
WEFLOW: WE FOLLOW THE FLOW

by

Nadin Kökciyan

B.S., Computer Engineering, Galatasaray University, 2009

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2011

iii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Suzan Üsküdarlı for her supervision

and guidance. Your suggestions and encouragement helped me a lot to complete this

initial step in our long journey. I am lucky enough to have had a great supervisor like

you. Thank you for being there when I needed you the most.

TB Dinesh.. I will never forget your endless support. We have still so much to

do! It has always been a pleasure working with you. Thank you for inviting me to

India and to make a big change in my life. I had a great time as an intern in Servelots

where all this story began..

I am also really grateful to Prof. L.G.L.T. Meertens and members of SoSLab

(Complex Systems Lab at Bogazici University) for their feedback and contributions

during this work. This work is partially funded by B.U. Research Fund (BAP5709)

and Turkcell Akademi.

Finally, I am very thankful to my dear sister: Karin Taşkın, my family, and my

dear friends: Seda Çelebican, Swapna Gangadharan, Burcu Akar for their continual

encouragement and support.

iv

ABSTRACT

WEFLOW: WE FOLLOW THE FLOW

Web applications, such as social networking platforms and Web X.0 applications

have transformed average users from consumers to producers of content. While this

transition has been very successful with respect to content, the same can not be said

for behavior generation. Non-savvy Web users have practically no ability to introduce

any behavior on the Web. The computational powers offered by the Web are limited

to those who are in the know or can afford to develop applications. Yet, there are

many simple applications that average users could conceive and utilize if they were

empowered to introduce behavior. This work aims to empower average web users with

the ability to create simple web applications for purposeful communities. We suggest

an environment with information and processes specific to a communities needs, as

opposed to the ad hoc information sharing and coordination achieved via social net-

working platforms, in order to retain the long term value of the generated information.

An interesting class of Web applications are human computation applications, where

tasks are distributed among humans and computers based on their suitability for per-

forming those tasks. Web based human computation applications seem appropriate for

purposeful communities. This thesis presents a framework for the development of hu-

man computation applications for purposeful communities. In order to create such an

environment, we propose a web based workflow framework. The WeFlow Framework,

supports the specification, generation, and execution of community specific virtual en-

vironments. These environments are based on a workflow model, which are defined by

the communities that use them. The environment is based on a workflow model, which

consists of tasks, control and data flow among tasks, and people who perform those

tasks. A WeFlow framework prototype is shown by examples and case studies.

v

ÖZET

WEFLOW: AKIŞ NEREDE BİZ ORADA

Sosyal ağ platformları ve Web X.0 gibi Web uygulamaları, ortalama Web kul-

lanıcılarını bilgi tüketicileri sıfatından içerik yaratan kimlikler haline getirmişlerdir.

İçerik bakımından düşünülürse bu geçiş başarılı gözükse de, aynı şeyi uygulama gidişatı

oluşumu konusunda söylenemez. Ortalama Web kullanıcıları, Web üzerinde uygu-

lama davranışlarını tanımlayacak bilgi birikimine sahip değillerdir. Web’in hesapla-

maya yönelik kuvvetli tarafları, Web bilgi birikimine sahip bilgi teknolojilerini bilen

kişilerce kullanılabilmektedir. Çok basit Web uygulamarı bile ortalama Web kul-

lanıcıları tarafından tanımlanamamaktadır. Bir amaca yönelik bir araya gelen toplu-

luklarda basit Web uygulamaları geliştirilmesi üzere WeFlow platformu geliştirilmiştir.

Her topluluğun farklı hedefleri, farklı veri gereksinimleri ve farklı veri işleme kuralları

vardır. Bu tür gereksinimler mevcut sosyal ağ platformları ile kısmi olarak gerçeklenirken,

WeFlow uzun vadede oluşturulan içerikten anlam çıkarabilmeyi hedeflemektedir. En-

teresan bir diğer uygulamalar insan gücünün kullanıldığı Human Computation alanıdır.

Bu kapsamda, bir iş küçük parçalar haline getirilerek bir akış şeklinde ifade edilmekte-

dir. Bu iş parçaları arasındaki sıra ve verinin akışı, bu iş parçalarının kimler tarafından

yapılacağı tanımlanmaktadır. Amaç bir işi gerçeklemek ve gerekli verinin insan gücü

kullanılarak bir araya getirilmesidir. Bu çalışmada, WeFlow isimli iş akışı modelimizi

öneriyoruz. Sanal ortamdaki kullanıcılar, bu modeli kullanarak Web uygulamalarının

nasıl davranması gerektiğini tanımlayabilecekler. İzlenen yol: (i) iş akışı tanımını

oluşturmak, (ii) iş akışı tanımı doğrultusunda, Web uygulaması üretmek, (iii) iş akışı

tanımı doğrultusunda, Web uygulamasını yürütmek, izlemek ve yönetmektir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . x

LIST OF TABLES . xvii

LIST OF ACRONYMS/ABBREVIATIONS . xviii

1. INTRODUCTION . 1

2. BACKGROUND . 5

2.1. Web Evolution . 5

2.2. Social Web Applications . 6

2.3. Virtual Communities . 8

2.4. Human Computation . 8

2.4.1. Genres of HCOMP . 9

2.4.2. Main Incentives to Participation 10

2.5. A Brief Overview of Workflows . 11

3. RELATED WORK . 12

3.1. Sociological Aspect . 12

3.2. Pantoto Project . 12

3.3. Facebook API . 14

3.4. Workflow Management Systems . 14

3.4.1. Workflow Languages . 16

3.5. Yahoo! Pipes . 17

4. PROPOSED MODEL . 21

4.1. WeFlow Components . 22

4.2. Terminology . 22

4.3. Workflow . 23

4.4. Task . 24

4.5. WeFlow Task Types . 27

4.5.1. Basic Task . 27

vii

4.5.2. Conditional Task . 29

4.5.3. DoAll Task . 30

4.5.4. Repetition Task . 30

4.5.5. Collective Task . 32

4.5.6. Composite Task . 34

4.5.7. Data Task . 35

4.6. WeFlow People . 35

4.6.1. Role Based . 35

4.6.2. Individual Based . 35

4.7. WeFlow Flow Aspects . 36

4.7.1. Control Flow . 36

4.7.2. Data Flow . 37

4.7.2.1. Input Mappings . 37

4.7.2.2. Human Input Mappings 40

4.7.2.3. Output Mappings . 42

4.8. WeFlow Application Generator . 46

4.8.1. Mapping Data Types to HTML Elements 47

4.8.2. Representing a Human Task on Web 47

4.8.3. Generating a Web Application 49

4.9. WeFlow Application Execution . 49

4.9.1. Data Layer . 49

4.9.2. Web Server . 50

4.9.3. WeFlow Execution Engine . 50

4.9.3.1. Instantiation . 50

4.9.3.2. State Handling . 50

4.9.3.3. Control Flow Handling 50

4.9.3.4. Task Handling . 50

5. IMPLEMENTATION . 51

5.1. WeFlow Specification Handler . 51

5.1.1. WeFlow Specification Language 52

5.1.2. General Description . 53

viii

5.1.2.1. Tasks . 54

5.1.2.2. Basic Task . 56

5.1.2.3. Conditional Task . 56

5.1.2.4. DoAll Task . 60

5.1.2.5. Repetition Task . 61

5.1.2.6. Collective Task . 63

5.1.2.7. Composite Task . 64

5.1.3. Control Flow Description . 65

5.1.4. Data Flow Description . 65

5.1.5. Human / Groups Description 68

5.1.6. Specification Handler Methods 70

5.2. WeFlow Data Handler . 71

5.2.1. A Python Object Database: ZODB 71

5.2.2. Specification Data Handler . 71

5.2.3. Application Data Handler . 72

5.3. WeFlow User Handler . 72

5.4. WeFlow Application Generator . 72

5.4.1. HTML Data Generator . 73

5.4.2. Application Template Generator 73

5.5. WeFlow Execution Module . 74

5.5.1. State Handler . 75

5.5.2. Task Handler . 75

5.5.3. Control Flow Handler . 75

5.5.4. Instantiator . 75

5.6. WeFlow Tasklist Handler . 79

5.7. WeFlow Administration . 79

5.8. Logger . 79

6. USE CASES . 80

6.1. A Human Computation Web Application: CoStory 80

6.1.1. CoStory Specification . 80

6.1.2. CoStory Web Application Generation 81

ix

6.1.3. CoStory Web Application Execution 81

6.2. A Human Computation Web Application: Hisarustu Accessibility . . . 83

6.2.1. Hisarustu Accessibility Specification 83

6.2.2. Hisarustu Accessibility Web Application Generation 85

6.2.3. Rumelihisarustu Web Application Execution 85

6.3. A Simple Web Application for Personal Use: Jack Summing Integers . 86

7. DISCUSSION AND FUTURE WORK . 92

8. CONCLUSION . 94

APPENDIX A: WEFLOW SPECIFICATION FOR COSTORY 95

REFERENCES . 99

x

LIST OF FIGURES

Figure 2.1. Evolution of Web. 5

Figure 2.2. reCaptcha Example. 11

Figure 2.3. Future Sophisticated Captchas. 11

Figure 3.1. A Facebook Application: PhotoGrab. 15

Figure 3.2. Top 10 Movies Trailer. 19

Figure 3.3. Top 10 Movies Trailer Output. 20

Figure 4.1. WeFlow Framework. 22

Figure 4.2. An Example Workflow. 24

Figure 4.3. A Generic Task. 27

Figure 4.4. Basic Task. 28

Figure 4.5. IfElse Task. 29

Figure 4.6. Case Task. 30

Figure 4.7. DoAll Task. 31

Figure 4.8. A Generic Repetition Task. 32

xi

Figure 4.9. Semantics of Repetition Task t1. 33

Figure 4.10. Control Flow in a Repetition Task. 33

Figure 4.11. A Generic Collective Task. 34

Figure 4.12. Composite Task. 34

Figure 4.13. Control Flow Example 1. 37

Figure 4.14. Task Input Mappings. 38

Figure 4.15. Specification of Two Tasks. 39

Figure 4.16. After execution of Generate Numbers Task. 39

Figure 4.17. Data Mappings between Two Tasks. 39

Figure 4.18. Mapping Data to Sum Integers Task. 39

Figure 4.19. Supertask Input Mappings. 40

Figure 4.20. Human Input Mappings. 41

Figure 4.21. put Channel Operation. 42

Figure 4.22. get Channel Operation. 42

Figure 4.23. Sum Integers Task. 42

Figure 4.24. Task Performer Providing Data. 43

xii

Figure 4.25. Outmappings within a Task. 43

Figure 4.26. Outmappings within a Task. 44

Figure 4.27. Outmappings in a Repetition Task. 44

Figure 4.28. Outmappings in a Collective Task. 45

Figure 4.29. Outmappings in a DoAll Task. 45

Figure 4.30. Sum Integers Task Mapping. 46

Figure 4.31. Sum Integers Task after mapping. 46

Figure 4.32. Tag a Bird Picture Human Task. 48

Figure 4.33. WeFlow Web Application Stack. 49

Figure 5.1. WeFlow Implementation Architecture. 52

Figure 5.2. XML Representation Example. 53

Figure 5.3. WeFlow Specification Structure. 53

Figure 5.4. Defining Workflow Information. 54

Figure 5.5. Defining Workflow Information Example. 54

Figure 5.6. WeFlow Specification Structure with Tasks. 55

Figure 5.7. WeFlow Specification: Task. 56

xiii

Figure 5.8. WeFlow Specification: Basic Task. 56

Figure 5.9. WeFlow Specification: IfElse Task Skeleton. 57

Figure 5.10. WeFlow Specification: DoAll Task. 58

Figure 5.11. WeFlow Specification: Choice Task Skeleton. 59

Figure 5.12. WeFlow Specification: Choice Task. 60

Figure 5.13. WeFlow Specification: DoAll Task Skeleton. 61

Figure 5.14. WeFlow Specification: DoAll Task. 62

Figure 5.15. WeFlow Specification: Repetition Task Skeleton. 62

Figure 5.16. WeFlow Specification: Repetition Task. 63

Figure 5.17. WeFlow Specification: Collective Task Skeleton. 64

Figure 5.18. WeFlow Specification: Collective Task. 64

Figure 5.19. WeFlow Specification: Control Flow Skeleton. 65

Figure 5.20. WeFlow Specification: Control Flow. 65

Figure 5.21. WeFlow Specification: Data Flow Skeleton. 66

Figure 5.22. WeFlow Specification:Data Flow Input Mappings Skeleton. 67

Figure 5.23. WeFlow Specification:Data Flow Input Mappings. 67

xiv

Figure 5.24. WeFlow Specification:Data Flow Output Mappings Skeleton. . . . 68

Figure 5.25. WeFlow Specification:Data Flow Output Mappings. 69

Figure 5.26. WeFlow Specification:Resourcing Skeleton. 69

Figure 5.27. WeFlow Specification:Resourcing. 70

Figure 5.28. Algorithm for app state handler method. 76

Figure 5.29. Algorithm for call task method. 77

Figure 5.30. Algorithm for get next construct method. 78

Figure 6.1. CoStory – A Human Computation Web Application. 81

Figure 6.2. CoStory – Starting the Web Application. 82

Figure 6.3. CoStory – Starting a Story. 82

Figure 6.4. CoStory – Updating a Story. 83

Figure 6.5. CoStory – Finishing a Story. 84

Figure 6.6. CoStory – Displaying Finished Story. 84

Figure 6.7. Rumelihisarustu Specification. 85

Figure 6.8. Rumelihisarustu – Workflow Ready to Start. 87

Figure 6.9. Rumelihisarustu – Choose Task. 87

xv

Figure 6.10. Rumelihisarustu – Share Item. 87

Figure 6.11. Rumelihisarustu – Show Items. 88

Figure 6.12. Rumelihisarustu – Update Item. 88

Figure 6.13. Rumelihisarustu – Control Item. 88

Figure 6.14. Rumelihisarustu – Show Item. 89

Figure 6.15. Rumelihisarustu – List Items. 89

Figure 6.16. Rumelihisarustu – Show Items II. 89

Figure 6.17. Jack – summing integers. 89

Figure 6.18. Code for Generate Numbers Task. 90

Figure 6.19. Code for Compute Sum Task. 90

Figure 6.20. Code for Compare Task. 90

Figure 6.21. Jack – Do Sum Operation. 90

Figure 6.22. Jack provides an answer. 91

Figure 6.23. Jack – Notify User Task. 91

Figure A.1. Workflow Information for for CoStory. 95

Figure A.2. Task Information for CoStory. 96

xvi

Figure A.3. Resourcing Information for CoStory. 97

Figure A.4. Mappings Information for CoStory. 98

xvii

LIST OF TABLES

Table 4.1. WeFlow Data Types. 25

Table 4.2. Task Types with Corresponding Shapes. 28

Table 4.3. Mapping Data Types to HTML Elements. 47

Table 5.1. Mapping Data Types to web.py Form Elements. 73

xviii

LIST OF ACRONYMS/ABBREVIATIONS

API Application Programming Interface

CAPTCHA Completely Automated Public Turing test to tell Computers

and Humans Apart

CMS Content Management System

FOSCMS Free and Open Source Content Management System

GWAP Game with a Purpose

HCOMP Human Computation

HCR Human Character Recognition

HTML HyperText Markup Language

IT Information Technology

KCVC Knowledge Collection from Volunteer Contributors

NGO Non-Governmental Organization

OCR Optical Character Recognition

WWW World Wide Web

1

1. INTRODUCTION

The use of Web is so integral to daily life in many regions of the world that not

having access to it would seriously limit the quality of life. In other regions more and

more people are getting connected. The Web has changed how people access services

such shopping, banking, entertaining themselves, communicating, learning and much

more. Web users have been transformed from mere consumers to also being producers

of content thanks to Web 2.0 applications. Over time, the Web experience became

interactive. In another words, Web 2.0 applications were interacting with other Web

2.0 applications in order to interchange data and also with users willing to share content.

