
POSITIVE AND NEGATIVE ASSOCIATION RULE MINING ON XML DATA

STREAM IN DATABASE AS A SERVICE CONCEPT

by

Samet Çokpınar

B.Sc., in Computer Engineering, Marmara University, 2006

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2011

iii

ACKNOWLEDGEMENTS

First, I would like to thank my advisor, Professor Taflan İmre Gündem for his

guidance and support during the development of this research. His patience and un-

derstanding helped me solve the problems and continue with the work harder.

I would also like to thank Associate Professor Can Özturan and and Assistant

Professor Mustafa Ağaoğlu for kindly accepting to be in my thesis jury.

I give my best regards and special thanks to my wife Nevin Çokpınar. She was

always my key supporter throughout my graduate studies and particularly this research.

Without her endless support and encouragement, it would have been so hard to pass

through all the hard times.

I also would like to thank to my family for their endless support in my whole

education life.

Lastly, I would like to thank to my dear friend Melih Çelik and my manager İsa

Ergül for their support to finish this thesis.

iv

ABSTRACT

POSITIVE AND NEGATIVE ASSOCIATION RULE

MINING ON XML DATA STREAM IN DATABASE AS A

SERVICE CONCEPT

Due to the development of database technology and systems in recent years,

there is an enormous increase in data size. This increase makes the data mining one of

the hot topic for organizations to determine their strategies. Association rule mining

is a data mining approach that discovers the useful, but hidden patterns in the data

set. This method uses widely in traditional databases and usually to find the positive

association rules. However, there are some other challenging rule mining topics like

data stream mining and negative association rule mining. Nowadays, organizations

want to concentrate on their own business and outsource the rest of their work. This

approach reveals the ”Database as a service” concept. This concept provides lots of

benefits to data owner, but, at the same time brings out some security problems.

In this research, we have proposed a mining model that combines the mentioned

challenging areas. To the best of our knowledge, our approach is unique in the liter-

ature. Our model provides efficient solution to find positive and negative association

rules on XML data stream in database as a service concept. We have adapted some

pruning strategies for efficient negative rule mining. Also, we have applied some secu-

rity techniques to provide efficient and sufficient data protection.

We have run many experiments with some different synthetic data sets and with

one real world data set to show the efficiency of our proposed model. The results have

shown that proposed system makes the association rules mining operation efficiently.

v

ÖZET

XML VERİ KATARLARINDA POZİTİF VE NEGATİF

BİRLİKTELİK KURALLARININ ÇIKARIMI

Son yıllarda veritabanı teknolojisindeki gelişmeler, saklanan veri miktarlarında

önemli bir artışa yol açmıştır. Bu artış veri madenciliğini şirketlerin stratejilerini belir-

lemeleri açısından önemli bir konu haline getirmiştir. Birliktelik kuralları çıkarımı, veri

kümeleri içerisindeki yararlı ama gizli olan örüntüleri ortaya çıkaran bir veri madenciliği

yaklaşımıdır. Bu metot geleneksel veritabanları üzerinde pozitif birliktelik kurallarının

çıkarımında yaygın olarak kullanılmaktadır. Fakat, bu konuda veri katarı madenciliği

ve negatif birliktelik kuralları çıkarımı gibi daha zor problemler de yer almaktadır.

Günümüzde şirketlerin büyük kısmı kendi uzmanlık alanlarına odaklanmak ve diğer

işlerinin servis sağlayıcılar tarafından yapılmasını istemektedirler. Bu yaklaşım ”dış

kaynaklı veritabanı” konseptini ortaya çıkarmıştır. Bu konsept veri sahiplerine birçok

fayda sağlarken aynı zamanda bazı güvenlik problemlerini de ortaya çıkarmaktadır.

Biz bu çalışmada yukarıda bahsetmiş olduğumuz bu zor problemlerin çözümlerini

bir araya getiren bir madencilik modeli önerdik. Literatürde bizim önerdiğimiz şekilde

bir yaklaşıma rastlanmamıştır. Bizim modelimiz XML veri katarlarında pozitif ve

negatif birliktelik kuralları çıkarımı işlemini dış kaynaklı veritabanları konsepti ile etkin

bir şekilde gerçekleştirmektedir. Bu çalışmada verimli bir negatif birliktelik kuralı

çıkarımı için bazı eleme teknikleri kullanılmıştır. Ayrıca etkin ve yeterli bir veri koru-

ması için bazı güvenlik teknikleri kullanılmıştır.

Bu çalışmada önerilen modelin verimliliğini göstermek amacıyla farklı veri kümeleriyle

birçok test yapılmıştır. Test sonuçları önerilen modelin veri kuralları çıkarımı işlemini

etkin bir şekilde yaptığını göstermiştir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . ix

LIST OF SYMBOLS/ABBREVIATIONS . x

1. INTRODUCTION . 1

1.1. Introduction . 1

1.2. Outline . 3

2. PRELIMINARIES . 5

2.1. Association Rule Mining Definitions & Concepts 5

2.1.1. Apriori Algorithm . 9

2.1.2. FP-Growth Algorithm . 11

2.2. Association Rule Mining on Data Streams 14

2.3. Database as a Service Concept . 16

2.4. Encryption & Security Issues . 16

3. ARCHITECTURE OF THE PROPOSED SYSTEM 19

3.1. Problem Statement . 19

3.2. Proposed Model . 20

3.2.1. Model Assumptions . 20

3.2.2. PNRMXS Algorithm . 20

4. EXPERIMENTAL RESULTS . 34

4.1. Experimental Data Sets . 34

4.1.1. IBM Synthetic Data Set Generator 34

4.2. Experimental Environment . 36

4.3. Experimental Results . 36

4.3.1. FP-Tree Node Counts . 36

4.3.2. FP-Tree Generation Time Comparison 37

4.3.3. Total Execution Time Comparison 39

vii

4.3.4. Execution Time Comparison of PNRMXS & Moment Algorithm 41

4.3.5. Memory Consumption Comparison 44

4.3.6. Effect of Block Size on Execution Time 45

4.3.7. Negative Rule Mining Effect . 46

4.3.8. Example Rule Set . 47

5. DISCUSSIONS & CONCLUSION . 49

6. FUTURE WORKS . 51

REFERENCES . 53

viii

LIST OF FIGURES

Figure 2.1. Apriori Algorithm Pseudo-Code by R. Agrawal [2] 10

Figure 2.2. Apriori-Gen Procedure Pseudo-Code by R. Agrawal [2] 10

Figure 2.3. FP-Tree Construction by P. N. Tan [5] 11

Figure 2.4. FP-Growth steps to find frequent sets ending with {e} by P. N.

Tan [5] . 13

Figure 3.1. Flowchart of the PNRMXS Algorithm 22

Figure 3.2. Example XML Data . 23

Figure 3.3. Flowchart of Stream Encryption & Decryption Processes 25

Figure 3.4. PNRMXS Algorithm Pseudo-Code 30

Figure 4.1. FP-Tree Node Counts . 37

Figure 4.2. FP-Tree Generation Time Comparison 38

Figure 4.3. Moment & PNRMXS Comparison 43

Figure 4.4. Execution Time with Different Block Size 45

Figure 4.5. Negative Rule Mining Effect on Execution Time 46

Figure 4.6. Example Rule Set . 48

ix

LIST OF TABLES

Table 2.1. Example Market Basket Data Set by P. N. Tan [5] 7

Table 3.1. 2x2 Contingency Table for Binary Variables by M. L. Antonie [13] 28

Table 4.1. Descriptions of Parameters . 35

Table 4.2. Generated Test Data Sets . 35

Table 4.3. FP-Tree Node Counts in Detail . 38

Table 4.4. FP-Tree Generation Times . 39

Table 4.5. Execution Times on T5N1000I4D100K data set 39

Table 4.6. Execution Times on T10N1000I4D100K data set 40

Table 4.7. Execution Times on T10N1000I4D100K data set 40

Table 4.8. Execution Time Details . 42

Table 4.9. Rule Generation Times on T10N1000I4D100K - T10N2000I4D100K 42

Table 4.10. Memory Consumption Comparison 44

Table 4.11. Memory Consumption for T10N4000I4D100K data set 45

x

LIST OF SYMBOLS/ABBREVIATIONS

ρ Correlation Coefficient

σ Standard Deviation

φ Pearson Correlation Coefficient

AES Advanced Encryption Standard

conf (X⇒ Y) Confidence Value of Item Set

Cov (X,Y) Covariance Value

CPU Central Processing Unit

FP-Growth Frequent Pattern Tree

FP-Tree Frequent Pattern Tree

IBM International Business Machines

I/O Input and Output

MCN Minimum Confidence Threshold for Negative Rules

MCP Minimum Confidence Threshold for Positive Rules

MS Minimum Support Threshold

MSN Minimum Support Threshold for Negative Rules

MSP Minimum Support Threshold for Positive Rules

PNRMXS Positive and Negative Rule Mining on XML Data Stream

RSA Rivest, Shamir and Adleman

supp (X⇒ Y) Support Value of Item Set

W3C The World Wide Web Consortium

XML eXtensible Markup Language

1

1. INTRODUCTION

1.1. Introduction

Due to the development of database technology and systems in recent years,

there is an enormous increase in data size. This increase makes the data mining,

also called knowledge discovery in databases, technology one of the hot topic in some

business domains like marketing, WEB technologies, financing and telecommunication.

Data mining is an approach that discovers the useful, but hidden patterns within the

huge data. These hidden patterns can provide to us some interesting and valuable

relationships or associations. The process of finding these relationships is named as

Association Rule Mining.

Association rule mining was first introduced by Agrawal et al. [1] in order to

mine association rules on large transactional databases. After this concept, Agrawal

and Srikant [2] have developed the most popular association rule mining algorithm

Apriori that is based on minimum support and confidence constraints. This algorithm

is easy to implement and can be used on databases that do not change often. However,

the main drawback of this algorithm is slowness that is due to the lots of passes over

the data set. Therefore, another and one of the fastest rule mining algorithm, FP-

Growth (Frequent Pattern Growth), is proposed by Han et al. [3]. There are two

main improvements in this algorithm. First, FP-Tree is the compressed form of the

database, so the data size of the tree is usually smaller than the original data size that

provides efficient memory usage. The other improvement is that there is no candidate

set generation in FP-Growth algorithm that is the main reason of fastness of it.

