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ABSTRACT

PARALLEL IMPLEMENTATION OF A VQ-BASED
TEXT-INDEPENDENT SPEAKER IDENTIFICATION

Automatic user identification is an indispensable part of today’s computer based
applications. Passwords and keys are common solutions due to their ease of |
implementation and low cost, but these solutions also contain the risk of being forgotten,
stolen, or being used by unauthorized users, therefore security professionals are working
on biometric solutions that are based on human specific characteristics. Biometric solutions
include a great range from iris-scan to finger-scan, from DNA analySis to signature and
keystroke scan. Voice is a popular biometric as it can be easily collected and digitalized by

a microphone set or by a phone.

In this study a text—indepéndent speaker identification system is presented. Mel-
Frequency Cepstrum Coefficients are used in feature extraction, Linde-Buzo-Gray vector
quantization is used in modeling these features; and measuring the similarity of models is
achieved by using Euclidean distance metric. Comparing meaningful characteristics of
voice samples requires a significant amount of transformations and calculations; therefore
speaker recognition process results with large amount of memory usage and disk access.
To share this load to a cluster system instead of using a serial machine, a parallel text-
independent speaker identification system is implemeilted, and clear performance
improvements are observed. Our parallel speaker recognition system achieves a speed up
about 13.8 compared with its serial implementation in the case of using 16 processing

elements to identify a corpus of 100 speakers.



OZET

‘VE'CTOR NICELIKLENDIRMESINE DAYALI METIN BAGIMSIZ
SES TANIMA SISTEMININ PARALEL UYGULANMASI

Giiniimiizde otomatik kimlik tamima sistemleri bilgisayar tabanli uygulamalarin
vazgecilmez bir parcasim teskil étmektedir. Bu amagla iiretilen sifre ve anahtar gibi
coziimler diisiik | maliyetleri ve kolay uygulanabilirlikleri ile olduk¢a yaygin
kullamlmaktadir, ancak bu ¢éziimler unutulma, kaybedilmé ya da yetkisiz kisilerin eline
gecebilme riski tagimaktadirlar, bu nedenle kisiye &zel fiziksel karakteristiklerin
belirlenmesi ve kullamlmasmna dayali biometrik ¢oziimler iizerinde durulmaktadir.
Biometrik ¢oziimler iris taranmasindan, parmak izi incelenmesine, DNA analizinden, imza
ve yazl kontroliine kadar oldukga genis bir yelpazeye yayilmaktadir. Ses, bir mikrofon
veya telefon aracilify ile kolayhklé_saylsal veriye cevrilebilmesi nedeni ile oldukga popiiler

bir biometriktir.

Bu ¢alismada konusan kisinin soyledigi kelimelerden bagimsiz olarak kimligini
- testbit etmeyi hedefleyen bir sistem sunulmaktadir. Sesin kisiye 6zel karakteristiklerinin
belirlenmesinde Mel-Frekans Kepstrum sabitlen', bu karakteristiklerin modellenmesinde
Linde-Buzo-Gray vektér niceliklendirmesi, iki modelin benzerliginin degerlendirilmesinde
Euclidean mesafesi kullamlmigtir. Ses Orneklerinin = anlamh kérakteristikleriﬁin
karsilastirilmasi, ve benzer olanlanmn eslestirilmesi Onemli dlgiide donisiimler ve
karsilagtirmalar gerektirmektedir, bu nedenle oldukga fazla hafiza kullanimi ve disk erigimi
soz konusudur. Tek bir bilgisayar iizerinde olusan bu yiik, paralel ¢alisan bir bilgisayar
kiimesine dégltllarak daha hizh sonug iireten bir sistem olusturulmustur. 100 modelin 16
islemci ile parallelizme dayali eglestirilmesi aym methodu' kullanan seri uygulamaya gére

13.8 kat hizlanma saglamustir.
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1. INTRODUCTION

~ In the modern world, with the increased use of computers as vehicles of information
technology, protecting sensitive/personal data from unauthorized access becomes a main
concern for security professionals. As a result there is a growing need to authenticate and
identify individuals automatically. Various authentication methods - that -have been
discovered so far can be grouped in to three categories: something the user knows such as
passwords, pins, and maiden names; something the user has such as keys, smart cards or

tokens and who the user is which is based on biometrics.

Passwords traditionally have Been the first line of defense against unauthorized
access. As the need for security has increased, standards for passwords have become more
restlictive. Today, a “strong” password is often required where users must mix numbers,
and special characters to slow a potential hacker. Also system configurations such as
password length, expiration, lockout, preveriting reuse and timeout to properly enforce .
strong passwords makes it more difficult for users to remember passwords, leading to the
user posting them in plain text files, which is very insecure. Users traditionally choose
passwords that are easy to remember or that point to something in their everyday life;

therefore making the password easy to remember but also easy to hack.

The brute force password guessing is the easiest attack on a password. This method
keeps trying to guess a password until the correct password is guessed. Even the strongest
passwords can be broken if there is enough time spent trying to break it. Some other attack
methods are login spoofing, replay attacks, and by monitoring the traffic between
computers. Although it has lots of disadvantages, a password-based authentication is very

cheap thus causing it to be used widely.

Smart cards and tokens are other alternatives to password. They are not perfect but
better than passwords, so they can be considered as a link between traditional password
and biometric identification. Magnetic cards such as credit and ATM cards are one of the

common implementations of token technology that contains information about the holder



of the card. Tokens are also used in conjunction with the passwords and this increases the
security. Smart cards provide an additional element of security with use of one-time
passwords. There are three main smart token protocols that determine the level of security
provided by ‘the device, which are static password exchange, dynamic password generator
‘and the challenge response. With static password exchange protocol the user authenticates
to smart token, which in turn authenticates to computer. Static tokens work much like
memory tokens. The key to these devices is the PIN, which is entered by the user. In
dynamic password generator scheme a key is generated by a token at regular intervals. The
user can then enter the password into the computer, or if the token has an electronic
interface, the password is sent automatically to computer for authentication. Challenge-
response protocol is based on a computer that generates a random set of numbers, which

smart token uses to generate a response to computer that is used for authentication.

The main advantage of challenge-response and password generator schemes is one-
time passwords. This technology is also a combination of two authentication methods,
something the user knows and something user has. But, as with any technology, there are
some disadvantages. The main disadvanta;;e is the cost of token replacement and the cost
of readers for electronic interface tokens. There is also a fair amount of administration

involved in the use of smart token technologies.

Authentication methods that deal with something the user knows, or something the
user has, have some disadvantages that cause vulnerability, therefore biometrics-based
authentication is emerging as a reliable method that can overcome some of the limitations
of traditional automatic personal identification technologies. Automated biometrics deal
with physiological and/or behavioral characteristics. Some examples of biometrics used
commercially are finger-scan (optical, silicon, ultrasound, touch less), facial-scan (optical
and thermal), voice-scan, iris-scan, retina-scan, hand-scan, signature-scan, keystroke-scan,
and palm-scan. There is also biometrics with reduced commercial viability, due to their
high cost or implementation restrictions, such as DNA analysis, ear shape, odor (human
scent), vein-scan (in back of hand or beneath palm),'ﬁnge‘r geometry (shape and structure
of ﬁhger or fingers), nail bed identification (ridges in fingernails) and gait recognition

(manner of walking). Since there is rapid progress made in electronics and in Internet



commerce, along with the increased emphasis on security, there will be a growing need for

secure transaction processing using biometrics technology..

1.1. Motivation

The aim of this thesis is to present a voice identiﬁcatibn method that can be used for
biometric user authentication. Voice samples can be collected by a simple microphone
attached to a PC or by a phone, so voice identification is advantageous to many biometrics
that require high cost equipment to capture related characteristics. Voice is a very effortless
way of communication, so people who become restless using methods such as retina and

iris scanning will feel in comfort.

