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ABSTRACT

VERIFICATION OF A MULTICORE PROGRAMMING

LIBRARY

As the demand for high performance software is constantly increasing, the need

to develop multicore software is increasing, too. This results in degraded reliability

of software and increased verification effort since multicore software has potentially

more than one execution schedule. Verification approaches for eliminating errors in

sequential software are not adequate for full coverage of errors in multicore software.

We need not only concurrency aware but also efficient and scalable verification methods

for multicore software.

We present verification and coverage methods for multicore software that uses

message passing libraries for communication. Specifically, we provide techniques to

improve reliability of software using the new industry standard Multicore Communi-

cation API (MCAPI) by the Multicore Association. We develop dynamic predictive

verification techniques that allow us to find actual and potential errors in a multi-

core software. Some of these error types are deadlocks, race conditions, and violation

of temporal assertions. We complement our verification techniques with a mutation

testing based coverage metric. Coverage metrics enable measuring the quality of ver-

ification test sets. We implemented our techniques in tools and validated them on

several multicore programs that use MCAPI standard. We experimentally show the

effectiveness of our methods. We show that our verification tool automatically verifies

multicore programs and finds violation of temporal assertions, list of potential dead-

locks, and race conditions. We find errors that are not found using traditional dynamic

verification techniques. Our coverage tool helps to improve the quality of verification

test sets for multicore programs. Furthermore, we can potentially explore execution

schedules different than the original execution with our coverage tool.
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ÖZET

BİR ÇOK ÇEKİRDEKLİ PROGRAMLAMA

KÜTÜPHANESİNİN DOĞRULANMASI

Yüksek performanslı yazılım ihtiyaçlarının sürekli artmasıyla beraber çok çekir-

dekli yazılım geliştirme ihtiyacı da artmaktadır. Bu durum, çok çekirdekli yazılımların

potansiyel olarak birden fazla yürütme çizelgesine sahip olması nedeniyle, yazılımların

güvenilirliğini azaltır ve doğrulanmaya harcanan çabayı artırır. Ardışıl yazılımlardaki

hataları ortadan kaldırmak için kullanılan doğrulama yaklaşımları çok çekirdekli yazı-

lımlarındaki hataları bulunması için yeterli değildir. Çok çekirdekli yazılım doğrulama

yöntemlerinin koşutzamanlılığın yanısıra verimli ve ölçeklenebilir olmasına ihtiyacımız

vardır.

İleti geçirme kütüphanelerini kullanarak iletişim kuran çok çekirdekli yazılımlar

için doğrulama ve kapsama teknikleri sunuyoruz. Özellikle yeni endüstri standartı

olan ve Multicore Association tarafından geliştirilen Çok Çekirdekli İletişim Uygulama

Programlama Arayüzü’nü (MCAPI) kullanan yazılımların güvenilirliğini arttırmak için

teknikler sağlıyoruz. Çok çekirdekli yazılımlardaki mevcut ve potansiyel hataları bul-

mamızı sağlayan dinamik, öngörücü teknikler geliştirdik. Bu hata türlerinden bazıları

kilitlenmeler, yarış durumları ve zamansal doğruluk savlarının ihlalleridir. Doğrulama

tekniklerini, mutasyon sınaması temelli kapsama ölçümü ile tamamlanır. Kapsama

ölçümleri doğrulama testlerinin kalitesinin ölçülmesine imkan sağlar. Tekniklerimiz

için araçlar geliştirdik ve MCAPI standartını kullanan bir takım çok çekirdekli prog-

ram üzerinde araçlarımızın geçerliliklerini denetledik. Tekniklerimizin deneysel olarak

etkinliklerini gösterdik. Doğrulama aracımızın otomatik olarak çok çekirdekli prog-

ramları doğruladığını ve zamansal doğruluk savlarının ihlalini, olası kilitlenme ve yarış

durumlarının listesini bulduğunu gördük. Geleneksel dinamik doğrulama teknikleri

kullanılarak bulunamayan hataları bulduk. Kapsama aracımız çok çekirdekli prog-

ramların doğrulanması için kullanılan test kümelerinin kalitesinin iyileştirilmesinde
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yardımcı olur. Ayrıca kapsama aracımızla orijinal yürütme çizelgesinden farklı po-

tansiyel yürütme çizelgelerini de keşfedebiliriz.
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1. INTRODUCTION

As multicore-enabled devices are becoming common place, development of multi-

core applications is inevitable, and verification tools that target multicore applications

will be in demand. Inter-core communication, in which data is passed between cores

via messages, is an essential part of multicore applications. The Multicore Associa-

tion has developed the MCAPI standard [1] and a runtime implementation for it to

address inter-core communication needs. MCAPI provides collection of data transfer

and synchronization functions that can be invoked by multicore applications running

on the cores. MCAPI supports connectionless messages, connection-oriented packets

and even scalar (bus-based) transfers. In connectionless communication, two or more

cores exchange messages without setting up a transmission channel prior to commu-

nication. On the other hand, in connection-oriented communication, a point-to-point

unidirectional channel between cores must be established.

Errors in multicore programs are often non-deterministic, arising only infre-

quently. MCAPI semantics encourage the creation of these errors through features

such as non-deterministic receives, waits. Existing tools and testing methodologies

often provide little assistance in detecting these errors. This thesis describes the dy-

namic (or runtime) verification and coverage techniques for multicore applications using

MCAPI in order to detect these errors.

1.1. Motivation

Reliability of electronic systems is crucial since errors can result in loss of money,

time, and even human life. Many domains require reliable software and hardware.

Reliability is especially crucial for safety critical embedded multicore systems used

in automobiles and medical instruments. The task of improving reliability has been

complicated by the concurrent nature of multicore systems since concurrent systems

can get into exponential number of scenarios that can not be completely analyzed. We

need reliability techniques that can deal with concurrent multicore systems. In addition
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to the concurrent nature of hardware, concurrent software is also becoming ubiquitous.

New multicore software formalisms are developed to exploit the performance available

in multicore hardware. Improving the reliability of multicore software is also a big

challenge due to concurrency.

Reliability is further reduced by the nondeterminism that is introduced by the

concurrent software that uses shared memory paradigm. Such software is also not

scalable to heterogeneous embedded multicores with different types and number of

cores, different operating systems, and physical transports. Message passing paradigm

explicitly provides concurrency by using messages. This not only reduces the potential

for nondeterminism but also offers scalability. In the context of distributed systems and

scientific programming message passing interface standard (MPI) [2], is widely used.

The embedded system domain requires a standard with a smaller memory footprint

than MPI and that exploits the properties of the domain. The Multicore Association

has developed such an industry standard for multicore software development. The

standard for message passing communication is called MCAPI [1]. In this work, we

provide reliability techniques for multicore software developed using MCAPI.

1.2. Approach and Contributions

We use a two fold approach for improving reliability; verification and coverage.

We develop dynamic predictive verification techniques that is a combination of formal

methods and simulation techniques. In this technique, the designer can specify the

assertions (properties) that the multicore software should satisfy. Some assertions are

mutual exclusion, or deadlock and race condition. Deadlocks and race conditions are

common problems for concurrent systems. Hence, while we provide a general algo-

rithm for checking designer specified temporal assertions, we also provide specialized

algorithms for deadlock and race condition detection. We improve the performance of

our algorithms by developing enhanced dependency tracking techniques. In order to

complement our verification efforts, we develop coverage metrics. When the verifica-

tion process is complete, there is still a doubt whether enough properties have been

written or enough scenarios have been explored. Coverage metrics allow us to measure
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the quality of verification efforts. We develop mutation testing based coverage tech-

niques for multicore software using MCAPI. Specifically, we develop a set of mutation

operators for MCAPI standard that get inserted in programs and then we check what

percentage of these mutations can be covered by verification tests. This is the first time

such predictive verification and coverage metrics are developed for MCAPI standard.

We developed tools that implement our algorithms and experimented with mul-

ticore programs that use MCAPI. We verified and found errors in some programs

that were not found using traditional dynamic verification techniques. This shows the

predictive nature of our approach. Also, we show that our specialized algorithms for

deadlock and race condition detection have better performance than temporal assertion

verification. Our mutation based coverage tool allows us to explore execution schedules

different than the original program.

1.3. Outline

The thesis is organized as follows. We provide a detailed related work on reliability

techniques for multicore software. Then, we describe the model that we use in this

work. We describe our verification and coverage algorithms in Chapters 4 and 5. The

experimental section displays the effectiveness of our approach. Finally, we present our

conclusions and future work.