Association rule mining, generally, is understood as positive association rule min-

ing. Positive association rule is stated as ”if A occurs in a transaction, then B will likely

also occurs in the same transaction” in [4]. However, with the increasing usage of data

mining technology, researches has recently focused on finding alternative patterns like

negative correlated patterns [4, 11, 13, 14]. In a negative correlated pattern, we expect

2

that there should be a negative relation between the item sets. The example given

in [4] summarizes a negative rule very well; ”birds can fly is a well-known fact, but

penguins can not fly although they are birds.” There is a few algorithms are proposed

in the literature about the negative rule mining because of it’s novelty and difficulty.

Nowadays, in lots of applications like network measurements, telecommunications

data transmission is made with data streams. This wide usage increases the importance

of data mining topic on data streams. Data streams arrive continuously with high speed

and contains huge amount of data, so fast analyzing and processing of the data is a

crucial point. Because of these features of data streams, mining process on data streams

is more difficult than mining static data.

In the literature, there are many proposed rule mining methodologies that are

based on Apriori algorithm [12, 17, 18]. However they are not applicable on data

streams, because these methods need iterative scans over the data set and generate

large number of candidate frequent item sets. Also, original FP-Growth algorithm

is not suitable for data stream mining, because it makes two scans over data, which

is not possible in a streaming environment. Therefore, researchers focus to develop

single-pass mining algorithms [16, 19, 27].

Data mining on XML structured data is another challenging research area. XML

(eXtensible Markup Language) is a W3C recommended markup language to transmit

and store the data in a structure way. Increasing in usage of internet makes the XML

one of the most used data interchanging format. Therefore, data mining on XML

data becomes an important topic. Mining process on XML data can be in different

ways. First, the XML data can be converted to another format like flat file or other

relation structure and after that mining algorithms can be run over the converted

format. However, the processing techniques in this method should be chosen carefully

without affecting the mining task negatively. Another rule mining technique on XML

data is working on native XML without making any conversion. For this aim, a lot of

researchers use XML query language XQuery [42]. The main aim of XQuery is to query

XML data, so implementation of complex algorithm is a difficult task. The Apriori

3

algorithms is implemented by XQuery [32]. In [34], authors implement the FP-Growth

algorithm with XQuery language. However, in both implementations, authors did not

give any experimental result about the performance of their implementations. Another

study about XML data stream mining with XQuery is made by Jacky et. al in [46].

In this research, some performance tests are made on Apriori implementation with

XQuery. According to their results, XQuery is more suitable for mining data from

small data sets.

Today, organizations want to concentrate on their own professions and they prefer

to outsource the rest of their work. For instance, efficient data processing is a funda-

mental and vital issue for almost every organization. However, managing the large

database systems is an expensive and complicated task. Therefore, organization want

to delegate database processes like administration, backup, migration and optimization

to a service provider and that concept is called as ”database as a service”. On the other

hand this concept arises some problems about the security of the data, because data

owners share their private information with the third parties.

The aim of this research is to propose a model that can solve the problem of

combination of the mentioned research areas in the previous paragraphs in one model

and we call it PNRMXS (Positive and Negative Association Rule Mining on XML Data

Stream). In order to implement our proposed model, we have made some adaptations

on the algorithms that we use them as a basis model.

1.2. Outline

The rest of this document is organized as follows:

Chapter 2 will give the background information about the association rule mining

techniques and models that will be used in this research.

In Chapter 3, first our problem statement will be described. Also, we will give

all details of our proposed technique.

4

Chapter 4 will explain the experimental setups that are used to validate our

proposed model and also will give the details of the experiments that are performed.

Chapter 5 will summarize our research and present the conclusions driven from

the results of this study.

In the last chapter, we will address possible improvements about our proposed

model and future works.

5

2. PRELIMINARIES

In this chapter, we will introduce the background knowledge and related work

about the association rules mining topic. Next section will give information about the

basic association rule mining concepts and definitions. Also, we will give the details of

the two key algorithms in association rule mining topic and also some related works

about positive and negative association rule mining. In Section 2.2, we will give the

details of the data stream association rule mining concept. Section 2.3 will provide

information about the ”Database as a Service Concept”. In the final section we will

give necessary fundamental information about the encryption techniques and security

issues.

2.1. Association Rule Mining Definitions & Concepts

Association rule mining is one of the main techniques of data mining and knowl-

edge discovery. The purpose of association rules is to find frequent patterns, associ-

ations and correlation relationships among large set of data items. The most-known,

typical and widely-used example of association rule mining is Market Basket Analysis.

Market basket analysis has emerged as the next step in the evolution of retail mer-

chandising and promotion. It allows leading retailers to quickly and easily look at the

size, contents and value of their customers’ market basket to understand the patterns

in how products are purchased together or basic product affinities [31]. Besides market

basket analysis, association rule mining is also applicable to other domains like medical

systems [24, 25, 39], telecommunications [35, 40] and financing [45, 47].

In literature, there are mainly three types of association rules that are binary,

quantitative and fuzzy association rules. A binary association rule is a rule that con-

cerns associations between the absence and the presence of items (0 refer for absence

and 1 refer for presence of the item). If a rule describes association between quanti-

tative items or attributes, it is named as quantitative association rule. In such rules,

if the domain of values for a quantitative approach is large, an obvious approach will

6

be to partition the values into intervals and then map each (attribute, interval) pair

to a boolean attribute [22]. After that, any algorithm for finding boolean association

rules can be used. In quantitative association rules, if value sets of items in the rule

is replaced by fuzzy sets [23], fuzzy association rules is obtained. In this research, we

will use the boolean association rules.

The formal definition of positive association rules can be summarized as follows:

Let I = {i1, i2, i3,, in} be a set of n distinct literals called items. Let DB be a set of

transactions, T = {t1, t2, t3,, tn} ,where each transaction is a set of items and is

associated with a unique identifier TID. Let S, called an item set, be a set of items in

I. The number of items in an item set (S) is the size of an item set (N). A transaction

T is said to contain S if S ⊆ T.

There are two sub types of frequent item sets which are maximal frequent item

set and closed frequent item set. A maximal frequent item set is an item set which

none of its immediate supersets are frequent. An item set X is closed if none of its

immediate supersets has the same support count as X and it is frequent if its support

value is greater than or equal to user-defined minimum support threshold.

A positive association rule is an implication of the form X ⇒ Y, where X

⊆ I,Y ⊆ I and X ∩ Y = ∅. We call X as the antecedent of the rule, and Y as the

consequent of the rule. The strength of an association rule can be measured with it’s

support and confidence value. The support value of an item set can be defined as the

proportion of transactions in the data set which contain the item set. The confidence

value of a rule indicates its reliability. The support value is used for frequent item set

elimination, while confidence value is used for association rule generation.

supp(X ⇒ Y) =
(X ∪ Y)
N

(2.1)

conf(X ⇒ Y) =
supp(X ∪ Y)
supp(X)

(2.2)

7

In Equation 2.1, (X ∪ Y) indicates the total number of transactions that con-

taining the both item X and Y. We use the example that is stated in [5] to understand

how the support and confidence framework works.

Table 2.1: Example Market Basket Data Set by P. N. Tan [5]

In Table 2.1, the binary representation of the market basket data can be seen.

This table can be read as follows: ”TID” column represents the id of current transac-

tion, ”Items” column represents the list of items is contained in the transaction. For

instance; there are 5 transactions in data set and first transaction shows that customers

bought Bread and Milk. For example; consider support and confidence values as 0.3

for data set in Table 2.1. If we mine the data set, we can find {Milk, Diapers, Beer}

as a frequent set because its support value is 0.4. After mining step, we can generate

possible association rules. {Milk ⇒ Diapers,Beer} is one rule candidate and if we

check its confidence that is 2/4 = 0.5, so it can be stated as a valid positive association

rule. The last point we would like to state here is, how the support and confidence

threshold values are determined. The values of these constraints depend on the data

owners needs and the business domain.

The other type of association rules is the negative association rule. A negative

association rule can be defined as ”customers that buy product X, but not product Y ”.

Negative associations can provide us valuable information, for example, in marketing

strategies. In literature a few researchers tend to solve mining negative association rules

problem due to the its difficulty. However, why is the negative rule mining is difficult

task? As stated in [11], finding negative associations rule is not easy as positive mining,

because search space in negative rule mining is much bigger than positive rule mining.

8

For example, in a large retail store, there can be tens of thousands of items and also

may be billions of customer transactions. For example, if there are 50,000 items, the

possible combinations of items is 250,000 and even though majority of them will not

appear even once in the entire database. As can be seen in this example, there can be

millions of negative association rules and unfortunately most of these rules are likely

to be meaningless.

Because of the reasons mentioned above, some researchers try to simplify negative

association mining problem. For instance, in [14], authors first find a set of positive

rules and after that generate negative rules based on existing positive rules and do-

main knowledge. However, in this strategy, because of using existing positive rules to

generate negative rules, you may loose the valuable negative associations. There is

another model that is proposed in [15] is based on appending virtual negative items to

the transactions. The main drawback of this approach is that there are more processes

on the data sets.