Virtual communities are social groups where people forms webs of personal re-

lationships in cyberspace [1]. Members of virtual communities share common inter-

ests, ideas and feelings through communication platforms. Communication platforms

such as online groups, blogs [2], wikis [3], Facebook1 and Twitter2 provide means for

contributing (sharing, rating, tagging) multimedia content, creating discussions and

organizing activities. The nature of how people use these applications greatly vary.

Example uses are chit-chat style communication, serious discussions, accessing infor-

mation, disseminating information and organizing activities.

Initial Web users primary served as consumers of content and services. They

were just looking at static webpages, and browsing from one page to another without

making any contribution to webpages. Web 2.0 applications changed the nature of Web

by making it participatory and inclusive such that there was an explosive growth in the

number of users, i.e. content producers. Moreover, end users have began producing

content at an increasing rate.

User participation and collective activity are increasingly handled via Web ap-

plications. As the Web is a distributed environment, Web applications enable commu-

1http://www.facebook.com
2http://www.twitter.com

2

nication among distributed users. In another words, users share information through

Web applications which distribute this information to other users. By using Web ap-

plications, a user could keep track of the most recent activities (notifications, invites,

subscriptions, friend requests) in the community, discuss on a specific topic, share multi-

media content (pictures, videos, music) and arrange meetings. Beyond these activities,

it is important to accomplish more complex activities that users can help computers to

create solutions for coordinating, communicating and managing collective efforts [4, 5]

because there is a need for tools that help creating applications appealing purposeful

communities. Such tools may be used to utter the seemingly most trivial minutiae to

coordinating highly useful disaster response activities.

While the transition from a consumer to a producer of Web content has been

quite successful, there remain some serious shortcomings. For one, users have little

control over the structure and access to their contributions. In another words, their

contributions are not presented in a structured manner but in a free form. And thus,

it makes difficult to find relevant information, manage information and make any sense

of it. While users can make content contributions, they can rarely define syntactic

or semantic aspects of this information. Furthermore, they have virtually no impact

on how their contributions get used. For random conversations these limitations may

be of no consequence, however, for communities of purpose these limitations greatly

diminish the utility of the Web, since its computational powers are not accessible to the

end user. There is a strong need for powerful and flexible environments, customizable

to the culture, skills and needs of very diverse non IT savvy people [6].

The Web is a great platform for distributed computation, i.e. solving a problem

in a collaborative way. A problem may be decomposed in subproblems and distributed

to various Web participants to make it solved. Web participants may be human or

automated agents. Moreover, the inclusion of humans in the computation cycle have

been introduced by many collaborative applications like Wikipedia as well as human

computation applications [7, 8]. These applications demonstrate the ability to achieve

impressive results by including humans in the computation cycle (since they are so

good at performing impressive tasks). These applications, however, were conceived

3

and implemented by pretty Information Technology (IT) savvy people. End users who

are not IT savvy have virtually no influence on the behavior of Web, in that they can

not define applications. Obviously, programming is not a trivial task even for IT savvy

people. In [9], Nardi defines the semantics of end-user programming as empowering

end-users with the ability to customize and adapt a software system according to their

needs in order to increase efficiency of the work being performed. Allowing to realize

end-user programming systems with minimal effort and in a natural way is subject to

active research [6, 10,11].

Most recently communication through Facebook and Twitter have demonstrated

the appeal of such platforms to create solutions for coordinating, communicating and

managing collective efforts. However, these efforts are usually ad hoc, address present

time and excessively rely on human computation. An interesting class of Web applica-

tions are human computation applications, where tasks are distributed among humans

and computers based on their suitability for performing those tasks. Since users already

make use of social networking systems to communicate and coordinate activities such as

responding to disasters and coordinating activities, support for user generated human

computation applications seems very appropriate. This study presents a framework for

user generated human computation applications. Unlike the coordination of activities

via social networking platforms, such applications are dedicated to a specific purpose,

support the acquisition of application-specific data, and coordinate participation.

In this work, a community defined workflow model is developed as it is not always

possible to find IT specialists to work with, especially for small communities. Addi-

tionally, it is not always desired to get support from IT specialists who may perform

incorrectly due to their lack of domain knowledge. Non IT savvy people need to create

collaborative environments, accomplish required tasks on their own, create and manage

knowledge for their needs. And thus, it is important to empower non IT savvy people

with the ability to define Web application behavior.

In this study, mainly focus is on the area of Human Computation, i.e. users

are solving a problem by collaborating with computers. While human computation

4

is helpful in some tasks, it is not the most effective in many others. Some computa-

tions, which take time for humans to solve, can be easily carried out by computers

and/or vice versa. However, in addition to a communication platform, there is little

support for enabling a technology to define computational processes which are required

to reach targeted goals. Hence, a workflow model of specifying human computation

applications for the Web, WeFlow, is proposed that can be used by virtual community

members to specify Web application behavior desired in their community. Both human

and computer processes are involved in this model. Through the use of such specifi-

cations, community members define ad hoc workflows in a web-based environment to

create, manage and accomplish tasks according to their community needs. Given such

specifications, Web applications can be generated preserving the semantics of those

specifications. WeFlow model helps online communities to use the Web for collective

activity and it empowers Web users to carry out envisioned applications that would

serve their needs.

In proposed approach, a workflow is defined in terms of the tasks, the people,

and the control/data flow among tasks. The framework, WeFlow, proposes a human

computation specification language, an application generator, and an execution engine

for running applications. A prototype is implemented and case studies using that

prototype are developed for purposes of demonstration.

The remainder of the thesis proceeds as follows. In Chapter 2, background in-

formation related to this study is explained. In Chapter 3, related work from various

fields is provided. In Chapter 4, proposed model is detailed with various examples.

In Chapter 5, WeFlow framework implementation is explained in terms of its compo-

nents. In Chapter 6, two human computation web application use cases are presented.

In Chapter 7, a brief discussion of future work is introduced. And finally, conclusion

of this study is provided in Chapter 8.

5

2. BACKGROUND

This chapter provides an overview of the important technologies that are relevant

to this work. Section 2.1 gives a brief description of the Web and explains its current

use. Section 2.3 describes virtual communities and the Social Web. Section 2.4 dis-

cusses human computation and its benefits with some examples. Section 2.5 briefly

describes the workflow concept.

2.1. Web Evolution

Web is a commonly used as an abbrevation for World Wide Web (WWW). Web

consists of a huge set of hyperlinked documents. Figure 2.1 shows the evolution of Web

and its associated technologies.

Figure 2.1. Evolution of Web [12].

The Web started by hosting hyperlinked documents. The documents were written

with HTML (Hypertext Markup Language), which enabled the description of document

structures and links to other HTML documents. A collection of such documents formed

web sites, which often belonged to institutions and companies. These documents were

6

static, stored on Web and was presented to interested audience through Web browsers.

Users passively consumed content in these pages. The information offered by these

webpages was a read-only information for web users, and could only be modified by

owner of these webpages. And this idea became obsolete once Web 2.0 emerged.

With Web 2.0 (Social Web), the Web became a participatory platform where

users can join, create and share information in a collaborative and collective way in

virtual communities. So interactivity is a key point of this stage of WWW. Rather

than being consumers of information, users became creators of user-generated content

and also consumers of their information, i.e. users are prosumers now. Most commonly

known examples are social networking sites, blogs, wikis, video and/or picture sharing

sites and so on.

With Web 3.0 (Semantic Web), the goal is to provide information not only for

people but also for machines. One of the big problems that Web users encounter with

is the overload of information on Web, and it is difficult to find only what a Web user

is really looking for. Web 3.0 offers a machine readable format to query Web in a

more efficient way. Current stage is Web 3.0, and geeks already started to envision

about Web 4.0 which is predicted to be about avatar-based virtualization, i.e. creating

representatives of people on virtual worlds [13].

2.2. Social Web Applications

With Web 2.0 (Social Web), the Web became a participatory platform where users

can join, create and share information in a collaborative and collective way. Social web

applications are widely used by end users, e.g., Facebook is one of the biggest virtual

communities and has more than 750 million active users, as of August 2011 [14, 15].

Furthermore, community members use these applications to meet their community

needs. For example, they coordinate activities to deliver goods for earthquake victims,

organize meetings, broadcast useful information to the world and so on. Social web

applications such Facebook, Twitter are for general use and offer limited capabilities

to search and process information. Thus, they are not sufficient to retain the long term

7

value of the generated information useful for purposeful communities.

There are other online social platforms that promote collaboration and collective

work. Social network applications such as groups Yahoo groups3 , Google Groups4 ,

blogs [2], wikis [3] are part of daily life to collaborate and publish content. As the Web

enables a distributed platform, all these applications enjoy the benefit of this platform.

The high usability of these applications shows that such systems are successful and

promote sharing and collaboration in communities.

Groups are online spaces where people with a shared interest meet and commu-

nicate over email and on the Web. Google Groups and Yahoo Groups are free and

popular in this field and they provide a repository to upload documents, photos etc.,

archive all shared messages and enable people to organize events. Blogs are online

personal spaces where people update it from time to time in order to publish content

without doing any programming. A research conducted by A. Nardi [2] shows that

blogs are mostly written by ordinary people. Wikis are websites that allow people

to create and update any number of web pages. Only the current version of a web

page is displayed, and all pages are owned by group of people rather than individuals.

There are various wiki systems and one of them is Semantic Wiki [16] which enables to

structure data within a page and the relationships between pages resulting in semantic

processing.

Social networking applications like Facebook [15] and Twitter have further fueled

user participation [17]. The nature of how people use these applications greatly vary.

For example, some use them for chit-chat style communication, some for accessing or

disseminating information, some for organizing activities. The use of Facebook and

Twitter has increased the rate and quantity to an incredible level. Such tools are

used to utter the seemingly most trivial minutiae to coordinating highly useful disaster

response activities [4, 5].

3http://groups.yahoo.com/
4http://groups.google.com/

8

On the other hand, Virtual Communities are dedicated to specific topics. Ad hoc

topics are specified by purposeful communities [1], and community members discuss

about specific contexts. As other Social Web Applications, Virtual Communities are

useful to get short term value of the generated content. Virtual Communities are

discussed in next section.

2.3. Virtual Communities

In Section 2.1, concept of Social Web is discussed briefly. People want to pursue

mutual goals or interests and this is why they tend to be part of virtual communities.

Virtual communities are social groups where people start public discussions which form

webs of personal relationships in cyberspace [1]. Virtual communities are just like

real life communities because they both provide support, information, friendship and

acceptance between people who mostly do not know each other previously [18]. Virtual

Communities are usually dispersed geographically, and depend on social interaction

between community members.

Virtual Communities have their own online spaces to communicate with other

members. Such online spaces are developed by IT skilled people according to com-

munity needs. Members are mostly talking about specific contexts such birdwatching,

cuisine, snakes and so on. In all these contexts, there is an ad hoc vocabulary that is

used or emerged over time.

2.4. Human Computation

HCOMP is an abbreviation used for Human Computation in Human Computa-

tion workshops. HCOMP is a computational process in which some steps are performed

by humans. By harnessing human time and energy, large-scale computational problems

that are challenging for computer programs but trivial for humans are solved [8].

In traditional computation, humans are not part of the computational process,

i.e. they are the ones providing formalized problem descriptions to computers in order

9

to receive solution(s) for that specific problem [19].

HCOMP is a type of [20] :

• Collective Intelligence: In the context of HCOMP, a computational process is

performed by a group of people, i.e. a solution for a problem is obtained by

collaborative efforts of many people doing things that seem intelligent [21].

• Crowdsourcing: HCOMP technique is outsourcing tasks to a group of people.

2.4.1. Genres of HCOMP

HCOMP is widely applied to many fields, to get a better understanding of

HCOMP, some genres of HCOMP are listed below [22]:

• GWAP Players perform some computation in order to get a score. So GWAP 5

players are motivated by the fun the game provides, but they also provide useful

computation as a side effect. Luis von Ahn published the first work on GWAP

in his PH.D. thesis.

• Crowdsourcing: Unpaid volunteers do explicitly defined tasks, and there is no

obligation for volunteers to continue a task.

• Mechanized Labor: Contrary to crowdsourcing, volunteers are paid to do some

predefined tasks.

• Wisdom of Crowds: Crowd intelligence is the key concept. Different individual

judgments are aggregated in order to make a correct judgment.

• Grand Search: In this genre, people are supposed to find a correct answer solving

a given problem.

• Human-based Genetic Algorithms: Humans can contribute solutions to problems

and all functions of a typical genetic algorithm(initialization, mutation and re-

combination) are performed by humans.

• KCVC: The aim is to improve machine learning algorithms by using volunteers’

knowledge to build large databases of common sense facts.

5http://www.gwap.com/gwap/

10

2.4.2. Main Incentives to Participation

Computer programs do not need incentives to compute a given problem. Unlike

computer programs, humans have to be motivated in order to accomplish a task which

is part of a large-scale problem. Some incentives are as the following [19,20]:

• Volunteerism: People want to support a cause/project, and they work on behalf

of others. As an example, Wikipedia 6 is an open source software that everyone

can contribute, i.e. Wikipedia get strong through collective intelligence.

• Monetary Compensation: Unlike volunteers, some people work in computational

process for money. As an example, Amazon Mechanical Turk7 is an online mar-

ketplace for work. Workers can choose a suitable task to complete for a monetary

payment.

• Fun: While having fun, people produce useful data as a side effect. As an exam-

ple, ESP game8 is a GWAP which aims labeling images. Two random people are

trying to label a same image with some tags and get points for matched tags.

• Others: Sometimes there is a need to identify a user from an automated agent to

prevent spamming activites on websites. As an example, CAPTCHA asks a ques-

tion which is easy for a human but difficult to solve for a computer. CAPTCHA

method is widely used to gather useful data from users, a comics can be seen in

Figure 2.3.

reCAPTCHA9 is another system which is trying to digitize books where a human

is supposed to recognize words from old scanned books. These words are difficult

to be identified by OCR [23] technique, so HCR is a complementary method to

OCR. Figure 2.2 displays a reCAPTCHA example. In this example, the word

“morning” is not recognized by OCR. reCAPTCHA picked the word, transformed

it to another object adding a line through it, and then presented it as a challenge

to a human. Another word for which the answer was known (“overlooks”) was

also shown to decide whether the user entered the correct answer.

6http://en.wikipedia.org
7https://www.mturk.com/mturk/welcome
8http://www.gwap.com/gwap/gamesPreview/espgame/
9http://www.google.com/recaptcha/learnmore

11

Figure 2.2. reCaptcha Example.

Figure 2.3. Future Sophisticated Captchas (See http://geekandpoke.typepad.com/).

2.5. A Brief Overview of Workflows

A workflow comprises a sequence of connected tasks which are carried out by

humans/machines, according to a workflow definition. Workflow engines enable the

automation of the workflow, i.e. it interprets the workflow definition, distribute tasks

to workflow participants in order to achieve business goals [24,25].

12

3. RELATED WORK

3.1. Sociological Aspect

Some research is done about communities in sociology field. In a work of Cole-

man [26], human capital and social capital are emphasized. Human capital is created

by changes in persons as they get new skills and capabilities to act in new ways. In

another words, human capital includes the skills and knowledge gathered in formal and

informal learning. However, social capital is based on changes in the relations among

persons and facilitates the learning and use of these skills and knowledge [27]. Human

capital and social capital faciliate productive activity. In [28], social capital is defined

as an accumulation of the knowledge in purposeful communities. And the paper con-

cludes that social capital can only ‘exist’ if it is somehow able to be produced. Hence,

it gives us the idea that people have to be somehow able to handle collective work in

order to produce human capital and social capital.