4

2. RELATED WORK

2.1. Previous Work on MCAPI

There are several works that detect concurrency problems in MCAPI user ap-

plications. In [3–5], S. Sharma et al. present the first dynamic verifier for MCAPI

applications, called MCAPI Checker (MCC). Dynamic verification checks the behavior

of the user application during its execution. MCC explores all possible interleavings

of an MCAPI application by using Dynamic Partial Order Reduction (DPOR) [6]

technique. MCC handles MCAPI’s connectionless send and receive functions and ver-

ifies assertions and checks for deadlocks. On the other hand, our tool handles both

connection-oriented and connectionless sends and receives. A match-set consists of

matching transitions that complete each other (e.g., sends to a specific endpoint and

receives from the receiver endpoint). While generating match-sets, a receive opera-

tion waits until a matching send operation executes and a send operation waits until a

matching receive executes. The behavior of the application can change using MCC after

inserting waits when needed in non-blocking semantics as we show later in this the-

sis. MCC instruments user applications and replaces Pthread create/join and MCAPI

function calls with wrappers. MCC then utilizes these wrappers while controlling the

execution flow of the user application. There exists a scheduler layer between the user

application and the MCAPI runtime to enforce a deterministic runtime match between

sends and receives. This scheduler keeps and controls thread creation, thread exit, and

MCAPI operations and then MCC dynamically generates all possible execution paths

by repeatedly executing the instrumented program. Although MCC guarantees to find

all deadlocks and assertion violations for a given input, its overhead is high because

it tries to explore all possible interleavings of a multicore application. On the other

hand, our approach is orthogonal to DPOR and does not suffer from the overhead in

DPOR.

Fault localization helps us to identify exactly where the bugs are in programs.

In [7], a debugging tool that is used for detecting assertion failures that are caused by
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(connectionless) message races is presented. MCAPI guarantees that the messages that

are sent from the same endpoint to a specific endpoint will arrive at the destination

according to their transmission order. On the other hand, there is no rule about the

arrival order of concurrent messages from different endpoints. Two or more messages

can race for arriving at the same destination and in some cases, this non-determinism

can lead to assertion failures. Localization of the fault by finding the specific order

of message arrivals that causes the assertion failure is as important as detecting the

assertion failure. The tool presented in [7], symbolically explores all possible race con-

ditions, and then by using an efficient Satisfiability Modulo Theories (SMT) formula, it

is decided that whether there exists a particular order of message arrivals that results

in an error state. Symbolic Debugger for MCAPI Applications (CRI) presented in [8]

is similar to the work in [7]. M. Elwakil et al. [8] focus on race conditions of messages

that are sent from different sources to the same destination. First, CRI instruments

the MCAPI application source code to be able to generate an execution trace of the

application. The instrumented source code is compiled and run, and then a trace is

generated. The trace is encoded as an SMT formula where the formula is satisfiable, if

there is a reachable error state. The last step in CRI is solving the formula by an SMT

solver such as Yices [9]. CRI currently supports only connectionless message sends

and receives. The tool finds the states that violate assertions and reports the sequence

of events that lead to these violations. The assertions are embedded in the MCAPI

application that is verified. CRI finds violations of Boolean assertions but cannot find

violations of temporal assertions. CRI explores all possible orders of message arrivals

in an MCAPI application while deciding the satisfiability of a formula. We develop

efficient race condition detection algorithm as well as verify temporal assertions.

2.2. Previous Work on Verification

There are also some other techniques that are used for error detection in concur-

rent systems such as Predictive Runtime Verification (PRV). PRV offers a simple and

efficient alternative over model checking the entire program with respect to the given

specification. PRV technique in [10, 11] uses partial order simulation traces instead of

total order simulation traces and checks whether a temporal property is satisfied or
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violated on a simulation trace of a concurrent system. PRV technique has been shown

to detect actual and potential errors in Java as well as in SystemC. PRV has three im-

portant characteristics: a) using partial order simulation traces to handle concurrency,

b) using computation slicing for abstraction and c) property restriction to minimize

state explosion problem. Instead of physical clocks, logical clocks such as vector clocks

are used to obtain partial order traces. Another example of PRV is presented in [12],

named BTV. We present an application of PRV technique to MCAPI, where we use

the BTV tool for assertion verification and vector clocks for checking deadlocks and

race conditions. We have also developed efficient vector clock algorithms that take

advantage of the MCAPI standard.

Model checkers systematically explore the state space of concurrent systems and

detect potential errors. Since the size of the state space to be explored can be very

large even for small size applications, Partial Order Reduction (POR) techniques be-

come very crucial. POR algorithms need information about communication objects,

shared variables and processes. This information can be obtained from static analysis

of the code or dynamically during execution. DPOR [6] collects communication and

other necessary information dynamically because static POR cannot collect exact in-

formation and use approximate information which results in poor reduction and state

explosion. DPOR algorithm executes the program until the execution is completed for

a given input and resolves the nondeterminism arbitrarily. During execution, DPOR

algorithm collects information about communication, and shared variables. Then this

data is analyzed to identify and explore other interleavings that may behave differ-

ently. If there are points where alternative execution traces need to be explored, DPOR

algorithm adds backtrack points. The procedure is repeated until no alternative ex-

ecutions remain to be explored. When the search stops and all possible traces are

explored, DPOR algorithm guarantees that all deadlocks and assertion failures have

been detected. However, guaranteeing full coverage for large, complex programs that

use non-deterministic function calls is not feasible because of high time consumption.

Our work does not guarantee finding all deadlocks, race conditions or assertion failures

because we only check the executions that are consistent with the actual observed ex-

ecution. Therefore, our work finds assertion failures and detects actual and potential
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deadlocks and race conditions with low extra cost in space or time.

2.3. Previous Work on Deadlock and Race Condition Detection

Deadlock and race condition detection in MCAPI applications is as crucial as

assertion checking. MCAPI is similar to MPI standard although their target plat-

forms are different. Hence, deadlock and race condition detection techniques that are

developed for MPI can potentially also be applied to MCAPI applications.

In [13], T. Hilbrich et al. present a general deadlock model for MPI. They use

the AND⊕OR Wait For Graph (WFG) while detecting deadlocks in MPI programs.

AND⊕OR WFG has two distinct set of arcs: AND arcs, and OR arcs. Each node

on AND⊕OR WFG has only one type of outgoing arcs. If all nodes have only AND

arcs on WFG, this is called AND model and if all nodes have only OR arcs, this

is called OR model. Many MPI calls simply create a dependence on another and

task dependencies must be met before the issuing task can proceed. For example, a

message send call causes the task to wait for another task to post a matching receive.

While all dependencies must be satisfied for the process to continue and a cycle in

the WFG is a necessary and sufficient deadlock criterion for AND model, a process

may continue when any one of a set of dependencies is satisfied under the OR model.

The reason why they use AND⊕OR model instead of AND or OR model is that AND

model is sufficient for handling receive functions but not wildcard receive functions

and OR model is necessary for wildcard receives. Although the sender of a receive

is specified for many cases, wildcard receive does not specify the sender and can be

satisfied by a matching send from any task. Their detection mechanism does not

detect all possible deadlocks because this consumes time and decreases performance.

Instead of analyzing all potential matching of wildcard receives, they only consider the

matchings that actually occur. This approach reduces the overhead and decreases the

number of false positives.

Message races can cause nondeterministic executions of concurrent programs. M.

Park et al. [14] present MPIRace-Check tool, which is an on-the-fly detection tool for
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MPI programs written in C. MPIRace-Check finds all race conditions between message

sends while the program is executed by checking the concurrent communication events

between processes. They use vector clocks to determine concurrency relation between

events. Each message send operation includes the sender’s vector clock and in each

message receive operation the receiver’s vector clock is updated according to received

vector clock. After receiving the message, MPIRace-Check checks the concurrency

between previous receive on this process and current send to this process; if they

are concurrent then race condition is reported with the line number of source code,

and process number. The slowdown of MPIRace-Check is 26% for 10000 send/receive

operations and 35% for the worst case. Our race condition detection is similar to this

work but we have developed higher performance techniques.

2.4. Previous Work on MPI Debugging

In [15], Sharma et al. conduct a survey of MPI debugging tools. There exist

numerous debuggers and tools to find bugs in MPI programs. However, these tools

do not find bugs and verify MPI programs reliably. For instance, MARMOT [16]

uses a time-out mechanism to conclude the presence of a deadlock and cannot detect

even simple deadlocks. In a time-out mechanism, a blocking function call waits until

a specified time and if this function is still waiting, a deadlock is reported. While

MPI-SPIN, model checker based on SPIN, is reliable and expandable, its approach

depends on model building and model checking effort which are impractical. UM-

PIRE [17] dynamically analyzes MPI programming errors using a profiling interface

like MARMOT. UMPIRE uses both a time-out mechanism and dependency graphs for

detecting deadlocks. MARMOT and UMPIRE are purely runtime checking tools. On

the other hand, Intel Message Checker (IMC) [18] collects information for each MPI

call in a trace file during execution and analyzes this file after the execution to detect

errors/deadlocks. Many of these tools such as MARMOT, UMPIRE, and IMC are ca-

pable of detecting many errors, deadlocks, race conditions in MPI programs but they

do not guarantee exploring all interleavings of a program. There can be undetected

errors since these tools explore just one execution interleaving of a program. However,

MPI-SPIN guarantees systematically exploring all interleavings of a program but with
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increased execution time. In summary, there is no single superior method and some of

these approaches can be used according to needs. We also do not guarantee exploring

all interleavings of a multicore program, however the predictive nature of our approach

allows us to efficiently analyze several alternative interleavings that can be obtained

from a given interleaving. Tools such as TotalView [19] do not detect potential errors;

they are effective for debugging actual errors. Tools such as MARMOT [16] and the

IMC [18] rely on schedule randomization. Another line of tools such as ScalaTrace [20]

record MPI calls into a trace file and use this information to systematically replay the

program to enhance nondeterminism coverage. However, these trace-based tools only

replay the observed schedule. They do not derive alternative schedules and they just

analyze the observed schedule. On the other hand, tools such as ISP [21], DAMPI [22]

offer coverage guarantees for programs that use non-deterministic MPI calls. However,

their overhead is high since they explore all possible interleavings.