Biometrics can be used to authenticate a person’s claim to a certain identity or
establish a person’s identity from a large database. Verification contains large amounts of
comparisons between input samples and data sets, as a result, the cost of computations and
time required to do the comparisons are important concerns of implementation. An
authentication system should be able to respond (accept the user or reject the user) in a
reasonable amount of time. Growing data set sizes, which cannot fit even on the main
memory of best computer available, forces disk based algorithms to be used, therefore
increase the recognition time. Using a set of computers to do computations parallel to one
another will provide main memories of all processing elements instead a disk based
algorithm and will give better results compared with serial one machine applications. For

this reason a parallel implementation of speaker recognition is the main motivation of this

thesis.

1.2. Outline

In this thesis, we first present a general look at speaker recognition terms, methods,
and related studies. The implementation is based on a text independent speaker verification
system in which speech signals are modeled with mel-frequency cepstrum coefficients
(MFCC). To compare input speech signal with the data set, the Linde-Buzo-Gray (LBG)

vector quantization method is used, and Euclidean distance is selected for the calculation



of the match score. These methods, their alternatives, and related terms are detailed in
Chapter 2. In Chapter 3 parallelism and its benefits in speaker verification, and the
implementations are explained. Results of several experiments are discussed in Chapter 4.
Chapter 5 summarizes the work done and discusses the future work, which will improve

the performance of the system.



2. SPEAKER VERIFICATION

2.1. Speech Based Applications

Speech waves are sound pressure waves that can be represented as analog signals.
Analog signals must be sampled in order to obtain spectral content, to be modeled and
digitalized. Analysis is an important step in speech processing. In analysis, speech
waveform is examined to extract time varying parameters, and to model the speech wave.
‘Synthesis can be thought as an inverse ‘function of an analysis. In Synthesis, spee'ch wave
is reproduced using the predefined model. The main goal of analysis and synthesis is to

model the speech signal without losing any data.

Speech processing is a field with many applications that are based on analysis and
synthesis [1]:

® Speech Modification: The goal is to alter a speech signal in order to have some
desired property such as changing time-scale, pitch, and Spectral modifications.

. Speech Coding: The purpose is to reduce the amount ‘o’f data with out losing the
quality of speech. It can be accepted as voice compression.

» Speech Enhancement: The goal is to improve the quality of degraded speech by
reducing noise, removing unwanted convolutional channel distortion, and
background taiks. |

o Speech & Language Recognition: The goal is to convert a speech file to a text file.

o Speech Syntheszs firom text: The goal is to convert a text ﬁle to a speech file.

o Speaker Recogmtzon: Speaker Recognition is the use of a machine to verify a
person’s claimed identit.y from his/her voice. Speaker recognition is also a part of

biometrics that is based upon voice.

Figure 2.1 shows the relationship of speech processing applications, speaker

recognition, and voice biometrics. Some speaker recognition applications are voice dialing,



banking by telephone, telephone shopping, database access services, information services,

security control, voice mail, and remote access to computers.

Measurement of Acoustic Waveform

'

Waveform and Biometrics

Spectral Speech Production Models :
Presentations \
l . finger-scan,
Analysis & Synthesis facial-scan,
iris-scan,
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Coding [ Transformations (Applications)

v v

Enhancement Speech
Synthesis

signature-scan,
- keystroke-scan,

palm-scan,
DNA analysis

Modification”

‘Speech and Language Recognition

Figure 2.1. Speech processing

2.2. Speaker Recognition
Speéch is a complicated signal produced as a result of several transformations
occurring at semantic, linguistic, articulatory, and acoustic levels. Differences in these
transformétions appear as differences in acoustic properties' of the speech signal and these
differences produce speaker specific characteristics, which are used for recognition.
Speaker specific characteristics can be grouped as physical and learned. Learned habits of
speakers are speaking rate, prosodic effects and dialect. Physical differences in people that

affect their speech are [2]:



e Vocal tract shape: Vocal tract shape is an important and popular physical
distinguishing factor. While acoustic wave passes through the vocal tract, its
frequency content changes with resonances in the vocal tract. These resonances are
called formants, and their effects can be seen from the spectrum.

Vocal system is also an excitation source, which is also speaker dependent.

Excitation can"be characterized as whispering, frication, compression, vibration,

whispering and their combinations.

o Fundamental frequency: The frequency of oscillation, which depends on length,
tension, and, mass of the vocal folds is called fundamental frequency.

e Sub glottal ‘resonances: These resonances are related with the properties of the
trachea.

e Vital capacity: It is the maximum volume of air one can blow out after maximum
intake.

e Maximum Phonation time: Maximum duration a syllable can be sustained.

e Glottal airflow: The amount of air going through the vocal folds.

These speaker specific characteristics have a great potential for successful speaker
recognition, but there are also some error sources such as misspoken or misread phases,
extreme emotional states as stress or duress, time varying microphone placement, poor
room acoustics, and using different phones iﬁ different states and sickness. Aging may also
be a reason for changes in the vocal tract shape. Figure 2.2 is a representation of human

vocal system.

In speaker recognition two conditions concern input utterance. One condition is that
the utterance belongs to a customer (s), other is the opposite condition (n). Two decision
conditions also exist: S, the condition that utterance is accepted as being that of the
customer, and N the condition that the utterance is rejected. Table 2.1 gives the

combination of these conditions produces four conditional probabilities [3].
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Figure 2.2. Human vocal system [2]

Table 2.1. Four conditional probabilities in speaker verification [3]

Input utterance condition
Decision Conditioﬁ s (customer) n (impostor)
S(accept) P(S|s) P(S|n)
N(reject) P(N|s) P(N|n)

P (S | .s) is probability of correct accepténce;.P (S |n) is probability of false
acceptance (FA). P (N | s) is probability of false réjeCtion (FR) and P (N | n) is probability

“of correct rejection. Also, there is a relationship between decision criterion and two kinds

of errors. Position a in Figure 2.3 corresponds a strict decision criterion, and position b is a

lax decision criterion. In experimental tests, the threshold is usually set to a value of ¢ in

order to match up the two kinds of error rates.
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Figure 2.3. Decision criterion (threshold) [3]

Error rate

C

Speaker Recognition can be divided into two groups according to its purpose as
speaker identification and speaker verification. Also speaker recognition can be
categorized as text-independent, text-dependent, and text-prompted according to what the

speaker says as an input.

2.2.1. Automatic Speaker Identification ~

In speaker identification the goal is to recognize an unknown speaker from a set of N
known speakers. The system decides who the person is, or finds that the person is
unknown. There is no identity claim of the user, the system handles voice of user, and
compares it with values in its predefined data set, and then computes the similarity

between voices and reference models. The system returns a reference model that is most

similar to user.

Similarity

with

Reference

modefi#t ] .Identificati
% S— Extraction Maximum on result
. Similarity (speaker
NS
/ / - Similarity selection ID)

with

Reference

maodel#N

Figure 2.4. Speaker identification model
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There is usually a threshold value to prevent meaningless matches, if the dissimilarity

degree is greater than the threshold the user will be accepted as the unknown speaker.

2.2.2. Automatic Speaker Verification

In speaker verification there is a claim of the speaker. So a verification system
compares input speech with only claimed reference model. If similarity is above a
threshold value, the system authenticates user. If the similarity is below the threshold

value, the system rejects the user.

I’m speaker M

Decision-
Comparison
with

threshold

Verification
result
(Accept /
Reject)

Feature Similarity
%ﬁ:g ‘ Extraction with
'Reference
\

y : - model#M
Q ”

Figure 2.5. Speaker verification model

2.2.3. Text-Dependent Speaker Recognition

Recc‘)gnition’of speaker’s identity is based on his/her speaking one or more specific
phrases in text-dependent speaker recognition. The speaker speaks the phrase into a
microphone, and the resulting signal is analyzed by a verification system that accepts,

rejects, or requests additional input before making a decision.