3.2. Pantoto Project

The Pantoto project is an open source content management system following a

community based approach, and enabling an easy to use technology for communities

to build their identity on web and manage community information. Pantoto stores

information in a structured manner, hence it offers efficient searching capabilities. Over

the last several years, Pantoto has been deployed in various small-scale organisations

like CHIREC10 , SAATHI11 and artisan groups, mostly in Southern India [29–31].

Applications developed by these organisations clearly show the appeal of such platforms

to create solutions for coordinating, communicating and managing collective efforts.

In Pantoto, community members are encouraged to structure their own data.

Thus, Pantoto allows communities to search better an information in order to process

10A K12 school in Hyderabad, India
11A community concerning the HIV infection in India

13

it, and Pantoto also enables getting long term value from generated information by

the community itself. Pantoto is used by purposeful communities and enables a col-

laborative environment to work with people. Web pages, Pagelets, are specified by

community members, authorization is defined through the use of Views, i.e. it helps

describing roles, Personas, that can see and modify Pagelets.

Some important features of Pantoto are as the following:

• Community knowledge is managed without software developer support.

• Pantoto enables content and document management via forms which is simple to

create and maintain.

• As the information is structured, it is possible to query data collected from users

and have better results than querying unstructured data.

• Pantoto provides a role based access control for sharing information via forms.

It is important to define how, when and by whom information can be created or

altered.

Pantoto is similar to WeFlow in many aspects: (i) the audience is purposeful

communities, (ii) web applications are specified by community members, (iii) units of

work are described, Pagelets in Pantoto and Human Tasks in WeFlow, (iv) units of

work are done by specified roles, Personas in Pantoto and Roles in WeFlow, (v) human

computation is used to achieve a community goal. Pantoto is different from WeFlow

because (i) there is no explicit way to describe workflows, execute them and distribute

units of work to community members, (ii) all computation is done by humans thus

computational powers of computers cannot be used, (iii) it doesn’t allow to interact

with external systems. The most powerful part of Pantoto is its data model. It enables

to create user defined data which is very important to specify in purposeful commu-

nities. Such a robust data model is missing in WeFlow and its integration is part of

future work.

14

3.3. Facebook API

Facebook has introduced an Application Programming Interface (API) for devel-

oping Facebook applications, whereby users are able to develop and deploy applica-

tions12 . Such applications are disseminated in the usual Facebook viral manner. The

support for user defined applications has been very successful, every day 20 million

applications are installed on Facebook by developers [15].

Although Facebook API is designed to be used by its users, it is mostly used by

developers as technical programming skills are needed. Facebook applications are web

applications created by IT savvy people and these applications are used by Facebook

users. There is no way to specify a workflow explicitly, but Facebook API compares to

WeFlow in terms of generated output. Both aims to generate a web application to be

used by an unknown group of people on Web in a collaborative environment.

An example application can be seen in Figure 3.1. This game, PhotoGrab, is

built by using Facebook API. It is a social game where users are asked to upload some

pictures from their Facebook albums to create their own PhotoGrab application13 .

Then, friends of this user are asked to recognize given patterns in pictures defined by

the application owner.

3.4. Workflow Management Systems

Sometimes a collective work is broken down into small pieces and distributed to

various people within a community, which may be managed through the use of work-

flows. In order to define workflows and use them as applications, Workflow Manage-

ment System (WMS) is needed. A WMS defines, creates and manages the execution of

workflows using a software as defined by Workflow Management Coalition (WfMC)14 .

WMSs are widely used by enterprises to achieve business goals. These systems provide

workflow descriptions specified according to some business needs which are mostly de-

12http://developers.facebook.com
13http://apps.facebook.com/photograb
14http://www.wfmc.org/

15

Figure 3.1. A Facebook Application: PhotoGrab.

scribed with Business Process Execution Language (BPEL) [32]. IBM Business Process

Management (BPM) Suite and Oracle BPM Suite are the leading industrial solutions

available in the market [33, 34].

These softwares are private, very costly, difficult to customize and thus not ap-

propriate to be used by communities. YAWL, jBPM, Ruote, Enhydra Shark are open

source products available on Web. YAWL [35, 36] is the most widely used BPM envi-

ronment and enables users to specify complex workflows. In a research conducted by

Wil.M.P [37], patterns-based evaluation of jBPM [38], OpenWFE (now Ruote) [39],

and Enhydra Shark [40] is provided. This report shows that the range of constructs

supported by the three systems is somewhat limited in terms of control-flow, data

and resourcing perspective. In addition, OpenWFE do not offer documentation for

its graphical notation, jBPM requires Java programming, and Enhydra Shark offers

desirable functionality such administration and user functionality in a closed-sourced

version. And authors conclude that these open source systems are more towards de-

velopers than towards business/software analysts. Thus, these open source workflow

16

systems are mostly complex, difficult to customize, and offer centralized workflow mod-

eling capabilities for IT savvy people.

WMSs are similar to WeFlow in many aspects: (i) a work is described in terms

of a workflow, (ii) web tasks are generated according to human task specification, i.e.

a task has typed input and output variables and it is mapped to Web to be executed

by humans, (iii) tasks may be performed by automated agents or humans, (iv) human

tasks are executed based on roles or individuals: in WMSs it is possible to assign a task

to a specific person whereas in WeFlow, it is possible to refer to a person executing some

specific task and this is because in WeFlow, tasks are distributed among a group of

unknown people. WMSs are different from WeFlow because (i) they are not appropriate

for purposeful communities as they are complex enough, (ii) workflows are specified by

business analysts, (iii) security is a main issue in WMSs as opposed to WeFlow where

non secure critically purposes are specified, (iv) in companies, employees are known as

well as their roles. Thus, tasks are distributed among a known group of people.

3.4.1. Workflow Languages

There are various languages designed based on different formalisms which inspired

us to build WeFlow Specification Language. YAWL extends Petri nets capabilities in

order to describe workflows and is used by YAWL workflow system [36, 41]. This

language is complete in terms of workflow patterns defined by Workflow Patterns Ini-

tiative [42] but is complex enough to be used by an average user. Occam [43, 44] is a

simple parallel programming language to express concurrency. In Occam, concurrency

is expressed explicitly at the statement level which is a natural and easy way to ex-

press [45]. Occam language constructs are similar to WeFlow Specification Language

components. SMAWL is a small workflow language based on Calculus on Communi-

cation Systems (CCS) which remains as a conceptual language [46]. In this language,

data and human task definitions are out of the scope and thus is not suitable to express

community needs. There are also some efforts made to introduce a workflow model

based on π-Calculus into Pantoto project [47].

17

Most of these languages are covering many workflow patterns. WeFlow aims to

generate human computation web applications based on workflow idea, thus it doesn’t

aim to be a complete workflow language but a simple language to be used by community

members. So, basic control-flow(sequence, parallel split, synchronization, exclusive

choice, simple merge), data(task data, multiple instance data) and resource(role-based

distribution) patterns are supported [42].

3.5. Yahoo! Pipes

Yahoo Pipes15 enables users to create mashups using content on the Web. A

mashup is an application that uses and combines data from other sources to create new

services. Yahoo Pipes offers a visual editor letting end users to create mashups without

having to write code. Pipes are useful for aggregating and manipulating existing data

such as feeds. In addition, pipes can be published for the use of others and can also be

created for personal use, Private Pipes.

Creating mashups is done by piecing together pre-configured modules. Modules

are grouped into categories based on their functionality. Sources category consists of

modules fetching data from other resources by parsing CSV, XML/JSON, RSS feeds.

User Inputs category consists of modules helping in defining parameters for pipes,

and these parameters are set by the user running the pipe before execution of a pipe.

Input modules are used to get structured data such date, location, number, text, URL

from the user running the pipe. Operators category consists of modules helping in

transforming and filtering data coming from other resources. Operators modules only

work with a list of items in CSV, XML/JSON or RSS feed format.

Yahoo Pipes, like WeFlow, are meant to be accessible to non savvy IT users.

The WeFlow editor has not yet been implemented. It is, of course, a critical part of

the framework, which is currently being designed. The most significant difference is

that WeFlow aims to support collaborative applications for purposeful communities.

It would be possible to utilize Yahoo Pipes in terms of creating useful web services for

15http://pipes.yahoo.com/pipes/

18

WeFlow applications.

Yahoo Pipes is also similar to WeFlow in many aspects: (i) units of work are

defined, module in Yahoo Pipes and tasks in WeFlow, (ii) work is defined based on

workflow, i.e, control flow and data flow are defined between units of work, (iii) data

related to units of work is defined as typed variables, (iv) control flow is defined by

wiring modules together, and data flow is defined between any modules according to

appropriate data types, i.e, a text field may be mapped to another text field. Yahoo

Pipes is different from WeFlow because: (i) pipes are for personal use only, once

published they become accessible on Web. Pipes may be used by other users, in

this case the pipe is duplicated in order to be used by other users, (ii) there is no

interaction between Yahoo Pipes users, i.e. it is not a collaborative environment, (iii)

only predefined modules can be used on the other hand, WeFlow supports user defined

tasks, (iv) once a pipe is running, it is not interrupted by a user. A user can only

provide parameters before running a pipe. In WeFlow, humans are interrupting the

workflow at execution time, (v) modules are executed by automated agents but in

WeFlow, tasks are mostly performed by humans, (vi) output of a pipe is always a list

of items but in WeFlow output of a workflow is defined by the specifier of the workflow,

(vii) pipes are not running applications. Pipes are executed on demand thus there is

no data collection related to running pipe.

In Figure 3.2, a Yahoo Pipe application, Top 10 Movies Trailer, is depicted. This

pipe gets top ten movies from Rotten Tomatoes16 and then use Youtube17 to get the

movie trailer for each movie. Fetch Feed construct extract information from a URL,

Loop construct gets title of a movie and then extract trailer information from Youtube,

and Pipe Output construct shows the result as a list of movies, see Figure 3.3. In a

recent work [48], authors try to observe end-user programming behaviors in Yahoo

Pipes and they conclude that users employ only a small number of constructs that

Pipes offers to them. In another words, users compose simple pipes consisting of only

three or four constructs. This work shows the necessity to develop an environment

16Rotten Tomatoes is a website devoted to reviews, information, and news of films
17http://www.youtube.com/

19

to make creation of workflows simple and let users use it effectively to address their

community needs.

Figure 3.2. Top 10 Movies Trailer.

20

Figure 3.3. Top 10 Movies Trailer Output.

21

4. PROPOSED MODEL

In purposeful communities, community members would like to create places where

they can come together according to their community needs. Web is a great platform

to collaborate with people from all around the world, thus community members need

web applications to use. Developing web applications is a trivial task for community

members who mostly lack technical skills, and such web applications are developed

by IT savvy people. And this is even true for simple web applications that any per-

son could think of. WeFlow aims to empower community members to develop their

own web applications. As humans are involved mostly in these applications and core

computation is done by them, main focus is on specifying human computation web

applications.

Communities have a purpose to achieve and this purpose is the actual work to

be done by community members. This work is broken down into small units of work,

tasks, to be performed by people. Relationships among these tasks have to be defined

in order to accomplish this work, the community purpose. In WeFlow, workflow model

is considered in order to specify such a work.

In this study, mainly focus is on the area of Human Computation, i.e. users

are solving a problem by collaborating with computers. A workflow model of speci-

fying human computation applications for the Web, WeFlow, is proposed and virtual

community members can use it to specify Web application behavior desired in their

community.

Through the use of workflow specifications, community members define ad hoc

workflows in a web-based environment to create, manage and accomplish tasks ac-

cording to their community needs. Given such specifications, Web applications are

generated preserving the semantics of these specifications. Our model helps online

communities to use the Web for collective activity and it empowers Web users to carry

out envisioned applications that would serve their needs. Proposed approach is as the

22

following: (i) define a workflow specification, (ii) generate a Web application given such

specification and (iii) monitor and manage this application by preserving specification

semantics.

WeFlow Framework is depicted in Figure 4.1. Workflow specification, WeFlow

Specification, consists of the description of collective work to be done, and it is provided

by the Specifier. The Specifier is an ordinary person who wants to define a human com-

putation web application. Starting from a WeFlow Specification, a human computation

web application is generated by WeFlow Application Generator. The workflow engine,

WeFlow Execution Engine, executes this web application and distributes tasks to work-

flow participants preserving the semantics of given specification. Note that WeFlow

Execution Engine runs many human computation web applications. For the purposes

of clarity, workflow participant interactions are only depicted for one executing web

application.

Figure 4.1. WeFlow Framework.

4.1. WeFlow Components

4.2. Terminology

In this section, we briefly describe some basic terms.

23

• Task: It describes a unit of work that may need to be performed as part of a

workflow.

• Workflow: It is composed of tasks that need to be performed to achieve a workflow

goal.

• Workflow Specification: It describes workflow behavior by defining which tasks

should be performed by whom using which data, under which conditions and in

which order.

• Workflow Instance: A specific instantiation of a workflow that needs to be per-

formed.

• Task Instance: A specific instantiation of a task that needs to be performed as

part of a given workflow instance.

In the next section, we detail these fundamental terms.

4.3. Workflow

A workflow represents a collective work which is broken down into tasks. Tasks

are connected to each other by control flows. The transfer of work between two tasks

is done through a control flow. In a workflow, set of control flows specifies how tasks

are to be ordered. The data transfer between tasks is done through data flows. In a

workflow, set of data flows specifies how data is moved from one task to another.

In Figure 4.2, an example workflow is shown. Note that tasks are depicted as rect-

angles, control flows as unidirectional arrows and data flows as unidirectional dashed

arrows. This example shows that once execution of task 1 is completed, control is

passed from task 1 to task 2, and from task 2 to task 3. In Section 4.7, flow aspects

will be detailed.

There is a unique first task, Start Task, and may be multiple end tasks in a

workflow, End Tasks. Start Task is the first task to run, and End Task(s) is/are last

task(s) to run in a given workflow instance. In Figure 4.2, task 1 is the Start Task and

there is only one End Task depicted, task 3. In another words, after the execution of

24

Figure 4.2. An Example Workflow.

task 3, this workflow terminates.

4.4. Task

A task specifies the smallest unit of work in a workflow. There are two types of

tasks in terms of who performs the task: (i) human, (ii) automated. Each task which

requires human intervention (getting data from, displaying information to) is a Human

Task, Automated Task otherwise.

Hence, a task may be carried out:

• manually by a human, Human Task :

(i) If a human task has inputs but no outputs, it means that input data will be

showed to the human, Human is a consumer

(ii) If a human task has both inputs and outputs, it means that human will pro-

vide inputs according to the human task description, Human is a prosumer

• automatically by a software application, Automated Task

(i) The body of code to be executed can be coded by a savvy computer user.

(ii) Predefined automated tasks from the library can be used, i.e. the body of

code is ready to execute.

(iii) External services such as Web services can be used.

Each task specification consists of the specification of the following:

• Inputs: A task may have several inputs which are represented as WeFlow typed

25

Table 4.1. WeFlow Data Types.

WeFlow Data Type Used for

Text textual data

URL url data

Date date data

Email email data

Integer integer number data

File file data

Password password data

Hidden hidden data

Image image data

Paragraph few lines of text data

Choice selecting only one of a limited number of choices

Multiple Choice selecting one or more options of a limited number of choices

Checkbox selecting one or more options of a limited number of choices

Radio selecting only one of a limited number of choices

26

variables, see Table 4.1.