2.5. Previous Work on Verification Coverage

Coverage techniques have been developed in the literature. These include struc-

tural coverage, code coverage (lines, branches), functional coverage. We are interested

in fault insertion based coverage. This allows to measure the impact of faults in the

system. Mutation Testing is a fault-based software testing technique that provides a

testing criterion that can be used to measure the effectiveness of a test set in terms of

its ability to detect faults. Some mutation based coverage metrics have been developed

for applications written in different languages such as Java, C, and SystemC [23, 24].

In [23], J. Bradbury et al. present a set of concurrent mutation operators after giv-

ing bug patterns for concurrent Java applications. These bug patterns are based on

common mistakes that can be made by programmers in practice. A. Sen at al. [24]

developed a fault model for concurrent SystemC designs, where they define mutation

operators for concurrent functions in SystemC. Our approach is similar to this approach

but we choose message passing programs and MCAPI standard as the application do-

main.
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3. MODEL

3.1. Background on Multicore Communication API (MCAPI)

Multicore Communication API (MCAPI) [1] aims to supply communication and

synchronization between closely distributed embedded systems. MCAPI is a message-

passing API like MPI but its target system and functionalities differ from MPI. MCAPI

provides low latency and low overhead for heterogeneous platforms (in terms of types

and number of cores, different operating systems, and physical transports). Shared

memory used by multicore systems can lead to nondeterminism. Message passing

reduces the potential for nondeterminism by explicit messages for communication.

MCAPI has three fundamental communication types: connectionless datagrams for

messages; connection-oriented, uni-directional, FIFO packet streams for packet chan-

nels; and connection-oriented single word uni-directional, FIFO packet streams for

scalar channels. Channels require opening before communication and closing after

communication completes. Basic elements of the MCAPI topology are nodes, which

can be a process, a thread, a hardware accelerator, etc. Communication occurs be-

tween endpoints, which are termination points and created on nodes on each side of

the communication. More than one endpoint can be set up on each node and endpoints

are identified with unique identification numbers. Both connectionless and connection-

oriented communications take place between endpoints.

Connectionless messages can be sent or received in either blocking or non-blocking

fashion. Blocking send function (mcapi msg send) in our MCAPI library will block

if there is insufficient memory space available at the system buffer. When sufficient

memory space becomes available, the function will complete. Current implementation

of MCAPI library by the Multicore Association does not support this kind of blocking

send function, instead it returns immediately with an error even if there is no memory

space. This is similar to the non-blocking send function (mcapi msg send i), which

returns immediately even if there is no memory space available. MCAPI stores mes-

sages in a queue at the receiver endpoint and the size of the queue can be configured
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according to the user’s demands. Blocking receive function (mcapi msg recv) returns

once a message is available in endpoint’s message queue, whereas a non-blocking receive

function (mcapi msg recv i) returns immediately even if there is no message available.

Message receive functions do not specify the sender endpoint and can match any of the

senders depending on the execution schedule. These are also called wildcard receives.

Packet channels use connection-oriented communication. They use FIFO order and

they can have blocking or non-blocking send and receive functions. Scalar channels are

aimed at systems that have hardware support for sending small amounts of data (for

example, a hardware FIFO) and scalar channels have only blocking functions due to

high performance.

For non-blocking function requests, the user program receives a handle for each

request and can then use the non-blocking management functions to test if the request

has completed with mcapi test function, or wait for it either singularly with mcapi wait

or wait for any one of requests in an array of requests with mcapi wait any function.

The user program can also cancel non-blocking function calls using mcapi cancel func-

tion.

MCAPI provides sufficient number of functionalities while hiding or minimizing

communication overhead to get better performance. Table 3.1 and Table 3.2 contain

a list of MCAPI functions. Apart from MCAPI library implementation by Multicore

Association, OpenMCAPI [25], created by Mentor Graphics, is also an open source

implementation of the MCAPI standard.

Both MCAPI and MPI have similar functions for exchanging messages. For

example, the following function pairs (mpi function – mcapi function) have similar

behaviors: mpi send – mcapi msg send, mpi isend – mcapi msg send i, mpi recv –

mcapi msg recv, and mpi irecv – mcapi msg recv i.

We show an example multicore program that uses MCAPI library in Figure 3.1.

The program has two concurrent threads (Thread1 and Thread2) communicating through

connectionless non-blocking message exchange. Each thread initializes the MCAPI en-
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Table 3.1. Some MCAPI functions (topology, messages, and packet operations).

TYPE MCAPI FUNCTION DESCRIPTION

General
mcapi initialize Initializes an MCAPI node

mcapi finalize Finalizes an MCAPI node

Endpoints
mcapi endpoint create Creates an endpoint

mcapi endpoint get

mcapi endpoint get i

Obtains the endpoint associated with a

given tuple

Messages
mcapi msg send

mcapi msg send i

Sends a blocking/non-blocking (connec-

tionless) message from a send endpoint to

a receive endpoint.

mcapi msg recv

mcapi msg recv i

Receives in blocking/non-blocking fashion

a (connectionless) message from a receive

endpoint

Packet

Channels

mcapi pktchan connect i Connects send and receive endpoints

mcapi pktchan recv open i Creates a typed and directional, local rep-

resentation of the channel on the sender

side

mcapi pktchan send open i Creates a typed and directional, local rep-

resentation of the channel on the receiver

side

mcapi pktchan send

mcapi pktchan send i

Sends a blocking/non-blocking data packet

on a (connected) channel

mcapi pktchan recv

mcapi pktchan recv i

Receives in blocking/non-blocking fashion

a data packet on a (connected) channel

mcapi pktchan release Releases a packet buffer obtained from a

mcapi pktchan recv()

mcapi pktchan recv close i Closes the receive side of the channel

mcapi pktchan send close i Closes the send side of the channel
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Table 3.2. Some MCAPI functions (scalar and non-blocking operations).

TYPE MCAPI FUNCTION DESCRIPTION

Scalar

Channels

mcapi sclchan connect i Connects a pair of scalar channel endpoints

mcapi sclchan recv open i Creates a typed, local representation of a

scalar channel

mcapi sclchan send open i Creates a typed, local representation of a

scalar channel

mcapi sclchan send uint64 Sends a 64-bit scalar on a (connected)

channel

mcapi sclchan send uint32 Sends a 32-bit scalar on a (connected)

channel

mcapi sclchan recv uint64 Receives a 64-bit scalar on a (connected)

channel

mcapi sclchan recv uint32 Receives a 32-bit scalar on a (connected)

channel

mcapi sclchan available Checks if scalars are available on a receive

endpoint

mcapi sclchan recv close i Closes channel on a receive endpoint

mcapi sclchan send close i Closes channel on a send endpoint

Non-

blocking

operations

mcapi test Tests if a non-blocking operation has com-

pleted

mcapi wait Waits for a non-blocking operation to com-

plete

mcapi wait any Waits for any non-blocking operation in a

list to complete

mcapi cancel Cancels an outstanding non-blocking oper-

ation
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#de f i n e NUMTHREADS 2

void∗ run thread 1 (void ∗ t ) {

. . .

mcap i boo lean t cs1 = MCAPI TRUE;

m c a p i i n i t i a l i z e (DOMAIN,NODE1,&parms ,& vers ion ,& s ta tu s ) ;

ep1 = mcap i endpo int c r eate (PORTNUM,& s ta tu s ) ; /∗ e1 ∗/

ep2 = mcapi endpo int get (DOMAIN,NODE2,PORTNUM,MCA INFINITE,& s ta tu s ) ; /∗e2∗/

cs1 = MCAPI FALSE; /∗ e3 ∗/

mcapi msg send i ( ep1 , ep2 , ‘ ‘MCAPI ’ ’ , s i z e , p r i o r i t y ,& request ,& s ta tu s ) ; /∗e4∗/

mcap i f i n a l i z e (& s ta tu s ) ;

}

void∗ run thread 2 (void ∗ t ) {

. . .

b u f f e r = ‘ ‘ ’ ’ ;

mcap i boo lean t cs2 = MCAPI FALSE;

m c a p i i n i t i a l i z e (DOMAIN,NODE2,&parms ,& vers ion ,& s ta tu s ) ;

ep2 = mcap i endpo int c r eate (PORTNUM,& s ta tu s ) ; /∗ f 1 ∗/

mcapi msg recv i ( ep2 , bu f f e r , BUFF SIZE,& request ,& s t a tu s ) ;

. . .

c s2 = MCAPI TRUE; /∗ f 2 ∗/

. . .

mcapi wait(&request ,& r e c v s i z e ,MCA INFINITE,& s ta tu s ) ; /∗ f 3 ∗/

mcap i f i n a l i z e (& s ta tu s ) ;

}

int main ( ) {

. . .