The formal definition of negative association rules is similar to positive association

rules. The only difference is that in negative association rules,the antecedent or the

consequent part of the rule is negated. In negative rule mining, support-confidence

framework can also be used and the support and confidence values of the rules are

calculated with equations 2.3 and 2.4.

supp(X ⇒ ¬Y) = supp(X)− supp(X ∪ Y) (2.3)

conf(X ⇒ ¬Y) =
supp(X)− supp(X ∪ Y)

supp(X)
(2.4)

9

2.1.1. Apriori Algorithm

The most-known association rule mining algorithm, Apriori, is proposed by Agrawal

and Srikant [2]. This model, basically, divides the rule mining process into two sub-

problems. In the first step, the algorithm generates the 1 to k large item set where k

is the count of separate items in the transactions. After candidate item set generate,

algorithm pass over the database to find the frequent large item set that have support

value is more than predefined minimum support value. The other step of the algorithm

generates association rules from frequent large item sets with minimum confidence con-

straints. The main advantage of the Apriori algorithm is easy implementation. Also,

it can be easily optimized, for instance, it can be parallelized or some parameters other

than support and confidence can be added for pruning process. However, there are two

bottlenecks of the Apriori algorithm. First one is, it requires too many scans over the

database and it leads to high CPU usage and I/O cost. Also, it makes candidate set

generation that takes the most of the execution time to find association rules. Because

of these bottlenecks, this algorithm is not suitable for data streams, in which data

should be scanned only once. The pseudo-code of the Apriori algorithm is provided in

[2] and can be seen in Figure 2.1 and Figure 2.2.

10

Algorithm Apriori

1: L1 = {Large 1-Itemset};

2: for (k = 2; Lk−1 6= ∅; k ++) do

3: Ck = apriori-gen (Lk−1); //New Candidates

4: for all transactions t ∈ D do

5: Ct = subset (Ck, t) //Candidates contained in t

6: for all candidates c ∈ Ct do

7: c.count ++;

8: end for

9: end for

10: Lk = {c ∈ Ck | c.count ≥ minsup }

11: end for

12: Answer = UkLk;

Figure 2.1: Apriori Algorithm Pseudo-Code by R. Agrawal [2]

Procedure Apriori-Gen

1: insert into Ck

2: select p.item1, p.item2,....,p.itemk−1, q.itemk−1

3: from Lk−1 p, Lk−1 q

4: where p.item1 = q.item1,..., p.itemk−2 = q.itemk−2, p.itemk−1 < q.itemk−1;

5: for all itemsets c ∈ Ck do

6: for all (k-1)-subsets s of c do

7: if (s 6∈ Lk−1) then

8: delete c from Ck;

9: end if

10: end for

11: end for

Figure 2.2: Apriori-Gen Procedure Pseudo-Code by R. Agrawal [2]

11

2.1.2. FP-Growth Algorithm

Another popular rule mining algorithm, FP-Growth, is developed by Han et al.

[3]. The mining process of the FP-Growth algorithm can be summarized as follows:

Initially, the algorithm scans the data set to find the item support value. After that,

items that have lower support value than user-specified minimum support value are

eliminated. Now, there are transactions which contain only frequent items. In second

step, frequent items are put in the FP-Tree. The FP-Tree is a prefix tree that contains

frequent items. In the last process, association rules which have higher confidence value

that user-specified confidence are mined without candidate set generation that is the

main contribution of the FP-Growth algorithm. However, this algorithm makes two

scans over data, so the original form of it is not suitable for data stream mining.

How the FP-Growth algorithm runs can be explained on an example that is pro-

vided in [5] as follows:

Figure 2.3: FP-Tree Construction by P. N. Tan [5]

12

In Figure 2.3, there is a data set with ten transactions and five items. Each node

in the tree contains the label of an item and existence count of item. The root node of

the tree depicts with null symbol and tree is constructed with following steps:

(i) In order to find the support value of each items, the data set should be scanned

firstly. The infrequent items are eliminated, because they do not have importance

in mining process. The frequent items are sorted in decreasing support value. In

this example data sets, frequent items are a, b, c, d and e .

(ii) In second step, the data set is scanned once more to construct FP-Tree. The first

transaction, {a, b} is read and the nodes with label a and b are created. Also,

the support value of each item is set to 1.

(iii) If the transactions do not contain common prefixes, the process is continued as

explained in the second step. Otherwise, if there are transactions that contain

common items, their paths are overlapped partially or fully in the tree. Because of

overlapping paths, support values of common items is increased by 1 and support

values of others are set to 1.

(iv) The process is continued until all transactions have been mapped onto the tree.

The construction steps of the FP-Tree can be seen in Figure 2.3.

In FP-Growth algorithm, frequent item sets are mined from the FP-Tree by

traversing the tree in a bottom-up fashion. In order to understand in detail, how the

algorithm works is explained in [5] with the following example. Suppose, we try to

find all frequent item sets ending with item {e}. First, we must compare the support

value of item set {e} with user-defined support value. If it is frequent, we continue the

finding frequent item sets ending with {d, e}, {c, e} and so on. In each further step,

we add new item to the set and check whether new set is frequent or not. Finally, the

merging of all result gives us all frequent item sets ending with item {e}. The details

of these processes can be seen in Figure 2.4 and summarized in [5] with following steps:

(i) All the paths containing node {e} are found firstly. These paths are named as

prefix paths and can be seen in Figure 2.4(a).

(ii) The support value of item {e} can be found by following the links between nodes

13

Figure 2.4: FP-Growth steps to find frequent sets ending with {e} by P. N. Tan [5]

on the tree. In this example, consider the user-defined support value as 2, so item

set {e} is a frequent set because its support value is 3.

(iii) In second step, item {e} is found as frequent, now algorithm tries to find frequent

item sets with ending {d, e}, {c, e}, {b, e} and {a, e}. Therefore, the prefix paths

should be converted into a conditional FP-Tree. The conditional FP-Tree that is

shown in Figure 2.4(b) is structurally similar to an FP-Tree. The only difference

between these two trees are updated support values and pruned infrequent items.

The conditional FP-Tree is used to find frequent item sets ending with a specific

suffix.

(iv) In order to construct the conditional FP-Tree of item {e}, first, support values

on the prefix paths must be updated because there are some transactions that do

not contain item {e}. The rightmost path, for instance, shown in Figure 2.4(a),

includes a transaction {b, c} but not contain {e}. Therefore item counts on this

path must be set to 1 to show the actual counts of transactions containing {b,

c, e}. After that point, node {e} can be removed from the prefix paths, because

the support values on the prefix paths are updated to show only transactions

14

that contain item {e}. After updating the support values, infrequent items can

be removed from the tree. For instance, the support value of the node {b} is

equal to 1, so it has lower support value than user-defined support, so it can be

removed.

(v) The conditional FP-Tree for {e} is used to find frequent item sets ending with {d,

e}, {c, e} and {a, e}. In order to find the frequent sets ending with {d, e}, the

prefix paths of item {d} are generated from the conditional FP-Tree for {e} as

seen in Figure 2.4(c). The support count of {d, e} is found by following the links

between item {d}, that is 2 in this example, so it is a frequent item set. After

that, the algorithm constructs the conditional FP-Tree for {d, e} that is shown in

Figure 2.4(d). The conditional FP-Tree of {d, e} contains only one item {a} and

its support is 2. The algorithm extracts the item set {a, d, e} as frequent. The

algorithm proceeds to solve all subproblems to find all frequent item sets. The

prefix paths of item sets {c, e} and {a, e} can be seen in Figure Figure 2.4(e)

and Figure 2.4(f) respectively.

(vi) The last process in FP-Growth algorithm is to find association rules from frequent

item sets. For instance, algorithm finds {a, d, e} as frequent item set. For this

set, all possible rule combinations like {a ⇒ d}, {a ⇒ d, e} are generated. The

confidence values for all combinations are calculated and the rules that have

greater confidence value than user-defined confidence value are mined as valid

association rules.

2.2. Association Rule Mining on Data Streams

A data stream is a sequence of data that arrives in timely order. Unlike static

databases, data streams arrive continuously with high speed and contains huge amount

of data. As the number of applications that use data streams grows rapidly, there is

an increasing need to perform association rule mining on stream data [28]. Some

application areas of data mining on streams are sensor networks, manufacturing lines

and web searches.

There are some challenging points on data stream mining topic. The most im-

15

portant one is because of rapid arrival rate of data, there is no multi-scan chance over

the data. Also, due to the fast flow of data, rule mining algorithms should process the

data as fast as possible. Besides these, another important point in stream mining is

reasonable memory consumption, because it is not possible to store all stream data in

memory.

There are three stream data processing models, Landmark, Damped and Sliding

Windows [16].

The Landmark model mines all frequent item sets over the entire history of stream

data from a specific time point called landmark to the present. Usually landmark point

is set as a system start, so it means data mining is made over whole data. Therefore,

this model is not suitable for applications where the most recent information of the

data streams is valuable for the users.

The Damped model, mines frequent item sets in stream data in which each trans-

action has a weight and this weight decreases within time. That is, older transactions

have less importance than new ones. This model can be used for applications in which

old data has an effect on the mining results, but the effect decreases with time [28].

In the Sliding Windows model, mining process is made on sliding windows. In

this approach, the part of data streams within the current window are stored and

processed for mining. We can choose the sliding window size according to application

domain and system resources. The mining result of the sliding window method totally

depends on recent data in the range of the window.

The rule mining algorithms on data streams can be divided into two groups which

are exact algorithms and approximate algorithms. In exact mining algorithms, the

result sets contains all of the item sets which have greater or equal support value than

the user defined support threshold. Approximate algorithms generate approximate

result sets which are pruned with probabilistic guarantee. There are two possible

approaches in approximate mining of frequent patterns with a probabilistic guarantee

16

which are false positive oriented and false negative oriented. The first one includes

some infrequent patterns in the result sets, whereas the second misses some frequent

patterns [38].

2.3. Database as a Service Concept

Today, efficient data processing is a fundamental and vital issue for almost ev-

ery scientific, academic or business organizations. However, this processing has been

getting increasingly expensive and impractical if the database systems and problems

are large and complicated [8]. Therefore, organizations usually want to outsource diffi-

cult works like data management and focus on their own business. This approach has

brought the ”database as a service” initiative to the industry.

In ”Database as a service” paradigm requested database processes are provided

by a service provider. For instance, operations like database administration, backup,

migration and optimization is carried out by service provider [7]. However, database

as a service leads new challenges and the most vital of them is providing data privacy.

In this model, data owners share their valuable information with the service providers.

Most corporations consider their data as a very valuable asset [8]. In the case of

sharing data with the third parties, content or structure of the data should be hidden

for security. Encryption is the most known and fundamental methodology in providing

data security. In [37], authors have mentioned about the substitution cipher technique

that is a well-known method for encryption of plain text.