There are two types of inputs in terms of from where values are received:

(i) task input variables receive values from previously performed tasks.

(ii) human input variables receive values from a human performing the task.

• Behavior: For Human Tasks, the behavior is specified in terms of a description

that includes:

(i) textual directions that inform the user what they are expected to perform,

e.g., “Tag the given picture”

(ii) zero or more task input variables, which are values provided by previously

performed tasks, e.g., “Upload $number $animal pictures”. number and

animal are task input variables.

(iii) one or more human input variables, which are values to be provided by

the person performing the task, e.g., “Provide a tag $tag for this picture

$picture”. tag is a human input variable hence expecting some value from

a human, and picture is a task input variable having its value coming from

a previously performed task.

Note that the sign $ is a special character pointing to the value of a variable and

further details about how to display a human task’s description will be discussed

in Section 4.8.

For Automated Tasks, the behavior is specified in terms of a description that in-

cludes textual directions describing the task to be performed.

• Outputs: A task may have zero or more output variables which are also rep-

resented as typed variables, see Table 4.1. The value of an output variable is

formulated in terms of the task input and human input variables. This formula-

tion will be detailed in Section 4.7.2.

In Figure 4.3, an example task is depicted. This task has m task input variables,

n task output variables and p human input variables. Task input variables are getting

their values from previously performed tasks, human input variables are set by the

27

human performing this task, and output variables are sending their values to following

tasks.

Figure 4.3. A Generic Task.

In Table 4.2, task types and corresponding shapes are represented. These shapes

will be used in further figures.

There are various preconfigured task types which are defined in Section 4.5.

4.5. WeFlow Task Types

4.5.1. Basic Task

It represents a single task to be performed and can not be divided into subtasks.

A Basic Task is depicted as Figure 4.4. If the task performer is human, a human figure

is added to the task figure.

28

Table 4.2. Task Types with Corresponding Shapes.

Task Types

Basic

Conditional

Repetition

Collective

Composite

Figure 4.4. Basic Task.

29

4.5.2. Conditional Task

There are various types of Conditional Task. These types require the use of a

Conditional Expression to satisfy and choose an appropriate task to execute.

A Conditional Expression is an expression in the form of a triple: <literal, oper-

ator, literal>. Operator should be one of: <, >, =, <=, >=, !=. A literal may be a

value received from previously performed tasks or a hand coded value by default. For

example, “$a >5”, “$a != $b”, “1 == 2” are all valid conditional expressions.

• IfElse Task provides a choice between two tasks (t1, t2) based on satisfiability of

the Conditional Expression. If it is satisfied t1 is executed, t2 otherwise. This

behavior is depicted in Figure 4.5. Depending on the Conditional Expression, one

of subtasks (t1, t2) will be executed.

Figure 4.5. IfElse Task.

• Choice Task provides a choice between multiple tasks (t1, t2, .. ,tn) based on

value that gets the Conditional Expression after its evaluation. According to this

value, one of these tasks is executed. Note that this is a deterministic choice. This

behavior is depicted in Figure 4.6. Depending on the Conditional Expression, one

of subtasks (t1, t2, ..., tn) will be executed.

30

Figure 4.6. Case Task.

4.5.3. DoAll Task

It requires a set of tasks, and all tasks have to be executed in parallel which is

the implicit condition. In Figure 4.7, a generic DoAll Task is depicted. In this figure,

DoAll Task is a supertask and has n subtasks denoted as t1, t2, ..., tn. Note that this

supertask will be completed once all its subtasks are executed.

4.5.4. Repetition Task

Repetition Task has a Conditional Expression to satisfy, and a task to repeat

while this condition is satisfied.

At each repetition step, a new instance of the task to be repeated is created

i.e. Repetition Task allows to run multiple instances of a task sequentially until its

Conditional Expression is satisfied.

31

Figure 4.7. DoAll Task.

Conditional Expression has at least one variable, and may have multiple variables.

These variables are initialized by Repetition Task’s inputs(task inputs and/or task

human inputs). After each repetition step, these variables are updated by Repetition

Task’s inputs which in its turn are updated by outputs of the task to be repeated.

Thus, data mappings between the task to be repeated and Repetiton Task’s inputs

should be defined. Note that there should be at least one input mapping(mapped

variable should also be a conditional expression variable), from the repeated task to

the Repetition Task, i.e. from subtask to supertask, in order to prevent infinite loop

cases.

In Figure 4.8, a generic Repetition Task is depicted. t1 is the Repetition Task,

and t2 is the task to be repeated while the condition is fulfilled.

The semantics of t1 is detailed in Figure 4.9. Data flow aspects are also shown

in the algorithm. All input mappings for t2 are coming from its supertask, t1. All

variables for the conditional expression are also t1’s variables, i.e. t1’s inputs ⊇ exp’s

variables. Note that data mappings are not shown on the figure for the purposes of

clarity. In Section 4.7.2, data flow aspect will be detailed.

For a Repetition Task, control flow semantics for Figure 4.8 are depicted in Fig-

32

ure 4.10. Note that control passes from t0 to t1, which is the Repetition Task. While

its condition is fulfilled, control is passed to t2, once t2’s execution is done, t1 takes

the control and so on. If the condition is not fulfilled, t1’s execution is done and next

task, t3, takes the control of the workflow. In Section 4.7.1, control flow aspect will be

detailed.

Figure 4.8. A Generic Repetition Task.

4.5.5. Collective Task

It is a supertask, containing a subtask, and allows to run multiple instances of

the subtask concurrently. The output of a Collective Task is an array including output

values coming from each subtask instance, i.e. it collects data from all executing

subtask instances. After each execution of a subtask, this subtask’s output values are

appended to supertask’s output array (See Section 4.7 for data flow definition). The

number of instances may be specified as infinite or a finite number. In infinite case,

a new instance of the subtask is created at every request to execute the subtask and

the workflow never terminates unless the Specifier terminates it. A Collective Task is

depicted as Figure 4.11. t1 is a Collective Task, and t2 is its subtask. t2 is executed

several times, and t2’s outputs are appended to t1’s output arrays.

33

Require: exp of type Conditional Expression, t2 of type Task

call DoInputMappings with t1

for each variable v in exp’s variables do

v ⇐ v of t1

end for

while exp do

call DoInputMappings with t2

call t2

call DoOutputMappings with t2

call DoInputMappings with t1

for each variable v in exp’s variables do

v ⇐ v of t1

end for

end while

call DoOutputMappings with t1

Figure 4.9. Semantics of Repetition Task t1.

Figure 4.10. Control Flow in a Repetition Task.

34

Figure 4.11. A Generic Collective Task.

4.5.6. Composite Task

It’s a set of connected tasks, thus a container of a subflow. When a Composite

Task is started, it passes control to the first task of the subflow, and after execution

of this subflow, Composite Task takes the control back. After that, the execution of

the main flow continues as specified. A Composite Task is depicted as Figure 4.12.

Composite Task includes a subflow starting with t1 and terminated by tn. Once the

execution of this subflow is done, control flow is owned by Composite Task, and data

mappings from subflow to Composite Task are done.

Figure 4.12. Composite Task.

35

4.5.7. Data Task

Data task is used to define relations between a task and data model. It helps

to store some data, or retrieve some data given a query. Data task allows its users to

explicitly specify which data to store or retrieve and enables data persistency within

WeFlow Framework.

4.6. WeFlow People

In Section 4.4, task properties have been described. A workflow may consist

of a number of human/automated tasks. For human tasks, the Specifier has to de-

scribe which participants should be doing the work, i.e. people should have sufficient

permission to perform human tasks.

4.6.1. Role Based

In WeFlow Framework, workflow participants have roles and each human task is

associated with one or more roles. Thus, each human task may be performed by one

of specified roles.

For example, assume that Jack have roles such manager and member in a WeFlow

web application. In this case, Jack may perform all tasks which are specified to be

executed by manager and member roles.

4.6.2. Individual Based

It is also possible to refer to a task performer in order to let another task to be

executed by the same performer. In another words, it is possible to say something like:

“Task B has to be executed by the same person who executed Task A”. Note that as

WeFlow aims to generate human computation web applications which will be executed

by unknown users, tasks cannot be assigned to specific users.

36

4.7. WeFlow Flow Aspects

So far, it was explained how to define tasks and people to perform these tasks.

In this section, flow perspective of workflows will be discussed. There are two flow

aspects: (i) control flow, (ii) data flow.

As mentioned in section 4.2, tasks are attached one to another via control flows

in a workflow. In a workflow instance, task instances have to be executed in a specific

order and this order defines control flow aspect of a workflow. In a workflow, data is

mobile and moving from one task to another. A task uses some input data and may

create some output data. Hence, data may be incoming to a task or outgoing from

a task. And this data moving from one task to another defines data flow aspect of a

workflow.

WeFlow takes care of control flow and data flow aspects of a workflow. In following

sections, these flow aspects will be detailed.

4.7.1. Control Flow

In a workflow, tasks have to be executed in a specific order and this sequencing

in which work needs to be done is the control flow aspect of a workflow.

In Figure 4.13, there are three tasks: A, B and C. Two control flows are shown

on the figure, one from task A to task B, and another one from task B to task C. Once

task A completes, control is passed to task B. Note that control cannot pass from task

A to task C because there is no control flow between these tasks. In this example,

control flow is a simple sequence: first A, then B and then C.

Control flow semantics for different types of tasks will be explained in Section 4.5

37

Figure 4.13. Control Flow Example 1.

4.7.2. Data Flow

In a workflow specification, data flow is a declarative definition of data movement

within and between tasks. In another words, data is mapped to task variables via data

mappings. According to data mapping information, a task is instantiated and executed.

At execution time, a task has to be initialized in terms of its inputs, i.e. data

required to do the work has to be mapped to task input variables, and a task has to be

finalized in terms of its outputs, i.e. produced data has to be mapped to task output

variables. This data perspective defines data flow aspect of a workflow. In addition,

task initialization and finalization operations are done by the WeFlow Execution Engine

which will be detailed in Section 4.9.

As detailed in Section 4.2, a task has input and output variables. Task input

variable values are mapped from previously performed tasks, human task input vari-

able values are set by human performers and task output variables are formulated in

terms of task inputs. There are three types of data mappings: (i) task input mappings,

(ii) human input mappings and (iii) output mappings.

Note that $ sign is pointing to the value of a variable and will be used in data flow

examples.

4.7.2.1. Input Mappings. These are data mappings between different tasks. Before

execution of a task t, data required to do the work is mapped to t’s task input variables.

This data should come from previously performed tasks or if t is a subtask, it should

38

come from its supertask (Repetition Task, Collective Task, DoAll Task), human input

variable values are provided by the task’s performer. Note that task input variable

values of a subtask are always provided by its supertask.

In Figure 4.14, input mapping behavior is depicted. Data is coming from outside

of the task and mapped to task input variables. Note that for each task input variable,

an input data mapping is needed. Hence, m mappings are shown in this figure.

Figure 4.14. Task Input Mappings.

In Figure 4.15, two tasks are depicted: Generate Numbers and Sum Integers.

Generate Numbers task has no input variables and two output variables (no1, no2)

and is an Automated Task which computes two integers. Sum Integers task is a Human

Task, has two task input variables (no1, no2), one human input (ans) and one output

variable, res. Note that there is one control flow between these two tasks.

At execution time of Sum Integers task, Sum Integers task input variables are

initialized by received values from Generate Numbers task which is previously executed.

2 and 3 are computed values by Generate Numbers task, see Figure 4.16. This mapping

from one task to another one is called an input mapping and is depicted as dashed

arrows in Figure 4.17. Sum Integers task input variables are then initialized by 2 and

3, see Figure 4.18.

39

Figure 4.15. Specification of two tasks: Generate Numbers and Sum Integers.

Figure 4.16. After execution of Generate Numbers Task.

Figure 4.17. Data Mappings between two tasks.

Figure 4.18. Mapping data to Sum Integers task.

40

In Figure 4.19, a supertask-subtask data relation is depicted. t1 is a supertask

and t2 is its subtask, t2’s input mappings are shown with dashed arrows. t1’s input

variable values are mapped to t2’s input variables. Note that, in this figure t1 is a

Repetition Task. For Collective Task and DoAll Task input mappings are done in a

same way.

Figure 4.19. Supertask-Subtask Input Mappings: Repetition Task Case.

4.7.2.2. Human Input Mappings. These are data mappings between a human task and

a human. At execution time of a task t, human data is mapped to t’s human input

variables. In Figure 4.20, this behavior is depicted. For each human input variable, a

data mapping is defined. In the figure, p data mappings are shown and human provides

data for these human input variables.

Communication between humans and human tasks are done through the use of

channels. A channel provides an infrastructure to pass and collect data from humans.

There are two channel operations:

• put(ch, desc) is used to put a task description desc in channel ch

• get(ch, d) is used to get data d from channel ch

A channel is created at execution time of a human task to communicate with the task

41

Figure 4.20. Human Input Mappings.

performer. First, put operation is invoked and task description is sent to the task

performer via this channel. Then, another channel is created to invoke get operation

in order to get data provided by the task performer.

For example, let’s take a human task with a description desc like “Provide a tag

$tag for this picture $picture”. In this description, tag is a human input variable and

picture is a task input variable which takes its value from a previously performed task.

A channel channel1 is created, and a put operation is invoked by put(channel1,desc),

see Figure 4.21. desc is shown to the human who in his turn provides a value for tag

human input variable. Then, another channel channel2 is created in order to get tag

value by invoking get(channel2, tag) operation, see Figure 4.22. This is how human

data is mapped to task’s human input variable tag.

Let’s consider Sum Integers task mentioned in previous section, see Figure 4.23.

In previous section, remember that no1 was computed as 2 and no2 as 3. Now, task

performer has to provide a value for human input variable ans. Through channel

42

Figure 4.21. put Channel Operation.

Figure 4.22. get Channel Operation.

communication, data is received from task performer and mapped to ans which is

depicted in Figure 4.24.

Figure 4.23. Sum Integers Task.

4.7.2.3. Output Mappings. These are data mappings occuring within a same task or

between different tasks. The idea is mapping data to output variables of tasks.

These data mappings may be:

• within same task Input variable values may directly be mapped to output vari-

able values, e.g., “$o1 ← $i1” where input i1’s value is assigned to o1’s value, or

evaluated expressions which uses input variable values may be mapped to output

43

Figure 4.24. Task performer providing data.

variable values, e.g.,“$o1 ← $i1 + $i2” where input i1 and input i2 values are

concatenated and the result value is assigned to output o1’s value.

In Figure 4.25, direct mappings are are as the following: $on ← $i2, $o1 ← $hi1.

Whereas in Figure 4.26, a more complex expression is assigned to output variable:

$o2 ← $i1 + $hi1.

Figure 4.25. Direct output mapping.

• between different tasks If output data mappings occur from t2 to t1, then t1 is a

supertask (Repetition Task, Collective Task, DoAll Task) and t2 is its subtask.

If t1 is a Repetition Task, then last executed t2’s output values are mapped to t1’s

44

Figure 4.26. More complex expression mapping to output.

output values. In Figure 4.27, last executed t2’s output values are mapped to t1’s

output values: t1.$o2 ← t2.$o1, t1.$o1 ← t2.$o2 and t1.$on ← t2.$on.

Figure 4.27. Outmappings in a Repetition Task.

If t1 is a Collective Task, then for each executed t2, t2’s output values are appended

to t2’s output array. In Figure 4.28, t2’s output values are appended to t1’s output

values: t1.$o2
append←−−−− t2.$o1, t1.$o1

append←−−−− t2.$o2 and t1.$on
append←−−−− t2.$on.

