study matching of SIFT features across different poses. They

present a scheme called affine transform based discriminative pose invariant SIFT to

reduce SIFT mismatches.

In [16], the authors first automatically extract facial landmark points by fitting a
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pose-specific Active Appearance Model (AAM) to the face image. They represent the

face by SIFT and Discrete Cosine Transform (DCT) extracted from the located facial

feature points. After the F-score feature selection method is applied, pose-specific

linear multi-class SVM classifiers are used for classification.

One study, which aims to establish a relationship between different poses is [17].

Rudovic et al. learn a mapping of facial landmarks, like mouth corner, from non-frontal

to frontal views, so that a frontal classifier can also be used for non-frontal views. They

compare a number of regression models for this mapping including Linear Regression

(LR), Support Vector Regression (SVR), Relevance Vector Regression (RVR), and

Gaussian Process Regression (GPR). The goal is to learn mapping functions to predict

locations of facial landmarks in frontal view faces given the locations in non-frontal

views.

1.2.2. PLS in Multi-view Facial Image Analysis

In face related problems, linear subspace methods such as PCA or LDA are

often applied. However, appearances of expressions in 2D highly vary from one pose

to another. In other words, pose variations separate the faces into several different

subspaces [18]. Then, problem of matching faces from two different poses requires

comparing two vectors from different subspaces, therefore such methods fail in case

of large pose variations. This motivated the studies on face recognition to seek to

find pose-independent latent spaces. We review the approach of these studies in this

section.

Prince et al. [19] propose a model called tied factor analysis to find a latent

identity space for each pair of poses. The model describes how the identity as an

underlying factor created the appearance changed by the pose. They build local models

for facial features and combine information from each model by using the naive Bayes

classifier for recognition.

Sharma et al. et al. use partial least squares (PLS) to project faces of an individ-
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ual from two different poses into a common linear subspace, in which they are highly

correlated. Recognition is then performed in this latent space by using the nearest

neighbor algorithm. They also apply this approach to other multi-modal face recog-

nition schemes such as sketch-photo recognition and variations in resolution. In [20],

same authors extend their approach to generalized multi-view analysis, where they

extend several feature extraction techniques such as PCA, LDA, LPP, Neighborhood

Preserving Embedding (NPE), and Marginal Fisher Analysis (MFA) into the multi-

view case.

Li et al. [21] propose that faces can be well represented by a linear subspace and

the coefficients of the linear combinations representing faces are pose invariant. They

employ the Ridge and Lasso regression methods to find these regression coefficients

and report improved results by using an alignment method and local Gabor features.

In [18], the same authors use partial least squares to find pose-independent feature

vectors for face recognition. Similarly, Fischer et al. perform a detailed analysis of

PLS for cross-pose face recognition by comparing the holistic and local representation

methods in [22].

1.3. Approach and Outline of the Thesis

In this thesis, we present a method to recognize six prototypic facial expressions

of an individual across different pose angles. We first align the faces and then extract

block features around two eyes and the mouth on the aligned image. We experiment

with Gabor filters and direct intensity values for local face representation. Then, we

use PLS to map the expressions from different poses into a common subspace, in which

correlation between them is maximized. We train PLS on coupled expressions of the

same identity from two different poses. This way of training lets the learned bases

model the differences between expressions of different poses by excluding the effect

of the identity. Feature vectors are projected into the latent space by using these

PLS bases as projection matrices. During testing, we compute distance between the

projected features of blocks for each present block pair and average the result over the

number of present local blocks. Then, classification is performed by using the nearest
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neighbor algorithm.

We first give a brief mathematical background for Latent Variable Methods in

Chapter 2. General formulation of regression analysis is described and a mathematical

baseline is constituted for PLS through the explanation of the Non-linear Iterative

Partial Least Squares (NIPALS) algorithm for PCA.

In Chapter 3, we present our approach and discuss each step in detail. We first

describe alignment and feature extraction methods. Then, we explain the NIPALS

algorithm for PLS and formulate the cross-pose facial expression recognition based on

this algorithm.

In Chapter 4, we first describe the dataset and experimental setup we used. Then,

we present experimental results for pose pairs and discuss the effect of parameters on

these results.
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2. MATHEMATICAL BACKGROUND FOR LATENT

VARIABLE METHODS

Latent Variable Methods (LVM) assume that observable data or relations between

data are generated from an underlying latent factor. LVMs model the mapping between

the observed and latent space by extracting value from data. Learned model can be

later used for analysis, prediction or generation purposes.

In this thesis, we use one such method, PLS to model the relations between

different poses of an expression. We assume that there is an underlying pose-invariant

representation for each expression and that representation creates the observed data,

which is the pose-varying facial expressions. We propose an approach that creates a

mapping from this idealized expression space to the observed data space. In expression

space, the representation for each expression does not vary with pose.

Classical problem of linking up two variables X and Y is called regression analysis

and there are a variety of methods developed for modeling and analyzing these variables

by estimating the relation between them. These methods aim to understand how y

varies as a function of x and ultimate goal is to be able to predict y from x.

PLS method is built on the classical regression methods. In this section, we

provide an initial insight for the basic statistics and regression methods, which are

essential to explain PLS method in the next section. Initial form of the Non-linear

Iterative Partial Least Squares (NIPALS) algorithm for the PLS method is described

here for Principal Components Analysis (PCA).

In this section, we follow the conventions in the PLS tutorial by Geladi and

Kowalski [23]. Here, we briefly describe the baseline of the regression methods from

the perspective of PLS methods. For more information, please refer to the original text

in [23].
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2.1. Statistical Concepts and Notations

Let x and y be (n×1) sample vectors 1 of random variables X and Y , respectively

and 1 be an(n× 1) vector of 1’s:

Mean is the long-run average value of random variable X. The sample mean of

x:

x̄ =
1

n
(x1 + x2 + ...+ xn) =

1

n
1Tx (2.1)

Centering a vector x means subtracting its mean: xcentered = x− 1x̄

Variance is the long-run average of squared deviation from mean. The sample

variance of x:

s2x =
1

n− 1
{(x1 − x̄)2 + (x2 − x̄)2 + ...+ (xn − x̄)2} (2.2)

= =
1

n− 1
||x− 1x̄||2 (2.3)

For a centered vector x, x̄ = 0 and s2x becomes:

s2x =
1

n− 1
||x||2 (2.4)

= =
1

n− 1
xTx (2.5)

Standard deviation is the square-root of variance. Sample standard deviation of

x:

sx =

√
1

n− 1
{(x1 − x̄)2 + (x2 − x̄)2 + ...+ (xn − x̄)2} (2.6)

1The terminology sample quantity here refers to the variation between the n samples for a given
variable, i.e. variation between the n values of a column.
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Scaling a centered vector x means dividing it by its standard deviation sx: xscaled = 1
sx
x

Covariance between two random variables is the long-run average of product of

deviations from means. The sample covariance between x and y:

vxy =
1

n− 1
{(x1 − x̄)(y1 − ȳ) + ...+ (xn − x̄)(yn − ȳ)} (2.7)

=
1

n− 1
(x− 1x̄)T (y − 1ȳ) (2.8)

For centered vectors x and y, vxy becomes:

vxy =
1

n− 1
xTy (2.9)

This also holds for matrices X and Y , that is covariance matrix V XY is proportional

to XTY .

Correlation between two random variables is simply their covariance scaled by

the standard deviations. The sample correlation between x and y:

rxy =
vxy
sxsy

(2.10)

The correlation is always between −1 and 1: −1 ≤ rxy ≤ 1. The two variables are

highly positively correlated if the correlation is near 1. The two variables are highly

negatively correlated if the correlation is near −1. A correlation of exactly |1| means

completely correlated variables and that the two random variables are exactly linearly

dependent.