/∗ run a l l threads ∗/

pthr ead c r ea t e (&threads [ 0 ] ,NULL, run thread 1 ,NULL) ;

p th r ead c r ea t e (&threads [ 1 ] ,NULL, run thread 2 ,NULL) ;

/∗ wait f o r a l l t hreads ∗/

for ( t = 0 ; t < NUMTHREADS; t++) {

pth r ead j o i n ( threads [ t ] ,NULL) ;

}

. . .

}

Figure 3.1. Example multicore program using MCAPI.
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vironment and then creates an endpoint to communicate with the other thread using

mcapi endpoint create. Thread1 gets Thread2’s endpoint by using mcapi endpoint get

function. Thread1 then sends a message to Thread2 and finalizes the MCAPI environ-

ment before exiting. Thread2 receives the message from Thread1 using non-blocking

message receive function. In concurrent programs, the order in which threads are

scheduled is non-deterministic. If Thread1 executes mcapi msg send i before Thread2

executes mcapi msg recv i then Thread2 receives the message from Thread1. However,

if Thread2 executes mcapi msg recv i before Thread1 executes mcapi msg send i,

Thread2 returns from mcapi msg recv i without receiving a message since there is

no message available in its receive queue. Thread2 then waits until the message is

received by using mcapi wait function.

3.2. Trace Model

A multicore system consists of a collection of distinct endpoints which commu-

nicate with one another by message exchanges or shared memory. We consider a

multicore system composed of a collection of sequential endpoints {ep1, ep2, ..., epn},

and an MCAPI library capable of implementing communication between pairs of end-

points for message exchanges. Each endpoint epi has a local state, which is determined

by the values of its local variables and events that are generated during an execution

of a multicore program. Some example events are message send/receive, and shared

variable read/write. These events change the state of the multicore program.

Figure 3.2. A partial order trace of the example in Figure 3.1.

An execution trace can be viewed as a partially ordered set of events called
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a partial order trace and we represent a partial order trace as a directed graph with

vertices as the set of events and a set of edges. Figure 3.2 shows an example partial order

trace of the example in Figure 3.1, when Thread2 executes mcapi msg recv i before

Thread1 executes mcapi msg send i. The dots (vertices) are events and the arrows

(edges) are dependencies. This partial order trace contains two endpoints (endpoint1

and endpoint2), where endpoint1 has four events which are e1, e2, e3, and e4 and

endpoint2 has three events which are f1, f2, and f3. A global state is the state of the

system and given by the set of events that have been executed from the beginning of

the system to the current state by all endpoints. For example, {e1, e2, f1, f2} is a global

state of the partial order trace in Figure 3.2. We define a consistent global state on

directed graphs as a subset of vertices such that, if a vertex is in the subset, then all

incoming neighbors are also in the subset. In Figure 3.2, the global state {e1, e2} is not

a consistent global state because it includes {e2} but not {f1}. However, {e1, f1} and

{f1, f2} are consistent global states. Figure 3.3 shows the state space of the partial

order trace in Figure 3.2 that contains all consistent global states of the trace starting

from the initial state {}, and ending at the final state {e1, e2, e3, e4, f1, f2, f3} moving

one event at a time.This model allows us to capture concurrency via interleaving. That

is, from a given state we can obtain new states by the addition of concurrent events.

For example, from state {e1, f1} we can reach {e1, f1, f2} or {e1, e2, f1}, since both e2

and f2 are concurrent as we will explain later.

3.3. Vector Clocks

There exist several techniques for tracking the concurrency information or the

dependencies between events. Lamport’s happened-before relation [26], which is a

partial order relation, is used for capturing ordering between concurrent events. The

happened-before relation (→) is formally defined as the least strict partial order on

events such that:

• If events s and t occur on the same endpoint; s→ t, if the occurrence of event s

preceded the occurrence of event t.
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Figure 3.3. State space of the partial order trace in Figure 3.2.

• If event s is the sending of a message and event t is the corresponding receipt of

that message, s→ t.

We use vector clocks [27,28] to capture the happened-before relationship between events

in a concurrent system. We associate a vector clock with every event. A vector clock (v)

is an array of n non-negative integers (one entry per endpoint), where vi[i] is the local

clock for endpoint epi and for i 6= j, vi[j] represents endpoint epi’s latest knowledge of

endpoint epj’s local clock.

For several applications such as predictive assertion verification, we need to track

dependencies between only the relevant events. Relevant events are a subset of all the

events generated during the execution, we describe them in detail below for message

passing and shared memory systems.

Algorithm in Figure 3.4 shows the details of the operations on vector clocks for

both message passing and shared variables. The vector clock algorithm presented in

Figure 3.4 is described by the initial conditions and the actions taken for each event

type. For message passing systems, relevant events are endpoint create, get, message
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send, receive, test, wait and cancel functions. Note that packet and scalar send, receive

operations are also relevant events. Each endpoint sends its vector clock with outgoing

messages. A message receiving endpoint receives the vector clock of the sender and

updates its vector clock by taking a component wise maximum with the vector clock

included in the message.

For shared memory systems, the only relevant event is a shared variable write,

where the variable is used in the property to be checked. In multicore programs, tasks

(processes, threads, etc) can communicate via a set of shared variables. Some variable

updates can causally depend on others. For instance, if a task writes a shared variable

x and then another task writes y due to a statement y = x + 2, then the update of y

causally depends upon the update of x. We only consider read-write, write-read and

write-write causalities while updating vector clocks of shared variables, because the

order of multiple consecutive reads of the same variable is not important. We have

different vector clocks for writes and reads because changing the order of consecutive

reads does not change the actual behavior of the program, whereas changing the order of

write with other operations results in different behavior. We can extend the happened-

before relation to read and write events of shared variables as in [29]. For this, we use

two additional n-dimensional vector clocks for each shared variable x. These vector

clocks are called access and write vector clocks and we denote the access vector clock

of shared variable x by x.a and the write vector clock by x.w.

3.3.1. Efficient Vector Clocks for MCAPI

We now show some properties of Figure 3.4. The following relations are defined

to compare two vector clocks, s.v and t.v, where they are the vector clocks assigned to

the events s and t respectively:

• s.v = t.v ⇔ ∀x : s.v[x] = t.v[x]

• s.v ≤ t.v ⇔ ∀x : s.v[x] ≤ t.v[x]

• s.v < t.v ⇔ s.v ≤ t.v ∧ ∃x : s.v[x] < t.v[x]
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Require: an event s generated by endpoint epj

Ensure: updated vector clock vj

endpoint create event ():

for i = 1 to n do

vj[i] := 0;

end for

vj[j] := 1;

endpoint get event (endpoint epk):

reserve request r;

let r.ep := epk, r.type := get;

send event (endpoint epj, endpoint epk, message m):

vj[j] := vj[j] + 1;

reserve request r and buffer b;

let r.b := b, r.type := send, r.completed := true;

store m and vj in b as b.m and b.vc, respectively;

add b to the receive queue of epk;

receive event (endpoint epj):

if the receive queue of epj is not empty then

receive the first request r from the receive queue of epj;

r.completed = true;

else

reserve request r;

let r.type := recv, r.completed := false;

end if

Figure 3.4. Vector Clock Algorithm.
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test event (request r):

if r.type = receive and r.completed = true then

receive buffer b of r;

vj := componentwiseMax(vj, b.vc);

end if

if r.type = get and endpoint r.ep exists then

r.completed = true;

vj := componentwiseMax(vj, vr.ep);

end if

vj[j] := vj[j] + 1;

wait event (request r, timeout t):

timeout lt = 0;

while r.completed = false and lt < t do

call test event (r);

lt := lt + 1;

end while

shared variable read event (variable x):

vj := componentwiseMax(vj, x.w);

x.a := componentwiseMax(x.a, vj);

shared variable write event (variable x):

vj := componentwiseMax(x.a, vj);

x.a := vj and x.w := x.a;

if x is relevant to the property then

vj[j] := vj[j] + 1;

end if

Figure 3.4. Vector Clock Algorithm (continued).
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We can define happened-before and concurrency relations between events by using

vector clocks of the events as follows.

• s→ t⇔ s.v < t.v

• s||t⇔ (¬(s→ t) ∧ ¬(t→ s)) (Concurrent, CC)

The last relation defined above states that events s the t are concurrent (or

causally independent). In addition, if the endpoint at which an event occurred is

known, the test to compare two vector clocks can be simplified and allows us to obtain

performance gains. If events s and t occurred at endpoints epi and epj and are assigned

vector clocks s.v and t.v, respectively, then

• s→ t⇔ s.v[i] ≤ t.v[i] (Efficient Happened Before, EHB)

• s||t⇔ s.v[i] > t.v[i] ∧ s.v[j] < t.v[j] (Efficient Concurrency, ECC)

We next show that the relations given above hold for our vector clock algorithm.

Lemma 3.3.1. Let s and t be events on endpoints epi and epj with vector clocks s.v

and t.v, respectively and s 6= t. Then, ¬(s→ t)⇒ t.v[i] < s.v[i].

Proof. We know that ¬(s → t). If i = j, then it follows that t → s because the local

component of the vector clock is increased after each relevant event, hence t.v[i] < s.v[i].