2.2.4. Text-Independent Speaker Recognition

Recognition of speaker’s identity is based on his/her speaking some random phrases

in text-independent speaker recognition. The speaker speaks the phrase into a microphone
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and the resulting signal is analyzed by a verification system that accepts, rejects, or

requests additional input before making decision.

2.2.5. Text-Prompted Speaker Recognition

Text-dependent and text-independent systems can be easily deceived if someone
plays back a recorded voice of a registered speaker saying key phases. To solve this
problem, each user is prompted to say a new key sentence every time system is used and
the system accepts input utterance only when it decides that it was a registered speaker
who repeated the prompted sentence. Speaker specific phoneme models can be used as

basic acoustic units.

2.3. Speech Processing and Feature Selection

Speech processing is extracting desired information from digitalized speech signal.
Signals have to be digitized before being handled by computer systems. Microphones and
telephones convert an acoustic wave to an analog signal, then the anang signal is filtered
by an antialiasing filter to limit bandwidth of signal approximately Nyquist rate. Nyquist
rate is half of the sampling rate. Conditioned analog signal is then sampled to form a
digital signal by an analog to digital (A/D) converter with 12-16 bits resolution and 8000-
20000 samples per second.

Acoustic Wave

0
e //‘\_

Analog Signal Conditioned
Analog Signal

o
|

" Digital
b Signal

Figure 2.6. Analog to digital conversion
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The first step of speech processing is modeling. There are several methods used for
speech modeling. By modeling the signal, we can use some transformations to obtain

speaker specific features.

Features of speech signal that minimize verification error should be selected for a
successful speaker recognition system. This is called as feature selection or feature
extraction. The goal of feature extraction is to find a transformation that preserves data,
which will enable meaningful comparison between signals. An increased number of
features will cause computational and storage overhead so feature space must be limited as
much as possible. To reduce dimensionality of feature space there are several methods.
Principal component analysis is a method that seeks to find a lower dimensional
representation that accounts for variance of features. Factor analysis is another method that
seeks to find a lower dimensional representation that accounts for correlations among
features. Also, if data are linearly separable, linear transformations can be used to reduce
feature space dimensions, and sometimes non-linear transformations may be useful for

non-linear data.

The main target of feature extraction is to obtain a feature set that exhibits low intra-
speaker variability and high inter-speaker variability. The most popular modeling methods
are Linear Predictive (LP) analysis and MFCC. 4

2.3.1. All-pole LP Model

All-pole Linear Predictive (LP), models a signal S, by a linear combination of its past

values and a scaled present input [2].
P
S, =—Zak.S,,_k +GU, , 2.1
k=1

Where S, is present output, P is prediction order, a, are model parameters (predictor

coefficients), Sn.x are past outputs, G is gain scaling factor, and Uy is present input.
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In speech-based applications Uy, is generally unknown so approximate .§',, is found

by ignoring U,. Approximation formula is:
S, ==Y 4.8, (2.2)
k=1

The difference between actual and approximate values of S, is called as a prediction

error. Prediction error e, can be formulated as:
e,=S,—8,=8,+->.a,.5,, (23)
k=1

The mean square error (MSE):

2
MSE=Y e, = Z[S,, + —i a, .S"_k] - (2.4)

k=1
If we take derivative of MSE for each ay and minimize it:

OMSE =0, i=12,....,P
da,

' 2.5)

ZP:ak D Sy Sus =0 8080y =12 P
k=1

If the summation of infinite extent, summations on s are autocorrelations at lags i-k
for the left sum and at lag i for the right sum. This results in the “autocorrelation method”

of LP analysis. The time-averaged estimates of the autocorrelation at lag t can be

expressed as [2]:

N-1-7

R, = Y s(i)s(i+7) (2.6)
i=0
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LP model parameters (ay) are used to model speech signal by a p-dimensional ax
vector. Any signal can be defined by a linear predictor and corresponding LP error. These
LP coefficients are nonlinearly transformed into feature domains such as: reflection
coefficients, log area ratios, arcsine of reflection coefficients, and Linear Predictive

cepstrum.

Ry, R R, R, |l R,
R, R, R R,,|la, — R, @2.7)
R, R R, -3 || @3 R, - . .

Reflection coefficients (k;j) can be obtained by using the following backward

recursion, by using LP coefficients:

a® +a® a® o

» — k=q® -y i Py 1sjsi-l

el =a;,, k=0, aj’= -
- i=p,p—1,...1
1-k; i=p,p—1l,....,

-

2.8)

Log area ratio method is also used for finding reflection coefficients. Vocal tract can
be modeled as a series of cylindrical acoustic tubes as demonstrated in Figure 2.7. At each
junction between tubes there can be an impedance mismatch or an analogous difference,
and a small portion of the wave is reflected while a rest of it transmitted. Reflection

coefficients k; gives the percentage of reflection.

Az
Boundary - » - -
| condition ! a -—e
| artificial I A [
Seeton  Gloris Lips

Figure 2.7. Acoustic tubes model of speech production [2]
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Ay, Aj,...,As are the cross sectional areas of the tubes, and reflection coefficients are

defined as the ratios of the adjacent areas. For P cross-sectional areas:

A4, =
Ay >> A, i=12, P 2.9)
k,- = Ai+1 _Ai
A, +A4

Taking the log of the area rations gives more uniform spectral sensitivity so Log Area

Ratios (LAR) defined as the log of the adjacent cross-sectional areas ratios.

4, : ' ‘
g = logl:ji:l = logl:i-l- ]Ij :I =2tanh™ k, i=123,..,p (2.10)

i iy
As seen from the formula for k=1 there is a discontinuity in LAR, to avoid this

problem using sin” of reflection coefficients are a common choice.

g =sink, i=123,.,p \ @2.11)

2.3.2. Mel-Warped Cepstrum

Mel-warped cepstrum is a popular speech modeling method that does not require LP
analysis. The first step is frame blocking. In this step, continuous speech signal is blocked
into frames of N samples that intersect each other by M frames. Typically N=256 and
M=100. Next step is to window each individual frame to minimize signal discontinuities at
beginning and end of each frame. If we define window as w(n), 0<n <N -1, where N is the

number of samples in each frame, then result of windowing is the signal:

y(n) =x(n)w(n), 0Sn<N-1 , | (2.12)
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Typically the Hamming window is used, which has the form:

27m

w(n) =0.54 — 0.4Cos( ), 0<n<N-1 (2.13)

The third step is Fast Fourier Transform {FFT), which is used to transfer N samples
from time domain to frequency domain to obtain the spectrum of the signal. FFT is a fast
algorithm to implement Discrete Fourier Transform (DFT), which is defined on the set of

N samples {X1}, as follow:

—2knin

N-1 .
X, =) xe Y where j=+/—1 : (2.14)

k=0

Here, j denotes imaginary unit, X,’s are complex numbers, resulting sequence {Xy} is
interpreted as zero frequency corresponds to n = 0, positive frequencies 0<f<Fs/2
correspond to values 1 <n <N/2 —1, and negative frequencies -F.§/2<f<0 correspond to
N/2+1 <n <N -1 [1]. ‘

Human perception of speech frequency does not foliow a linear scale that is
measured in Hz. Mel-frequency scale is an alternative to linear scale, which is linear
frequency spacing below 1000 Hz and logarithmic spacing above 1000 Hz.

To obtain mel-scaled values from a given frequency the following formula is used:

_ S -
Mel(f) = 2595.logm(1 + 700) (2.15)

One approach to simulating subjective spectrum is using a filter bank, in a way that
each desired mel-frequency component there will be one filter. Number ‘of filters is

typically chosen as 20. Figure 2.8 shows an example filter bank.