Rank of a matrix is the maximum number of linearly independent columns (or

rows) of this matrix. It is a number expressing true underlying dimensionality of a

matrix [23].
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2.2. Least Squares (Simple Linear Regression)

Simple Linear Regression is the basic way of linking two variables x and y. Let

y be the response variable and x centered explanatory variable:

y = 1b0 + xb+ f (2.11)

where b is the slope and b0 is the intercept of regression line, and f is the noise term.

f refers to the unmodelled components of the linear model which can be caused from

measurement error or other random variation. y is often called as dependent variable

and x is called as independent variable, since y depends on x.

We want parameter estimates for b0 and b. The least squares estimators for this

model can be obtained by minimizing the sum of squared errors.

b̂0 = ȳ (2.12)

b̂ =
xTy

xTx
(2.13)

=
vxy
s2x

(2.14)

After inserting the value of b0 = ȳ:

y = 1ȳ + xb+ f (2.15)

y − 1ȳ = xb+ f (2.16)

Finally equation becomes y = xb+ f where both y and x are centered.
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2.3. Multiple Linear Regression (MLR)

Simple Linear Regression problem deals with single x and y variables. When

input is a vector or both input and output are vectors, a different modeling applies.

Multiple Linear Regression (MLR) is a classical calibration method which can be con-

sidered as the prototype for all other calibration methods. In MLR method, y is defined

as a constant plus a weighted sum of the explanatory variables:

yi = b0 + xi1b1 + xi2b2 + . . . + xikbk + fi (2.17)

for i = 1, . . . , n, where bj is the regression coefficient for the jth explanatory variable,

b0 is the intercept of regression line, n is the sample size, k is the length of x variable,

and fi is the noise term.

Consider X as a n× k matrix and regression coefficients b as a vector of k × 1,

then we can rewrite MLR as

y = 1b0 + Xb + f (2.18)

where y is n× 1 vector.

By minimizing the sum of squares of the errors, the least squares estimators for

this model is obtained.

b̂0 = ȳ (2.19)

b̂ = (XTX)−1XTy (2.20)

= V −1X V Xy (2.21)

Similar to Simple Linear Regression case, after inserting the value of b0, Equation



14

2.18 becomes

y = Xb + f (2.22)

where both y and X are centered.

2.4. Multivariate MLR

When both input and output are multivariate, that is Y is also a matrix of size

n×m, problem becomes multivariate MLR. In that case, above MLR model holds for

each column of Y , it can be written similar to y = Xb + f in centered form:

yl = Xbl + f l (2.23)

for l = 1, ...,m.

Let B be the matrix of regression coefficients of size k×m, F matrix of random

errors of size n×m, then equation for centered variables of multivariate MLR problem

can be written as Y = XB + F . Multivariate MLR is equivalent to performing MLR

on each column of Y separately.

The least squares estimators for this model is:

b̂0 = ȳ (2.24)

B̂ = (XTX)−1XTY (2.25)

= V −1X V XY (2.26)

B̂ is defined in terms of the variance of X and covariance between X and Y . This

solution does not take into account correlations between different y variables (V Y ).
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2.5. Principal Components Analysis (PCA)

PCA finds the best summary of data X with the fewest number of summary vari-

ables, called scores, T . There are a few ways of calculating the PCA model including

Eigenvalue Decomposition, Singular Value Decomposition (SVD), and Non-linear Iter-

ative Partial Least Squares (NIPALS) algorithm. Here, we only explain the NIPALS

algorithm to establish the relation with the PLS method.

2.5.1. From the Perspective of Loadings and Scores

PCA can be seen as a method of writing data matrix X of rank r as a sum of r

matrices of rank 1 [23]:

X = M 1 + M 2 + ...+ M r (2.27)

These rank 1 matrices can be written as products of two vectors: a score ti and

a loading pi:

X = t1p
T
1 + t2p

T
2 + ...+ trp

T
r (2.28)

X = TP T (2.29)

The principal component is the best-fit line for the data points as shown in Figure

2.1. Left side of the Figure 2.1 shows pi, which is a row vector and its elements p1

and p2 are direction cosines. They are projections of a unit vector along the principal

component on the axes. Right side of the Figure 2.1 shows the score vector ti as a

n×1 column vector, where n is the number of points. The elements of the score vector

correspond to the coordinates of the respective points on the principal component

direction.
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Figure 2.1. Illustration of the principal component, loadings, and scores for a simple

case of two variables.

2.5.2. NIPALS Algorithm for PCA

The Non-linear Iterative Partial Least Squares (NIPALS) algorithm iteratively

calculates scores T and loadings P such that X = TP T + F where F is the residual

[23]. It calculates t1 and p1 from the X matrix. Then, t1p
T
1 is subtracted from X

and the residual F 1 is calculated. This procedure is called the deflation and it removes

the part we can explain. Then, residual which is the part that remains unexplained, is

used to calculate t2 and p2:

F 1 = X − t1p
T
1

F 2 = F 1 − t2p
T
2 (2.30)

...

F i = F i− 1− tip
T
i

It can be shown that t1 and F 1 are orthogonal. Since t2 is initially picked from

F 1, it is also calculated as orthogonal to t1.

The NIPALS algorithm is as follows:

(i) Choose tj as any column of X
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(ii) Calculate pj by projecting columns of X onto tj: pj = XT tj/t
T
j tj

(iii) Normalize pj to length 1: pj = pj/||pj||

(iv) Calculate tj by projecting rows of X onto pj: tj = Xpj/p
T
j pj

(v) Compare tj with tj−1. If it is unchanged (or not changed significantly) stop, else

continue with step 2.

After a component is calculated, X in the algorithm is replaced by its residual

as in Equation 2.30.

To show how NIPALS describes the covariance in X, we can replace scalars tTj tj

and pTj pj by a general constant term C:

Cpj = XT tj (2.31)

Ctj = Xpj (2.32)

We can substitute Equation 2.32 into Equation 2.31:

Cpj = XTXpj (2.33)

This is the eigenvalue equation for XTX. Similarly, when we substitute 2.31 into 2.32,

we obtain eigenvalue equation for XXT .

NIPALS algorithm calculates one component at a time, therefore it is well-suited

for large datasets. Both Eigenvalue Decomposition and SVD calculate all components

at once, even when a smaller dimensionality is required. Therefore, all software pack-

ages use NIPALS to compute PCA. Other approaches that are used to compute PCA

cannot handle the missing data. It is possible to modify the NIPALS algorithm to

take missing data into account [24]. There are further disadvantages of Eigenvalue

Decomposition for large matrices such as difficult matrix operations and numerical

overflows. However, they are slightly more accurate than NIPALS since error is spread

over all components. Error in the NIPALS algorithm increases with more components.
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NIPALS algorithm converges, although it might be slow at some cases. Convergence

of the NIPALS algorithm is fast if the eigenvalues are well separated. Two close eigen-

values lead to very slow convergence, followed by a very fast convergence for the next

iteration.

2.5.3. Principal Components Regression (PCR)

The idea behind the PCR is that a data matrix X can be represented by its score

matrix T . T has a smaller dimensionality and it still retains important features of X.

Then MLR can be performed with T in place of X:

Y = TB + F (2.34)

where regression coefficient becomes B̂ = (T TT )−1T TY . It is considered as a better

representation, since T has the orthogonality property and therefore always invertible

unlike XTX.
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3. CROSS-POSE FACIAL EXPRESSION RECOGNITION

BASED ON PARTIAL LEAST SQUARES

In this section, we present the steps of the PLS approach for cross-pose facial

expression recognition. We first describe the alignment method we used. Then, we

describe Gabor wavelets in general and explain the details of the extraction of local

blocks from the aligned image. We describe the PLS method for two block case in

detail and explain the steps of the NIPALS algorithm. We continue with our problem

formulation by using the PLS method and finish with the details of the classification

step.