2.4. Encryption & Security Issues

With the increasing usage of internet and network technologies, data exchange

rates over the networks increase day by day. However, this wide usage also increase the

undesirable attacks on network, so providing a secure exchange environment becomes

a vital issue.

In order to protect the data from the attackers, the most used technique is the

17

encryption. In order to encrypt the data, Advanced Encryption Standard (AES) can be

used as an encryption standard. AES is a symmetric-key encryption standard adopted

by the U.S. government. In symmetric-key encryption, same key, called secret key, is

used for both encryption and decryption. Data encrypted with a secret key can be

decrypted only with the same key. However, this shows the lack of this algorithm that

is if the key is obtained in any type of attack, all data can be decrypted.

AES is based on a design principle known as a Substitution permutation network

and it runs fast in both software and hardware. AES contains the following steps which

are stated in [41]:

(i) SubBytes: Each byte in the array is updated using an 8-bit substitution box.

(ii) ShiftRows: Operates on the rows of the state; it cyclically shifts the bytes in each

row by a certain offset.

(iii) MixColumns: The four bytes of each column of the state are combined using an

invertible linear transformation.

(iv) AddRoundKey: The subkey is combined with the state.

The other encryption algorithm RSA, that is an algorithm for public-key cryptog-

raphy, was first described by Rivest, Shamir and Adleman in [29]. In RSA algorithm,

two keys that are public key and private key are generated. The public key can be

known by everyone and is used for data encryption. The data that is encrypted with

the public key can only be decrypted using the private key. The key generation phase

of the RSA is summarized in [30] as follows:

(i) Choose two prime numbers p and q. For security purposes, the integers p and q

should be chosen at random, and should be of similar to algorithm bit-length.

(ii) Compute n = pq where n is used as the modulus for both the public and private

keys.

(iii) Compute ϕ(n) = (p - 1)(q - 1), where ϕ is Euler’s totient function.

(iv) Choose an integer e such that 1 < e < ϕ(n) and gcd(e, ϕ(n)) = 1 (e and ϕ(n)

are co-prime).

18

(v) Determine d = e−1(mod ϕ(n)). (d is the multiplicative inverse of e(mod ϕ(n))).

If the p and q integers are chosen similar to bit-length of the algorithm, the

product of these two big prime numbers will be a very large number. Therefore,

the finding the factors of the product number is slightly time consuming process and

this makes the RSA so powerful and revolutionary compared to previous systems of

encryption.

19

3. ARCHITECTURE OF THE PROPOSED SYSTEM

3.1. Problem Statement

Typical association rule mining algorithms, in the literature, especially find pos-

itively correlated association rules. However, mining negative correlated rules can

provide us valuable information about the data like identifying products that conflict

with each other or products that complement each other. Negative rule mining is more

difficult task than positive rule mining, because of some differences between these two

topics. In negative rule mining, the search space is much bigger than positive rule

mining and this is the main reason of difficulty of this problem. Therefore, in the lit-

erature, lots of researches pointed out the negative association rule mining, but there

are only few proposed algorithms about this topic [4, 11, 14, 15].

As mentioned in the previous section, today, data owners want to focus on their

own business rather than managing their data. Therefore, data management issues are

outsourced to third-party service providers and this concept is named as ”Database

as a service”. ”Database as a service” concept meets lots of the expectations of data

owners, but this concept raises an important security issue that is the data privacy

protection. Data owners usually do not want to share their own private and valuable

information with service providers [9]. Therefore, there have been various techniques

in the literature [10, 21] to protect the data against the third-party players.

There are some challenges for association rule mining over data streams because

of characteristics of streaming data. The main characteristics of data streams are

continuous, unbounded and high speed. Traditional association rule mining algorithms,

usually, make multiple scans over the data set to find frequent item sets. However, in

data streams, there is a continuous data flow and there is no chance to make multiple

scans on data sets. It means that traditional algorithms is not suitable for rule mining

on streams. Due to the huge amount of data efficient memory space usage is required

to mine streaming data. Also, because of high speed data flow, mining algorithms

20

should process the data as fast as possible.

If summarize the previous paragraphs, the following problems are arise: First

one is, can we implement an algorithm to mine positive and negative rules at the same

time? Another problem is that can our proposed rule mining algorithm be run over the

XML data stream? The last questions is that can we make all these processes in the

”database as a service” concept with providing data privacy. Considering these there

questions, our research question can be formed as: ”Can a rule mining algorithm be

implemented for both positive and negative rule mining over XML data stream with

database a service concept to provide acceptable performance and reliable results?”.

In this research, we try to find an answer to this question.

3.2. Proposed Model

In order to find an answer to the research question introduced in the previous

chapter, we have constructed PNRMXS algorithm. In this chapter, detailed informa-

tion about the proposed model will be presented.

3.2.1. Model Assumptions

In our proposed model PNRMXS, we have the following assumptions:

(i) The average size of the each block of the data stream is constant (i.e each block

contains n transactions).

(ii) Arriving items in a transaction are sorted.

(iii) In PNRMXS model, we only mine positive rules with form X⇒Y and, for algo-

rithm simplicity, negative rules with form X⇒¬Y.

3.2.2. PNRMXS Algorithm

In this research, we propose PNRMXS model that is a single-scan algorithm

for mining positive and negative rules on XML data stream in database as a service

21

concept.

The whole processes in our algorithm, as shown in Figure 3.1, are run by two

sides which are ”data owner” and ”service provider”. The steps of PNRMXS algorithm

are described in detail as follows with example data set in Figure 2.3.

(i) Data Transformation: Data transformation step is the first step of PNRMXS

algorithm. In this step, a simple encryption method, one-to-one mapping, is used

as proposed in [37]. Even if we work with a reliable service provider, we may want

to hide the content of our data. For this purpose, we use a transformation map

that contains the original item contents and the transformed item contents as

key-value pairs. In PNRMXS implementation, the transformed items are gener-

ated with a random number generator. With the help of this mapping, the service

provider only mines the association rules which contain transformed items and

the original items can not be known directly. The most important point in this

technique is that because of using one-to-one mapping the association rule min-

ing algorithms can be applied with 100% accuracy. One-to-one item mapping for

association rule mining gives us enough security, because the number of possible

mappings is much larger, so guessing the mapping transformation is a hard pro-

cess.

In order to provide more security, some other transformation techniques like

adding fake items to original item set or one-to-many mapping can be used [37].

However, as you might guess, these processes are costly operations that has neg-

ative effect in stream mining and sometimes they may not give accurate mining

results. It is very important to make a reasonable choice between security and

performance issues. Therefore, taking into account on working streaming envi-

ronment, we choose the one-to-one mapping technique to provide us necessary

security.

Data transformation process is described in [37] as following: m: I→J is a sub-

stitution cipher, which maps the original set I of items to another set J, where

22

Figure 3.1: Flowchart of the PNRMXS Algorithm

23

|I | = |J |. A transaction ti is transformed to M (ti) = {m(x) | x ∈ ti}. For exam-

ple, consider the transaction ti = {a, b} and assume that m(a) = 101 and m(b)

= 48. As a result, ti is transformed to M(ti) = {101, 48}. In Figure 3.2, you

can see an example content of the XML data with original and transformed items.

(a) Original XML (b) Transformed XML

Figure 3.2: Example XML Data

(ii) Stream Encryption: In encryption step; AES (Advanced Encryption Standard) is

used to encrypt the transformed XML data. AES is a symmetric-key encryption

technique that means encryption and decryption processes should be made with

same key. AES has a fixed block size of 128 bits and a key size of 128, 192, or 256

bits, here we choose 128 bits key size, because 128 bits is currently thought, by

many observers, to be sufficient and the U.S. government requires 192 or 256-bit

24

AES keys for highly sensitive data [36].

In our algorithm, first, AES key is generated and stored in a binary file and after

that the transformed XML data is encrypted with this key. Now, our XML data

is secure. However, the service provider should now the AES key for decryption,

but how can we transmit the AES key file in a secure way to the service provider?

The problem here is that in order to distribute encryption keys between the data

owner and the service provider, another secure transmission environment should

be provided. All classical encryption methods suffer from this key distribution

problem.

We will use another encryption approach to solve the problem explained above.

In order to distribute the AES key file securely between the parties, RSA encryp-

tion algorithm will be used. As explained in Section 2.4, RSA is an asymmetric

encryption technique that is encryption is made by a public key, but decryption

can be made only a private key. The public key can be distributed even in un-

secured ways between the parties, but the private key should be kept securely.

In this step, the service provider generate a public-private key pair and transmit

the public key to the data owner. The data owner will encrypt the AES key file

with the RSA public key. From now on, our XML data and AES key file is secure

and can be distributed safely. At that point, this question can be asked. Why

do not we use RSA to encrypt and decrypt the whole data stream? The answer

is that RSA encryption is slower than AES encryption in large data, so in order

to decrease the execution time of algorithm, we use RSA for only AES key file

encryption. Also, in our implementation, we will use RSA key length as 1024 bits.

(iii) Stream Decryption: The third process is the reserve of the ”Stream Encryption”

step. This task is made by service provider. After the data owner transmits the

encrypted XML data stream and AES key file to the provider, first AES key file

is decrypted with private key which is hold by provider. Then, XML data stream

is decrypted with AES key. The graphical notation of ”Stream Encryption” and

”Stream Decryption” processes can be seen in Figure 3.3.

25

Figure 3.3: Flowchart of Stream Encryption & Decryption Processes

26

(iv) Mining Process: This is the main step in our PNRMXS algorithm. The proposed

model uses two models as a basis which are landmark windows model mentioned

in [16] and FP-Growth in [3].

The landmark windows model is used as a stream data processing model in our

proposed system. In this approach, data mining process is run over the data

between a specific window identifier called landmark and the present window

identifier. Landmark usually indicates the system start time and with this model

the rule mining is made over the entire data set.

The mining procedure is developed by using FP-Growth algorithm approach.

However, as stated before, the original FP-Growth algorithm is not suitable both

for rule mining on data streams and negative rule mining. Therefore, we should

make some adaptations on the algorithm.