Finally log mel spectrum is converted back to time domain, this gives MFCC, which
- provides a good representation of speaker specific spectral properties of signal. MFCC’s

C, can be calculated as;
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) K
Cn = Z(logsk )-COS[ﬂKQ'L?)_ﬂ:} ’ n=1’29°"K (2.16)
k=1 ‘

where Sy is mel power spectrum coefficients.

2‘} . . Mel-spaced filterbank . '
HuTry ]
1.6 -ﬂ { 4
1.4 } 4
1.2 H ) -1

1 H Y : 4
0.8 ' 4
o.6 ]
o.4 ¥ . .

o 3 . X N . -

o 1000 2000 3000 4000 5000 S000 7000
Frequency (Hz)

Figure 2.8. An example of mel-scaled filter bank

Set of MFCC values is called as an acoustic vector, and acoustic vectors can be used

to represent and recognize voice characteristics of a speaker.

2.4. Pattern Matching

'MFCC and LP are methods that are used to model a signal to form classes. To
authenticate a model is constructed from incoming speech, then speech signal is compared
with the model of claimed user and a match score is calculated. Match score is a measure

of similarity between an input vector and a model. Two types of models are template and

stochastic.

2.4.1. Template Models

In template models pattern matching is deterministic. An observation is assumed to
be an imperfect replica of a template and the target is minimizing distance between model

and observation. The likelihood between a model and a target is:
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L= exp (-a .d), where a is a positive constant and d is distance measure. In single
template models, a model of a claimed speaker could be centroid (mean) of N training

vectors.

1 : '
= — X, 2.17
g™ - @17

A match score is a distance between two patterns. Most commonly used distances are

Bhattacharyya distance, Mahalanobis distance, and Euclidean distance.

Bhattacharyya distance is a measure of similarity between classes and may therefore
be used to assess quality of statistics prior to classification. Distances are calculated for
specified feature sets that consist of subsets of the bands in the file. For each feature set,

the pair wise distance is given by:

C +C,

. Cu — o,V <~ 1)

J—J— ax(c,-c,)

—0 5xIn

(2.18)

Where Dj; is Bhattacharyya distance between classes i and j, C; is covariance matrix for

class i, C;: covariance matrix for class j, pi: mean vector for class i and p; is mean vector

for class j.

Mahalanobis distance is another way of determining the similarity between two
classes. The advantage of it is taking variability of classes into account by using covariance

matrix. This method is a computationally intensive method and it is formulated as:
D, =(x—pu) C'(x-p) : (2.19)

Where C is the covariance matrix, p is the mean of the variables and x is the vector

containing values.
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If u=(x,y1) and v= (X,,y2) are two points on a plane their Euclidean distance is given

by : w/ (x,—x) +(, - y,)* . Geometrically this is the length of the segment joining u

and v. To generalize this:

u=(‘x1,X2,X3,. .- --,xn), V=(Y1 »Y2s Y3‘= cneey Yn)

N 2
d(u,v)= \/ (Z‘xk -] ] ,where n=1,2.. (220

k=1

Where d(u,v)is Euclidean distance.

2.4.1.1. Dynamic Time Warping. The Dynamic Time Warping (DTW) method that

performs a piece-wise linear mapping of time between reference and input signals, and is
used to compensate speaking—rate» variability before match score calculation. DTW is
useful when there is a variation over time. The order of DTW is O(N*V), where N is length
of sequence and V is number of templates. There are several disadvantages of DTW: first
of all, it has a computation overhead with O(N*V), which is not particularly fast, and a
distance metric between frames must be déﬁned, which may be difficult with different
channels with distinct characteristics. Finally, it does not create any meaningful
descriptions of data.DTW is relatively simple and has been used commerically for several

industrial tasks, such as isolated spoken digit recognition.

M -
Dend
Ext
D
A B 1
© N
o
£F 4 -
E g
S 5 Sample .
Energy ’
o T

DTW of two energy signals.

Figure 2.9. Dynamic time warping [2]
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2.4.1.2. Vector Quantization. - Vector Quantization (VQ) is the process of mapping

vectors from a large vector space to a finite number of regions in that space such that -
similar vectors are grouped together. Each region in vector space is a cluster that is

represented by its center. The center of a cluster is called as a centroid or a codeword.

Collection of codewords is called as a codebook.

Figure 2.10 demonstrates VQ implementation with two speakers. In training phase
a speaker specific vector quantization codebook is generated for each known spéaker by
clustering his/her acoustic vectors. Bold points in the Figure 2.10 show centroids. The

minimum distance between a point and the nearest codeword is called as a vector

quantization distortion.

. Speaker 1 , . Speaker 2
[ Q lql el o | [alpalarlal

Speaker 1
@ cenfroid
© sample

VQ distortion

A centroid
A sample

Figure 2.10. Centroid representation [4]

During the recogmtlon phase 1nput voice 1S quantlzed and compared ‘with all
centroids to ﬁnd centro1d w1th minimum VQ distortion. By using this method, the 1dent1ty

of the speaker can be understood. Identification process is composed of several steps:

. Computation‘of the feature vector set X. Xé{Xi} |
¢ For each speaker model C; compute the distortion between X and C;

o Identify the index of the unknown speaker id as the smallest distortion. -



21

Reference Speakers Unknown Speakers
Fe ature Extraction
- MFCC

Feature Extraction
MFCC

=

VectorQuantization
LBG

Speaker Codebooks

Figure 2.11. VQ based speaker identification

The simplest clustering algorithm is selecting K random feature vectors as
centroids. Randomized local search (RLS) is an improvement in\random selection. It starts
with a random codebook and produces a predefined number of iterations. For iteration a
random swap technique in which a randomly chosen code vector is replaced with another
randomly chosen input vector this produces a candidate solution, then new partitions of
centroids are recalculated and a new codebook is reproduced. If a candidate solution
improves the previous solution it is accepted as the new solution. Self-organizing map
(SOM) is another algorithm used for clustering. In SOM given a set of input patterns it
learns it self how to group these patterns so that similar patterns produce similar output.
SOM is a neural network based solution. Pair wise nearest neighbor (PNN) algorithm
generates a codebook hierarchically. In the beginning each feature vector is accepted as a
codeword and two codewords with minimum distortion are merged till the number of
codewords is reduced to the desired number of centroids. Iterative splitting technique can
be accepted as the opposite of PNN. It starts with an initial centroid and divides a centroid
into two centroids and this splitting process continues until the centroid number increases

to desired number of centroids. Generalized Lloyd algorithm, which is also called Linde-
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Buzo-Gray (LBG), starts with an initial codebook and improves it iteratively until a local
minimum is reached. Iteration process starts with mapping each feature vector to nearest
code vector in the current book, and continues with centroid recalculation. In

implementation LBG algorithm is selected for clustering.

Experimental studies are made to compare performancés of these VQ' algorithms.
The results show that the difference between MSE is very small, but there is a marginal

change in identification rates [5].

Random SOM GLA SPLIT PNN RLS

Figure 2.12. MSE values where codebook size is 64

Split algorithm is found as the fastest algorithm, and GLA algorithm is the second
fastest algorithm, followed by SOM, PNN and RLS algorithms.

run time {s)

codebook size

Figure 2.13. Run times of the clustering algorithms [5].
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2.4.1.3. Nearest Neighbors. Nearest neighbor (NN) method combines the strength of
DTW and VQ. This method does not cluster the data, instead it holds all training data in
memory. NN distance is the minimum distance between a test-session frame and
enrollment frames. The match score is the average of NN distances. NN is one of the most

powerful pattern matching methods but it is also the most memory and computation

inténsive method.

2.4.2. Stochastic Models

Stochastic models such as Gaussian mixture model (GMM) and hidden Markov
model (HMM) offer more flexibility and result in a more theoretically meaningful
probabilistic match score. The probability of observation being generated by the claimed
speaker is calculated. This probability gives match score (likelihood score). Generation of

Xi by a model has the probability:

(2.21)

1 A
P(x, | MODEL)= (27r)“'§ x|C|z x exp(—

(xi —ﬂ)r X (xi —ﬂ)) :

2xC

where p is mean, C is covariance, and X; is feature vector.