If t1 is a DoAll Task, then t2’s output values are mapped to t1’s output variables.

In Figure 4.29, t2’s and t3’s output values are mapped to t1’s output values:

t1.$o2 ← t2.$o1, t1.$o1 ← t2.$o2, t1.$on−2 ← t2.$on, t1.$on−1 ← t3.$on and t1.$on

← t3.$o2.

45

Figure 4.28. Outmappings in a Collective Task.

Figure 4.29. Outmappings in a DoAll Task.

46

Let’s take again our Sum Integers Task example. In Figure 4.23, task input

variables were initialized by 2 and 3. While task instance was executing, human input

variable value got the value 5 from the human, see Figure 4.30. And this human input

value was mapped to human input variable. And now, this human input variable will be

mapped to output variable, res, see Figure 4.30. After data mappings, value of output

variable becomes 5, see Figure 4.31. This example combines all three data mappings

(Input Mappings, Human Input Mappings, Output Mappings) that were discussed in

this section.

Figure 4.30. Sum Integers Task doing mappings.

Figure 4.31. Sum Integers Task after Execution.

4.8. WeFlow Application Generator

This section focuses on how to generate a human computation web application

given such WeFlow Specification which includes tasks, people and data flow informa-

tion.

47

Table 4.3. Mapping Data Types to HTML Elements.

WeFlow Data Type HTML Element

Text <input type=“text”>

URL <input type=“url”>

Date <input type=“date”>

Email <input type=“email”>

Integer <input type=“number”>

File <input type=“file”>

Password <input type=“password”>

Hidden <input type=“hidden”>

Image

Paragraph <textarea>

Choice <select>

Multiple Choice <select multiple=“multiple”>

Checkbox <input type=“checkbox”>

Radio <input type=“radio”>

4.8.1. Mapping Data Types to HTML Elements

In Section 4.4, it was mentioned that a task may have zero or more task/human

input variables and output variables which are both represented as typed variables.

In order to represent a task on Web, these variables should be mapped to HyperText

Markup Language (HTML) elements. In Table 4.3, corresponding HTML5 elements

are listed. Note that new input types offered by HTML5 are also listed [49].

4.8.2. Representing a Human Task on Web

In order to perform a human task, a human performer should know information

about the human task which is provided by the task’s description. As previously

discussed, a task’s description may include textual information and/or references to

task input/human variables. In a task’s description, referenced variables are marked

with a $ sign which is a special character pointing to the value of variables. Task

48

description is the interface between a human task and its task performer.

A task description is represented on Web as the following:

• textual information is displayed as text, e.g., “Tag the given picture”

• each referenced task input variable is replaced by its value.

For example, if task description is “Upload $number $animal pictures”. In this

description, number and animal are task input variables. Thus, $number will

be replaced by its value as received from another task, and same for $animal.

Finally, this description will look like as “Upload 4 bird pictures” if $number is

equal to 4, and $animal is equal to “bird”.

• each referenced human input variable is replaced by a corresponding Web input

method as described in the previous section.

For example, if task description is “Provide a tag $tag for this picture $picture”.

In this description, tag is a human input variable, and picture is a task input

variable. Thus, value of picture variable is shown to the user who provides a

value for tag variable. If $picture is a bird picture coming from a previously

performed task, this bird picture is shown to the user who should provide a tag

for it. In Figure 4.32, this behavior is depicted. Note that picture variable is of

WeFlow data type “image”, and thus it corresponds to a HTML img element;

tag human input variable is of WeFlow data type “text”, thus it corresponds to

a HTML input element as described in Table 4.3.

Figure 4.32. Tag a Bird Picture Human Task.

49

4.8.3. Generating a Web Application

In the previous section, it was discussed how to represent a human task on Web.

A workflow consists of many tasks, and for each human task a Web page will be

generated in terms of task description. The collection of these generated web pages

will handle human interaction part and collect data from humans. Note that the

execution semantics are not bind in this web application and are controlled by WeFlow

Execution Engine which will be detailed in next section.

4.9. WeFlow Application Execution

In Section 4.8, it was detailed how to generate human computation web applica-

tions. In this section, execution semantics of these web applications will be discussed.

In Figure 4.33, WeFlow web application stack is depicted. Each of these layers will be

described in following sections.

Figure 4.33. WeFlow Web Application Stack.

4.9.1. Data Layer

Data layer is the very bottom layer of WeFlow Web Application Stack. Data may

come from (i) WeFlow Specifications, (ii) running human computation web applica-

tions, or external services such web services. WeFlow specifications have to be stored

and/or fetched. WeFlow’s running web applications provide valuable information that

have to be kept and managed by workflow participants. This layer handles all data

related operations, and provides data to upper layers.

50

4.9.2. Web Server

Web server is the bridge between Data layer and WeFlow Execution Engine. The

main role of web server in this stack is to run the WeFlow Execution Engine.

4.9.3. WeFlow Execution Engine

WeFlow Execution Engine is the core of WeFlow framework. As discussed earlier,

WeFlow Application Generator generates human computation web applications given

WeFlow specifications. The execution of these Web applications is handled by this

engine. Main roles of this engine are as the following:

4.9.3.1. Instantiation. After that a WeFlow Specification is loaded to the WeFlow

framework, a human computation web application gets ready to start and may be

instantiated by this engine. WeFlow Execution Engine also instantiates tasks by doing

required data mappings, i.e. (human) input mappings and distributes tasks to workflow

participants.

4.9.3.2. State Handling. By this way, at any time, it enables to track workflow par-

ticipants’ activities and also web applications’ current state.

4.9.3.3. Control Flow Handling. Hence it enables to move the control from one task

to another. In a workflow, next task to be executed is computed by this engine.

4.9.3.4. Task Handling. In another words, task executions are invoked by this engine.

According to the performer of a task, it calls automated or human tasks for execution.

After completion of a task execution, it does required data mappings, i.e. output

mappings and updates current state information of the workflow.

51

5. IMPLEMENTATION

Our prototype is implemented in Python18 language. Python runs on any oper-

ating system, is free to use and has an OSI-approved open source license. It has a very

good documentation powered by Python community, and widely used in implementing

web applications.

WeFlow Framework supports generation of human computation web applications

running on WeFlow Execution Engine. In Section 4.9, execution semantics were de-

tailed and web application stack was depicted. Data layer is based on ZODB [50]

object database which will be explained is Section 5.2. web.py [51] is the python web

server environment that WeFlow Execution Engine is based on. web.py is a Python

web framework which is simple and powerful. It has clear semantics to understand and

use.

Our prototype includes several important modules that will be detailed in fol-

lowing sections. They are depicted in Figure 5.1. Note that arrows show “uses” rela-

tionship between modules. For example, WeFlow Application Generator uses WeFlow

Specification Handler and so on. Each module has a specific section to be discussed

and it will be referred to this architecture in order to clarify relationships between

modules.

5.1. WeFlow Specification Handler

In Section 5.1.1, WeFlow Specification Language implementation details will be

discussed. A human computation web application is described in terms of this spec-

ification and uploaded to WeFlow Framework. It works together with WeFlow Data

Handler and WeFlow User Handler. In Section 5.1.6, Specification Handler module

methods will be explained.

18http://www.python.org/

52

Figure 5.1. WeFlow Implementation Architecture.

5.1.1. WeFlow Specification Language

In Section 4.2, workflow components of our model were introduced. In order

to specify a human computation web application, WeFlow Specification Language is

developed using eXtensible Markup Language (XML), i.e. workflow components are

described in XML structure.

XML is chosen because it is the most common tool for data transmissions between

various applications. XML is designed to carry data and enables interoperability for

all sort of applications. And most importantly, XML is a W3C recommendation [52].

There are no predefined tags to store data as seen in HTML tags, one must define

own tags in order to keep data. XML is self-descriptive and mostly human readable.

In Figure 5.2, an example of XML document is represented. XML tags are book, name

and author, and isbn is an XML attribute giving information about book tag. In this

example, it is clear that the name and the author of a book is represented.

Each WeFlow specification starts with a <WeFlow> tag and terminates with a

</WeFlow> tag. In the following of this section, for each workflow component related

53

<book isbn=‘978-0452284234’>

<name>Nineteen Eighty Four</name>

<author>George Orwell</author>

</book>

Figure 5.2. XML Representation Example.

XML structure will be explained. Note that all these components are defined between

<WeFlow> and </WeFlow> tags, see Figure 5.3.

<?xml version="1.0" encoding="UTF-8"?>

<WeFlow>

.

all other workflow related information goes here

.

</WeFlow>

Figure 5.3. WeFlow Specification Structure.

5.1.2. General Description

A workflow is created for a specific purpose, and it is possible to introduce textual

information about the workflow itself. Note that for a better understanding, XML

structure of workflow components will be followed by concrete examples.

In Figure 5.4, XML structure of a workflow information is depicted. A WeFlow

specification has some XML tags:

• a description tag to define description of a workflow,

• a name tag to provide a workflow name,

• a start task tag to define starting task of a workflow by providing task id attribute,

• a final tasks tag which is a bag for various final tasks. Each final task is defined

with a final task tag by providing task id attribute.

54

<name>...</name>

<description>...</description>

<start_task id="..."/>

<final_tasks>

<final_task id="..."/>

.

.

</final_tasks>

Figure 5.4. Defining Workflow Information.

Workflow information of a human computation web application, CoStory, is de-

picted in Figure 5.5. Note that provided information is self-descriptive. In another

words, this application’s name is CoStory: Writing Collaborative Stories, its descrip-

tion is Ready to create collaborative stories? Start using CoStory now!, its start task is

create story, and there is one final task, show story.

<name>CoStory: Writing Collaborative Stories</name>

<description>

Ready to create collaborative stories? Start using CoStory now!

</description>

<start_task id="create_story"/>

<final_tasks>

<final_task id="show_story"/>

</final_tasks>

Figure 5.5. Defining Workflow Information Example.

5.1.2.1. Tasks. Workflow tasks are defined between <tasks> and </tasks> tags. Each

task is described between <task> and </task> tags. Thus main skeleton of WeFlow

Specification Language becomes as Figure 5.6.

55

<?xml version="1.0" encoding="UTF-8"?>

<WeFlow>

.

<tasks>

<task>...</task>

.

.

</tasks>

.

</WeFlow>

Figure 5.6. WeFlow Specification Structure with Tasks.

In Figure 5.7, XML structure of a general task is depicted. Each task has some

XML attributes:

• an id attribute which is a unique name identifying a task,

• performer attribute which is either human or auto,

• type attribute which is one of basic, conditional, repetition, collective and com-

posite.

Each task has some XML tags:

• a name tag representing the name of a task,

• a description tag representing the task description,

• a params tag which is a bag for input and output variables of a task. Each

variable is described with a param tag which has some attributes such type which

is either input or output, name which is the variable name, and datatype which

is the data type of the variable.

Depending on the task type, there are additional XML tags and attributes. For

various types of tasks, see Section 4.2, additional XML tags and attributes for these

tasks will be explained.

56

<task id="..." performer="..." type="...">

<name>...</name>

<description>...</description>

<params>

<param type="..." name="..." datatype="..."/>

.

.

</params>

</task>

Figure 5.7. WeFlow Specification: Task.

5.1.2.2. Basic Task. In Figure 5.7, all XML tags and attributes for a Basic Task are

depicted. Note that task type is set as basic. In Figure 5.8, a basic human task example,

create story, is shown. Its name and description is provided, it has four variables: two

input variables and two output variables.

<task id="create_story" performer="human" type="basic">

<name>Create Story</name>

<description>

Your story title is: $title And start your story: $story

</description>

<params>

<param type="input" name="title" datatype="text"/>

<param type="input" name="story" datatype="textarea"/>

<param type="output" name="new_story" datatype="textarea"/>

<param type="output" name="s_title" datatype="text"/>

</params>

</task>

Figure 5.8. WeFlow Specification: Basic Task.

5.1.2.3. Conditional Task. Conditional Task model was detailed in Section 4.5.2, and

there are three conditional task types: (i) IfElse Task and (ii) Choice Task. Each

conditional task has type attribute equal to condition.

57

(i) In Figure 5.9, XML structure of a IfElse Task is depicted. Each IfElse Task has

some XML attributes:

• subtype attribute which is equal to ifelse.

• performer attribute which is equal to auto or human.

Each IfElse Task has some XML tags:

• a exprs tag which is a bag for conditional expressions. Each expression

is described via three XML tags: condition, then and else. condition tag

has three attributes operand1, operator and operand2, which represent a

conditional expression. then and else tags have a taskid attribute used to

refer to a task.

<task id="..." performer="..." type="condition" sub="ifelse">

<name>...</name>

<description>...</description>

<params>

<param type="..." name="..." datatype="..."/>

.

.

</params>

<exprs>

<expr>

<condition operand1="..." operator="..." operand2="..."/>

<then taskid="..."/>

<else taskid="..."/>

</expr>

</exprs>

</task>

Figure 5.9. WeFlow Specification: IfElse Task Skeleton.

A IfElse Task example, check condition, is shown in Figure 5.10. As mentioned in

its description, this task is used to check given conditional expression, “$param1

> $param2”. It has two variables: two input variables. One of the two tasks,

show human result and show auto result , is executed depending on the satisfia-

58

bility of the conditional expression.

<task id="check_condition" performer="auto" type="condition" sub="ifelse">

<name>Check sum operation results..</name>

<description>check the condition</description>

<params>

<param type="input" name="param1" datatype="integer"/>

<param type="input" name="param2" datatype="integer"/>

</params>

<exprs>

<expr>

<condition operand1="$param1" operator=">" operand2="$param2"/>

<then taskid="show_human_result"/>

<else taskid="show_auto_result"/>

</expr>

</exprs>

</task>

Figure 5.10. WeFlow Specification: DoAll Task.

(ii) In Figure 5.11, XML structure of a Choice Task is depicted. Each Choice Task

has some XML attributes:

• subtype attribute which is equal to case.

• performer attribute which is equal to auto or human.

Each Choice Task has some XML tags:

• expr tag is a container for the conditional expression. Conditional expression

is described via condition tag. condition tag has three attributes operand1,

operator and operand2, which represent a conditional expression.

• a tasklist tag which is a bag for various tasks. Each task is referred using a

toTask tag with task id attribute specified.

A human Choice Task example, check condition, is shown in Figure 5.12. As

mentioned in its description, this task is used to choose between tasks. It has

one variable: one input variable. One of the two tasks, show human result and

show auto result , is executed depending on the human choice which is the con-

59

<task id="..." performer="..." type="condition" subtype="case">

<name>...</name>

<description>...</description>

<params>

<param type="..." name="..." datatype="..." />

.

.

</params>

<expr>

<condition operand1="..." operator="..." operand2="..."/>

<tasklist>

<toTask id="..."/>

.

.

</tasklist>

</expr>

</task>

Figure 5.11. WeFlow Specification: Choice Task Skeleton.

60

ditional expression, $param1.

<task id="check_condition" performer="human" type="condition" sub="case">

<name>Check sum operation results..</name>

<description>Choose one the following tasks:</description>

<params>

<param type="input" name="param1" datatype="integer"/>

</params>

<expr>

<condition operand1="$param1" operator="" operand2=""/>

<tasklist>

<toTask id="show_human_result"/>

<toTask id="show_auto_result"/>

</tasklist>

</expr>

</task>

Figure 5.12. WeFlow Specification: Choice Task.

5.1.2.4. DoAll Task. In Figure 5.13, XML structure of a DoAll Task is depicted. Each

DoAll Task has some XML attributes:

• performer attribute equal to auto,

• subtype attribute which is equal to doall.