The first change in the algorithm, because of the continuous characteristics of

data stream, is that the data set should be scanned only once. The data stream,

in this model, is processed block by block. As stated in our assumptions, each

block contains fixed number of transactions. The aim of PNRMXS algorithm is

mining positive and negative association rules at a time. In order to provide this

capability, items in the transactions are not eliminated according their frequen-

cies and all items are mapped to the FP-Tree. At first glance, it may seem to be

losing the advantage of the FP-Growth algorithm about memory space saving.

However, this is a required change for negative association rule mining, because

without all items negative rules can not be mined correctly. For example, another

negative rule mining approach is proposed in [14]. They mine the negative rules

based on the existing positive rules. This approach is decrease the search space

for mining negative rules efficiently, but loose lots of negative relations in the

data. Finding valid and enough number of negative associations is as important

as saving memory space.

The finding frequent item set phase in our algorithm is the similar to the original

27

FP-Growth algorithm as explained in Section 2.1. As stated before, in stan-

dard support-confidence framework there is only one support and one confidence

threshold value. However, these parameters do not provide sufficient pruning

capability for negative rule mining, so in PNRMXS algorithm, we also add new

extra support and confidence thresholds. In our approach, we do not use any

threshold value to eliminate infrequent items. Support threshold are only used

to prune frequent sets. Confidence values, in PNRMXS algorithm, are used in

only rule generation phase. In the next paragraph, we will give our threshold

definitions.

There are five threshold values which are ”MS”, ”MSP”, ”MCP”, ”MSN” and

”MCN” in our model. We define the all thresholds, except ”MS”, as the same

manner with proposed model ”PNAR” in [17]. The ”PNAR” model is an Apriori-

based algorithm. It first separates the items as frequent and infrequent with min-

imum support threshold. After that, generate positive rules from frequent items

with support and confidence threshold and negative rules from infrequent items

with different support and different confidence threshold. In PNRMXS, all items

in the data set are put in to our FP-Tree without any elimination. In finding

frequent set phase, because of containing all items, there is huge amount of fre-

quent sets. Even if, in negative rule mining case, most of these frequent sets can

be invaluable for data owner. Therefore, in order to make extra pruning and gain

extra performance, we also adapt ”MS” threshold in our algorithm. If an item

set has an support value greater than ”MS”, it can be a rule candidate. Another

adapted pruning strategy in our model is ”Correlation Coefficient” value as used

in [13, 17]. However, in [13], authors define a threshold value for correlation co-

efficient value over Apriori-based algorithm and until finding positive or negative

correlated items, this threshold value is lowered. Lowering the correlation thresh-

old causes additional scans that is not suitable for stream mining. Therefore, in

our model we do not define threshold value for correlation coefficient value. In

PNRMXS, we use the same correlation coefficient approach with [17], but we use

FP-growth algorithm as basis, on the other hand, they use Apriori algorithm as

basis. As defined in [26], ”Correlation Coefficient” measures the degree of the

28

linear relationship between a pair of random variables. In order to understand in

detail, we use the definitions given in [13, 26].

Table 3.1: 2x2 Contingency Table for Binary Variables by M. L. Antonie [13]

Y Y Σrow

X f11 f10 f1+

X f01 f00 f0+

Σcolumn f+1 f+0 N

The correlation coefficient value between the two variables X and Y can be

calculated with the formula in Equation 3.1:

ρXY =
Cov(X,Y)

σXσY
(3.1)

The correlation coefficient is defined as the covariance of the two variables that

is Cov(X,Y) divided by the product of their standard deviations that is σ. The

correlation value ranges from -1 and +1. If ρXY is equal to 0, it indicates that

these two variables are independent. The positive ρXY value means the variables

are positively correlated and negative value means the variables are negatively

correlated. If the coefficient value is close to either -1 or +1, there is a strong or

perfect correlation between the variables.

The cells of the Table 3.1 represent the possible combinations of variables X and

Y and give the frequency associated with each combination. N is the size of

the data set. With using the contingency table, Pearson defined the correlation

coefficient as in the Equation 3.2.

φ =
f11f00 − f10f01√
f1+f0+f+1f+0

(3.2)

”Correlation Coefficient” parameter is used for frequent item sets separation in

29

our model as used in other models. If item set has a ”Correlation Coefficient”

value greater than 0 it has positive correlation and if it has a value less than 0 it

has negative correlation. After finding all frequent sets with using ”MS” thresh-

old and after separating them as positive or negative, rule generation process is

started. The positive correlated frequent sets is used to mine positive associa-

tion rules with using ”MSP” and ”MCP” thresholds. If a frequent item set has

negative correlation, it may be a possible negative rule candidate. If the item

set has negative correlation, first, the possible rules with structure ”X⇒Y ” are

generated from this item set. Then, the consequent part of the rule, that is ”Y ”

in this notation, is negated. Lastly, the support and confidence values of the rule

candidate are compared with ”MSN ” and ”MCN ” thresholds to decide if it is a

valid negative rule or not. The pseudo-code of PNRMXS algorithm can be seen

in Figure 3.4 and 3.5.

30

Procedure PNRMXS(DS, MS, MSP, MCP, MSN, MCN)

1: Define and clear the root node of FP-Tree; root ;

2: for all Block Bi ∈ DS do

3: for all Transaction Ti ∈ Bi do

4: Call CreateTree(Ti, root);

5: end for

6: end for

7: for all item ai ∈ I do

8: Call PNRMXS Growth(root, ai, MS, MSP, MCP, MSN, MCN);

9: end for

Figure 3.4: PNRMXS Algorithm Pseudo-Code

31

Procedure PNRMXS Growth(root, a, MS, MSP, MCP, MSN, MCN)

1: if root contains single path P then

2: for all combination(c) of the nodes ∈ P do

3: Generate pattern p = c ∪ a

4: if p.support ≥ MS then

5: if corr (p)> 0 then

6: Generate Rule pr from p as (X⇒ Y)

7: if pr.support ≥ MSP and pr.confidence ≥ MCP then

8: Call Output(pr);

9: end if

10: else if corr (p)< 0 then

11: Generate Rule nr from p as (X⇒ ¬Y)

12: if nr.support ≥ MSN and nr.confidence ≥ MCN then

13: Call Output(nr);

14: end if

15: end if

16: end if

17: end for

18: else

19: for all bi ∈ root do

20: Generate pattern p = bi ∪ a

21: if p.support ≥ MS then

22: if corr (p)> 0 then

23: Generate Rule pr from p as (X⇒ Y)

24: if pr.support ≥ MSP and pr.confidence ≥ MCP then

25: Call Output(pr);

26: end if

27: else if corr (p)< 0 then

28: Generate Rule nr from p as (X⇒ ¬Y)

29: if nr.support ≥ MSN and nr.confidence ≥ MCN then

32

30: Call Output(nr);

31: end if

32: end if

33: end if

34: Construct p’s conditional pattern base and conditional FP-Tree CTreep

35: if CTreep 6= ∅ then

36: Call PNRMXS Growth (CTreep, p, MS, MSP, MCP, MSN, MCN)

37: end if

38: end for

39: end if

Figure 3.5: PNRMXS Algorithm Pseudo-Code

33

(v) Encrypt Association Rules: After positive and negative rules are mined by the

service provider, they are serialized to a binary file. However, as mentioned

in previous encryption step, in order to provide security, this file also should be

encrypted. We are using the same methodology as mentioned in ”Stream Encryp-

tion” step, but in the reverse way. First, data owner generates a public-private

key pair with RSA algorithm and transmit the public key to the provider. Service

provider encrypts the binary file that contains positive and negative association

rules with AES key and also encrypts the AES key file with public key sending

from data owner. Lastly, encrypted key file and binary file is sent to data owner.

(vi) Decrypt Association Rules: The responsibility of this process is upon data owner.

Data owner, first, decrypts the AES key file with its own private key and then

decrypts the encrypted binary file is decrypted with this AES key.

(vii) Data Re-Transformation: The last step in PNRMXS is data re-transformation.

In this step, we have the positive and negative association rules with transformed

items. For example, we find {48⇒ 101} positive association rule, we re-transform

the items with using mapping table that is generated in ”Data Transformation”

step and finally get the {b ⇒ a} rule.

34

4. EXPERIMENTAL RESULTS

In this section, the performance and scalability evaluation of the PNRMXS algo-

rithm will be presented. Throughout this section, experiments are designed to provide

valid and reliable results. We, in the following sub sections, will identify all the steps

of the experiments.

4.1. Experimental Data Sets

In our experiments, we will only use generated synthetic data sets, because of

some reasons. First of all, synthetic data sets are generated to meet specific needs or

certain conditions that may not be found in the real data sets [20]. Another reason

is that, with synthetic data sets, we can analyze the scalability of our algorithm with

ease, because we can generate data sets with different size. Finding real data sets

to test the mining algorithms is difficult issue, because the real data sets can contain

confidential information and owners do not want to share them. With using synthetic

data set, we can also handle this problem.

4.1.1. IBM Synthetic Data Set Generator

In the experiments that are performed throughout this research, we will use IBM

synthetic data generator tool that is proposed by [2]. This tool is widely used in

literature to generate experimental data sets.

However, IBM data generator only generates data sets with flat file structure. In

order to convert this data to XML structured data, we implement a flat file to XML

converter in Java.

We will use the Table 4.1 as a reference table throughout this section for param-

eters descriptions. For the whole experiments in this sections, the data sets that are

shown in Table 4.2 will be used. We use lots of data sets to get reliable results about

35

our proposed model performance and scalability.