3.1. Alignment

Most previous works on both frontal and multi-view facial image analysis use

alignment methods to improve the performance. The alignment step transforms face

images into a common form so that their corresponding features can be correctly

matched in later steps. This is generally performed by using the manually specified

points for facial landmarks.

In case of only frontal faces, alignment is generally performed by using a reference

eye row and interocular distance. Face image can be aligned by an euclidean transform

using the provided or detected eye coordinates so that for all images the eyes are at

the same position based on the given eye row and interocular distance.

In case of different pose angles, an eye may not be visible due to the face pose.

This alignment method which is based on both eye coordinates cannot be applied,

therefore a different approach is necessary. [25] propose a pose-specific alignment which

uses manually specified target points for the facial landmarks in the aligned image.

[21] annotate occluded landmarks by estimating the position of the landmark. Both

approaches have some drawbacks. For pose-specific alignment, new points have to be
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specified by hand for different poses. In the second case, alignment depends on manual

annotation of invisible facial landmarks.

Similarly to [22], we utilize an alignment method which works for all pose angles,

and gives a consistent scale and rotation of the face. Parameters of the alignment are

illustrated in Fig.3.1.

Figure 3.1. Illustration of alignment parameters.

We first calculate the positions of the visible eyes, sl.eye and/or sr.eye, and the

mouth center smouth in the input image. Then, we compute a similarity transform,

T by specifying two point correspondences between the input image and the aligned

image:

The first point correspondence is always the mouth center. Let xcenter = (w−1)
2

be the horizontal center of the aligned image and φ be the pose angle. The positions

in the input and aligned image are computed as follows:

s1 = smouth t1 =

(
xcenter + dxmouth sin(φ)

ymouth

)
(3.1)

In the case that both eyes are visible, the point between the eyes is used for the

second correspondence:

s2 =
sl.eye + sr.eye

2
t2 =

(
xcenter
yeyes

)
(3.2)
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In the case that only one eye is visible, the visible eye sv.eye is used for the second

correspondence:

s2 = sv.eye t2 =

(
xcenter ± dxmouth cos(φ)

yeyes

)
(3.3)

The homogeneous transformation matrix, T is computed by solving the system

of linear equations given by the two point correspondences: ś1 = T t́1 and ś2 = T t́2,

where ú = (ux uy 1)T denotes the homogeneous coordinates of u, for u ∈ {s1, s2, t1, t2}.

3.2. Feature Extraction

In this thesis, we use a local face representation by either using direct intensity

values or Gabor wavelets as features. In facial image analysis, local face representa-

tions have shown better performance than holistic representations. Gabor wavelets

were inspired by 2D receptive field profiles of the mammalian cortical simple cells.

They capture the local structure corresponding to spatial frequency (scale), spatial

localization, and orientation selectivity, therefore, they can be successfully used in the

facial image analysis [26].

3.2.1. Gabor Features

Gabor wavelets have been extensively used for facial image analysis due to their

powerful representation capabilities and their biological relevance [26]. The conven-

tional Gabor wavelets (kernels, filters) can be defined as follows:

ψ(~x; ν, µ) =
k2ν,µ
σ2

e(−
k2
ν,µ||~x||2

2σ2 )[e(ikν,µ~x) − e(−
σ2

2
)] (3.4)
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where µ and ν define the orientation and scale of the Gabor kernels, and the wave

vector kν,µ is defined as follows:

kν,µ =
kmax
f ν

e
iπµ
8 (3.5)

where kmax is the maximum frequency and f is the spacing factor between kernels in

the frequency domain [26].

In this formulation, e(ikν,µ~x) is the oscillatory wave function, whose real part and

imaginary parts are the cosine and sine functions, respectively. ν controls the scale of

Gabor wavelet, which mainly determines the center of the Gabor filter in the frequency

domain; µ controls the orientation of the Gabor filters. In most cases, facial image

analysis studies use Gabor wavelets of five different scales ν ∈ {0, 1, 2, 3, 4} and eight

orientations µ ∈ {0, 1, .., 7} with the following parameters f =
√

2, kmax = π
2
, with

Gaussian size σ = 2π [26]. In our experiments, we seek to find the optimal values for

kmax and σ.

We perform full convolution of the Gabor wavelet with the aligned face image to

obtain the Gabor Magnitude Images (GMI) in different scales and orientations.

3.2.2. Extraction of Local Blocks

After obtaining the GMIs, we extract local blocks around facial landmarks similar

to [21] and [22] from each GMI. More specifically, we use local blocks around left eye,

right eye and mouth since these regions provide the most discriminative information for

facial expression recognition. In order to avoid border effects, we perform an additional

padding of 32 pixels to the GMI before the extraction of the local blocks.

We extract blocks of size wb × hb centered on the eye centers and the mouth

center by using the provided annotations of BU3DFE database. For frontal pose, local

blocks can be extracted directly. On the other hand, in non-frontal poses, some of the

directly extracted local blocks may include more and more of the background. This
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causes performance degradation because the background information does not help for

the recognition. In order to avoid background, we apply the following modifications

as in [22]: First, we discard the eye block unless it is clearly seen in the non-frontal

aligned face image. Secondly, we compute a horizontal offset ∆mouth as in [22] for the

mouth block. Then, we shift the mouth block horizontally and move it further into the

face to decrease the number of background pixels in the block. The horizontal offset is

computed as follows:

∆mouth = −fmouth wmouth sin(φ) (3.6)

where fmouth is the mouth coefficient, and φ is the pose angle of the face. Figure 4.3

shows some examples of the blocks extracted on aligned face images.

3.3. Partial Least Squares (PLS)

We use PLS for cross-pose facial expression recognition. PLS which is also an

acronym for ”Projection to Latent Scores” is a class of techniques for modeling relations

between blocks of observed variables by means of latent variables [27]. The term was

originated by the studies of Herman Wold in the 1970’s [28].

PLS has many variants. There are two modes of PLS, called A and B [27]. It

can also be applied to two or more data blocks. PLS2 and PLS1, a special case of

the first one, are variants of PLS, which are used as PLS regression methods in first

chemometrics and then many areas. Mode B of Wold’s algorithm [28] is also referred

as Canonical Correlation Analysis (CCA).

In this study, we use the general term PLS for two block Mode A PLS, which is a

special case of Wold’s algorithm [27]. PLS has been shown effective for a variety of cross-

modality recognition problems including face recognition under the pose variation. We

first give mathematical definition of PLS method and NIPALS algorithm to explain its

usage for expression recognition across pose.
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PLS models the relationship between the (n×N) input matrix X and (n×M)

output matrix Y where rows are sample observations and columns are variables. PLS

specifically models XTY that is covariance of X and Y by means of latent variables

[27]. Most important property of PLS is that it primarily models covariance between

X and Y rather than variance of X or Y variables. For a detailed proof through the

derivation of eigenvalue problems, please refer to [29], which develops the mathematical

and statistical structure of PLS.

By following the formulation in [30], centered and scaled X and Y are decom-

posed into the form:

X = TP T + E (3.7)

Y = UQT + F (3.8)

where T, U are n× p matrices of the p extracted score vectors (latent vectors), N × p

matrix P and M × p matrix Q are the matrices of loadings and n×N matrix E and

n×M matrix F are the matrices of residuals.

In PLS approach, input and output vectors are mapped into a common vector

space in such a way that covariance between projected input and output vectors is

maximized. Both X and Y variables are considered as indicators of p latent variables,

or scores, t and u, respectively. PLS models the cross-covariance by pairs of these

scores such that (t1,u1), ..., (tp,up). Sets {t1, ..., tp} and {u1, ...,up} are computed as

the best representative column spaces of X and Y for XTY .