24.2.1. Hidden Markov Model. ~ Hidden Markov Model (HMM) is a popular stochastic
method that is used to model sequences. Observations are the probabilistic functions of
states. HMM is a finite-state machine, where a probability density function p (x | S)) is

associated with each S;. The states are connected by transition network where a; are

transition probabilities.

a, = plsi15;) | e
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Figure 2.14. Hidden markov model [2]

The generation likelihood of L frames from model is:

P (x(L;L) | model )= > 1Pt 15)-p(515) o (223)

all _statese _ sequences =1

HMM performance is similar to the VQ performance.

2.4.2.2. Gaussian Mixture Model, Gaussian mixture model (GMM) can be used in both

speaker verification and speaker identification systems. Speaker models can be expressed.

asA s for j=1, 2, ..., S where S is the estimated number of target speaker models. Then for

each test utterance, features at frame time n, X, are calculated. One approach is to compute
probability of the given features for each speaker model and then choose the speaker with

highest probability. This approach is called as maximum a posterior (MAP) classification.

To express P(4; | x,) in terms of Bayes’ rule:

A)P(A,
P(A;|x,)= P&, 1|D(;c))( ) (2.24)

Where P(A i) is the priori probability of speaker A ;> and x, is the input feature vector. It is
sufficient to maximize the quantity p(x, |4, )P(/lj)because P (x,) is constant. If priori

probabilities are assumed equal, the problem simplifies to find P(4 ;) that

maximizes p(x, | 4;)-
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In practice there is not only one input feature vecfor, but a stream of input vectors
generated with frame interval L. If there are M feature vectors for the utterance,
P({Xg, %Xy 4} | A;) must be maximized. In this calculation it is typically assumed that

frames are independent and the likelihood for an utterance is the product of likelihoods for

each frame:

M-1

P Xz i} 1 A) = [ [ PGn 14,) @2)

m=0

By applying logarithm solution can be expresséd as:

R M- _
§=max > loglp(x,, 14))] (226)

i<,
1sjs§ m=0

If S is the highest value for speaker i, speaker i becomes the choice for the system.

-

2.5. Decision

After match score computation, the system has to choose one of the two hypotheses:
User is the claimed speaker or user is an impostor. Figure 2.15 show likelihood of

observations from two different probability density functions according to the user is an

impostor or not.

Dy: Reject
i >P1(z): Valid

.

By(z): lmpastér

Figure 2.15. Valid and impostor densities [2]
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The area under Py is valid user density. The area under Py is imposter density. The
intersection areas are error sources. The area Qo is false acceptance of an impostor as a
- valid user while area Q is false rejection of a valid user. T is the threshold value. As seen
from the Figure 2.15 changmg the threshold value will change the areas of Qo and Q; and
while the area of one error type decreases the area of other error type is increasing. Asa
result if the flexibility of the system is increased to accept valid users who have an illness
which effects the voice, crying, or under stress, false rejection will decrease, but this will
be an advantage to the wolves who try to attack the system, and will increase false
acceptance. Similarly if the system is too strict and tries to find almost an exact match then
‘imposters will be avoided, but valid users may also be rejected. So the determination of the

threshold value is very important.

The threshold can be determined by setting T equal to an estimate of Pi/Po to
approximate minimum error performance, where Po and P, are the a priori probabilities
that the user is an impostor and that the user is the true speaker, respectively; choosing T to
satisfy a fixed FA or FR criterion or varying T to find different FA/FR ratios and choosing
T to give the desired FA/FR ratio. Threshold selection can make system speaker specific, |
speaker adaptive, and/or risk adaptive [2]. |

2.6. Related Studies

There is a considerable speaker recognition activity in commerce, national
laboratories, and universities. The general trend shows accuracy improvements over time

with larger data sets. Table 2.2 shows a sampling of the chronological advancement in

[13 29

speaker verification. The column header “source” refers to a citation in references, or'g

s the company or school where the work done, “features” are the signal measurements
“input” is the type of input speech, “text” indicates whether a text—depenelent or text-
independent mode of operation is used, “method” is the heart of the patterh matching
process, “pop” is the population size, “error” is the EER for speaker verification systems

«“y”. or the recognition error percentage for speaker identification systems [2].
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1:2%@0.5s
V:2%@ls

Markel and | STI LP Long term | Lab Independent 17 1:2%@39s
Davis 1979 [7] statistics
Furui 1981 [8] AT&T Normalized | Pattern Phone Dependent 10 V:2%@3s
Cepstrum Matching .
Schwartz, et al., | BBN LAR Nonparametri | Phone Independent | 21 1:2.5%@2s
1982[9] c pdf
Li and Wrench | ITT LP, Pattern Match | Lab Independent 11 1:21%@3s
1983 [10] Cepstrum 1:4%@10s
I[chﬁdigton 1985 | TI Filter-bank | DTW Lab Dependent 200 V:0.8%@6
s
Soong et al, | AT&T LP VQ(size 64) | Phone 10 . isolated | 100 1:5%@]1.5s
1985 [12] Likelihood digits I:1.5%@3.
Ratio 5s
Higgins and | ITT Cepstrum DTW Lab Independent 11 V:10%@1.
Wohlford 1986 Likelihood 5s
[13] scoring V:4.5%@1
Os
Attili et al., | RPI Cepstrum, | Projected Lab Dependent 90, V:1%@3s
1988 [14] LP, Long Tem
Autocorr. Statistics
Higgins et al, | ITT LAR, LP, | DTW Office Dependent 186 V:
1991 [15] cepstrum Likelihood 1.7%@10s
scoring
. Tishby 1991 | AT&T LP HMM (AR | Phone 10 isolated | 100 V:2.5%@1.
[16] mix) digits 5s
, i V:0.8%@3.
z Ss
Reynolds 1995; | MIT-LL Mel- HMM Office Dependent 138 [:0.8%@10
Reynolds and Cepstrum (GMM) s
Carlson 1995 V:0.12%@
[17] 10s
Che and Lin | Rutgers Cepstrum HMM Office Dependent 138 1:0.56%@2
1995 [18] ’ 5s
1:0.14%@1
Os
V:0.62%@
: 2.5s
Colombi et al. | AFIT Ceps, Eng, | HMM Office Dependent 138 1:0.22%@!1
1996 [19] ACeps, monophone Os
AACep - V:028%@1
0Os
Reynolds 1996 MIT-LL Mel-Ceps, HMM Phone Independent 416 V:11%16%
[20] Mel-ACeps | (GMM) @3s
. V:6%8%@
10s
V:3%5%@
30s
Vincent Wan, | University [ LP Support Phone Independent 138 [:4.5%
William D. | of Sheffield Vector (Yoho) V:
Campbell & Motorola Machines 0.18%0.31.
1999 [21] (SVM) %
Woohyung et Seaul LRT, LLR, | GMM+UBM | Phone Independent 91 1:45%
al., 2001 National Cepstrum (0GI) V:
[22] University 0.18%0.31

%
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Table 2.3 Selected chronology of speaker recognition process (Cont.)

Covanance phone Independent
2001 [23] MFCC Modeling (1999 V:10-
NIST 14%@15-
male . 45s '
segment) DNST
i : V:19-
28%@15-
45s
DNDT
V:47-
74%15-45s
Ganchev et al., | University | MFCC Probabilistic Polycost | Dependent 110 1:5.35%@4
2002 [24] of Patras Neural and (PIN & 10 3s
Networks+G | SpeechD | digits) V:1.97%@
MM, VQ k- | atil 400 43s
means database
s I:
13.37%@4
3s
V:
4.08%@43
s
Eric Chang et | Microsoft MFCC HGMM Phone
al., 2002 [25] Research NIST 99 | Independent 539 V: :
Asia NIST 02 12%@120s
10
V:
- 4.3%@120
5
Ghing Tang et | Tamkang LP GMM, Phone Independent 400 Identificati
al., 2003 [26] University | Wavelet (MAT , , on Rate:
Packet database) 91.24%
Transform .