If i 6= j, then we have two cases. The first case is t → s. In this case, s.v[i], which

is the local clock of epi, is increased in s and we have t.v[i] < s.v[i]. The second case

is s||t. We know that every endpoint has the most up-to-date knowledge of its local

clock for concurrent events s and t and it follows that t.v[i] < s.v[i].

Theorem 3.3.2. Let s and t be events on endpoints epi and epj with vector clocks s.v

and t.v, respectively. Then, s→ t if and only if (s.v[i] ≤ t.v[i]).

Proof. We first show that (s → t) implies that (s.v[i] ≤ t.v[i]). If s → t, then there

is a message path or shared variable read/write dependency path from s to t. Since
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every endpoint updates its vector clock on receipt of a message or on reading/writing

a shared variable and this update is done by taking the component wise maximum, we

know the following holds: ∀k : s.v[k] ≤ t.v[k]. Thus (s → t) ⇒ (s.v[i] ≤ t.v[i]). The

converse, s.v[i] ≤ t.v[i]⇒ (s→ t), follows from Lemma 3.3.1.

Figure 3.5. Partial order trace with vector clocks.

A sample execution of the vector clock algorithm with three endpoints is given

in Figure 3.5, where circles represent events and the tuples in brackets represent the

vector clocks. In the example, event r1 happened-before s3 since [0, 1, 0] < [3, 1, 3].

Whereas s2 and r1 are concurrent because their vector clocks are not comparable.

Figure 3.6 shows our particular implementation of vector clocks in MCAPI li-

brary for mcapi msg send i function. This function begins with locking the MCAPI

database, which is shared between tasks, and ends with unlocking the database. All

MCAPI functions need locking/unlocking operations since the database is in shared

memory and accessing shared memory in multicore systems without a lock mechanism

is not safe. mcapi msg send i function reserves a request and then checks the validity

of the sender and receiver endpoints. If request reservation is successful and endpoints

are valid, then a free MCAPI buffer is found. Next, the sender endpoint increments its

local clock and stores the message, its vector clock and the clock index in the buffer.

After preparing the buffer, the buffer is added to the receive queue of the receiver

endpoint.
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/∗ our vec to r c l o c k ex tens ion fo r endpoints ∗/

struct {

u in t 16 t c l o ck index ;

u i n t 16 t v e c t o r c l o c k [MCAPI VECTOR CLOCK SIZE ] ;

} v e c t o r c l o c k e x t ;

void mcap i t rans msg send i ( mcapi endpo int t send ep ,

mcapi endpo int t r e c e i v e ep , const char∗ bu f f e r ,

s i z e t b u f f e r s i z e , mcap i r eque s t t ∗ request , mcap i s t a tu s t ∗ mcapi s tatus )

{

struct v e c t o r c l o c k e x t ∗ vc ext ;

. . .

/∗ l o c k the database ∗/

a s s e r t ( mcap i t r an s a c c e s s da taba s e p r e ( g l oba l rw l ,MCAPI TRUE) ) ;

/∗ make sure we have an a v a i l a b l e r eque s t entry ∗/

i f ( mcap i t r an s r e s e r v e r e qu e s t h av e l o c k (&r ) ) {

. . .

a s s e r t ( mcap i t rans decode hand l e have l ock ( send ep ,&sd ,&sn ,& se ) ) ;

a s s e r t ( mcap i t rans decode hand l e have l ock ( r e c e i v e ep ,&rd ,&rn ,& re ) ) ;

. . .

/∗ f i nd a f r e e mcapi b u f f e r ∗/

db buf f = &mcapi db−>bu f f e r s [ i ] ; /∗ i . th b u f f e r i s a v a i l a b l e ∗/

/∗ increment c l o c k ∗/

vc ext = &mcapi db−>domains [ sd ] . nodes [ sn ] . node d . endpoints [ se ] . v c ext ;

vc ext−>v e c t o r c l o c k [ vc ext−>c l o ck index ] += 1 ;

/∗ copy the b u f f e r parm in to a mcapi b u f f e r ∗/

memcpy ( db buf f−>buf f , bu f f e r , b u f f e r s i z e ) ;

/∗ s t o r e endpoint in mcapi b u f f e r ∗/

db buf f−>s ende r c l o ck i nd ex = vc ext−>c l o ck index ;

/∗ s t o r e vec to r c l o c k in mcapi b u f f e r ∗/

memcpy( db buf f−>vec t o r c l o ck , vc ext−>vec t o r c l o ck ,

mcapi db−>v e r i f i e r e x t . num clocks ∗ ( s izeof ( u i n t 16 t ) ) ) ;

. . .

a s s e r t ( s e t up r eque s t hav e l o ck (& re c e i v e ep , request , mcapi status ,

completed , b u f f e r s i z e ,NULL,SEND,0 , 0 , 0 , r ) ) ;

}

. . .

/∗ unlock the database ∗/

a s s e r t ( mcap i t r an s a c c e s s da taba s e po s t ( g l oba l rw l ,MCAPI TRUE) ) ;

}

Figure 3.6. Vector clock implementation in mcapi msg send i function.
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4. PREDICTIVE VERIFICATION

In this section, we describe our predictive verification algorithms. Our algorithms

are predictive because we not only find actual errors but potential errors that may

result from an alternative execution of endpoints in the system. Also, our goal is to

have a solution with high performance. We have two types of verification, assertion

verification and deadlock/race condition detection. Given a multicore program and a

property, our automated verification flow consists of the following steps, where we can

turn on and off each type of verification or use them in conjunction.

(i) The property is read, and the variables are found.

(ii) Tracing functions for relevant variables and shared variables are automatically

added to the program.

(iii) The instrumented program is compiled and executed with our MCAPI Verification

Library, generating a partial order trace.

(iv) The deadlocks and race conditions are detected during execution of the instru-

mented program.

(v) The resulting partial order trace and the property are passed to the BTV verifier

tool, which determines whether the property is satisfied or not.

Our Predictive Verification technique relies on scheduling randomization. Our

technique records MCAPI calls into a trace file and then we use this information to

check the property given by the user. Our technique not only detects actual errors but

also potential errors. Our technique dynamically collects information about the com-

munication and checks if deadlocks or race conditions exist. We handle both MCAPI

connectionless and connection-oriented communication functions since both connec-

tionless and connection-oriented functions create dependencies between endpoints. In

addition to the communication functions, we handle endpoint operations, channel

open/close/connect operations, and non-blocking operations that include wait, test,

and cancel functions. In multicore programs using MCAPI, if a corresponding receive

is not called for a send, we call such a send an unmatched send and if a corresponding
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send is not called for a receive, we call such a receive an unmatched receive. We detect

unmatched sends, unmatched receives, and unclosed channels, as well.

Figure 4.1. Overview of Predictive Verification Tool Architecture (MPVT).

The overall structure of our MCAPI Predictive Verification Tool (MPVT) is

shown in Figure 4.1. The tool consists of 3 main modules: dependency tracker, an-

alyzer, and checker. The dependency tracker module instruments the multicore user

program in order to generate a partial order trace. The checker module dynamically

checks deadlocks and race conditions and the analyzer module determines if the prop-

erty is satisfied or not.

4.1. Instrumentation for Predictive Verification

The first step in predictive verification flow is instrumenting the multicore pro-

gram. The dependency tracker module generates the execution trace of an MCAPI user

program. We use vector clocks to obtain a partial order representation of traces. The

partial order execution trace contains all states of endpoints and each state contains

the values of variables relevant to the property.

For instrumenting MCAPI library, instead of writing wrapper functions, we chose

to modify the library functions and developed an MCAPI Verification Library. The

handling of MCAPI function calls in wrapper functions can increase the execution time
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of the user program. In addition, current MCAPI implementation from the Multicore

Association uses shared memory to implement MCAPI library, which may lead to race

conditions in wrapper functions and preventing these using locks reduces performance.

We keep the overhead low while making the solution robust. However, a wrapper

function would be more beneficial for incorporating our verification algorithms to new

MCAPI library implementations.

For instrumenting an MCAPI user program, the dependency tracker module au-

tomatically inserts code at appropriate locations in the user program to be monitored.

The instrumented program outputs the values of variables relevant to the property

given by the user. The instrumented program also updates vector clocks of endpoints

for each relevant event according to the algorithm given in Figure 3.4. This is ac-

complished in MCAPI Verification Library. In order to update vector clocks of shared

variables, we enforce shared variable reads and writes via our verification library func-

tions. We used shared variable instrumentation part of Inspect [30] for instrumenting

the user program. For each read/write access on variables that are shared among

endpoints, Inspect intercepts the operations by adding a wrapper around it using C

Intermediate Language [31]. Upon running the instrumented multicore user program,

a log file is generated. This log file consists of a sequence of events that a thread or

process on which an endpoint is created goes through. Each event contains the values

of variables relevant to the property being verified and a vector clock. Finally, this log

file is used to obtain a partial order representation of the execution trace.

4.2. Predictive Assertion Verification

After the instrumented multicore program executes and generates a partial order

trace, the analyzer module uses Basic based Trace Verifier (BTV) tool [12], to decide

whether a given property is satisfied or not. BTV, which is an offline trace verifier,

detects all temporal properties that can be expressed in Basic Temporal Logic (BTL).