3.3.1. NIPALS Algorithm for PLS

Non-linear iterative partial squares (NIPALS) algorithm is the classical way of

iteratively computing PLS basis vectors [30]. It maximizes the squares of covariance

between the score vectors t and u by finding weight (basis) vectors w and c such that:

[cov(t,u)]2 = [cov(Xw,Y c)]2 = max|r|=|s|=1[cov(Xr,Y s)]2 (3.9)
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where cov(t,u) = tTu/n denotes the sample covariance between score vectors t and

u.

It starts with random initialization of the output score vector u and iteratively

computes these steps until convergence:

(i) w = XTu/(uTu)

(ii) ||w|| = 1

(iii) t = Xw

(iv) c = Y T t/(tT t)

(v) ||c|| = 1

(vi) u = Y c

NIPALS algorithm for PLS can be considered as a two NIPALS algorithm for

PCA at the same time, one for X (left column) and one for Y (right column). The

point is that two are not completely separated relations. PLS does not just describe

the variance of a data block free from the other block. Its modeling of relation between

X and Y is improved by the exchange of scores. This way, each can get information

about the other.

As in PCA, PLS is an iterative process. After the extraction of score vectors

t and u, X and Y are deflated and residuals are calculated for the next iteration.

Loadings p and q are computed as coefficients of regressing X on t and Y on u:

p = XT t/(tT t) (3.10)

q = Y Tu/(uTu) (3.11)

Different forms of deflations define several variants of PLS [30]. In PLS Mode A,

which is originally designed by Herman Wold [28] to model the relations between two

blocks of data, X and Y are deflated in a symmetric way:

X = X − tpT (3.12)

Y = Y − uqT (3.13)
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According to [30], this approach is more appropriate for modeling existing re-

lations between sets of variables in contrast to prediction purposes. PLS regression

approaches PLS1 and PLS2 establish an asymmetric relationship between X and Y

by defining a linear relation between the score vectors t and u.

3.3.2. Projection to Latent Space

We will refer to representing X and Y by their corresponding score vectors t and

u as projecting them to the latent space, where their samples are highly correlated.

Weight vectors w and c that maximize the covariance of the latent scores are

computed by NIPALS algorithm and saved into the projection matrices W and C,

respectively. Then, test data can be projected into the latent space by using these

projections:

x̂ = W Tx (3.14)

ŷ = CTy (3.15)

After projection, facial expression recognition methods can be applied on pose-

independent latent vectors x̂ and ŷ.

3.3.3. Discussion of PLS method for Cross-pose Recognition Problem

We want to use PLS to compare two face images of the same 3D scene from

different viewpoints. PLS finds projections w and c that map two different data

blocks X and Y into a common subspace. In our case, X and Y represent different

viewpoints, that is difference that PLS needs to model is the pose changes.

Equation 3.9 shows that PLS will seek w and c that will produce highly correlated

projected data blocks. For PLS to be effective in recognition, there has to exist such

projections. It is possible to show that projections of two face images from different
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viewpoints onto a subspace in which they are highly correlated exist [25].

Let Ik and Jk be the corresponding features of face images with the same ex-

pression from two different poses. We assume that there is an idealized version of this

feature representing all characteristics of the feature, and call it Rk. Then, we can

write Rk as an underlying factor of Ik and Jk:

Ik = ARk (3.16)

Jk = BRk (3.17)

We want to know whether it is possible to find w and c that projects Ik and Jk

onto a space in which they are highly correlated, or equal as a simpler case:

wTIk = cTJk

wTARk = wTBRk

wTA = cTB (3.18)

LHS of Equation 3.18 is a linear combination of rows of A and RHS is a linear combina-

tion of the rows of B. This means that Equation 3.18 can only be satisfied if row spaces

of A and B intersect [25]. We need to find A and B that provides a correspondence

between features of two images.

For the general case, we suppose that A is an identity matrix and B is a permu-

tation matrix that changes the locations of features extracted. For some poses, there

are occlusions due to the pose angle, that is some locations are not visible for these

poses. In that case, Rk contains all possible values for the feature and A and B are

binary matrices, whose each row contains only one 1. A creates feature values in Ik

and B in Jk. It is simply representing one side of a 3D face with one face image and

other side with the other image. For a detailed proof, please refer to the related section

of [25].
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3.4. Cross-pose Facial Expression Recognition using PLS

Variations caused by different poses impose extra burden on the task of recogniz-

ing expressions, which is already a difficult problem due to the large differences across

subjects. In this study, we propose using PLS to learn a relationship between faces of

two different poses belonging to the same emotion and the same subject. The reason

for using faces of the same subject is to exclude variations caused by identity and to

reduce the problem to modeling of the variance in expressions caused by pose changes.

For each pose pair, we use PLS to compute a latent space for the existing blocks

in both poses. We use a custom GPU implementation of the NIPALS algorithm [30]

to compute the PLS bases. The input and output vectors are always centered by

subtracting mean and scaled by dividing by standard deviation before training. Test

data is transformed using the mean and standard deviation learned from training data.

3.4.1. Problem Formulation

In training, for a pose pair (pi, pj), we construct input X and output Y matrices,

where samples in X are from pose pi and samples in Y are from pose pj. Corre-

sponding samples are coupled by both identity and expression. We then perform PLS

to compute projections W and C that maximize the the covariance of score vectors.

Since training faces from two different poses are coupled by expression and identity,

covariance between different poses of an expression is maximized. In testing, learned

projections are used to estimate score vectors for new samples and then classification

methods for expression recognition can be applied on these pose-independent latent

vectors.

In faces with large pose angles, one of the eyes is not visible. This causes a

problem in case of pose pair, where one pose has a large negative pose angle and other

has a large positive angle. In one pose, only the right eye is visible and in the other

only the left eye, therefore eyes cannot be used at all. To solve this problem, we assume

that left and right eye are sufficiently symmetric and exploit this symmetry property
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of eyes as in [22]. We train a PLS latent space for the opposite eye blocks.

3.4.2. Classification

We use the Nearest Neighbor (NN) algorithm for classification. NN algorithm

compares a query image with target images in the database and assigns its label as the

label of the target image that has the closest distance to the query image. We compute

the distance between query and target face images in different poses by first extracting

the blocks for both images as explained in the previous sections. Then, for those pairs

of blocks that have trained PLS for the pose pair, we project the blocks into the latent

space and compute the distance between the latent vectors. The computed differences

for each block are averaged to yield the global difference.

The reason for using such a simple matching method is:

(i) Dimension of the input and output score vectors is the same and equal to the

number of extracted PLS bases. Therefore, latent representations of input and

output vectors lie in the same vector space.

(ii) PLS bases are learned based on a criterion that maximizes the covariance between

the score vectors. As stated in [25], it is safe to assume that input and output

latent scores are roughly embedded in a single linear manifold, since they are

highly correlated.

To compute the score or the distance, several distance metrics can be used. In

our experiments, we use L2-distance and Normalized Cross Correlation (NCC), which

is known as a suitable distance metric for comparing Gabor features. NCC is defined

as follows:

dncc(x,y) = 1− (x− µx) (y − µy)
(N − 1) σx σy

(3.19)

where x and y denote the query and the target latent vectors, respectively and N is

the length of x and y.
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4. EXPERIMENTS AND RESULTS

For the evaluation of the PLS approach for cross-pose facial expression recogni-

tion, extensive experiments were conducted. This section describes the data used for

experiments and the experimental setup. Then, results of expression recognition across

poses along with the effect of the parameters are presented.

4.1. Data

For the evaluation of the system, we use one of the most commonly used databases

for multi-view facial expression recognition, the Binghamton University 3D Facial Ex-

pression Database (BU-3DFE) [31].