Although it is not meaningful to make comparisons between text-independent and
text-dependent tasks, the table provides a brief summary for the history of speaker

verification.
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3. IMPLEMENTATION

Implementation is based on a text independent speaker verification system in which
speech signals are modgled with MFCC. To compare input speech signal with data set, the
LBG VQ method is used and the match score is found by calculating Euclidean distance.
After serial implementation, parallelism is achieved by MPI library calls from standard C
language.

Both serial and parallel implementations contain two phases: training and testing. In
training phase the data set is processed and a modeling structure based on VQ is
implemented. In the testing phase, which is also named as authentication phase, incoming
speakers are modeled and these models are compared with existing models in order to
obtain matches between speaker models to identify the speaker’s identity. In the system
there are two speech files for each speaker, which are not identical. One file of each
speaker is in the training set, and other file of each speaker is in the testing set. System

matches two files of same speaker, which means system recognizes the speaker.

~ High quality speech files, which belongs to YOHO Speéker Verification corpus [2]
that was collécted by ITT under a US government contract is used in this study. The
YOHO database was the first large-scale scientifically controlled and collected, high-
quality speech database for speaker verification testing at high confidence levels. The
database is in digital form. There are 106 males and 32 females joined the study using their
voices. Speech signals are collected with a STU-III electret-microphone telephone handset
over a three-month period in a real world office environment. ‘There are four enrollment
sessions per subject with 24 phrases per session and ten verification sessmns per subject at
approximately 3-day intervals with four phrases per session. The corpus contains 1,380

validated test sessions sampled with 8 kHz and 3.8 kHz, analog bandwidth. The data size is
1.2 gigabytes.
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3.1. Serial Implementatfon

o In training phase, every speech file in train set are sampled, and 320 data points per
file are obtained. These values are located into a matrix and their MFCC are calculated.
Then, MFCC values are passed to vector quantization function to form regions and

centroids of the data.

In authentication phase, speech files in test set are read one by one, and their
MFCC’s are calculated similarly. Then Euclidean distance between MFCC of files and the
vector quantized data are calculated, then, test and train files with minimum distances are

matched. Figure 3.1 is.the operational flow of our proposed speaker identification system:

Melfrequency
Wrapping

Vector
“Euclidean - |- Quantization
Distance g
ittt D R {!",f' S : Cepstrum

i TESTINGPHASE e 17 Meleepstrum s

IVCOIlﬁn‘ué)»lji Frame frame o Hamming |y FFT specfrum"f Melfrequency
-~ speech 71 Blocking [ Window fg i . o7y Wrapping

Figure 3.1. Operational flow of speaker verification system

The training files are in a folder named “enroll”, and the test files are in a folder
name “authenticate”. Both enroll and authenticate folders contain speech files, that are
named as Sy, Sa,.....,Sy in a way that the indexes give spéaker id. The System compares all
files in enroll folder with all files in authenticate folder, and gives files that match each
other. The output “Speaker m matches with speaker m”, means that there is a successful

match between test and train data. Figure 3 2 gives the pseudo code of the serial

implementation.
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for (int i=1; i<=N; i++){ ‘
digitaifile=sampleFile(trainingFiles(i));
featureVector= mfcc(digitalfile);
VQlil= vqlb

threshold=somePredefinedValue;
for (int i=1; i<=M; i++){
digitalfile=sampleFile(testingFiles(i));
featureVector= mfcc(digitalFile);
minDist= infinity;
matchedSpeaker=0;
for (int j=1; j<=N; j++){
distance=euclidean(featureVector , VQI[il);
if (distance< minDist){

minDist=distance;

matchedSpeaker=j; } }
if (minDist<threshold){

printf(“’Speaker %d matches with speaker %d\n”,i; matchedSpeaker);}

else{ printf( “Speaker %d is UNKNOWN \n”, i}); }

Figure 3.2. Pseudo code of serial implementation

Equation 3.1 gives the execution time for serial implementation:

-

T.'s'erial = neﬁal_train + I;'erial__'tgst
I:verial__lrain = NX (S +m+ V)
| G.1)
Toiat_tese =M X(s+m+ Nxd)

T =MxNxd+Nxv+(s+m)x(N+M)

serial

Where; N is the size of test data, M is the size of train data, s is the time for sampling one
speech file, m is the time to calculate mfcc of one file, v is the time of vector quantization
of one mfcc matrix and d is the time to calculate Euclidean distance. If the train set and the

test set are in the same size, Equation 3.1 will be simplified as follows:

T  =N?xd+Nx(2s+2m+v) , where N=M / (3.2)

serial —

The screen shot of an example execution of serial implementation for a six file small set is

given in Figure 3.3.
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First Part: Train each speaker

System handles ==>enrolll10/sl.wav
System handles ==>enrolll0/s2.wav
System handles ==>enrolll0/s3.wav
System handles ==>enrolll0/s4.wav
System handles ==>enrolll0/sS5.wav
System handles ==>enrolll0/s6.wav

Second Part: Results

System finds that :Speaker
System finds that :Speaker
System finds that :Speaker
System finds that :Speaker
System finds that :Speaker
System finds that :Speaker

matches with speaker
matches with speaker
matches with speaker
matches with speaker
matches with speaker
matches with speaker

A W

Ul WK

Figure 3.3. Run results for N=6, M=6

After obtaining a successful serial implementation, we try to improve its
recognition rate, and reduce run time to provide a strong base for our parallel
implementation. For this purpose we change some parameters to see their effects.
Changing several parameters such as the VQ size, threshold and number of MFCC filter
banks change both the recognition accuracy rate and the runtime, so we use the optimum
values in our implementation. A detailed set of experiments on thése parameters is

presented at Chapter 4. Figure 3.4 gives the flowchart of serial implementation.

3.2. Parallel Implementation

Growing data set sizes, which cannot fit main memory of best computer available,
and optimized serial algorithms are factors that increase populérity of parallel
programming. Parallel programming methods provide ability to access greater memory and
central processing unit than serial computers, so they are more suitable for large and

memory intensive problems.

Success of a parallel implementation can be defined by its speed-up values. Speed-
up is the ratio of execution time between the serial and parallel lmplementatlons which

depends on parts of the program that have to run serially, and the commumcatlon cost

between processors during parallel computation.
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| START I'—'P i=1
N= number of files in train set

M=number of files in test set

S,fs= wavread (ith file train set)

v

X = mfce(s,fs)

v

Code[i] = vqlbg(X)

S,fs= wavpegd (ith file test set)

——v—
X = mfcc(s,f5)

—v—

i=1, min distance=infinity

D= Disteu(X, code[j])

min_distance =d
speaker_id=]

v

speaker i matches with speaker_id, i=it+1;

Figure 3.4. Flowchart of serial implementation
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In our study first of all we want to identify the potential parallelism in speaker
verification, so we try to find sections of computer code that can be executed at the same
time as other sections, without changing the results generated by the program. These
sections also should be the time consuming portions for obtaining good speed-up, so we
look for expensive loops where iterations can be processed independently. Both training
and testing parts of serial implementation handle speech files one by one and performs
similar calculations for each file independently from each other so sharing the speech files
between processors seem logical, thus the parallel speaker recognition algorithm presented

in this work is based on domain decomposition.

We achieve parallelism in the most outer expensive loop so there is not a serial
portion of the program, and time spent by a processor on serial part of a program is zero.
Using Equation 3.4 we expect a linear speed-up with respect to number of pi'ocessors in
our case. Section 3.2.1 gives the details of MPI, which is followed by a section on Parallel
Vector Quantization implementation details are given, and experimental results are

presented in Chapter 4.