BTV can detect actual and potential errors due to slicing technique that we developed

earlier [10]. A BTL property can have arbitrary negations, disjunctions, conjunctions

and the temporal possibly (EF ) and temporal invariant (AG) operators. A property l
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in BTL is defined recursively as follows:

• ∀l ∈ AP (AP is the set of atomic propositions)

• If p and q are BTL properties then the following are BTL properties, p ∨ q, p ∧

q,¬p, EF (p)

Notice that, AG(p) can be represented in BTL as ¬EF (¬p). A few examples of

BTL properties are listed below.

• Violation of mutual exclusion: Two endpoints are in the critical section at the

same time. EF (critical1 ∧ critical2).

• Resettability: It is always possible to get to a reset state. AG(EF (restart)).

• All processes are never red concurrently at any future state and process0 has the

token: ¬EF (red0 ∧ red1 ∧ . . .) ∧ token0.

• It is possible to get to a state where started holds, but ready doesn’t: EF (started∧

¬ready).

• Received message size is never larger than the maximum message size defined in

MCAPI: AG(¬(recv size > MCAPI MAX MSG SIZE)).

• It is possible to get to a state where there is no request available: EF (status ==

MCAPI ERR REQUEST LIMIT )

The core of the BTV technique is in computing a compact representation of states

containing exactly those global states that satisfy the property. BTV uses k-slicing

algorithm while detecting temporal properties on a given partial order trace. The slice

of a trace with respect to a property is a subtrace that contains all of the global states of

the trace that satisfy the property such that it is computed efficiently and represented

concisely [10]. BTV can efficiently explore all possible traces generated from a partial

order trace using slicing and without re-execution and without state space generation.

BTV takes a partial order trace and a property and works recursively. The main

idea behind the slicing algorithm is adding additional edges on the directed graph,

which is the representation of the partial order trace. While finding the slice of p,

which is a local property of endpoint ep , for each vertex that does not satisfy p, we
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add an additional edge to this vertex from the next vertex on ep and obtain a new

graph. Notice that adding these new edges removes the states that do not satisfy p.

Now, the states that do not satisfy p are not in consistent global states of the new

graph since they have incoming edges from their next vertices. When the edge adding

process completes, the directed graph output is the slice with respect to p. The other

cases use edge addition approach as well. While other temporal property detection

techniques such as SPIN [32] and JMPaX [33] have exponential-time complexity, BTV

has polynomial-time complexity due to slicing and restricting the subset of temporal

properties. This subset is useful to represent common concurrency properties.

4.2.1. Example

Figure 3.2 shows the partial order trace of an execution obtained by running

the instrumented version of the example in Figure 3.1. This partial order trace is ob-

tained for the observed execution schedule where Thread2 executes mcapi msg recv i

before Thread1 executes mcapi msg send i. The property to be checked is the mu-

tual exclusion property, whether both endpoints can be in the critical section at

the same time, that is, EF (cs1 == MCAPI TRUE ∧ cs2 == MCAPI TRUE).

Initially, vector clocks are all zeros and variable cs1 is MCAPI TRUE and vari-

able cs2 is MCAPI FALSE. For the schedule, when Thread2 execution is followed

by Thread1 execution, we have the following relevant operations. Relevant opera-

tions on the first endpoint are mcapi endpoint create (e1), mcapi endpoint get (e2),

cs1 = MCAPI FALSE (e3), mcapi msg send i (e4). Relevant operations on the

second endpoint are mcapi endpoint create (f1), cs2 = MCAPI TRUE (f2), and

mcapi wait (f3). Notice that, for the given execution schedule, mcapi msg recv i

event is not in the relevant operations list of endpoint2 since this is an unsuccess-

ful function call which means that there is no message available in the receive queue

and function call returns immediately without creating any dependency. Writes to

cs1 and cs2 variables generate events since these variables are relevant to the prop-

erty. We assume that in the observed execution schedule the execution order of end-

points is as follows. {}, {e1}, {e1, f1}, {e1, e2, f1}, {e1, e2, e3, f1}, {e1, e2, e3, e4, f1},

{e1, e2, e3, e4, f1, f2}, {e1, e2, e3, e4, f1, f2, f3}. In Figure 3.2, events are also labeled with
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vector clocks and the values of local properties which are true(t) when local property

is satisfied or false(f), otherwise. Local properties of endpoint1 and endpoint2 are

(cs1 == MCAPI TRUE) and (cs2 == MCAPI TRUE), respectively. The partial

order trace is obtained from the observed execution schedule that has vector clocks

associated with events. Figure 3.3 shows the state space of the partial order trace in

Figure 3.2. When we use BTV, we find that there exists a state that satisfies the prop-

erty. In fact, three states, {e1, f1, f2}, {e1, e2, f1, f2}, {e1, e2, e3, f1, f2}, represented as

bold in Figure 3.2, satisfy the property. However, the observed execution schedule,

which corresponds to a sequence of states in the state space that does not go through

any bold state, does not satisfy the property. Hence, the error can be missed in the

observed schedule but due to partial order traces we can capture this error.

It is important that MCAPI functions behave correctly and we do not force

scheduler behaving in a specific way while checking a property. For instance, MCC

[3] forces a task to wait until a non-blocking send matches with a receive or until a

non-blocking receive matches with a send. Although the MCAPI standard allows the

task to continue after a non-blocking operation, MCC forces the scheduler to behave

differently leading to a reduced state space and potentially false positives. For instance,

MCC inserts a wait after mcapi msg recv i function, which makes the property above

unsatisfied, and misses the error. However, our algorithm finds the error.

4.3. Predictive Deadlock and Predictive Race Condition Detection

The predictive verification technique is very effective in finding bugs in concurrent

programs. However, it requires user defined properties. On the other hand, deadlocks

and race conditions are undesirable for multicore programs and they can be detected

automatically without any user defined properties. We say that a deadlock occurs in a

multicore program if two or more endpoints are each waiting for the other to complete

before proceeding. If a deadlock occurs for an observed execution, we call it an actual

deadlock and if it does not occur for an observed execution but it can potentially occur

for any of the other schedules, we call it a potential deadlock. We say that a race

condition occurs in a multicore program if two or mode endpoints send a message to
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the same endpoint concurrently. In this case, the receiver endpoint can receive any of

the sent messages and the received message can change the execution behavior. Note

that all connectionless message receive functions in MCAPI are wildcard receives so

multicore programs using MCAPI can potentially include many race conditions. In

this work, we detect both actual and potential deadlocks and race conditions.

The checker module of MPVT contains our deadlock and race condition detection

algorithms that are shown in Figure 4.2. For deadlock detection, we use a graph based

detection technique in order to detect actual and potential deadlocks. We dynamically

build a relevant event dependency graph, which uses the AND model, and detects

deadlocks. In the AND model, a vertex represents an endpoint and an edge represents

the dependency between two endpoints. A cycle is sufficient to declare a deadlock with

this model. When a new endpoint is created, our checker module adds a new vertex to

the graph. We add a new edge from a sender endpoint to a receiver endpoint for each

blocking message and packet send operation and we remove this edge when the receiver

successfully receives the message or the packet. After adding a new edge, a deadlock

is detected if any cycles are found in the graph and it is reported with endpoints that

are in the cycles. An endpoint is allowed to make several send function calls, and it

is blocked when the receive queue of the receiver is full. When we detect a deadlock,

we call it an actual deadlock, if at least the receive queue of an endpoint, which is in

a detected cycle, is full. If there is no endpoint with full receive queue, we call it a

potential deadlock. In potential deadlocks, it is possible that the receive queue of one

of the endpoints may become full for other execution order of send/receive calls. If the

receive queue of any of the endpoints is never full for all execution order of send/receive

calls, we detect a false deadlock.

For race condition detection, we use a concurrency check mechanism in order to

detect race conditions between message sends. We handle race condition detection in

receive functions as seen in Figure 4.2. If there exists a previous receive operation on

the receiver endpoint, we check the happened-before relation between the last send

operation s1 that matched with previous receive r1 and the current send operation s2

that matches with the current receive operation r2 by using their vector clocks. If s1
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Require: an event s generated by endpoint epj

Ensure: list of potential deadlocks and race conditions

endpoint create event ():

add vertex j to Dependency Graph (DG);

send event (endpoint epj, endpoint epk, message m):

add a new edge e from sender epj to receiver epk in DG;

call check deadlock(e);

reserve buffer b;

store m in b;

store vj and j in b as b.vc and b.ci, respectively;

add b to the receive queue of epk;

receive event (endpoint epj):

if the receive queue of epj is not empty then

receive the first buffer b from the receive queue of epj;

call check race condition(b);

remove the edge from b.ci to epj in DG;

end if

check deadlock(edge e):

if e creates any cycles in DG then

report deadlocks with the corresponding endpoints;

end if

Figure 4.2. Deadlock and Race Condition Detection Algorithm.
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check race condition(buffer b):

if lastsender exists then

if lastsender vcj[lastsender cij] > b.vc[lastsender cij] then

report race condition with receiver and senders;

end if

end if

lastsender vcj := b.vc;

lastsender cij := b.ci;

Figure 4.2. Deadlock and Race Condition Detection Algorithm (continued).

and s2 are concurrent, we report a race condition. We later show that this can be

more efficiently accomplished by checking whether s1 did not happen before s2. After

checking the race condition, we store the current vector clock of send operation in

order to use it in next receive operation on the receiver endpoint. This mechanism is

very efficient in detecting race conditions because we can decide the happened-before

relation by a single comparison.