BU-3DFE contains 3D models of 100 subjects (56 female and 44 male) with

texture and 83 annotated landmark points per model. Subjects in the database are

of different age, ranging from 18 to 70 years, and a wide variety of ethnicities/races,

including white, black, east-asian, middle-east-asian, hispanic-latino and others.

Figure 4.1. Example images and landmark points from BU-3DFE database. Shown

expressions from left to right are: neutral, anger, disgust, fear, happiness, sadness,

surprise.

Each subject shows 7 expressions, which are neutral, anger, disgust, fear, hap-

piness, sadness and surprise (Figure 4.1). All subjects display all expressions except

neutral at four different levels of intensity from low to high as shown in Figure 4.2.

Consequently, for each subject there are 25 3D models present, which results in an
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overall number of 2500 facial expression models.

Figure 4.2. Example subject showing different levels of intensity for happiness class.

For this study, 2D images of facial expressions, taken from different view angles,

are needed. Therefore, 3D models from the database are rendered together with the

texture using VTK (The Visualization Toolkit). The models are rotated at yaw angle

from −90 to +90 degrees in steps of 15 degrees. For every step, an image together

with the coordinates of the landmark points is saved, resulting in 13 images per face

model. After repeating this procedure for every model from the database, 13 poses

are available, each containing 2500 images and 2500 sets of landmark points, which

adds up to 32500 data elements (image + landmarks). The extracted images have a

resolution of 300× 300 pixels.

4.2. Experimental Setup

Data taken from the BU-3DFE database is divided into three sets of similar size,

two sets containing 33 subjects, one set containing 34 subjects. One set is used for

learning PLS bases, one for the optimization of parameters, and the last one for testing.

In our experiments, we use a single image for each expression, which belongs to the

highest intensity level (level 4). Later, we also experiment with other intensity levels

to show the effect of intensity level on the results.

Before moving to the general execution, we first provide a clarification of the

terms we use. A single execution of our experiments takes place between a pair of

poses. Most of the time, we refer to these poses as input pose and output pose by

following the convention in the NIPALS algorithm. Samples of the input matrix X are

from the input pose and samples of the output matrix Y are from the output pose.

By following the conventions of the face recognition studies, we can refer to the first
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pose as gallery pose and second pose as probe pose, since input samples correspond to

the gallery set and output samples to the probe set. Additionally, we sometimes refer

to different individuals in the dataset as subjects.

For each expression in the training and the test set, first, the alignment and fea-

ture extraction steps are performed. For each block, input and output matrices are

constituted as the corresponding expressions of a subject from the input and output

poses, respectively. Then, normalization parameters as mean and standard deviation

values are computed and saved for each feature from these matrices. After normaliza-

tion, PLS bases are learned by using the NIPALS algorithm for present blocks of each

pose pair in the training set.

During test, for corresponding pose pairs, samples from input and output poses

are first normalized by using the normalization parameters saved during the training,

and then projected into the latent space by using the learned PLS bases. For each

present block pair, the distance between projected features of blocks are calculated

and averaged over a number of present local blocks. Then, for each sample from the

first pose, classification is performed by using the nearest neighbor algorithm, which

is basically assigning its label as the label of the closest sample from the other pose.

Recognition accuracy is calculated as the percentage of correct matchings across poses.

4.3. Results

4.3.1. Baseline Results

Most of the multi-view expression recognition studies train pose-specific classifiers

and results are reported according to this scheme. It is natural to compare expressions

from the same pose instead of matching expressions across poses and expect pose-

specific classification to produce higher results. In order to show that it might not

always be the case and to create a starting point for our approach, we first present

results for each pose separately in Table 4.1.
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Table 4.1. Pose-specific recognition rates as a baseline.

feat type 90l 75l 60l 45l 30l 15l 0 15r 30r 45r 60r 75r 90r

gabor 45.6 47.8 56.9 53.5 52.6 55.6 50.9 53.0 53.0 55.6 51.3 49.1 40.4

intensity 40.4 44.3 49.5 50.8 50.0 47.4 46.1 50.0 51.3 52.2 50.9 48.3 41.7

[16] 72.2 74.1 74.5 75.2 76.7 77.8 77.2 76.5 77.7 75.4 74.0 72.9 71.5

First two rows are the results of applying the nearest neighbor algorithm on the

local blocks of Gabor and intensity features for each pose, separately. Non-frontal poses

with large pose angles have lower recognition rates as expected. It should be noted

that PLS has no part in these results in Table 4.1.

Recognition rates in the first two rows are low due to the simplicity of the classi-

fication method used. The nearest neighbor matching might be a good choice for com-

paring highly correlated feature vectors, however, it is not the case in here. Therefore,

we also include the results of [16] which is a successful pose-specific facial expression

recognition system.

4.3.2. Effects of Parameters

There are a number of factors that affect the recognition results in our exper-

iments. These factors can be organized as alignment parameters, feature extraction

details, number of PLS bases in the NIPALS algorithm, and the distance type used in

classification. We performed a series of experiments with changing parameter settings

to show the effects of these parameters.

In this section, we report results as the average of all pose pairs where input pose

is always the frontal pose.

4.3.2.1. Alignment Parameters. Alignment is a common step for all of the facial image

analysis problems. In our experiments, we used the optimal parameters reported in [22]

for the alignment step, since they produce the best results for the face recognition

problem. These are, w = 104, h = 128, yeyes = 42, ymouth = 106, deyes = 62, and

dxmouth = 20. Successful results for changing pose angles can be seen in Figure 4.3.
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Figure 4.3. Example aligned face images in different poses (first row) and extracted

local blocks used for Gabor feature extraction (second row). The pose angles change

with an increment of 15 degrees left to right, from -90 degrees to +90 degrees.

4.3.2.2. Effects of Feature Extraction Parameters. Parameters of the feature extrac-

tion step depend on the feature type used. These are block size, mouth offset parameter

for local blocks of intensity and Gabor features with additional Gabor specific param-

eters in case of Gabor features.

Figure 4.4. Visual representation of three different block sizes on two different

expression faces.

In case of local blocks, we used three different block sizes: 32× 32, 48× 48, and

64 × 64. For computational purposes, we downscaled the intensity blocks to 32 × 32

pixels and downscaled all Gabor responses to 7 × 7 pixels. This way, we reduced the

input size to 32× 32 = 1024 for intensity features and 7× 7× 8× 5 = 1960 for Gabor

features.

We visually compare three different block sizes on two different expression faces in
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Figure 4.4. Each row is the expression faces of a block size and each column corresponds

to a block size from the smallest to the largest block size. As can be seen from the

Figure 4.4, in case of the smallest block size, some areas related to the expression

are not covered by any of the blocks. Especially, mouth block is too small to include

curling up of the lips and wrinkles on the cheeks caused by the expression. In case of

the largest block size, some of the background are included in the blocks. Even more

background are included inside the blocks of faces from large pose angles.

Figure 4.5. Effects of different block sizes for intensity values and Gabor features with

changing number of PLS bases on the average recognition rate.

Figure 4.5 illustrates the effects of each block size and feature type on the recogni-

tion rates according to changing number of PLS bases. Local blocks of intensity values

and Gabor features produce similar results for two largest block sizes. As can be seen

from the Fig.4.5, block size of 32× 32 gives the lowest results for both feature types as

expected from the discussion above. For Gabor features, the highest recognition rates

are obtained by using the largest block size, 64× 64. On the other hand, block sizes of

64× 64 and 48× 48 result in similar recognition rates in case of intensity features, and

the highest result is obtained by using block size of 48× 48 at 30 bases. As discussed

above, blocks also cover some of the background together with the additional areas

on the face in case of the larges block size. Since we have a uniform background in

BU3DFE, Gabor features are not affected from that and produce the highest results

with the largest block size by benefiting from the extra areas covered. However, direct

intensity values of the background are zero, and this causes the largest block size to
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produce similar results with block size of 48× 48.