Each DoAll Task has some XML tags:

• a tasklist tag which is a bag for various tasks. Each task is referred using a toTask

tag with task id attribute specified.

A DoAll Task example, do sum, is shown in Figure 5.14. As mentioned in its

description, this task is used to do the sum operation of two integers. It has four

variables: two input variables and two output variables. There are two tasks to execute

61

<task id="..." performer="auto" type="condition" subtype="doall">

<name>...</name>

<description>...</description>

<params>

<param type="..." name="..." datatype="..."/>

.

.

</params>

<tasklist>

<toTask id="..."/>

.

.

</tasklist>

</task>

Figure 5.13. WeFlow Specification: DoAll Task Skeleton.

as specified in its tasklist, do sum operation and do sum auto.

5.1.2.5. Repetition Task. Repetition Task model was detailed in Section 4.5.4. In

Figure 5.15, XML structure of a Repetition Task is depicted. Each Repetition Task has

some XML attributes:

• performer attribute equal to auto,

• type attribute equal to repetition.

Each Repetition Task has some XML tags:

• expr tag is a container for the conditional expression. Conditional expression is

described via condition tag. condition tag has three attributes operand1, operator

and operand2, which represent a conditional expression. The task to be repeated

is described via repeat tag where taskid is specified.

62

<task id="..." performer="auto" type="condition" subtype="doall">

<name>Do Sum</name>

<description>this function sum two integers..</description>

<params>

<param type="input" name="no1" datatype="integer"/>

<param type="input" name="no2" datatype="integer"/>

<param type="output" name="result" datatype="integer"/>

<param type="output" name="result2" datatype="integer"/>

</params>

<tasklist>

<toTask id="do_sum_operation"/>

<toTask id="do_sum_auto"/>

</tasklist>

</task>

Figure 5.14. WeFlow Specification: DoAll Task.

<task id="..." performer="auto" type="repetition">

<name>...</name>

<description>...</description>

<params>

<param type="..." name="..." datatype="..."/>

.

.

</params>

<expr>

<condition operand1="..." operator="..." operand2="..."/>

<repeat taskid="..."/>

</expr>

</task>

Figure 5.15. WeFlow Specification: Repetition Task Skeleton.

63

A Repetition Task example, rep update story, is shown in Figure 5.16. As men-

tioned in its description, this task is used to repeat update story task. It has three

variables: two input variables and one output variable. The conditional statement is

$is finished != ‘yes’, and while this condition is satisfied, update story task is repeated.

<task id="rep_update_story" performer="auto" type="repetition">

<name>repeat</name>

<description>repeat update story task</description>

<params>

<param type="input" name="story" datatype="textarea"/>

<param type="input" name="is_finished" datatype="yes/no"/>

<param type="output" name="result_story" datatype="textarea"/>

</params>

<expr>

<condition operand1="$is_finished" operator="!=" operand2="’yes’"/>

<repeat taskid="update_story"/>

</expr>

</task>

Figure 5.16. WeFlow Specification: Repetition Task.

5.1.2.6. Collective Task. Collective Task model was detailed in Section 4.5.5. In Fig-

ure 5.17, XML structure of a Collective Task is depicted. Each Collective Task has

some XML attributes:

• performer attribute equal to auto,

• type attribute equal to collective,

• cardinality attribute equal to an integer value or may be unbound.

Each Collective Task has some XML tags:

• collectedTask tag is used to define a task to execute. id attribute is used to refer

to a task.

64

<task id="..." performer="auto" type="collective" cardinality="...">

<name>...</name>

<description>...</description>

<params>

<param type="..." name="..." datatype="..."/>

.

.

</params>

<collectedTask id="..."/>

</task>

Figure 5.17. WeFlow Specification: Collective Task Skeleton.

A Collective Task example, do sum collective, is shown in Figure 5.18. As men-

tioned in its description, this task is used to collect data from do sum operation task.

It has three variables: two input variables and one output variable. do sum operation

task is done five times as defined in cardinality attribute.

<taskid="do_sum_collective"performer="auto"type="collective"cardinality="5">

<name>Do Sum Operation</name>

<description>collect data from sum operation task</description>

<params>

<param type="input" name="no1" datatype="integer"/>

<param type="input" name="no2" datatype="integer"/>

<param type="output" name="results" datatype="text[]"/>

</params>

<collectedTask id="do_sum_operation"/>

</task>

Figure 5.18. WeFlow Specification: Collective Task.

5.1.2.7. Composite Task. Composite Task model was detailed in Section 4.5.6. Com-

posite Task has not been implemented yet, and remains as part of our future work.

65

5.1.3. Control Flow Description

In Section 4.7.1, control flow model was detailed. In Figure 5.19, XML structure

of a Control Flow is depicted. It has no XML attributes but has a controlFlow tag

containing a list of tasks and each task is defined by a task tag using id attribute.

<controlFlow>

<task id="..."/>

.

.

</controlFlow>

Figure 5.19. WeFlow Specification: Control Flow Skeleton.

A Control Flow example is depicted in Figure 5.20. This example shows the

sequence of three tasks: create story, rep update story and show story.

<controlFlow>

<task id="create_story"/>

<task id="rep_update_story"/>

<task id="show_story"/>

</controlFlow>

Figure 5.20. WeFlow Specification: Control Flow.

5.1.4. Data Flow Description

In Section 4.7.2, data flow model was detailed. There are three types of data

mappings: (1) task input mappings, (2) human input mappings and (3) output map-

pings. There is no difference in implementation of task input mappings and human

input mappings thus it will be simply mentioned as Input Mappings. In Figure 5.21,

XML structure of a Data Flow is depicted. There are input mappings and output

mappings which should be defined in a dataFlow tag.

In Figure 5.22, XML structure of a Input Mappings is depicted. A mapping tag

66

<dataFlow>

<outputMappings>

.

.

.

</outputMappings>

<inputMappings>

.

.

.

</inputMappings>

</dataFlow>

Figure 5.21. WeFlow Specification: Data Flow Skeleton.

is used to describe an incoming mapping to a task which is set by taskID attribute.

An inputParam tag is used, and it has two attributes: name and expression. name

attribute is used to refer to an input variable, and expression attribute is used to specify

the expression, which evaluates to a value in its turn, to be mapped. Note that :=

operator is used to show a value assignment.

An Input Mapping example is depicted in Figure 5.23. This example shows input

mappings for two tasks: update story and show story. For update story task, there

is one input mapping incoming to story variable of update story task. And it gets

its value from story variable of rep update story task. For show story task, there are

two input mappings: (1) incoming to story title variable of show story task which is

getting its value from s title variable of create story task, (2) incoming to story variable

of show story task which is getting its value from result story variable of update story

task.

In Figure 5.24, XML structure of a Output Mappings is depicted. A mapping tag

is used to describe an outgoing mapping to a task which is set by taskID attribute.

67

<inputMappings>

<mapping taskID="...">

<inputParam name="..." expression=":= ..."/>

.

.

</mapping>

.

.

</inputMappings>

Figure 5.22. WeFlow Specification: Data Flow Input Mappings Skeleton.

<inputMappings>

<mapping taskID="update_story">

<inputParam name="story" expression=":= $rep_update_story.story"/>

</mapping>

<mapping taskID="show_story">

<inputParam name="story_title" expression=":= $create_story.s_title"/>

<inputParam name="story" expression=":= $update_story.result_story"/>

</mapping>

</inputMappings>

Figure 5.23. WeFlow Specification: Data Flow Input Mappings.

68

An outputParam tag is used, and it has two attributes: name and expression. name

attribute is used to refer to an output variable, and expression attribute is used to

specify the expression, which evaluates to a value in its turn, to be mapped. Note that

expression tag should include either := operator (assignment) or :+ operator (append).

<outputMappings>

<mapping taskID="...">

<outputParam name="..." expression="..."/>

.

.

</mapping>

.

.

</outputMappings>

Figure 5.24. WeFlow Specification: Data Flow Output Mappings Skeleton.

An Output Mapping example is depicted in Figure 5.25. This example shows out-

put mappings for two tasks: do sum operation and do sum collective. For do sum operation

task, there is one output mapping outgoing to result variable of do sum operation

task. And it gets its value from humanResult variable of do sum operation task. For

do sum collective task, there is one output mapping outgoing to results variable of

do sum collective task, result variable of do sum operation task is appended to this

output variable, results.

5.1.5. Human / Groups Description

In Section 4.6, resourcing model was detailed. In Figure 5.26, XML structure

ofresourcing is depicted. A resourcing tag is used to allow some groups to execute a

task. Tasks are defined by the use of task tag with id attribute, and for each task a

list of groups is defined with groups tag. Each group is described with group tag for

which a name tag is specified.

A resourcing example is depicted in Figure 5.27. There is one task, create story

69

<outputMappings>

<mapping taskID="do_sum_operation">

<outputParam name="result" expression=":=$do_sum_operation.humanResult"/>

</mapping>

<mapping taskID="do_sum_collective">

<outputParam name="results" expression="+= $do_sum_operation.result"/>

</mapping>

</outputMappings>

Figure 5.25. WeFlow Specification: Data Flow Output Mappings.

<resourcing>

<task id="...">

<groups>

<group>

<name>...</name>

</group>

</groups>

</task>

.

.

</resourcing>

Figure 5.26. WeFlow Specification: Resourcing Skeleton.

70

for which one group definition is defined as anyone.

<resourcing>

<task id="create_story">

<groups>

<group>

<name>anyone</name>

</group>

</groups>

</task>

</resourcing>

Figure 5.27. WeFlow Specification: Resourcing.

5.1.6. Specification Handler Methods

Specification Handler module has some important methods:

• create new spec is used to create a new WeFlow specification,

• parse spec is used to parse a WeFlow specification described with XML. This

method uses other methods fro parsing operation:

(i) parse wf info parses basic workflow information,

(ii) parse tasks parses information about tasks,

(iii) parse controlflow parses control flow information,

(iv) parse dataflow parses data flow information,

(v) parse resourcing parses resourcing information.

• verify spec is used to verify if given WeFlow specification has a valid syntax.

• delete spec is used to delete an existing WeFlow specification.

• modify spec is used to modify an existing WeFlow specification.

verify spec, delete spec, modify spec methods have not been implemented yet.

Specification Handler module is programmed in Python, and in order to parse

XML documents a built-in Python library, xml.dom.minidom, is used. This library

71

is a light-weight implementation of the Document Object Model (DOM) interface. It

provides simple functions to parse XML documents.

5.2. WeFlow Data Handler

In this section, data perspective of WeFlow Framework will be explained. This

module works together with WeFlow Specification Handler and WeFlow Execution

Module.

5.2.1. A Python Object Database: ZODB

One of the difficulties of object oriented programming is that there is a need to

store objects into tables in databases. For this purpose, data is transformed to raw data

in order to be stored in a table, and raw data is transformed to objects in order to be

used by object programming languages. Computation cost for these transformations

is high and effects badly the performance of a system. As a solution to this common

problem, there are some object databases that allow to store objects directly in a

database. So it gives the freedom to work in an environment where there is no need to

map object oriented code to relational model stucked in schemas.

ZODB is a native object database for Python and is widely used by Python

programmers [50]. For data storing purposes, ZODB is used as part of data layer of

WeFlow Framework.

5.2.2. Specification Data Handler

This module is used to fetch and/or store data related to WeFlow Specification.

It is a layer between ZODB and WeFlow Framework. Two main methods are as the

following:

• add workflow desc is used to store a WeFlow specification.

• get workflow x methods are used to fetch x related data where x is one of speci-

72

fication, tasks, controlflow, dataflow and resourcing.

5.2.3. Application Data Handler

This module is used to fetch and/or store data related to running human compu-

tation web applications. It is a layer between ZODB and WeFlow Framework. Main

methods are as the following:

• add wf instance adds a workflow instance.

• update wf instance updates a workflow instance.

• get wf x where x is one of:

(i) instances gets all workflow instances.

(ii) instance gets a specific workflow instance.

(iii) task instances gets workflow task instances.

(iv) task instance gets a specific workflow task instance.

• get ongoing workflows returns all ongoing workflows.

• prepare task instance gets ready a task instance by doing its data mappings via

do start mappings method.

• finish task instance terminates a task instance by doing its data mappings via

do end mappings method.

5.3. WeFlow User Handler

All user related methods are part of this module. This module is used for creating

a new user, registering, authenticating a user, checking access rights, deleting and/or

modifying a user, getting user workflows ongoing or terminated and setting access

rights.

5.4. WeFlow Application Generator

This module generates a human computation web application using WeFlow spec-

ification. There are two main classes: (i) HTML Data Generator and (ii) Application

73

Table 5.1. Mapping Data Types to web.py Form Elements.

WeFlow Data Type web.py Form Element

Text web.form.Textbox

Integer web.form.Textbox

Password web.form.Password

Image web.form.Input

Paragraph web.form.Dropdown

Multiple Choice web.form.Dropdown

Checkbox web.form.Checkbox

Template Generator.

5.4.1. HTML Data Generator

Mapping from WeFlow specification data to HTML components is done by meth-

ods this class:

• datatype to html is used to map task variables to HTML form elements. Only

some WeFlow datatypes are implemented such as integer, text, checkbox, integer[],

text[], textarea and image. As web.py [51] is chosen as the webserver for WeFlow

Framework, this method maps WeFlow datatypes to web.py form elements as

described in Table 5.1. web.py allows the usage of regular expressions, thus it is

possible to define integer datatype using a textbox element.

• desc to html is used to map task description to HTML text. As discussed in

Section 4.8, a task description may contain a special character $ to refer to task

variables. In this case, this method finds out the referred task value and replaces

it in the description.

5.4.2. Application Template Generator

This module creates human computation web application folder structure, tem-

plates and files for execution. Main methods are as the following:

74

• generate form is used to generate an HTML form for a given task.

• generate webapp structure is used to create a web application space for newly

uploaded WeFlow specifications. Default naming mechanism is

“./webfiles/web apps/wfname wfid” where wfname and wfid are workflow name

and workflow id respectively.

• generate template is used to generate HTML templates in order to display task

data. Note that HTML templates are some generic structured files that can

be used dynamically. web.py uses its own templating system thus this method

generates web.py friendly HTML templates.

• generate root file is used to generate controller semantics in order to respond to

HTML requests. Note that each human computation web application has its own

generated controller. Default naming mechanism is

“./webfiles/web apps/wfname wfid/app /wfname wfid.py” where wfname and wfid

are workflow name and workflow id respectively.

Hence in order to generate a web application, a web application space is created,

controller file is generated and HTML templates are set. This module works with

some other libraries. htmlDoc library is used in order to create HTML templates given

HTML tags. PyGen library is used in order to generate python files including python

code. As indentation is a main issue in Python programming, the use of such a library

is needed.

5.5. WeFlow Execution Module

This module is the core module of WeFlow Framework, it instantiates workflows,

executes all web applications, distibutes tasks to various workflow participants and

aggregate responses, keeps track of the state of every web application and user partici-

pant. These are done by some submodules of Execution Module which will be detailed

now.

75

5.5.1. State Handler

This module keeps track of state information of (i) users, (ii) web applications.

Note that each human computation web application has various instances executed by

various user participants. Given a workflow instance, this module shows current state

of a web application and a user participant. State information is important as it will

tell Task Handler which task to execute next.

There is one method implemented for this purpose, app state handler. This func-

tion computes current state of web application and calls Task Handler module for

execution of next task. Algorithm for this function can be found in Figure 5.28.

5.5.2. Task Handler

This module call tasks for execution. It gets next task information from Control

Flow Handler module, checks type of next task and then call appropriate method.

Note that for each task type there is an implemented call function. After execution, it

calls State Handler module for updating state info of application instance and workflow

participant. Algorithm for call task function can be found in Figure 5.29.