We now prove that comparing single components of vector clocks is sufficient for

reporting race conditions. Current implementation of MCAPI library by the Multicore

Association guarantees that a receiver endpoint receives the messages in FIFO order

even if they are sent from different endpoints since the library uses shared memory

while exchanging messages. This system is a causally system defined as below. Our

example in Figure 4.3 will clarify these mechanisms further.

Definition 4.3.1 (Causally Ordered). Let any two send events s1 and s2 from any

endpoints to the same endpoint in a multicore system to be related such that s1 happened

before s2. The corresponding receive events are r1 and r2, respectively. Then, the first

message is received before the second message. Formally,

s1 → s2 ⇒ r1 → r2 (CO)

Theorem 4.3.2. Let s1 and s2 be causally ordered send events such that s1 did not

happen before s2 and r1 and r2 are the corresponding receive events, respectively. If s1

did not occur before s2 then they are concurrent. Formally, (¬(s1 → s2) ∧ (r1 → r2))
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⇒ s1 || s2.

Proof. We will use proof by contradiction. We assume that ¬(s1 → s2), r1 → r2

and ¬(s1||s2). Using CC we have that ¬((¬(s1 → s2)) ∧ (¬(s2 → s1))). Combining

¬((¬(s1 → s2)) ∧ (¬(s2 → s1))) with ¬(s1 → s2) we have that (FALSE) ∨ ((s2 →

s1) ∧ (¬(s1 → s2))). Using CO this implies that (r2 → r1), whereas from the theorem

we assume that (r1 → r2). This leads to a contradiction.

4.3.1. Example

Figure 4.3 shows an example MCAPI user program which has a potential dead-

lock. The program has three threads and one endpoint for each thread. The first

endpoint sends a message to the second endpoint and then sends two other messages

to the third endpoint. The second endpoint sends a message to the third endpoint

and then receives two messages. The third endpoint sends a message to the second

endpoint and then receives thread message from any endpoint. For this example, we

assumed that the receive queue size of an endpoint is 1. In other words, the receiver

endpoint can store only one incoming message and the second send operation to this

receiver endpoint is blocked until the receiver endpoint receives a message.

Our tool detects two race conditions during the execution of the multicore pro-

gram in Figure 4.3. Figure 4.4 shows the generated partial order trace that has three

endpoints ep1, ep2, and ep3. In the example, ep2 receives the first message (f3) from

ep3 (h2). We do not check race condition at this receive operation since there is no

previous receive operation on this endpoint. ep2 receives the second message (f4) from

ep1 (e2). Since there exist a previous receive operation on ep2, we check the happened

before relation between previous send operation (h2) and the current send operation

(e2). We find that there is no happened-before relation and report this situation as a

race condition. We detect a second race condition on ep3. When ep3 receives a message

(h4) from ep1 (e3), we detect race condition by finding that there is no happened before

relation between f2 and e3. When the third endpoint receives the second message (h5)
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. . .

void∗ run thread 1 (void ∗ t ) {

. . .

ep1 = mcap i endpo int c r eate (PORTNUM,& s ta tu s ) ; /∗ e1 ∗/

/∗ ge t o ther endpoints : ep2 , ep3 ∗/

mcapi msg send ( ep1 , ep2 , ‘ ‘ msg12 . 1 ’ ’ , msgSize , p r i o r i t y ,& s ta tu s ) ; /∗ e2 ∗/

mcapi msg send ( ep1 , ep3 , ‘ ‘ msg13 . 1 ’ ’ , msgSize , p r i o r i t y ,& s ta tu s ) ; /∗ e3 ∗/

mcapi msg send ( ep1 , ep3 , ‘ ‘ msg13 . 2 ’ ’ , msgSize , p r i o r i t y ,& s ta tu s ) ; /∗ e4 ∗/

. . .

}

void∗ run thread 2 (void ∗ t ) {

. . .

ep2 = mcap i endpo int c r eate (PORTNUM,& s ta tu s ) ; /∗ f 1 ∗/

/∗ ge t o ther endpoints : ep3 ∗/

mcapi msg send ( ep2 , ep3 , ‘ ‘ msg23 . 1 ’ ’ , msgSize , p r i o r i t y ,& s ta tu s ) ; /∗ f 2 ∗/

mcapi msg recv ( ep2 , bu f f e r , BUFF SIZE,& r e c v s i z e ,& s t a tu s ) ; /∗ f 3 ∗/

mcapi msg recv ( ep2 , bu f f e r , BUFF SIZE,& r e c v s i z e ,& s t a tu s ) ; /∗ f 4 ∗/

. . .

}

void∗ run thread 3 (void ∗ t ) {

. . .

ep3 = mcap i endpo int c r eate (PORTNUM,& s ta tu s ) ; /∗ h1 ∗/

/∗ ge t o ther endpoints : ep2 ∗/

mcapi msg send ( ep3 , ep2 , ‘ ‘ msg32 . 1 ’ ’ , msgSize , p r i o r i t y ,& s ta tu s ) ; /∗ h2 ∗/

mcapi msg recv ( ep3 , bu f f e r , BUFF SIZE,& r e c v s i z e ,& s t a tu s ) ; /∗ h3 ∗/

mcapi msg recv ( ep3 , bu f f e r , BUFF SIZE,& r e c v s i z e ,& s t a tu s ) ; /∗ h4 ∗/

mcapi msg recv ( ep3 , bu f f e r , BUFF SIZE,& r e c v s i z e ,& s t a tu s ) ; /∗ h5 ∗/

. . .

}

int main ( ) {

. . .

/∗ run a l l threads ∗/

/∗ wait f o r a l l t hreads ∗/

. . .

}

Figure 4.3. Example multicore program for predictive deadlock and race condition

detection.
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Figure 4.4. Partial order trace of example in Figure 4.3.

from ep1 (e4), we check for race condition but it is clear that e3 happened before e4,

therefore we do not report this situation as a race condition.

Figure 4.5. Relevant event dependency graph.

Figure 4.5 shows the relevant event dependency graph generated by the execu-

tion of the multicore program in Figure 4.3. Our deadlock detection mechanism runs

dynamically and adds and removes edges between endpoints. First, we add the edge,

represented as 1, when ep2 sends a message (f2) to ep3. Second, we add the edge (2),

when ep3 send a message to ep1 (h2). We then check if a cycle exists on the graph. We

find a cycle in the graph and report this as a potential deadlock. We add the third (3)

and the fourth (4) edges when ep1 sends a message to ep2 (ee) and to ep3 (e3), respec-

tively. The detected deadlock caused by the cycle between ep2 and ep3 is not an actual

deadlock since the the receive queue of ep3 is not full and ep3 continues by receiving

the incoming message from ep2 (h3) after sending a message to ep2 (h2). Next, ep2

receives the message sent by ep3 (f3). ep2 and ep3 receive the remaining messages (f4,
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h4, h5) and the execution completes. The execution in Figure 4.4 shows the observed

execution but the order of message send and receive operations can change from one

execution to the other. For example, if ep1 sends a message to ep2 (e2) and to ep3

(e3), respectively, then ep2 sends a message to ep3 (f2) and ep3 sends a message to

ep2 (h2). Notice that, ep3 is blocked in the third send operation (e4) since the receive

queue of ep3 is full. ep2 is also blocked (f2) because the receive queue of ep3 is already

full. The only way to continue is that ep3 receives at least one message and unblocks

one of the send operations from ep1 and ep2 but ep3 sends a message to ep2 (h2) and

completes the cycle between ep2 and ep3 in the graph and causes a deadlock. The

cycle in our case contains two endpoints; however, multicore programs can create large

cycles which are detected by our detection mechanism efficiently. Our graph based

(potential) deadlock detection algorithm can report non-deadlocks as deadlock since

the deadlock situation depends on the receive queue size of an endpoint.
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5. VERIFICATION COVERAGE

Predictive verification aims to find errors in multicore programs. We also need a

sufficient number of tests that cover all possible behaviors of the multicore program. We

use mutation testing to check if the test set is sufficient for catching errors. Mutation

testing is a software testing method that involves inserting faults into user programs

and then re-running a test set against the mutated program. A good test will detect

the change in the program. Our aim is to check the adequacy of a test set developed

for testing multicore programs that use MCAPI library. Mutation testing allows us to

have a verification coverage measure which we perform with the following steps:

• Step 1: We create a set of mutant programs. In other words, each mutant program

differs from the original program by one mutation. For example, one single syntax

change made to one of the program statements.

• Step 2: We run the original program and the mutant program with the same test

set.

• Step 3: We evaluate the results, based on the following set of criteria: If both the

original program and the mutant program generate the same output, our test set

is inadequate. Our test set is adequate, if one of the tests in the test set detects

the fault in our program. That is, one mutant program generates a different

output than the original program.