Figure 4.6. Visual representation of three different mouth offset parameters for

expression faces from different viewpoints.

The mouth offset parameter is used to change the point which corresponds to the

center of the mouth block position. It is calculated according to the pose angle and Fig

4.6 shows the necessity of changing the mouth block position, especially for the large

pose angles. First row of the Figure 4.6 shows the position of the mouth block without

using an offset parameter for a set of pose angles from 45 to 90, respectively. There are

more background pixels included as the pose angle get larger. Second row shows the

results with the optimal offset parameter found in our experiments. Results in the last

row are the examples of using a large mouth offset parameter. A large mouth offset

parameter shifts the mouth block more than necessary and some parts of the mouth

become invisible.

To show the effects of the mouth offset parameter on the recognition rates, we

experiment with a set of parameters: 0, 0.15, 0.35, 0.55, 0.75. As can be seen from Figure

4.7, location of the mouth has an important effect on recognition rates, especially for

large pose angles. The highest recognition rates for many of the pose angles are achieved

when the mouth offset parameter equals to 0.35. This value minimizes background

pixels inside the mouth block and still contains the outline of the mouth as shown in

the examples in Figure 4.6.
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Figure 4.7. Effects of the mouth offset parameter for all pose angles.

Gabor representation produces recognition rates which are close to simply using

intensity values. So far, we performed experiments by using the default values specified

in Section 3.2.1. We experimented with different parameters of Gabor wavelets to

improve Gabor representation. We specifically varied the values of kmax which is the

scaling factor and Gaussian window width, σ. kmax is a factor in the wave vector kν,µ

which generates the Gabor kernels by scaling and rotation. kmax is responsible for

the scaling part, and consequently is highly related to the size of the structures in the

image. σ finds a compensation between the representation of coarse and fine structures

in the image. Generally used default values of kmax and σ might not be the optimal

ones for facial expression recognition. We perform a grid search for these parameters

to find the optimal values of the parameters. As shown in Figure. 4.8, optimal values

are different from the default values. The best results are achieved by using kmax = π
0.5

and σ = 1.0π.

4.3.2.3. Effects of Number of PLS bases. To show the effect of the number of PLS

bases, we use a set of PLS bases from 10 to 80 in our experiments. Fig.4.5 and

Fig.4.9 show the influence of the number of bases in different experiments. From these

experiments, we realize that the optimal recognition performance is usually achieved

when 30 PLS bases are used.
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Figure 4.8. Effects of different Gabor parameters, kmax and σ.

4.3.2.4. Effects of the Distance Type. The results of two different distance types for

both local blocks of Gabor features and intensity values can be seen from Fig.4.9

with changing number of PLS bases. For both feature type, high recognition rates are

achieved starting from 30 bases. There is no significant advantage of using one distance

type over another.

Figure 4.9. Results of two different distance types for both local blocks of Gabor

features and intensity values with changing number of PLS bases.
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Table 4.2. Results for all input and output pose pairs by using intensity features.

g/p 90l 75l 60l 45l 30l 15l 0 15r 30r 45r 60r 75r 90r Avg.

90l - 97.7 91.8 75.4 65.6 58.0 50.8 52.1 51.7 50.8 54.6 53.8 51.4 62.8

75l 99.3 - 99.8 93.1 85.3 76.7 67.2 65.1 61.4 63.8 65.2 66.5 59.1 75.2

60l 94.9 99.1 - 98.1 93.8 88.0 80.7 74.3 71.0 70.1 72.9 69.7 62.5 81.2

45l 81.9 94.6 98.3 - 98.8 96.7 87.9 80.1 72.1 68.9 71.6 67.4 60.2 81.5

30l 75.1 89.0 95.6 99.7 - 98.9 95.8 88.3 77.7 72.2 74.5 66.9 57.1 82.5

15l 72.1 84.6 91.3 98.9 100 - 99.8 97.6 91.1 81.9 77.0 69.2 56.4 84.9

0 64.0 76.9 85.2 92.7 98.0 100.0 - 99.9 98.0 91.4 85.3 75.7 63.0 85.8

15r 58.0 70.8 77.0 80.9 89.4 97.4 99.8 - 100 98.3 91.8 82.8 67.1 84.4

30r 56.7 68.3 72.0 72.0 78.1 87.9 95.2 99.0 - 99.5 94.8 87.4 73.0 81.9

45r 61.0 68.4 73.5 72.2 73.3 80.2 87.7 97.0 99.5 - 97.9 94.1 81.1 82.1

60r 60.7 68.1 73.4 69.0 70.1 73.3 79.9 87.7 94.3 98 - 99.9 95.7 80.8

75r 56.7 64.5 64.5 61.3 59.0 61.9 67.4 74.2 81.6 91.3 99.7 - 99.6 73.4

90r 52.1 53.8 54.4 52.1 50.2 51.6 55.2 58.2 61.4 71.3 91.3 98.2 - 62.4

Avg. 69.3 77.9 81.4 80.4 80.1 80.8 80.6 81.1 79.9 79.7 81.3 77.6 68.8 78.4

4.3.3. Cross-pose Recognition Results

Inside a test set, there are 13 different poses as projections of a 3D model from 90

degree left to 90 degree right with 15 degree intervals. We relate an expression image of

a subject from one pose to another pose by using the PLS method. This relation shows

how well an expression from a viewpoint can be recognized by matching expressions

from another viewpoint, if we exclude the subject differences.

In this section, we evaluate our method by obtaining recognition rates for each

pose pair. Results for each pose pair by using the intensity values of local blocks as

features can be seen from Table 4.2 and Gabor features can be seen from Table 4.3.

These results show that expressions of a subject from different poses are projected

into a space in which they remain closer to each other than other expressions of the

subject despite the differences caused by the pose change. We also see that overall

performance of Gabor features only outperform intensity features significantly when

using non-frontal poses as gallery. Using local Gabor features, we achieve a correct

recognition rate of 86.6% when all pose pairs are considered, and 87.6% when only the

frontal gallery pose is considered.

It is clear from the results in Table 4.2 and 4.3 that pose pairs whose angles are

close to each other are likely to produce higher recognition rates. Therefore, table

elements are higher as they get close to the diagonal. Although tables are not exactly
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Table 4.3. Results for all input and output pose pairs by using Gabor features.

g/p 90l 75l 60l 45l 30l 15l 0 15r 30r 45r 60r 75r 90r Avg.

90l - 96.8 89.0 81.4 75.4 70.4 65.1 66.6 70.7 72.3 70.9 75.8 79.0 76.1

75l 97.8 - 98.7 95.0 90.1 83.0 73.2 75.9 78.3 81.6 84.3 85.4 76.5 84.9

60l 92.2 99.6 - 99.6 97.4 93.5 85.0 86.3 86.6 89.5 90.8 84.5 74.0 89.9

45l 84.2 95.6 99.5 - 99.9 97.8 91.5 90.4 91.9 92.7 86.5 80.8 72.5 90.2

30l 78.3 90.7 97.3 100 - 99.9 98.0 96.1 94.9 92.0 84.6 78.8 70.9 90.1

15l 73.0 84.5 93.7 99.1 99.9 - 99.8 98.9 97.1 92.1 84.6 78.2 69.8 89.2

0 69.7 78.7 87.2 94.2 99.1 99.9 - 99.9 98.4 94.6 85.6 76.5 68.1 87.6

15r 69.1 77.7 83.6 91.1 96.6 99.4 99.9 - 99.9 98.1 92.5 83.7 74.0 88.8

30r 69.2 77.7 84.6 90.7 94.0 95.1 97.8 100 - 99.9 97.9 89.7 79.8 89.7

45r 73.3 79.4 86.5 91.8 91.5 90.6 92.8 96.9 99.6 - 99.9 96.0 84.9 90.2

60r 73.8 84.4 91.5 89.2 85.6 85.0 84.8 91.2 97.3 99.8 - 99.7 93.6 89.6

75r 74.7 85.9 85.2 80.6 77.4 73.5 73.5 80.8 87.4 94.0 99.4 - 98.6 84.2

90r 79.6 76.3 73.3 71.0 69.2 65.8 64.5 66.8 74.6 79.3 90.5 98.4 - 75.7

Avg. 77.9 85.6 89.1 90.3 89.6 87.8 85.4 87.4 89.7 90.4 88.9 85.6 78.4 86.6

symmetric due to the stopping criterion in the NIPALS algorithm, recognition rates of