5.5.3. Control Flow Handler

This module calls State Handler to check current state of an application instance.

According to control flow semantics of the application instance, it decides next task

to execute via get next construct method. Algorithm for this function can be found

in Figure 5.30. It calls User Handler module to check access rights of current user

participant. And finally next task is executed by Task Handler module.

5.5.4. Instantiator

This module basically instantiates a web application once a new WeFlow speci-

fication is loaded to the WeFlow Framework and started by a user participant. This

76

Require: wfid, wfinstanceid, taskname, taskinstanceid, userid, next taskname;

wfinstance ⇐ get wf instance(wfid, wfinstanceid);

if wfinstance current state is set then

if taskname is set then

taskinstance ⇐ get wf task instance(wfinstanceid, taskname, taskinstan-

ceid);

if userid is set then

update user state;

set user as owner of taskinstance;

end if

mark task instance as completed;

if taskname is an end state AND next taskname is not set then

mark wfinstance as terminated

end if

end if

if wfinstance is not terminated then

call TaskHandler with wfid, wfinstanceid, next taskname

end if

end if

Figure 5.28. Algorithm for app state handler method.

77

Require: wfid, wfinstanceid, taskname, next taskname, next tasktype;

cfh ⇐ ControlFlowHandler()

next taskname, tasktype ⇐ get next construct(wfid, wfinstanceid,

next taskname)

if next tasktype is set then

wfinstance ⇐ get wf instance byparam1 (wfinstanceid)

if next tasktype is ”human” then

wfdesc ⇐ get workflow desc(wfid)

call human task(wfdesc.name, wfid, wfinstanceid, next taskname)

else if next tasktype is ”auto” then

call automated task(wfinstanceid, next taskname)

else if next tasktype is ”condition” then

call condition task(wfinstanceid, next taskname)

else if next tasktype is ”collective” then

call collective task(wfinstanceid, next taskname)

else if next tasktype is ”repetition” then

call repetition task(wfinstanceid, next taskname)

end if

end if

Figure 5.29. Algorithm for call task method.

78

Require: wfid, wfinstanceid, next taskname;

wfinstance ⇐ get wf instance(wfid, wfinstanceid);

controlflow ⇐ get workflow controlflow(wfid);

wfdesc ⇐ get workflow desc(wfid);

if current workflow instance state is not set then

wfinstance.current state ⇐ wfinstance.init state

else

taskname ⇐ wfinstance.current state

end if

if next taskname is not set then

taskindex ⇐ taskname index in controlflow;

model task ⇐ get workflow task(wfdesc, taskname);

if model task is instance of CollectiveTask OR DoAllTask OR RepetitionTask

then

temp task ⇐ get wf task last instance(wfinstanceid, taskname);

if temp task is not completed then

next taskname ⇐ taskname;

else

next taskindex ⇐ taskindex + 1;

end if

else

next taskindex ⇐ taskindex + 1;

end if

end if

if next taskname in controlflow then

wfinstance.current state ⇐ next taskname

end if

tasktype ⇐ get next ẗasktype(wfid, next taskname)

return next taskname, tasktype

Figure 5.30. Algorithm for get next construct method.

79

module also takes care of the instantiation of tasks in web applications.

5.6. WeFlow Tasklist Handler

This module shows tasks to users via notifications. Users are involved in some

workflows, and get notifications related to these workflows. They find a list of tasks

to execute and also a list of executed tasks to display history information such who

performed which task and when. Tasklist Handler gets this information from WeFlow

Execution Module and WeFlow User Handler.

5.7. WeFlow Administration

This module is the administration part of WeFlow Framework. One can man-

age, monitor, modify workflow instances by using this nodule. It works together with

WeFlow Execution Module, WeFlow Specification Handler and WeFlow User Handler.

5.8. Logger

This module is used to log all activities within WeFlow Framework. As this frame-

work handles a huge number of users, their activities are stored for further processing.

This module works together with WeFlow Data Handler and WeFlow Execution Mod-

ule.

80

6. USE CASES

6.1. A Human Computation Web Application: CoStory

In this section, a human computation example is illustrated. It is a simple appli-

cation, the kind that an ordinary person could think of and want to define. Note that

this application is part of a larger application, and only small part of it is presented

for purposes of clarity.

Carine is an elementary school teacher who wants to encourage her students to

collaborate. By the use of WeFlow framework, she builds a simple application, CoStory,

to let her students write stories together. Carine, the Specifier of CoStory, decides to

design her application with three main tasks: Create Story, Update Story and Show

Story. A story should be created, then updated many times by her students, and

displayed at the end. And all these tasks should only be executed by her students.

CoStory application was deployed in Karagözyan Elementary School and used by

5th grade students who created a story together using this application.

6.1.1. CoStory Specification

In Figure 6.1, CoStory is depicted in terms of WeFlow tasks, and control flows.

For clarity, data flow information is not depicted but for a better understanding of

data mappings, similar or exact task variable names are used in the example. Human

tasks are denoted with a human figure on top of the task.

In Create Story task, a story and a story title is provided by a student. In Update

Story task, current stage of the story is shown to a student who provides a new entry

for the story and declares whether the story is finished or not, fin. While the story is

not finished, Update Story task is repeated by students. And once story is finished,

title and story is displayed by Show Story task. In this example, data mappings are

81

defined as explained in Section 4.7.2.

Figure 6.1. CoStory – A Human Computation Web Application.

6.1.2. CoStory Web Application Generation

In Section 4.8, it was discussed how to generate a human computation web ap-

plication given a WeFlow specification. So, each human task of CoStory will be repre-

sented on Web in order to be performed. Task descriptions provided by Carine are as

the following:

(i) for Create Story task: “Your story title is: $title And start your story: $story”

(ii) for Update Story task: “This is how the story is $story Add your words now!

$entry Do you think that the story is finished? $fin”

(iii) for Show Story task: “Story title: $title Your Story: $story”.

6.1.3. CoStory Web Application Execution

In this paragraph, WeFlow Execution Engine properties will be discussed as in-

troduced in Section 4.9. In Figure 6.2, CoStory specification is loaded to WeFlow

framework and ready to run. This specification can be found in Appendix A.

First, a student starts CoStory application by pressing Start Workflow button. At

this point, engine instantiates CoStory web application, and loads CoStory specification

in order to get application semantics. It checks the control flow, finds which task to

execute, Create Story, and prepare it for execution by instantiating it and doing its

input mappings. Current state of the application is marked as Create Story task.

82

A student executes Create Story task as depicted in Figure 6.3. Create Story task

description is shown to this student via a put channel, then s/he provides title and story

data, which are received by a get channel once s/he presses Submit button. WeFlow

engine does output mappings for Create Story task and terminates its execution.

WeFlow engine checks again the control flow, and detects that the next task is

a Repetition Task. Instantiation, state handling, and data mappings are computed

in the same way as described previously. For Repetition Task case, engine checks the

condition, if it is fulfilled then it executes the subtask, Update Story. Update Story task

gets ready to execute and performed by a student, see Figure 6.4. As the story is not

finished, Update Story task continues to execute, see Figure 6.5. Since now the story is

marked as finished by a student, control flow is moved to task Show Story which in its

turn displays the story and its title, Figure 6.6. Once a student presses Finish button,

WeFlow engine terminates execution of current CoStory web application instance.

Carine and her students are now able to create as many as stories they want, and

enjoy collaborating by writing stories together.

Figure 6.2. CoStory – Starting the Web Application.

Figure 6.3. CoStory – Starting a Story.

83

Figure 6.4. CoStory – Updating a Story.

6.2. A Human Computation Web Application: Hisarustu Accessibility

Ali is a student living in Rumelihisarustu and wants to create a place where people

in the neighborhood can share information about Rumelihisarustu. In Rumelihisarustu

project, the idea is to increase the life quality in Rumelihisarustu by reporting things

in a bad condition in order to be fixed by anyone. In other words, this project will

make Rumelihisarustu accessible to anyone living there. People simply may share

information about anything to be fixed, or may see and update reported information

by other users.

6.2.1. Hisarustu Accessibility Specification

In Figure 6.7, Rumelihisarustu Accessibility is depicted in terms of WeFlow tasks,

and control flows. For clarity, data flow information is not depicted. Human tasks are

denoted with a circle figure on top of the task, and different colors show that users

belong to different groups.

In Choose Task task, a user can do two things: (i) she can share an information

about an item. She provides a picture of the item, gives some information about that

item and reports current status of the item which is ‘resolved’ or ‘pending’, (ii) she

84

Figure 6.5. CoStory – Finishing a Story.

Figure 6.6. CoStory – Displaying Finished Story.

can list current items reported by other users. List Items task is an automated task

gathering this information from the data storage. In case (ii), Show Items task shows

current items to the user and user picks one item from the list which is provided by

the previous task, List Items. WeFlow gets selected item from data storage, Pick

Item, and related information to this item is shown to the user who, in her turn, may

update status information of current item, Update Item. A volunteer from control

group checks updated information and decides whether provided information is correct

or not, Control Item. Then, the item is updated according to Control Item task’s

output information and saved by Save Item task. Updated information is shown to

the user by Show Item task.

85

Figure 6.7. Rumelihisarustu Specification.

6.2.2. Hisarustu Accessibility Web Application Generation

Task descriptions provided by Ali are as the following:

(i) for Choose Task task: “Choose one task from the menu on the left”

(ii) for Share Item task: “Give a picture url: $pic url . Enter some information:

$information related to provided picture. Current status of provided item is

$status”

(iii) for Show Items task: “Pick one accessibility item by providing its item id number:

$itemno”

(iv) for Update Item task: “For $pic some information $information is provided. Cur-

rent status is $status . Is the status is updated? Please type ‘resolved’ or ‘pending’

as a new status $hstatus”

(v) for Control Item task: “For $pic some information $information is provided.

Someone said that current status for that item is $status . If so type ‘resolved’

or ‘pending’ as a new status $hstatus”

(vi) for Show Item task: “For $pic some information $information is provided. Current

status is $status”

6.2.3. Rumelihisarustu Web Application Execution

Rumelihisarustu specification is loaded to WeFlow framework and ready to run,

see Figure 6.8. Once the application is started by pressing Start Workflow button, the

86

execution engine instantiates the application, loads Rumelihisarustu specification in

order to get application semantics. It finds which task to execute next, Choose Task,

and prepare it for execution by instantiating it and doing its input data mappings.

Current state of the application is marked as Choose Task task. A user executes this

task as depicted in Figure 6.9, task description informs the user who, in her turn,

provides some data in order to proceed in the workflow. She picks ‘share info’, which

is Share Item task in the specification, to execute next as depicted. Figure 6.10 shows

Share Item web task, task description is shown and user provides some data: a picture

url, some textual information and status of the shared item. Other users are also using

this application for sharing new items.

Another user joins the application and picks List Items task in order to execute,

see Figure 6.15, this time the execution engine checks the control flow, and detects

that the next task is a Show Items. Instantiation, state handling, and data mappings

are computed in the same way as described previously. Figure 6.11 shows Show Items

task, note that there are currently two listed items. The user picks one item by pro-

viding an accessibility item id. Update Item task is instantiated by the engine which

is depicted in Figure 6.12. The user is able to update status field of that item. This

updated information is controlled by someone from volunteer control group who checks

whether provided information is correct, see Control Item task in Figure 6.13. This

updated item is shown, Show Item task, to any user from anyone group as depicted in

Figure 6.14.

Another user joins the application and wants to see shared information con-

tributed by other users. Figure 6.16 shows current list of accessibility items. Note that

the status information of the first item is modified to ‘resolved’ as reported by a user

of the system.

6.3. A Simple Web Application for Personal Use: Jack Summing Integers

Jack needs to practice basic sum operation of two given numbers. He wants to

know if his answer is correct or not. And this is such a simple application that he

87

Figure 6.8. Rumelihisarustu – Workflow Ready to Start.

Figure 6.9. Rumelihisarustu – Choose Task.

wants to create.

First, he thinks of basic steps of this application:

(i) pick two random numbers: Generate Numbers

(ii) ask Jack to sum these numbers: Do Sum Operation

(iii) ask computer to sum these numbers: Compute Sum

(iv) compare Jack’s answer with computer’s answer: Compare

(v) notify Jack about the correctness of his answer: Notify User

Figure 6.17 depicts Jack’s application in terms of tasks and its control flow. Note

that there are three automated tasks: Generate Numbers Figure 6.18, Compute Sum

Figure 6.19 and Compare Figure 6.20 and two human tasks: Do Sum Operation and

Figure 6.10. Rumelihisarustu – Share Item.

88

Figure 6.11. Rumelihisarustu – Show Items.

Figure 6.12. Rumelihisarustu – Update Item.

Notify User. Automated tasks are predefined tasks.

Figure 6.21 depicts initilization of Do Sum Operation task. Two generated num-

bers are 88 and 63 which are computed by Generate Numbers task. Jack provides

an answer, 45, in Figure 6.22, same sum operation is also done automatically by the

computer using Compute Sum task. And finally, Jack is notified about the correctness

of his answer in Figure 6.23 and sees that his answer is not correct.

Figure 6.13. Rumelihisarustu – Control Item.

89

Figure 6.14. Rumelihisarustu – Show Item.

Figure 6.15. Rumelihisarustu – List Items.

Figure 6.16. Rumelihisarustu – Show Items (after control check).

Figure 6.17. Jack – summing integers.

90

def generate_numbers(*args):

import random

a = random.randint(0,100)

b = random.randint(0,100)

return a,b

Figure 6.18. Code for Generate Numbers Task.

def compute_sum(*args):

args = args[0]

a= int(args[0])

b= int(args[1])

return a + b,

Figure 6.19. Code for Compute Sum Task.

def compare(*args):

args = args[0]

param_1 = int(args[0])

param_2 = int(args[1])

res = ’false’

if param_1 == param_2:

res = ’true’

return res,

Figure 6.20. Code for Compare Task.

Figure 6.21. Jack – Do Sum Operation.

91

Figure 6.22. Jack provides an answer.

Figure 6.23. Jack – Notify User Task.

92

7. DISCUSSION AND FUTURE WORK

We are planning to extend this work in several directions.

First, we intend to develop a visual language preserving WeFlow specification

semantics with a user friendly graphical user interface. An easy to use graphical user

interface will be implemented and it will be highly customizable according to various

user needs. As mobility is part of daily life, it is also important to provide WeFlow

in mobile environments. Thus, we feel a need to develop a genuine mobile version of

WeFlow, we believe that this approach would further increase the Web accessibility.

Second, we are planning to integrate Pantoto’s robust data model which supports

primitive and user defined data types. Pantoto manages structured data, therefore we

intend to add Resource Description Framework (RDF) [53] data export functionality

for tasks and/or workflows in order to enable data mobility. RDF export will also allow

us to interchange data on Web, enable data import to be used by WeFlow tasks and

data export to Semantic Web, Linked Data resources [54,55]. In this context, WeFlow

structured data will be shared across different applications and external structured

data, coming from Semantic Web resources e.g. Linked Data, will be used by WeFlow

framework.

Third, we intend to create a library of predefined tasks and workflows which

can directly be used by specifiers, this approach will enable reusability of common

tasks/workflows. WeFlow will offer a rich editor with access to useful, searchable

libraries to define workflows. Rather then duplicating workflows and/or tasks by spec-

ifying them from scratch, providing a library of highly used workflows and/or tasks is

important.

Fourth, we think we can further increase WeFlow efficiency by using model check-

ing techniques to verify if a human computation web application is specified correctly

and works exactly as specified.

93

Another interesting work is we want to bring together our work with Alipi Project.