Table 4.1: Descriptions of Parameters

Parameter Name Description

D Number of transactions in data stream

I Average length of maximal pattern

T Average length of transaction

N Number of distinct items

K Thousands

MS Minimum support threshold

MSP Minimum support threshold for positive rules

MCP Minimum confidence threshold for negative rules

MSN Minimum support threshold for negative rules

MCN Minimum confidence threshold for negative rules

Table 4.2: Generated Test Data Sets

Data Set Name File Size(MB) T N I D

T5N1000I4D100K 16.5 5 1000 4 100,000

T5N2000I4D100K 16.8 5 2000 4 100,000

T5N4000I4D100K 16.9 5 4000 4 100,000

T10N1000I4D100K 28.8 10 1000 4 100,000

T10N2000I4D100K 29.4 10 2000 4 100,000

T10N4000I4D100K 29.7 10 4000 4 100,000

T10N1000I4D200K 57.8 10 1000 4 200,000

T10N2000I4D200K 58.9 10 2000 4 200,000

T10N4000I4D200K 59.5 10 4000 4 200,000

As seen in Table 4.2, the differences between the data sets are that they have dif-

ferent number of items, different average length of transactions and different number

of transactions. The data are broken into blocks of size 20K to simulate the continuous

characteristics of streaming data throughout the experiments unless otherwise stated.

36

4.2. Experimental Environment

The PNRMXS algorithm is developed by Java programming language. We use

the proposed code in [43] as a base and we made our adaptation on this implementation.

The test workstation has Intel Xeon 2.27 Ghz processor and 3 GB RAM. The operating

system is Windows 2003 with Service Pack 2 and installed Java version is 1.6.0 12.

Also, BIRT (Business Intelligence and Reporting Tools) tool is used to prepare the

experiments’ graphical notation.

4.3. Experimental Results

The every steps in PNRMXS algorithm are implemented, but we focus on the

service provider steps especially, so the experimental results will be related with these

steps. For experiment result, we would like to give the below information also:

• All given results about execution times are in milliseconds,

• All given results about memory usages are in Megabytes,

• All test are made on our test workstation without any extra load and with only

one log on user.

4.3.1. FP-Tree Node Counts

As stated before, in FP-Growth algorithm, data set is mapped to an FP-Tree.

Before the mapping process, the data set is pruned from infrequent items and this

causes the extra scan over the data. Due to the structure of the FP-Tree, there are

lots of overlapped paths. Therefore, this means that the node(item) count in the tree

is lower than the original item count of data set. In our proposed model, the pruning

process is eliminated in order to adapt for stream mining and find negative association

rules. We put all items to the tree, so we sacrifice some memory space. However, we

still have lower node(item) count than the original data set, because of overlapping tree

paths. In Figure 4.1, we will show how the FP-Tree node counts change with different

data sets.

37

Figure 4.1: FP-Tree Node Counts

In this experiment, six data sets are compared. In ”triangle” and ”square” labeled

graphs, test data sets have approximately 1,000,000 and 2,000,000 items respectively.

As expected, because of the overlapping paths, node counts range from 700,000 to

800,000 and 1,500,000 to 1,600,000. Here, we want to address another issue is that if

we increase the number of distinct items, the node counts are increased also. Since,

increase in number of distinct items causes decrease in overlapping paths. This means

that if we have a dense data set, out tree structure will be more compact. For ex-

ample, the data sets T10N1000I4D100K and T10N2000I4D100K have approximately

same item counts, but, the second one is more sparse, so it has more nodes. This

explanation can be seen in detail in Table 4.3.

4.3.2. FP-Tree Generation Time Comparison

FP-Tree generation time is another important comparison criteria. In PNRMXS,

data stream blocks first read and stored in main memory. After reading all blocks in

38

Table 4.3: FP-Tree Node Counts in Detail

Data Set Name Total Item Counts Tree Node Counts

T10N1000I4D100K ∼ 1, 000, 000 768,506

T10N2000I4D100K ∼ 1, 000, 000 788,279

T10N4000I4D100K ∼ 1, 000, 000 802,154

T10N1000I4D200K ∼ 2, 000, 000 1,498,780

T10N2000I4D200K ∼ 2, 000, 000 1,539,070

T10N4000I4D200K ∼ 2, 000, 000 1,570,413

the stream window, the FP-Tree is generated. Therefore, we can clearly say that PN-

RMXS is a memory-based algorithm. Unlike original FP-Growth algorithm, we do not

make any pruning process at the beginning that is thought as initial pruning threshold

value is zero. Therefore, in PNRMXS algorithm, there are more nodes in the FP-Tree

than the original FP-Growth and this leads increase in FP-Tree generation time.

Figure 4.2: FP-Tree Generation Time Comparison

In Figure 4.2, we can see the FP-Tree generation time change depending on num-

ber of distinct items. If number of distinct items is increased, data distribution in

data set changes and it causes less common items in transactions. Less common items

means that there will be more paths in the FP-Tree and it causes more tree traversing.

While number of distinct items is increasing, total FP-Tree generation time is also

39

increasing, because number of common items is decreasing. In Table 4.4, the effect

of number of distinct items parameter can be seen in detail. Between the data sets

T10N4000I4D100K and T10N1000I4D200K, there is a big difference in node counts.

However, tree generation takes less time with using second data set than the first one.

This shows that the content of the data set has a determinative effect on algorithm time.

Table 4.4: FP-Tree Generation Times

Data Set Name Tree Node Counts Tree Generation Time

T5N1000I4D100K 248,540 625

T5N2000I4D100K 255,065 1109

T5N4000I4D100K 259,227 2219

T10N1000I4D100K 768,506 1969

T10N2000I4D100K 788,279 3266

T10N4000I4D100K 802,154 5724

T10N1000I4D200K 1,498,780 4658

T10N2000I4D200K 1,539,070 7251

T10N4000I4D200K 1,570,413 13051

4.3.3. Total Execution Time Comparison

In this experiment, we will show the total execution time of our proposed PNR-

MXS algorithm with different parameter settings and different data sets. These results

contain the only the service provider processes.

Table 4.5: Execution Times on T5N1000I4D100K data set

Data Set Name MS MSP MCP MSN MCN Time

T5N1000I4D100K 0.1% 0.6% 5% 0.5% 5% 4004

T5N1000I4D100K 0.1% 0.6% 1% 0.5% 1% 3942

T5N1000I4D100K 0.1% 0.5% 0.5% 0.4% 0.5% 4048

T5N1000I4D100K 0.1% 0.4% 0.5% 0.3% 0.5% 3921

The experiment results can be seen in Table 4.5 and 4.6. We use T5N1000I4D100K

and T10N1000I4D100K data sets with different parameter settings, but we keep ”MS”

40

Table 4.6: Execution Times on T10N1000I4D100K data set

Data Set Name MS MSP MCP MSN MCN Time

T10N1000I4D100K 0.1% 0.6% 5% 0.5% 5% 10764

T10N1000I4D100K 0.1% 0.6% 1% 0.5% 1% 10885

T10N1000I4D100K 0.1% 0.5% 0.5% 0.4% 0.5% 11137

T10N1000I4D100K 0.1% 0.4% 0.5% 0.3% 0.5% 10921

parameter constant. As previously mentioned, in PNRMXS algorithm, first, all fre-

quent item sets are found by using ”MS” threshold and after that they are pruned with

correlation, support and confidence parameters to find positive and negative rules. If

we look at execution times of two experiment sets, the results are almost same, even

though parameters have different values, except ”MS”. Therefore, ”MS” parameter

can be commented as the major factor on algorithm execution time.

In order to support our argument, you can see the another experiment in Table 4.7

with different ”MS” values. As seen in this test, in contrast to previous experiments,

all parameter are kept constant except ”MS”. As expected, if the ”MS” threshold in-

crease, the total execution time decrease. Also, with the help of these results , we can

easily say that our algorithm performance is stabile with different parameter settings.

Table 4.7: Execution Times on T10N1000I4D100K data set

Data Set Name MS MSP MCP MSN MCN Time

T10N1000I4D100K 0.07% 0.7% 1% 0.5% 1% 11837

T10N1000I4D100K 0.08% 0.7% 1% 0.5% 1% 11017

T10N1000I4D100K 0.09% 0.7% 1% 0.5% 1% 10875

T10N1000I4D100K 0.1% 0.7% 1% 0.5% 1% 10563

In previous tables, the total execution times of the different experiments are

shown. However, which parts of PNRMXS algorithm take how much time to execute.

It is an important detail, because it can give us which part of the algorithm can be

improved in the further studies. In order to point out the execution time details, we test

our algorithm with T10N1000I4D200K data set and with different threshold values.

41

At that point, we think that explication of these steps will be useful. As can

be seen in Table 4.8, the most part of the execution time is spent on the ”XML

Processes” step. This step includes the XML decryption and XML parsing operations.

These processes are independent from all parameter settings and used data structures,

hereby execution time values are close in all tests. In ”FP-Tree Generation” phase,

as stated before, all items in the data set is mapped to the FP-Tree. Because of

using same data set in all test, we have same number or tree nodes and so we get

similar execution times. The reason of these small differences may be due to the

instant computer loads. The ”Rule Mining” step consists of ”Rule Mining” and ”Rule

Generation” processes. In this step, our pruning thresholds has a critical role. If we

examine the table, increasing in threshold values causes decreasing in execution time,

because of decreasing in number of frequent item sets. The most of the running time

of this step is passing in ”Rule Mining” process that finds the all frequent item sets.

The process of the ”Rule Generation” is more simple and quick process. It is quick

because there is no extra operation about the data set and it is simple because there

are only threshold value calculation and comparison processes. In order to verify this

statement, we made another experiment and put the results in Table 4.9. As seen in

table, it takes so little time. The last step is ”Rule Output” operation. In this step,

mined rules are serialized to a file, before sending back to data owner. This takes

almost no time as you can see in the results.

Finally, we would like to say that, these execution times show the total processing

time for one stream window not one stream block, so these results are acceptable.