the symmetric pose pairs are close to each other as expected as a consequence of the

symmetric modeling of the input and output matrices in the algorithm. There is an

obvious decrease in the recognition rates when input and output poses have opposite

signed angles and at least one pose has a large angle (|φ| ≥ 60) that makes an eye

occluded and consequently unavailable for the comparisons. In that case, decision is

made by using the present eye block and mouth block. If both poses in the pose pair

have large pose angles, then present eye blocks are matched by using the symmetric

property of the left and right eyes as explained in Section 3.4.1. This prevents the

decrease in recognition rates of these pairs, which would be the result of using only the

mouth block for the classification.

4.3.4. Results for all Intensity Levels

There are four different intensity levels for each expression in BU3DFE as shown

in Figure 4.2. In this section, we repeat our experiments for each intensity level by

averaging the results of using frontal pose as the input pose and every other pose as

the output pose. Here we used Gabor features with the optimal parameters discussed

in Section 4.3.2.

According to Table 4.4, recognition rates are higher for higher intensity levels as
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Table 4.4. Results for all intensity levels by using Gabor features.

intensity 90l 75l 60l 45l 30l 15l 15r 30r 45r 60r 75r 90r

1 63.4 69.5 83.9 89.1 96.5 100 99.5 97.3 89.5 80.8 73.0 61.7

2 73.3 74.6 89.5 94.7 99.5 100 100 98.6 92.5 88.2 80.3 72.0

3 75.3 83.1 92.2 97.4 98.7 100 100 99.1 95.6 91.7 84.8 80.9

4 84.3 90.0 96.1 98.6 99.5 100 100 99.5 96.9 96.1 92.1 85.2

Table 4.5. Results for matching expressions of unknown subjects for all input and

output pose pairs by using Gabor features.
g/p 90l 75l 60l 45l 30l 15l 0 15r 30r 45r 60r 75r 90r Avg.

90l - 49.9 51.0 48.6 49.4 50.7 47.0 45.7 51.3 48.6 48.3 44.9 45.4 48.4

75l 51.3 - 55.1 52.5 55.7 51.9 51.0 51.6 52.5 51.9 51.2 49.1 47.1 51.7

60l 52.6 50.9 - 57.4 54.5 54.3 50.1 52.2 55.7 56.2 53.3 50.4 52.0 53.3

45l 51.7 55.8 55.7 - 54.9 54.8 53.3 53.9 54.1 56.1 57.0 49.6 49.6 53.8

30l 49.4 55.4 55.9 58.3 - 56.4 53.9 54.2 58.0 57.4 55.1 53.9 49.1 54.7

15l 50.4 47.7 53.2 53.9 54.6 - 53.9 53.5 54.1 52.6 55.1 47.1 46.5 51.8

0 46.2 49.2 52.7 54.4 52.7 52.7 - 53.9 53.8 53.73 51.7 47.9 45.9 51.2

15r 44.9 51.4 51.2 56.4 55.2 52.3 53.0 - 53.9 53.0 54.8 49.6 48.8 52.0

30r 49.6 53.0 59.3 59.0 58.8 57.4 55.4 55.4 - 57.8 55.4 52.6 45.9 54.9

45r 50.7 51.2 52.2 55.1 59.4 58.0 55.4 56.4 57.7 - 57.1 53.3 49.6 54.6

60r 52.0 52.8 56.1 57.7 58.1 56.5 53.8 54.5 56.8 55.7 - 54.6 49.0 54.8

75r 46.1 52.0 51.6 53.5 55.2 53.2 49.9 50.0 51.0 49.9 52.0 - 45.7 50.8

90r 42.9 47.7 47.0 47.8 47.7 48.7 48.0 48.4 46.1 46.8 49.3 46.8 - 47.2

Avg. 48.98 51.4 53.4 54.5 54.6 53.9 52.0 52.4 53.7 53.3 53.3 49.9 47.8 52.2

expected. Consequently, we show that it is harder to recognize expressions with low

intensity values across poses.

4.3.5. Results for Unknown Subjects

We also evaluate our method in terms of matching expressions of unknown sub-

jects across poses. In that case, gallery and probe are composed of expressions of

different subjects, that is gallery and probe are from different sets. Recognition rates

of all pose pairs for this setup are shown in Table 4.5. Average recognition rates in

Table 4.3 are much better compared to the average recognition rates in Table 4.5.
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5. CONCLUSION

In this thesis, we presented an approach to recognize an individual’s expressions

across different pose angles. Subject differences and pose variations are the two hardest

aspects of automatic facial expression recognition. Each subject might perform an

expression differently and pose changes cause significant changes on the appearance

of the face. We keep the effect of subject differences constant and model the changes

caused by the pose on the facial expression.

The proposed approach first aligns face images by using two point correspon-

dences between the input face image and the aligned face image. The success of

matching features extracted from two different faces requires them to refer to the

same areas on the face, therefore it highly depends on the alignment step. All faces

have the same eye row, mouth row, and eye distance thanks to the alignment we used.

The alignment works in all pose angles with a small set of parameters.

The second step is the feature extraction step. We extracted local blocks of

features around the visible eyes and mouth to represent faces. We experimented with

direct intensity values and Gabor wavelets as feature representations. We showed

that size and location of the extracted blocks affect the performance and parameters

might differ for different feature representations. We extracted blocks of three different

sizes and showed that a small block size might miss some information related to the

expression, while larger block sizes might cover some of the background besides the

larger area on the face. This extra information prevents the largest block size from

achieving the highest recognition rates in case of intensity features. This might also

cause a problem for the Gabor representation in case of non-uniform background. We

experimented with a set of different values for the mouth offset parameter to find the

parameter that gives the optimal position for the mouth block. We found that using

the mouth offset parameter is essential for a good performance, especially for large

pose angles. We also searched for the optimal parameters in the Gabor representation

and found out that default parameters used in other facial image analysis problems the
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literature do not achieve the best results in our case. The best results are achieved by

using kmax = π
0.5

and σ = 1.0π.

In our experiments, we showed that using local blocks of intensity values performs

almost as well as local blocks of Gabor features for the cases in which input pose is

the frontal pose. However, Gabor features outperform intensity features significantly

for other pose pairs. For all of the cases, results are comparable to the baseline results.

This shows that cross-pose recognition might be a good alternative for pose-specific

systems in multi-view facial expression recognition.

Throughout our experiments, we used a set of different number of PLS bases.

We found that even a small number of bases might show comparable performance with

large number of bases. During training, we couple face images by both identity and

expression. The only difference between the face images that we try to match is the

pose angle; therefore, even small bases are able to achieve a good performance. We

specifically learn bases that model the changes between two pose angles free from any

other difference during training.

In our experiments, we reported results for the highest intensity level only, but

we have also experimented with different intensity levels available in the dataset. With

these experiments, we showed that the PLS method is also good at matching expres-

sions of different poses with lower intensity levels. Still, the recognition rates are higher

for high intensity levels compared, as expected.