In Alipi project, the idea is enabling Web access for the print-impaired or for people who

cannot read. In countries like India, majority of people are uncomfortable with text,

either because they are not literate or because they are literate only in their localized

language. In this work, people can contribute re-narratives on their sites which are

re-rendered based on user profile and available alternative narratives out there on the

Web [56–58]. WeFlow-Alipi project will provide a collaborative environment to create

renarrations of web sites on Web.

This work opens the gate to several interesting questions such as how to enable

perception of collaboration via others in a workflow, how a specification evolves through

time and what happens to currently executing workflow instances using this specifica-

tion, how to define and manage cancellation sets, how to introduce human computation

aspects such identity, privacy, how to detect if a human abandons a computation, how

to handle time issues, what are social aspects such participation, inclusion.

94

8. CONCLUSION

End-user programming is part of active research and will be a more important

topic in few years as human-computer interaction gains more attention through years.

In a recent talk of Clay Shirky [59], Cognitive Surplus idea is discussed where Shirky

proposes to use the free time of the world’s educated ordinary people as an aggregate

and points out that “creating something personal, even of moderate quality, has a dif-

ferent kind of appeal than consuming something made by others, even of high quality”.

Community members, previously happy to spend most of their time consuming, would

start making things. WeFlow is the tool empowering non IT savvy people to produce,

rather than consuming something made by others, their own human computation web

applications fitting to their community needs. As IT savvy people are not domain ex-

perts of specific fields, it is really difficult for them to create collaborative environments

suitable and highly customizable for communities.

A specification language for end users to define human computation applications

has been developed. Furthermore, an application generator that takes a human com-

putation application specification and produces a web based application has been de-

veloped. The resulting web application can be used by participants via a web browser.

The execution engine executes the participatory web application by distributing the

tasks to participants as defined by the specification.

Thus far, we have been able to realize the basic aspects of our designs. Our proto-

type encourages us with respect to the development of a full fledged visual language for

end user specifiers. Combined with a richer data specification we envision a productive

application specification environment.

95

APPENDIX A: WEFLOW SPECIFICATION FOR

COSTORY

<WeFlow>

<name>CoStory</name>

<description>

Ready to create collaborative stories? Start using CoStory now!

</description>

<start_task id="create_story"/>

<final_tasks> <final_task id="show_story"/> </final_tasks>

<tasks>

<task id="create_story" performer="human" type="basic">

<name>Create Story</name>

<description>

Your story title is: \$title And start your story: \$story

</description>

<params>

<param type="input" name="title" datatype="text"/>

<param type="input" name="story" datatype="textarea"/>

<param type="output" name="new_story" datatype="textarea"/>

<param type="output" name="s_title" datatype="text"/>

</params>

</task>

Figure A.1. Workflow Information for for CoStory.

96

<task id="rep_update_story" performer="auto" type="repetition">

<name>repeat</name>

<description>repeat</description>

<params>

<param type="input" name="story" datatype="textarea"/>

<param type="input" name="is_finished" datatype="yes/no"/>

<param type="output" name="result_story" datatype="textarea"/>

</params>

<expr>

<condition operand1="\$is_finished" operator="!=" operand2="’yes’"/>

<then taskid="update_story"/>

<else/>

</expr>

</task>

<task id="update_story" performer="human" type="basic">

<name>Update Story</name>

<description>

This is how the story is \$story Add your words now! \$entry

Do you think that the story is finished? \$is_done

</description>

<params>

<param type="input" name="story" datatype="textarea"/>

<param type="input" name="entry" datatype="textarea"/>

<param type="input" name="is_done" datatype="yes/no"/>

<param type="output" name="result_story" datatype="textarea"/>

<param type="output" name="is_finished" datatype="yes/no"/>

</params>

</task>

Figure A.2. Task Information for CoStory.

97

<task id="show_story" performer="human" type="basic">

<name>Show Story</name>

<description>

Story title: \$story_title Your Story: \$story

</description>

<params>

<param type="input" name="story_title" datatype="text"/>

<param type="input" name="story" datatype="textarea"/>

</params>

</task>

</tasks>

<resourcing>

<task id="create_story">

<groups>

<group name="teacher_group"</group>

</groups>

</task>

<task id="update_story">

<groups>

<group name="student_group"</group>

</groups>

</task>

<task id="show_story">

<groups>

<group name="anyone"</group>

</groups>

</task>

</resourcing>

Figure A.3. Resourcing Information for CoStory.

98

<controlFlow>

<task id="create_story"/>

<task id="rep_update_story"/>

<task id="show_story"/>

</controlFlow>

<dataFlow>

<outputMappings>

<mapping taskID="rep_update_story">

<outputParam name="result_story"

expression=":= \$update_story.result_story"/>

</mapping>

<mapping taskID="update_story">

<outputParam name="result_story"

expression=":= \$update_story.story + \$update_story.entry"/>

<outputParam name="is_finished" expression=":= \$update_story.is_done"/>

</mapping>

<mapping taskID="create_story">

<outputParam name="new_story" expression=":= \$create_story.story"/>

<outputParam name="s_title" expression=":= \$create_story.title"/>

</mapping>

</outputMappings>

<inputMappings>

<mapping taskID="update_story">

<inputParam name="story" expression=":= \$rep_update_story.story"/>

</mapping> <mapping taskID="rep_update_story">

<inputParam name="story" expression=":= \$create_story.new_story"/>

<inputParam name="story" expression=":= \$update_story.result_story"/>

<inputParam name="is_finished" expression=":= \$update_story.is_finished"/>

</mapping> <mapping taskID="show_story">

<inputParam name="story_title" expression=":= \$create_story.s_title"/>

<inputParam name="story" expression=":= \$update_story.result_story"/>

</mapping> </inputMappings> </dataFlow></WeFlow>

Figure A.4. Mappings Information for CoStory.

99

REFERENCES

1. Rheingold, H., The Virtual Community: Homesteading on the Electronic Frontier ,

The MIT Press, Cambridge, MA, 2000.

2. Nardi, B. A., D. J. Schiano, M. Gumbrecht and L. Swartz, “Why we blog”, Com-

munications of the ACM , Vol. 47, pp. 41–46, 2004.

3. Leuf, B. and W. Cunningham, The Wiki way: quick collaboration on the Web,

Addison-Wesley, London, 2001.

4. Java, A., X. Song, T. Finin and B. Tseng, “Why we twitter: understanding mi-

croblogging usage and communities”, WebKDD/SNA-KDD ’07: Proceedings of the

9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network

analysis , pp. 56–65, ACM, New York, NY, USA, 2007.

5. Zhao, D. and M. B. Rosson, “How and why people Twitter: the role that micro-

blogging plays in informal communication at work”, GROUP ’09: Proceedings of

the ACM 2009 international conference on Supporting group work , pp. 243–252,

ACM, New York, NY, USA, 2009.

6. Costabile, M. F., D. Fogli, P. Mussio and A. Piccinno, “Software Environments for

End-User Development and Tailoring”, PsychNology , Vol. 2, pp. 99–122, 2004.

7. Wikipedia, Wikipedia, the free encyclopedia, 2011, http://en.wikipedia.org/

wiki/Main_Page, accessed at November 2011.

8. von Ahn, L., “Human computation”, K-CAP ’07: Proceedings of the 4th inter-

national conference on Knowledge capture, pp. 5–6, ACM, New York, NY, USA,

2007.

9. Nardi, B. A., A small matter of programming: perspectives on end user computing ,

100

MIT Press, Cambridge, MA, USA, 1993.

10. Myers, B., “Studying Development and Debugging to Help Create a Better Pro-

gramming Environment”, CHI 2003 Workshop on Perspectives in End User De-

velopment , pp. 65–68, 2003.

11. Prahofer, H., D. Hurnaus and H. Mossenbock, “Building End-User Program-

ming Systems Based on a Domain-Specific Language”, 6th OOPSLA Workshop

on Domain-Specific Modeling (DSM’06), 2006.

12. Spivack, N., Radar Networks Blog , 2007, http://www.radarnetworks.com/, ac-

cessed at November 2011.

13. Guess, A., Imagining Web 4.0 , 2011, http://semanticweb.com/

imagining-web-4-0_b18176, accessed at November 2011.

14. Facebook, social utility that connects people with friends and others , 2011, http:

//www.facebook.com, accessed at November 2011.

15. Facebook, Statistics — Facebook , http://www.facebook.com/press/info.php?

statistics, accessed at November 2011.

16. Völkel, M., M. Krötzsch, D. Vrandecic, H. Haller and R. Studer, Semantic

Wikipedia, New York, NY, USA, May 2006, http://www.aifb.uni-karlsruhe.

de/WBS/hha/papers/SemanticWikipedia.pdf, accessed at November 2011.

17. Surgeons, D., Facebook vs Twitter Infographic – A Breakdown of

2010 Social Demographics , 2011, http://www.digitalsurgeons.com/

facebook-vs-twitter-infographic/, accessed at November 2011.

18. Wellman, B., Networks In The Global Village: Life In Contemporary Communities ,

Westview Press, 1998.

19. Wikipedia, Human-based computation — Wikipedia, The Free Encyclopedia,

101

2011, http://en.wikipedia.org/wiki/Human-based_computation/, accessed at

November 2011.

20. Chen, D. L.-J., An Overview to Human Computation, 2009, http://www.imi.

ncku.edu.tw/images/seminar/091002.pdf, accessed at November 2011.

21. Malone, T. W., R. Laubacher and C. N. Dellarocas, Harnessing Crowds:

Mapping the Genome of Collective Intelligence, 2009, http://cci.mit.edu/

publications/CCIwp2009-01.pdf, accessed at November 2011.

22. Quinn, A. J. and B. B. Bederson, A Taxonomy of Distributed Human Compu-

tation, 2009, http://hcil.cs.umd.edu/trs/2009-23/2009-23.pdf, accessed at

November 2011.

23. Wikipedia, Optical character recognition - Wikipedia, The Free Encyclopedia, 2011,

http://en.wikipedia.org/wiki/Optical_character_recognition, accessed at

December 2011.

24. Allen, R., Workflow: An Introduction Rob Allen, Open Image Systems Inc.,

United Kingdom Chair, WfMC External Relations Committee, 1998, http://www.

futstrat.com/books/downloads/Workflow-An_Introduction.pdf, accessed at

November 2011.

25. Workflow Management Coalition, 2011, http://www.wfmc.org/, accessed at

November 2011.

26. Coleman, J. S., “Social Capital in the Creation of Human Capital”, American

Journal of Sociology , Vol. 94, pp. S95–S120, 1988.

27. Falk, I. and U. of Tasmania., Human and social capital [electronic resource] : a

case study of conceptual colonisation / Ian Falk , Centre for Research and Learning

in Regional Australia, Launceston, Tas. :, 2001.

102

28. Falk, I. and S. Kilpatrick, “What is Social Capital? A Study of Interaction in a

Rural Community”, Sociologia Ruralis , Vol. 40, No. 1, pp. 87–110, 2000.

29. Pantoto, pantoto - mango, 2011, http://code.google.com/p/pantoto-mango/,

accessed at November 2011.

30. Uskudarli, S. and T. Dinesh, “Pantoto: A participatory model for community infor-

mation”, DyD:02: The 2nd International Conference on Open Collaborative Design

for Sustainable Innovation, ThinkCycle and Media Lab Asia In Cooperation with

ACM SIGCHI & ICSID, Dec. 2002.

31. Dinesh, T. and S. Uskudarli, “Community Software Applications”, A. Venkatesh,

T. Gonsalves, A. Monk and K. Buckner (Editors), IF1P International Federation

for Information Processing , Vol. 241, pp. 103–112, Springer, Boston, 2007.

32. Oasis, Web Services Business Process Execution Language Version 2.0 , 2011,

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html, ac-

cessed at November 2011.

33. IBM, IBM Business Process Management , 2011, http://www-01.ibm.com/

software/info/bpm/, accessed at November 2011.

34. Oracle, Oracle Business Process Management , 2011, http://www.oracle.com/

us/technologies/bpm/index.html, accessed at November 2011.

35. Vanderaalst, W. and A. Terhofstede, “YAWL: yet another workflow language”,

Information Systems , Vol. 30, No. 4, pp. 245–275, Jun. 2005.

36. YAWL: Yet Another Workflow Language, 2011, http://www.yawlfoundation.

org/, accessed at November 2011.

37. Wohed, P., N. Russell, A. H. M. ter Hofstede, B. Andersson and W. M. P. van der

Aalst, “Patterns-based evaluation of open source BPM systems: The cases of

103

jBPM, OpenWFE, and Enhydra Shark”, Inf. Softw. Technol., Vol. 51, pp. 1187–

1216, August 2009.

38. jBPM, jBPM Business Process Management Suite, 2011, http://www.jboss.org/

jbpm, accessed at November 2011.

39. Ruote, Ruote Open Source Ruby Workflow Engine, 2011, http://ruote.

rubyforge.org/, accessed at November 2011.

40. Shark, E., Enhydra Shark Open Source Workflow , 2011, http://www.together.

at/prod/workflow/tws, accessed at November 2011.

41. Aalst, V. D., “The Application of Petri Nets to Workflow Management”, , 1998.

42. Initiative, W. P., Workflow Patterns , 2011, http://www.workflowpatterns.com/,

accessed at November 2011.

43. Masoud Nosrati, R. K., “Occam: A primary parallel programming language”,

World Applied Programming , Vol. 1, No. 1, pp. 85–88, April 2011.

44. Ben-Ari, M., Principles of concurrent and distributed programming , Prentice-Hall,

Inc., Upper Saddle River, NJ, USA, 1990.

45. Hyde, D. C., “Introduction to the Programming Language Occam”, , 1995, http:

//www.eg.bucknell.edu/~cs366/occam.pdf, accessed at November 2011.

46. Stefansen, C., “SMAWL: A small workflow language based on CCS”, Harvard

University , 2005, accessed at November 2011.

47. Choppella, V., B. Vamsikrishna, T. Dinesh and N. Kokciyan, “Towards a Declar-

ative Workflow Model for Customizing Group Processes”, The 7th International

Conference on Distributed Computing and Internet Technologies(ICDCIT 2011),

2011.

104

48. Dinmore, M. D. and C. C. Boylls, “Empirically-Observed End-User Programming

Behaviors in Yahoo! Pipes”, , 2010.

49. W3C: HTML5 , 2011, http://www.w3.org/TR/html5/, accessed at November

2011.

50. Foundation, Z., ZODB - a native object database for Python, 2011, http://www.

zodb.org/, accessed at November 2011.

51. Swartz, A., Web Framework for Python, 2011, http://webpy.org, accessed at

November 2011.

52. W3C, Extensible Markup Language (XML), 2011, http://www.w3.org/XML/, ac-

cessed at November 2011.

53. W3C, Resource Description Framework , 2011, http://www.w3.org/RDF/, ac-

cessed at November 2011.

54. W3C, W3C Semantic Web Activity , 2011, http://www.w3.org/2001/sw/, ac-

cessed at November 2011.

55. Community, L. D., Linked Data - Connect Distributed Data across the Web, 2011,

http://linkeddata.org/, accessed at November 2011.

56. Janastu, a11ypi , 2011, http://a11y.in/a11ypi/idea/, accessed at November

2011.

57. Janastu, a11ypi : Accessibility for the Print-impaired , 2011, http://a11y.in/,

accessed at November 2011.

58. Dinesh, T., Alipi Report - Accessibility for the Print

Impaired , 2011, http://www.scribd.com/doc/63174056/

Alipi-Report-accessibility-for-the-print-impaired-Aug-2011, accessed

at November 2011.

105

59. Shirky, C., Cognitive Surplus: Creativity and Generosity in A Connected Age,

Penguin Press, New York, 2010.