4.3.4. Execution Time Comparison of PNRMXS & Moment Algorithm

The aim of this experiment is to compare our PNRMXS algorithm with Moment

algorithm that is proposed by Chi et al. [27]. Moment is developed in order to mine

frequent closed item sets over data streams with sliding window model. The authors

proposed an in data structure that is called CET (Closed Enumeration Tree) to store

the data. Moment is an exact rule mining method that is they do not prune infrequent

items at the stream processing step like we did. Also, they only use a minimum support

42

Table 4.8: Execution Time Details

Data Set Name XML

Processes

FP-Tree

Generation

Rule

Mining

Rule

Output

Time

MS = 0.1% MSP = 0.5% MCP = 1% MSN= 0.5% MCN=1%

T10N1000I4D200K 9243 4031 5742 ∼ 0 19016

MS = 0.07% MSP = 0.4% MCP = 5% MSN= 0.4% MCN=5%

T10N1000I4D200K 10016 4328 7312 ∼ 0 21656

MS = 0.2% MSP = 0.6% MCP = 10% MSN= 0.5% MCN=10%

T10N1000I4D200K 9562 3922 3328 ∼ 0 16812

MS = 0.2% MSP = 1% MCP = 10% MSN= 1% MCN=10%

T10N1000I4D200K 9250 4000 3125 ∼ 0 16375

Table 4.9: Rule Generation Times on T10N1000I4D100K - T10N2000I4D100K

Data Set Name MS MSP MCP MSN MCN Rule Count

(PR & NR)

Time

T10N1000I4D100K 0.09% 0.5% 1% 0.4% 1% 2 & 1792 75

T10N1000I4D100K 0.09% 0.4% 1% 0.3% 1% 34 & 1792 81

T10N2000I4D100K 0.09% 0.5% 1% 0.4% 1% 0 & 12 62

T10N2000I4D100K 0.09% 0.4% 1% 0.3% 1% 2 & 12 63

43

threshold to find closed frequent item sets and they do not make any rule generation

process.

To the best of our knowledge, our proposed model have not previously defined

by any other researcher, so there is no candidate model for one-to-one comparison.

For instance, Moment algorithm only finds closed frequent item sets, but we find all

frequent item sets. Also, while we make positive and negative rule generation process,

in Moment algorithm, there is no rule generation operation. Because of these reasons,

we can not compare these two models one-to-one. However, in order to give an idea

for our model performance, we will compare the finding frequent sets process of our

model with Moment algorithm.

For the comparison, we use the provided Moment algorithm code in [33]. This

code was written in C++ language, we use ”mingw gcc” linux compiler to create an

executable file to be able to work in our test environment. In this test, we use real

world dense data set mushroom which is provided in [44]. The test result is shown in

Figure 4.3.

Figure 4.3: Moment & PNRMXS Comparison

44

At the first sight, if the execution times of the models are compared, Moment

algorithm gives better results. However, at that point, the big difference between

generated frequent sets count are taken into account. The main reason of this case

is that Moment algorithm generates only closed frequent item sets, but PNRMXS

algorithm finds all frequent item sets. With low support values, the difference goes up

to approximately 100 times. To the contrary, the differences between the execution

times is reasonable. Therefore, with these results, we can assert that our proposed

model is applicable.

4.3.5. Memory Consumption Comparison

In this section, we will give the total size of memory consumption of PNRMXS

algorithm with different data sets and threshold parameters.

Table 4.10: Memory Consumption Comparison

Data Set Name MS MSP MCP MSN MCN Rule Count Total Memory

T5N1000I4D100K 0.1% 0.6% 1% 0.5% 1% 2 36.18

T10N1000I4D100K 0.1% 0.6% 1% 0.5% 1% 1202 42.84

T10N1000I4D200K 0.1% 0.6% 1% 0.5% 1% 1244 103.43

In the first experiment, threshold values are kept constant and different data

sets are used. The data sets, in Table 4.10, are ordered according to the FP-Tree

node counts. For detail information about the node counts, you can refer to Table

4.3. Between the first two data sets, there is a big difference in FP-Tree node counts

and mined rule counts. As expected, increase in node counts and rule counts cause to

increase in memory consumption. However, with the third data set, our algorithm give

high memory usage than we expected. This may be due to the characteristics of data

set that we generated.

In the second experiment, we use only one data set that is chosen in sparse ones

and make the tests with different threshold values. As explained before, in PNRMXS

algorithm, there is no pruning process in FP-Tree generation phase, so even if we use

45

Table 4.11: Memory Consumption for T10N4000I4D100K data set

Data Set Name MS MSP MCP MSN MCN Rule Count Total Memory

T10N4000I4D100K 0.08% 0.2% 1% 0.2% 1% 36 130.32

T10N4000I4D100K 0.09% 0.3% 1% 0.3% 1% 18 113.29

T10N4000I4D100K 0.1% 0.4% 1% 0.4% 1% 0 111.40

different threshold values our tree has same node count. Therefore, here, we expect

that the memory consumption should be similar in all tests. As seen in Table 4.11,

PNRMXS algorithm gives us the stabile results in memory consumption. Also, it is

obvious that the difference in rule counts brings a difference in memory usages.

4.3.6. Effect of Block Size on Execution Time

This test is performed to show the effect of block size of stream on execution time

of PNRMXS algorithm. The T10N4000I4D100K data set is used and all parameters

are kept constant while changing the block size.

Figure 4.4: Execution Time with Different Block Size

The results show us, our proposed model gives stabile results with different block

sizes. However, choosing a small size may be more advantageous, because XML pro-

cesses run faster with small block size.

46

4.3.7. Negative Rule Mining Effect

As stated in the previous studies in literature [4, 11, 13, 14, 17], negative asso-

ciation rule mining is a more difficult task than positive association rule mining. The

first reason of this complexity is that in negative rule mining process there is a huge

frequent item sets, so finding these rules takes much more time than finding positive

ones. The aim of this test to prove this declaration. We run the PNRMXS algorithm

to mine only positive and both positive and negative rules.

Figure 4.5: Negative Rule Mining Effect on Execution Time

The results in Figure 4.5 shows the search space difference between positive and

negative rule mining. In negative rule mining problem, search space is bigger 6 to 20

times than positive mining. Consequently, the execution of the algorithm takes more

time in negative rule mining problem. Also, we would like to indicate one last point.

As a result of our two tests, the number of negative association rules is 0. The reason

of this result is that there is no negative correlated frequent item sets in test data sets.

47

4.3.8. Example Rule Set

In this section, we present some part of positive and negative rule sets that are

mined with PNRMXS algorithm in Figure 4.6. As seen in figure, the first column

shows the rule type as it is negative or positive. In the second column, the association

rules with transformed items are shown. The last two columns contain the support

and confidence values. This figure, also, shows the structure of our output file.

48

Figure 4.6: Example Rule Set

49

5. DISCUSSIONS & CONCLUSION

In this research, we have proposed a model for positive and negative association

rule mining on XML data stream in database as a service concept that we called it

PNRMXS.

Data stream mining is one of the most intensely investigated and challenging re-

search field. Due to the characteristics of streaming data, traditional mining algorithms

is not applicable, so recently researches focus on this topic. The other challenging re-

search area in data mining is negative association rule mining. The finding negative

relationships provide the data owner to review their strategy for achieving the best.

However, because of its novelty and difficulty, there a few studies in negative rule min-

ing topic. Implementing an association rule mining model in database as a service

concept reveals some security problems. Organizations consider their private data as

a valuable asset. Therefore, in the case of with working third party service providers,

the security issues should be carefully considered.

In this study, we tried to combine the challenging areas that mentioned in previous

paragraph in one model. The processes in PNRMXS model is made by two sides. In

data owner side, some pre-preprocessing operations are made on data set. In service

provider side the mining operations, that is the main part of our model, is run. In order

to meet the necessary requirements, first we have adapted the original FP-Growth

algorithm to be able to make negative rule and stream mining. In data stream mining

issue, because of rapid data flow, mining operations should be made as fast as possible.

However, in the negative rule mining case, there is a huge search space and this has

a negative effect on algorithm performance. Therefore, we have adapted some other

pruning thresholds to decrease the search space for negative rule mining.

In our experiments, various tests have been made with different parameter set-

tings and different synthetic data sets to show the scalability and stability of our

proposed model. These results have revealed that our model is fast, efficient and appli-

50

cable for data stream mining domain. To the best of our knowledge, PNRMXS is an

unique approach in the literature, so there was no chance for one-to-one comparison

with any other rule mining model. However, in order to give an idea about the perfor-

mance of PNRMXS, we have compared the some part of it with famous data stream

mining model Moment [27]. There are differences between these two models. Moment

algorithm finds closed frequent item sets which causes sharp decrease in item set search

space and there in no rule generation process in this approach. Also, this model uses

Sliding Windows data processing model. On the contrary, PNRMXS works with all

frequent item set and at the same time makes positive and negative rule generation

processes. Also, our data processing model is Landmark Windows model. Because

of these reasons, we only compared the finding frequent set process of these two ap-

proaches. The results of the experiment have shown that the performance values of

our model is applicable.

In the next section, some other topics which we think to be open for improvement

will be addressed.

51

6. FUTURE WORKS

Although in this research, we proposed an algorithm for positive and negative

association rule mining on XML data stream in database as a service concept, there is

a great deal of scope for further development of this algorithm.

One possible extension of our proposed model would be an development of a more

compact tree structure to decrease the memory usage and tree traversing time. Since,

the efficient memory usage of data mining processes in streaming environment is a vital

issue.

Another improvement can be made on the pruning strategy. As mentioned in our

study, in negative rule mining there is a huge search space and this is the main diffi-

culty of this topic. Therefore, the researches especially focus on the different pruning

techniques. In order to make better pruning, we add some extra pruning thresholds

in our proposed model. Although adding these thresholds, our test results show that

our model still generates many negative association rules. May be with some extra

improvements in the pruning techniques can give us the better results.

The PNRMXS model makes the rule mining processes on binary variables. As

explained in Section 2.1, there are other types of association rules like quantitative and

fuzzy variables. The other further research topic in our proposed model can be the

mining of quantitative or fuzzy association rules.

One of the challenging point in our proposed model is making the rule mining

process in database as a service concept. Although, this concept has many advantages,

it reveals the data security problem. In order to handle this problem, we have used one-

to-one mapping strategy to hide the content of the data. Also, some other encryption

techniques are used to protect the streaming data. The security analysis was not in

the scope of this study, but we think there would be other open points in this topic.

52

In our proposed model, Landmark Windows streaming data model is used for data

processing. However, as explained in our study, there are other types of data processing

models like Sliding Windows and Damped Model. The choosing of which type of

processing model to use depends on the business context. Therefore, the adaptation of

our approach to different processing models can give us an opportunity to work with

different business domains and it can be thought as a future research.