3.2.1. Message Passing Interface

Message Passing Interface (MPI) is the first message passing international standard
where sixty people from 40 organizations were involved in its design. After two years of
proposals the MPI document was produced describing its functionality. MP1 is a document,
which describes the interface, and there are several implementations of this standard [27].
One of the reliable implementations is the LAM-MPI that is used in our study. Message
passing computation consists of a cluster of processors with local memory. Each processor
executes its own program and communication is in the form of messages among
processors. In the implementation, data sharing between processors is achieved by MPI
calls. MPI groups are solid, efficient and deterministic, and buffer managemeni is efficient.

MPI is portable and has been a standard since the spring of 1994.

MPI consists of functions in C or subroutines in FORTRAN. These functions may
be used by MPI calls that may be divided into four categories [28]:
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i. Calls that are used to initialize, manage and terminate communications.

ii. Calls that are used to communicate between pairs of processors.

iii. Calls that perform communication operations among groups of processors. Groups

of processors are also named communicators.

- iv. Calls that are used to create arbitrary data types._

Table 3.1 gives the definitions, descriptions and example usage of the MPI

functions that are used in implementation:

mt MPI_Init( ‘
int *argc,
char ***argv)

T MPI Imt(

&argc,
&argv),

Inmallzes the MPl envu'onment

Table 3.1. Basic MPI functions

int MPI_Finalize()

MPI_Finalize(); -

Does various terminate MPI

environment

cleanup to

int MPI_Comm_size(
MPI_Comm comm,
int *size);

MP}_Comm_size
(MPI_COMM_WORLD,
&numb_of PE);

numb_of PE variable stores the total number of
processes

int MPI_Comm_rank(
MPI_Comm comm,
int *rank);

MPI_-Comm_rank
(MP1_COMM_WORLD,
&pID);

pID stores the process id of the current process

int MPI_Allgather(

void *sendBuf,

int sendCount,

MPI_Datatype SendDataType,
void *recvBuf,

int recvCount,

MPI_Datatype recvDataType,
MPI_Comm comm)

MPL_Allgather(

mycode,

320*(N /numb_of PE),
MPI_DOUBLE,
mycode2 ,

320*(N /numb_of PE),
MPI_DOUBLE,
MPI_COMM_WORLD);

Broadcast data to all the processes.

X X Y
A A .A’; BJIIC) D T
B| —— |B||A/B,C,D

- Aligather
C Cl|A B, C,D
D D||AB,CD

int MPI_Allgatherv(
void *sendBuf,

int sendCount,
MPI_Datatype SendDataType,
void *recvBuf,

int *recvCounts,

int * displs

MPI_Datatype recvDataType,
| MP1_Comm comm)

MP1_Allgatherv( mycode,,
sendcount , MPI_DOUBLE,
mycode2 , recvcount, displs,
MPI_DOUBLE,
MPI_COMM_WORLD);

Broadcast data to all the processes. The size of the
data, which will be broadcasted, can be different
for each process in this function.
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3.2.2. Parallel Vector Quantization

Data clustering is one of the fundamental techniques in scientific data analysis and
data mining. It partitions a data set into groups of similar items, as measured by some
distance metric. To cluster such data sets efficient parallel algorithms are called for, both to
reduce computation time, and bring resources of multiple machines to bear on a given

large problem in order to scale up the largest problem size one can handle [29].

Dhillon and Modha work on data clustering on a distributed memory
multiprocessors. They focus on parallelizing classical k-means algorithm in order to
analyze heaps of unstructured text documents. Their parallel k-means algorithm design is
based on Single Program Multiple Data (SPMD) model using message passing. They
observe linear speed up and excellent scale up for massive data sets and observe that k-
means algorithm is inherently data parallel [30]. Patané and Russo [31] make a study to
observe speed up in parallel LBG and ELBG algorithms. Their work shows that speed up
increases when complexity of problem increases. They obtain a speedup about 11.24 in the
best case using LBG and 6.35 in the best eese,using ELBG algorithm. Forman and Zhang
[29] examined speed-up behaviors of k-means, k-harmonic means and Expectation

Maximization algorithms and conclude that these algorithms exhibit good linear speed up.

In our implementation we used LBG vector quantization, which is also called k-

means algorithm to cluster speech signals in parallel in order to classify similar speaker

models.

3.2.2. Implementation Details

The parallel speaker recognition algorithm presented in this work uses domain
decomposition based on file sharing, where the data is divided among the processes by
considering approximately the same number of files on each processor Source code
written in Matlab is transferred to C-Mex code usmg Matlab compller provided with
Matlab 6.5, and parallelism is achieved by message passing interface (MPI) calls. Figure

3.5 shows the steps of our parallel implementation.



37

Wavread - Serial C code Parallel C code
MFCC atla containing Mex \| containing Mex
. MPI calls .
vQ ~Compiler Library Calls . @ Library and
- MPI Calls
Serial MATLAB que Serial C Code ) Parallel C Code

Figure 3.5. Steps of implementation

In this study speech files are shared between processes and calculations are made in
parallel. Unlike serial implementation in which the algorithm runs serially in one process,
in parallel implementation each process has a process id and makes calculations for a
portion of the data. Each processor deals with its portion by using its processor id, and after
making necessary calculations broadcast data, which will be a requirement for other
processes. As a result algorithm is based on message passing, and MPI functions will be
used for parallel programming. Parallel implementation starts with MPI_Init and after
training and testing parts, ends with MPI;Finalize. Figure 3.6 gives the pseudo code for
parallel implementation.

Running time of this implementation is the sum of running times of training and

testing parts, and the communication time between processors:

T parallel =T, parallel _train + Tparallel _test + ]:,‘ommunicﬁliou

' M
Tpamllel_tmin =—X (S +m+ V) H Tparallel_lest = —FX (S t+tm+ Nx d) (3.3)
M Nxd
T, purullel (S +m+ V) + ?X (S +m+ VX ) +T, communication

Where; P is the number of processing elements, N is the size of test data, M is the size of
train data, s is the time for sampling one speech file, m is the time to calculate MFCC of
one file, v is the time of vector quantization of one MFCC matrix and d is the time to

calculate Euclidean distance. If the size of train and test sets are equal then:



1 (s
T parallel - Tconmnmicatiun = F(N R d + N X (2S + 2m + V)) Where N=M

1
T parallel —T communication= Fx T serial where N=M
Speedup = Lot _ Tsera

parallel i .
P X rverial + communication

38

G4

Equation 3.4 gives the speed-up for our solution, if there were no communication

between processors a linear speed up value P will be observed, but this is not the real case,

so we expect that the computation time dominates the communication time so there will be

almost linear speed up.

P=MPI_Comm 0;
X=MPI_Comm_rank(;
if (x < (N mod P)){
startpos=X*((N Div P) +1)+1;
endpos=startpos+(N div P) +1;}
else{ '
startpos= (N mod P) * (N div P))+1)+ (X-(N mod P)y*(N div P)*1;
endpos= startposH(N div P);}
r=0;
for (int i=startpos; i<=endpos; i+
digitalﬁle=sampleFile(trainingFiles(i));
featureVector= mfcc(digitalfile);
VQ[r]= vqlbg(featureVector); r++}
MPI_allgatherv(VQ);

gg ‘:Es . . - %&’g a
P=MPI_Comm_size(); =MPI_Comm_rank();
if (x < (M mod P)){startpos=X*((M Div P) +1)+1;
endpos=startposHM div P)+1;}
else{
startpos= (M mod P) * (M div P))+D)+ (X-M mod P))*(M div P)+1;
endpos= startposH(M div P);}

threshold=somePredefinedValue;
for (int i=startpos; ji<=endpos; i++){

digitalﬁle=sampleFile(testingF iles(i));

featureVector= mfcc(digitalFile),

minDist= infinity; matchedSpeaker=0;

for (int j=1; j<=N; j+H){

distance=euclidean(featureVector , VQlil);
if (distance< minDist){
minDist=distance;
matchedSpeaker=j; } }
if (minDist<threshold){
' printf( “Speaker %d matches with speaker %d\n”, i; matchedSpeaker);}
else{ printf( “Speaker od is UNKNOWN \n”, i), }

Figure 3.6. Pseudo code of parallel implementation
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Load balancing is another important issue in parallel processing. Domain
composition is based on sharing speech files and in ideal case is every processor héndle
equal number of files, so they will start and finish their execution almost simultaneously.
This will provide good load balancing and will minimize idle time of processor thus will
result with better speed-up. But in practice number of processors should not have to be a
divisor of number of speakers, so some processdrs will handle one more speaker than the

others in this case. Figure 3.7 shows an example file sharing between 3 processes.