We lastly performed experiments by excluding identity information from the test

and matched expressions of different subjects to measure the success of the method

when the subject information is unavailable. Average recognition rates are lower in

that case compared to the previous case where subject information is used during

testing. This shows that results are significantly improved by the utilization of the

identity information. This is the result of the coupling scheme we used for learning the

PLS bases. In training, corresponding samples in input and output matrices are the

expressions of the same subject from two different poses. This kind of learning causes
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PLS bases to specifically model a subject’s expressions across poses. This shows that

the PLS method is very good at generalizing a subject’s expressions over different pose

angles. This might seem like a person-specific method, but it is not. Person-specific

methods train a separate model for each subject and use this model for testing samples

belonging to that subject. Here, we have only one PLS model that can classify any

subject’s expressions across poses with high recognition rates, as long as that subject’s

expressions are present in the gallery set.

Following that discussion, we list our future work as follows: First of the future

work is the improvement of the results for unknown subjects by using more powerful

representations such as SIFT features or using more appropriate formulations of the

PLS method to handle the case where expressions of the test subject from the input

pose are not available or subject information is not available. We might use state-of-the

art multi-view facial recognition algorithms to first recognize identity and then classify

its expression. Secondly, the current dataset is not sufficient for thoroughly testing

the capabilities of the proposed approach. Expressions are taken at the consecutive

time periods, therefore there is no change in the lightening or any other condition. We

believe that the proposed approach can handle some changes in the illumination or

small changes in the appearance of the expression face. Our next step is experimenting

with a more challenging dataset.



45

REFERENCES

1. Ekman, P. and W. Friesen, “Pictures of Facial Affect”, Consulting Psychologists ,

1976.

2. Ekman, P., “Facial Expression and Emotion”, American Psychologist , Vol. 48, pp.

384–392, 1993.

3. Ekman, P. and W. Friesen, “The Facial Action Coding System: A Technique for

the Measurement of Facial Movement”, Consulting Psychologists , 1978.

4. Ekman, P., W. Friesen and J. Hager, “The Facial Action Coding System”, Research

Nexus eBook , 2002.

5. De la Torre, F. and J. F. Cohn, Guide to Visual Analysis of Humans: Looking at

People, chap. Facial Expression Analysis, Springer, 2011.

6. Cohn, J., K. Schmidt, R. Gross and P. Ekman, “Individual Differences in Facial

Expression: Stability over Time, Relation to Self-reported Emotion, and Ability

to Inform Person Identification”, Proceedings of the International Conference on

Multimodal User Interfaces , 2002.

7. Tian, Y.-l., T. Kanade and J. F. Cohn, “Recognizing Action Units for Facial Ex-

pression Analysis”, IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, Vol. 23, pp. 97–115, 2001.

8. Bettadapura, V., “Face Expression Recognition and Analysis: The State of the

Art”, Computing Research Repository , Vol. 1203.6722, 2012.

9. Zhihong, Z., M. Pantic, G. Roisman and T. Huang, “A Survey of Affect Recognition

Methods: Audio, Visual, and Spontaneous Expressions”, IEEE Transactions on

Pattern Analysis and Machine Intelligence, Vol. 31, No. 1, pp. 39 –58, 2009.



46

10. Hu, Y., Z. Zeng, L. Yin, X. Wei, J. Tu and T. Huang, “A Study of Non-frontal-

view Facial Expressions Recognition”, 19th International Conference on Pattern

Recognition (ICPR 2008), pp. 1 –4, 2008.

11. Hu, Y., Z. Zeng, L. Yin, X. Wei and X. Zhou, “Multi-view facial expression recog-

nition”, Face and Gesture Recognition, pp. 1–6, IEEE, 2008.

12. Moore, S. and R. Bowden, “Local Binary Patterns for Multi-view Facial Expression

Recognition”, Computer Vision and Image Understanding , Vol. 115, No. 4, pp.

541–558, 2011.

13. Zheng, W., H. Tang, Z. Lin and T. S. Huang, “A Novel Approach to Expression

Recognition from Non-frontal Face Images”, 12th IEEE International Conference

on Computer Vision (ICCV 2009), ICCV, pp. 1901–1908, IEEE, 2009.

14. Zheng, W., H. Tang, Z. Lin and T. Huang, “Emotion Recognition from Arbitrary

View Facial Images”, The 11th European Conference on Computer Vision (ECCV

2010), pp. 490–503, Springer, 2010.

15. Soyel, H. and H. Demirel, “Improved SIFT Matching for Pose Robust Facial Ex-

pression Recognition”, International Conference on Automatic Face Gesture Recog-

nition and Workshops (FG 2011), pp. 585 –590, IEEE, 2011.

16. Hesse, N., T. Gehrig, H. Gao and H. K. Ekenel, “Multi-view Facial Expression

Recognition using Local Appearance Features”, 21st International Conference on

Pattern Recognition (ICPR 2012), IEEE, 2012.

17. Rudovic, O., I. Patras and M. Pantic, “Regression-based Multi-view Facial Expres-

sion Recognition”, 20th International Conference on Pattern Recognition (ICPR

2010), pp. 4121–4124, IEEE, 2010.

18. Li, A., S. Shan, X. Chen and W. Gao, “Cross-pose Face Recognition based on

Partial Least Squares”, Pattern Recognition Letters , Vol. 32, No. 15, pp. 1948 –



47

1955, 2011.

19. Prince, S. J., J. H. Elder, J. Warrell and F. M. Felisberti, “Tied Factor Analysis for

Face Recognition across Large Pose Differences”, IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. 30, pp. 970–984, 2008.

20. Jacobs, D. W., A. Kumar, H. Daume and A. Sharma, “Generalized Multiview

Analysis: A Discriminative Latent Space”, 2012 IEEE Conference on Computer

Vision and Pattern Recognition, pp. 2160–2167, 2012.

21. Li, A., S. Shan and W. Gao, “Coupled Bias-Variance Tradeoff for Cross-Pose Face

Recognition”, IEEE Transactions on Image Processing , Vol. 21, No. 1, pp. 305

–315, 2012.

22. Fischer, M., H. K. Ekenel and R. Stiefelhagen, “Analysis of Partial Least Squares

for Pose-Invariant Face Recognition”, IEEE Fifth International Conference on Bio-

metrics: Theory, Applications and Systems , 2012.

23. Geladi, P. and B. Kowalski, “Partial Least-Squares Regression: a Tutorial”, Anal.

Chim. Acta, Vol. 185, No. C, pp. 1–17, 1986.

24. Bro, R., “Multiway Calibration. Multilinear PLS”, Journal of Chemometrics ,

Vol. 10, pp. 47–61, 1996.

25. Sharma, A. and D. W. Jacobs, “Bypassing Synthesis: PLS for Face Recognition

with Pose, Low-resolution and Sketch”, Proceedings of the 2011 IEEE Conference

on Computer Vision and Pattern Recognition, CVPR ’11, pp. 593–600, IEEE,

Washington, DC, USA, 2011.

26. Chengjun, L. and H. Wechsler, “Gabor Feature based Classification using the En-

hanced Fisher Linear Discriminant Model for Face Recognition”, IEEE Transac-

tions on Image Processing , Vol. 11, No. 4, pp. 467 –476, 2002.

27. Wegelin, J. A. and T. Thanks, A Survey of Partial Least Squares (PLS) Meth-



48

ods, with Emphasis on the Two-Block Case, Tech. rep., Department of Statistics,

University of Washington, 2000.

28. Wold, H., International Perspectives on Mathematical and Statistical Modeling,

Quantitative Sociology., chap. Path Models Latent Variables: The NIPALS Ap-

proach, pp. 307–357, Academic Press, New York, 1975.
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