53

REFERENCES

1. Agrawal, R., Imielinski, T., and Swami, A., ”Mining association rules between sets of

items in large databases”, In Proceedings of the 1993 ACM SIGMOD International

Conference on Management of Data, Washington, D.C., United States, May 25 -

28, 1993.

2. Agrawal, R. and Srikant, R., ”Fast Algorithms for Mining Association Rules in Large

Databases”, In Proceedings of the 20th International Conference on Very Large Data

Bases, September 12 - 15, 1994.

3. Han, J., Pei, J., and Yin, Y., ”Mining frequent patterns without candidate gen-

eration”, In Proceedings of the 2000 ACM SIGMOD International Conference on

Management of Data, Dallas, Texas, United States, May 15 - 18, 2000.

4. Wu, X., Zhang, C., and Zhang, S., ”Efficient mining of both positive and negative

association rules”, ACM Trans. Inf. Syst. 22, pp. 381-405, 2004.

5. Tan, P. N., Steinbach, M., and Kumar, V., ”Association Analysis: Basic Concepts

and Algorithms”, Introduction to Data Mining, Chapter 6, pp. 327-414, Addison-

Wesley, 2005.

6. Imamura, T., Dillaway, B., and Simon, E., ”XML Encryption Syntax and Process-

ing, W3C Recommendation”, ”http://www.w3.org/TR/2002/REC-xmlenc-core-

20021210/”, December 2002.

7. Ünay, O. and Gündem, T. I., ”Parallel Processing of Encrypted XML Documents

in Database as a Service Concept”, Information Technology and Control, Kaunas,

Technologija, Vol. 39, No. 4, pp. 301-309, 2010.

8. Hacigümüs, H., Mehrotra, S., and Iyer, B., ”Providing Database as a Service”, 18th

International Conference on Data Engineering (ICDE’02), pp. 0029, 2002.

54

9. Clifton, C. and Marks, D., ”Security and privacy implications of data mining”, In

SIGMOD Workshop on Data Mining and Knowledge Discovery, 1996.

10. Agrawal, R. and Srikant, R., ”Privacy-preserving data mining”, In SIGMOD, 2000.

11. Savasere, A., Omiecinski, E., and Navathe, S., ”Mining for strong negative associa-

tions in a large database of customer transactions”, In Proceedings of the Fourteenth

International Conference on Data Engineering, pp. 494-502, 1998.

12. Ma, W. M. and Liu, Z. P. , ”Two revised algorithms based on apriori for mining as-

sociation rules”, Machine Learning and Cybernetics, 2008 International Conference

on, vol.1, pp. 350-355, July 12-15, 2008.

13. Antonie, M. L. and Zaiane, O. R., ”Mining positive and negative association rules:

an approach for confined rules”, In Proceedings of the 8th European Conference on

Principles and Practice of Knowledge Discovery in Databases, 2004.

14. Yuan, X., Buckles, B. P., Yuan, Z., and Zhang, J., ”Mining negative association

rules,” Computers and Communications, Proceedings. ISCC 2002. Seventh Interna-

tional Symposium on, pp. 623-628, 2002.

15. Hsueh, S. C., Lin, M. Y., and Lu, K. L., ”Mining Generalized Association Rules

for Service Recommendations for Digital Home Applications”, Intelligent Informa-

tion Hiding and Multimedia Signal Processing, IIHMSP 2007, Third International

Conference on, Vol. 1, pp. 631-634, November 26-28, 2007.

16. Zhu, Y. and Shasha, D., ”StatStream: Statistical Monitoring of Thousands of

Data Streams in Real Time”, Proceedings of International Conference on Very Large

Database, pp. 358-369, 2002.

17. Zhu, H. and Xu, Z., ”An Effective Algorithm for Mining Positive and Negative As-

sociation Rules”, Computer Science and Software Engineering, 2008 International

Conference on, Vol. 4, pp. 455-458, December 12-14, 2008.

55

18. Wu, H., Lu, Z., Pan, L., Xu, R., and Jiang, W., ”An Improved Apriori-based

Algorithm for Association Rules Mining”, Fuzzy Systems and Knowledge Discovery.

Sixth International Conference on, Vol. 2, pp. 51-55, August 14-16, 2009.

19. Li, H. F., Lee, S. Y., and Shan, M. K., ”Online mining (recently) maximal frequent

itemsets over data streams”, Research Issues in Data Engineering: Stream Data

Mining and Applications, RIDE-SDMA 2005. 15th International Workshop on, pp.

11-18, April 3-4, 2005.

20. Wikipedia, ”Synthetic data”, http://en.wikipedia.org/wiki/Synthetic data, De-

cember 2009.

21. Xiao, X. and Tao, Y., ”Anatomy: Simple and effective privacy preservation”, In

VLDB, 2006.

22. Srikant, R. and Agrawal, R., ”Mining quantitative association rules in large rela-

tional tables”, SIGMOD Rec. 25, June 1996.

23. Reusch, B., ”Computational Intelligence, Theory and Applications”, International

Conference, 7th Fuzzy Days, Dortmund, Germany, October 13, 2001.

24. Artamonova, I. I., Frishman, G., and Frishman, D., ”Applying negative rule mining

to improve genome annotation”, BMC Bioinformatics, 8, 261, 2007.

25. Bethel, C. L., Hall, L. O., and Goldgof, D., ”Mining for Implications in Medical

Data”, Pattern Recognition, ICPR 2006, 18th International Conference on, Vol. 1,

pp. 1212-1215, 2006.

26. Tan, P. N. and Kumar, V., ”Interestingness measures for association patterns: A

perspective”, In Proc. of Workshop on Postprocessing in Machine Learning and

Data Mining, 2000.

27. Chi, Y., Wang, H., Yu, P. S., and Muntz, R. R., ”Moment: maintaining closed

frequent itemsets over a stream sliding window”, Data Mining, ICDM ’04. Fourth

56

IEEE International Conference on, pp. 59-66, November 1-4, 2004.

28. Jiang, N. and Gruenwald, L., ”Research Issues in Data Stream Association Rule

Mining”, ACM SIGMOD Record, Vol. 35, No. 1, 2006.

29. Rivest, R. L., Shamir, A., and Adleman, L., ”A method for obtaining digital sig-

natures and public-key cryptosystems”, Commun. ACM 21, pp. 120-126, February

1978.

30. Wikipedia, ”RSA”, http://en.wikipedia.org/wiki/RSA

31. The FactPoint Group, ”Leading Practices in Market Basket Analysis”,

http://www.factpoint.com/pdf2/1.pdf, 2008.

32. Wan, J. W.W. and Dobbie, G., ”Extracting association rules from XML documents

using XQuery”, In Proceedings of the 5th ACM international workshop on Web

information and data management, New York, USA, pp. 94-97, 2003.

33. Programmers United Develop Net,

http://en.pudn.com/downloads99/sourcecode/unix linux/detail406409 en.html

34. Win, C. N. and Hla, K. H. S., ”Mining frequent patterns from XML data”, Infor-

mation and Telecommunication Technologies, APSITT 2005 Proceedings 6th Asia-

Pacific Symposium on, pp. 208-212, November 10, 2005.

35. Bouloutas, A. T., Calo, S., and Finkel, A., ”Alarm correlation and fault identifi-

cation in communication networks”, Communications, IEEE Transactions on, Vol.

42, pp. 523-533, 1994.

36. Wikipedia, ”Key size”, http://en.wikipedia.org/wiki/Key size

37. Wong, W. K., Cheung, D. W., Hung, E., Kao, B., and Mamoulis, N., ”Security

in outsourcing of association rule mining”, In Proceedings of the 33rd International

Conference on Very Large Data Bases, pp. 111-122, 2007.

57

38. Yu, J. X., Chong, Z., Lu, H., and Zhou, A., ”False Positive or False Negative: Min-

ing Frequent Itemsets from High Speed Transactional Data Streams”, In Proceedings

of the Thirtieth International Conference on Very Large Data Bases, 2004.

39. Nahar, J. and Tickle, K., ”Significant cancer risk factor extraction: an associa-

tion rule discovery approach”, IEEE International Workshop on Data Mining and

Artificial Intelligence in conjunction with 11th IEEE International Conference on

Computer and Information Technology, Khulna, Bangladesh, pp. 108-114, December

25-27, 2008.

40. Li, T. Y. and Li, X. M., ”A LFP-tree based method for association rules mining in

telecommunication alarm correlation analysis”, The Journal of China Universities

of Posts and Telecommunications, Vol. 14, pp. 6-9, October 2007.

41. Wikipedia, ”Advanced Encryption Standard”,

http://en.wikipedia.org/wiki/Advanced Encryption Standard

42. W3Schools, ”XQuery”, http://www.w3schools.com/xquery/default.asp

43. Coenen, F., ”The LUCS-KDD FP-growth Association Rule Mining Algo-

rithm”, Department of Computer Science, The University of Liverpool, UK,

http://www.cxc.liv.ac.uk/∼frans/KDD/Software/FPgrowth/fpGrowth.html, 2003.

44. UCI Machine Learning Repository, ”Mushroom Data Set”,

http://archive.ics.uci.edu/ml/datasets/Mushroom

45. Xu, Z. M. and Zhang, R., ”Financial revenue analysis based on association rules

mining”, Computational Intelligence and Industrial Applications, PACIIA 2009,

Asia-Pacific Conference on , Vol. 1, pp. 220-223, November 28-29, 2009.

46. Wan, J. W. W. and Dobbie, G., ”Mining association rules from XML data using

XQuery”, In Proceedings of the second workshop on Australasian Information Se-

curity, Data Mining and Web Intelligence, and Software Internationalisation, Vol.

58

32. Australian Computer Society, Inc., Darlinghurst, Australia, pp. 169-174, 2004.

47. Wu, M. C., Lin, S. Y., and Lin, C. H., ”An effective application of decision tree

to stock trading”, Expert Systems with Applications, Vol. 31, Issue 2, pp. 270-274,

August 2006.