Train speech files | S1 | S2 | s3 | s4 | s5 | s6 | S7 | S8

Process 0 Process 1 Process 2
" Read related files
Find MFCC values
Make VO
Broadcast VQ Data to all other processes by MPI_ALLGATHERV

|

Test speech files| St | S2 | 83 | S4 | S5

-

—A A
Process 0 Process 1 Process 2

Read related files
Find MFCC values, compare with VQ matrix
Find the closest centroid and match the speaker

Figure 3.7. File sharing between Processes, P=3, N=8, M=5

In the example given by Figure 3.7, process 0, and process 1 handles one more file
than process 2, in both training and testing phases. There is an idle time at process 2, so the
execution time will remain almost the same if N=9, and M=6. If there are six files and
three processes, first process handles speakers one and two, second process handles

speakers three and four and the last process handles speakers five and six. Figure 3.8

shows results for such an example run.



First Part:

Process: 0, handle
Process: 1, handle
Process: 2, handle
Process: 0, handle
Process: 2, handle
Process: 1, handle
Second Part: Results
Process 0, finds that
Process 1, finds that
Process 2, finds that
Process 0, finds that
Process 2, finds that
Process 1, finds that

Train each speaker
==>enrolll0/sl.wav
==>enrolll0/s3.wav
==>enrolllo/s5.wav
==>enrolll0/s2.wav
==>enrolll0/s6.wav
==>enrolll0/s4.wav

:Speaker
: Speaker
:Speaker
:Speaker
:Speaker
:Speaker

1
3
5
2
6
4

matches
matches
matches
matches
matches
matches

with
with
with
with
with
with

speaker
speaker
speaker
speaker
speaker
speaker

PN N IR

Figure 3.8.

Run results for 6 files and 3 processors

40
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4. EXPERIMENTS

In this section, we first present measure the effects of various parameters in our
speaker identification framework, which is followed by measuring the performance of
parallel implementations:'The experimental study is based on YOHO corpus using the
ASMA cluster system in Bogazici University, which contains 42 nodes that are connected
with fast Ethernet. We used a set of 16 identical processors (p2-400 nodes with 128 MB
RAM and 6 GB Hard disk) in our studies. |

4.1. Experiments of Serial Implementation

In the first part, we observe the effects of the VQ size, number of filter banks and
threshold value on the performance of our framework. Figlire 4.1 shows effects of VQ' size
for 50 speakers. Increasing number of centroids increases computational complexity and
results with increase in success rate and runmng time. In order to limit the runmng time,

VQ size is set to 16 in our implementation.

-
(4

—e— Success

By888

= =
[=T )]

# of Correctly recognized speakers

o o,

1 2 3 4 8 15 16 31 32 50
# of centroids ’

Figure 4.1. VQ size effect for N=50, M=50

Another parameter is the number of filter banks used in MFCC calculation. In our
system 20 filter banks are used, but different number of filter banks are also tested to see
its effect on runtime and recognition accuracy. For 50 speakers, increasing:thé number of

filter banks up to 30, results in better success rate and less error rate, but there is an
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increase in running time for more than 20 filter banks. Since, there is a decrease in

success rate for more than 30 filter banks, we consider 20 filter banks for the case of 50

speakers, in our experiments. Figure 4.2 gives the normalized results that are obtained by

taking 5 filterbanks as a reference for the value 1.

. 15 —e—# success
o
E 1 —m—#fail
0,5 e e mnning time

5 10 15 20 25 30 40 50
# of filter banks

Figure 4.2. MFCC size effect for 50 speakers

In our identification system there is no threshold value, i.., threshold is infinite;
therefore, the system finds the most similar speaker for the given input. When we set
threshold value, we observe false rejection. Figure 4.3 gives the number of successes,

number of false acceptance and number of false rejections, for the case of 50 speakers by

considering different threshold values.

—e— Success
—m-False Acceptance
- s~ False Rejection

# of speakers

. o & \2) N ™
Q\Q\‘e‘ w w
&
Threshold

Figure 4.3. Effect of threshold value for 50 speakers

Setting threshold value reduces both false acceptance and success rate, but increases
in success for

false rejection. The decrease in false acceptance is higher then the decrease

threshold 4.75 so it seems a suitable threshold value. Using a threshold that produces equal
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false acceptance and false rejection errors is called equal error rate. Results also show that

threshold value 4.75 produces equal error.

4.2. Experiments of Parallel Implementation

Finally several experiments are performed on the cluster system to see effect of
domain decomposition on running time. For parallel implementation, using one processor
causes a slight increase in runtime compared with serial implementaﬁon, because of
additional calculations for. sharing data among prbcessors., The. experiments. on changing

population and cluster sizes result in significant decrease for running time.

Figure 4.4 shows running time cluster size relations in terms of 1000 clocks, while

Figure 4.5 shows the speed up of the tests

120000

100000

—e—for 20 speakers
80000 +
—m—for 40 speakers

60000

Running Times

40000 —3¢— for 80 speakers

+for 100 speakers

20000

0 , .
1 2 4 8 12 16 -

#processors

Figure 4.4. Runtime results for parallel implementation

Load balancing is based on distribution of speaker files, and the number of speakers
per processors in our system and it affects the running time severely. If theré are equal
number of files for each processbr then idle time ‘is minimized and speed up increases, for
example in 8 processors system, test with 40 and 80 speakers show better speed up than

tests with 20,60 and 100 speakers as seen in Figure 4.5.
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—— 1 processor

—@-— 2 processors
- - 4 Processors
—3-— 8 processors

Speed up

—¥— 12 processors
—e— 16 processors

#of speakers

Figure 4.5. Speedup results for parallel implementaﬁon

Also reducing the maximum number of speakers per processor increases speed up,
For 20 speakers using 16 processors does not improve performance compared with using
12 processors, because in both cases maximum number of speakers per processor is two.

Experiments show that parallel implenientation,results with nearly linear speed-up in large

data sets, and good scale up.
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5. CONCLUSIONS

Voice is a popular biometrics that is used in identification purposes, as it is a natural

way of communication and easily collected via a microphone or a phone.

In this thesis, a text independent speaker identification system based on MFCC and -
LBG VQ is presented by considering its parallel and serial implementations. Experiments
are made with a population of 100 people that consists of 28 females and 72 males. The
length of speech segments changes between 1-5 seconds and identification error is about
25% with phone data from YOHO database. In our tests, parallel implementation
outperforms almost linear speed-up and good scale-up for a corpus of 100 speakers, so
problem is considered suitable for parallelism. As the network cost increases severely
using huge numbers of speakers, in this case train step should be divided into smaller sets,

which will be trained step by step.

There are lots alternatives to our speaker verification algorithm as there are various
methods that can be used in speaker modeling and pattem matching steps, so our next step
is to search alternative serial implementations that may result with better recognition rates
and provide their parallel implementations, as well. Also combining other biometrics such
as face recognition with voice identification to strengthen recognition rates may be a

starting point for human-like recognition systems.
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