We developed a tool as seen in Figure 5.1 for concurrent MCAPI programs to

inject functional faults. We relate the faults to actual bug patterns. We then generate

mutations based on our fault model and insert these mutations into a given MCAPI

program to obtain a mutant. Each change of the program by a mutation operator

generates a mutant multicore program. A mutant is killed (detected) by a test case

that causes it to produce different output from the original multicore program. The

ratio of the number of mutants killed to the number of all mutants is called mutation

coverage.
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Figure 5.1. Overview of Mutation Coverage Tool Architecture.

We illustrate the need to have a mutation coverage metric with a mutant obtained

from the example in Figure 3.1. First, we generate a mutant program by removing

mcapi wait function from the second thread’s function body. Our test set has one

test (Test1) which checks the value of the buffer variable. We run both the original

and the mutant programs. If the first thread executes and exits and then the second

thread executes and exits, both programs produce same value “MCAPI” for buffer

variable. This result shows that the test set in not sufficient and we add a new test

(Test2) which checks the validity of the request variable in order to improve the test

set. Note that a request is valid until the receive operation by Thread2 completes and

a test or wait operation is completed. Now, original program produces FALSE and

the mutant program produces TRUE for Test2 in the test set since the wait operation

has been deleted. Table 5.1 summarizes the testing process.
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Table 5.1. Mutation Coverage Example.

Test1 Outputs (buffer) Test2 Outputs (request is valid)

Original Mutant Original Mutant

“MCAPI” “MCAPI” FALSE TRUE

5.1. Mutation Operators for MCAPI

In this section, we will identify some bug patterns in MCAPI and then develop

mutation operators for MCAPI functions that will trigger these bugs. The following

list contains our bug patterns. Notice that some errors in a multicore program can

match with multiple bug patterns. Java concurrency bug patterns [23] and SystemC

bug patterns [24] are some resources we used in developing our bug patterns.

(i) Nondeterminism (ND): Changing the timeout duration of a function, canceling

an uncompleted operation may lead to a nondeterministic situation.

(ii) Deadlock (DL): Insufficient system side buffering causes deadlocks in send func-

tions. An unmatched receive function also causes a deadlock. A task can get

stuck in mcapi endpoint get function if the endpoint that the task waits for is

not created. If a task waits infinitely for a request that never completes, this

causes a deadlock.

(iii) Race Condition (RC): Sending two or more concurrent messages to the same

endpoint causes message race conditions.

(iv) Starvation (SV ): A process may starve due to actions of other processes. If a

task does not delete an endpoint when it is done and if other tasks try to create

endpoints they can fail because of a lack of endpoints. Not closing a channel and

not freeing a packet are other reasons of starvation.

(v) Resource Exhaustion (RE): A group of endpoints have all of a finite set resources,

such as requests, and one of the endpoints needs a resource but none of the other

endpoints gives up. In MCAPI, we use mcapi test or mcapi wait function in

order to remove a completed request from the system. If we do not use these
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functions, we may fail on new operations. Similarly, not freeing a packet even if

we successfully received it may fail new message exchange operations.

(vi) Incorrect Parameters (IP ): This occurs when some of the parameters of an

MCAPI function call are wrong. Initializing MCAPI environment with wrong

domain identifier, creating an endpoint with wrong node or port identifier, delet-

ing a wrong endpoint, sending a message to the wrong endpoint, and connecting

to a wrong endpoint lead to incorrect parameters bug pattern.

(vii) Forgetting Functions (FF ): Forgetting to call an MCAPI function causes this

bug pattern. For instance, if we forget to free a packet on a memory constrained

device this causes resource leak. Forgetting to initialize or to finalize the MCAPI

environment, forgetting to establish a connection between two endpoints before

transferring packet or scalar data are some examples of this pattern. If we forget

to use mcapi test or mcapi wait after a non-blocking receive operation, we may

be trying to use an unavailable data.

(viii) Incorrect Functions (IF ): Using a blocking function instead of a non-blocking

function or vice versa causes this bug pattern. Sending or receiving a packet

instead of scalar, sending or receiving a packet or scalar data on unconnected

channel, using mcapi test instead of mcapi wait, sending or receiving a message

(not a scalar or packet data) on a connected channel are the other reasons for

this bug pattern.

We present a set of mutation operators for MCAPI. These mutation operators

aim to check concurrency in multicore programs. We also identify the set of MCAPI

functions that a mutation operator can be applied to. Table 5.2 shows the mutation

operators for MCAPI and Table 5.3 relates them to the bug patterns described above.

C1. Modify a parameter of MCAPI function.

(i) Modify the Parameter of Function (MPF ): This operator can be applied to

nearly all functions in Table 3.1 or Table 3.2. We modify one of the parameters of

function such as domainidentifier parameter in mcapi endpoint create function.

This operator may lead to deadlock DL, or incorrect parameter IP .
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Table 5.2. Mutation operators for MCAPI.

Operator Category Concurrency Mutation

Operators for MCAPI

Description

C1. Modify a

parameter of

function

MPF Modify the Parameter of Concur-

rent Function

MFT Modify Function Timeout

C2. Remove,

replace, exchange

function

RCF Remove Concurrency Function

EFC Exchange Function Call with An-

other

RTF Replace Timed Function with

Untimed Function

Table 5.3. MCAPI bug patterns and the corresponding mutation operators.

Index MCAPI Bug Patterns Mutation Operators

1 Nondeterminism (ND) MFT , RCF , EFC, RTF

2 Deadlock (DL) MPF , MFT , RCF , EFC, RTF

3 Race Condition (RC) MFT , RCF , EFC, RTF

4 Starvation (SV ) RCF , EFC

5 Resource Exhaustion (RE) RCF

6 Incorrect Parameter (IP ) MPF

7 Forgetting Function (FF ) MFT , RCF , EFC, RTF

8 Incorrect Function (IF ) MPF , RCF , EFC
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(ii) Modify Function Timeout (MFT ): This operator changes the timeout value of

the function and can be applied to mcapi wait and mcapi wait any functions

since they are the only functions that have timeout parameters. We modify

mcapi wait(time) to mcapi wait(time*2), mcapi wait(time/2) or mcapi wait(

MCAPI INFINITE). This modification may result in nondeterminism ND,

deadlock DL, or race condition RC. For instance, when we modify mcapi wait(

10, request) with mcapi wait(MCAPI INFINITE, request) in Figure 5.3, it

results in a deadlock.

C2. Remove, replace, or exchange MCAPI function.

(iii) Remove Concurrency Function (RCF ): This operator removes calls to concur-

rency functions in Table 3.1 or Table 3.2. In fact, removing a concurrency func-

tion means returning from wrapper function without doing anything. However,

we update status, which is the output parameter of each MCAPI function and

indicate whether function call is successful or erroneous, of this function call as

MCAPI ERR MUTATION in order to make this mutant killable. If we do

not update status, checking the status of function call may be misleading. For

instance, if the value of status is MCAPI ERR SUCCESS when it is passed

to a function and if we return from wrapper function without updating its value,

the user sees that the function call is successful, in fact, which is not true. This

operator may lead to one on the bug patterns described above except incorrect

parameter IP . For example, if we remove mcapi wait from the multicore program

displayed in Figure 5.2, it leads to a race condition between ep1 and ep2.

(iv) Exchange Function Call with Another (EFC): This operator exchanges a func-

tion in Table 3.1 or Table 3.2 with another appropriate function. For example, we

can exchange a blocking function with a non-blocking one such as mcapi msg send

and mcapi msg send i. This may lead to nondeterminism ND, deadlock DL, or

starvation SV . If we exchange mcapi msg recv i with mcapi msg recv in Fig-

ure 5.3, we cause a deadlock since ep1 waits for ep2 and ep2 waits for ep1.

(v) Replace Timed Function with Untimed Function (RTF ): This operator replaces

a timed function with an untimed function. For example, when we replace
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mcapi wait with mcapi test, function mcapi test does not block task and this

situation may result in nondeterminism ND, deadlock DL, or race condition

RC.

void∗ run thread 1 (void ∗ t ) { /∗ Thread1 has ep1 ∗/

. . .

mcapi msg send ( ep1 , ep3 , ‘ ‘ msg13 ’ ’ , msgSize , p r i o r i t y ,& s ta tu s ) ;

mcapi msg send i ( ep1 , ep2 , ‘ ‘ msg12 ’ ’ , msgSize , p r i o r i t y ,& request ,& s t a tu s ) ;

. . .

}

void∗ run thread 2 (void ∗ t ) { /∗ Thread2 has ep2 ∗/

. . .

mcap i msg recv i ( ep2 , bu f f e r , BUFF SIZE,& request ,& s t a tu s ) ;

/∗ mcapi wait(&reques t ,& r e c v s i z e ,MCAPI INFINITE,& s t a t u s ) ; // mutant ∗/

mcapi msg send ( ep2 , ep3 , ‘ ‘ msg23 ’ ’ , msgSize , p r i o r i t y ,& s ta tu s ) ;

. . .

}

void∗ run thread 3 (void ∗ t ) { /∗ Thread3 has ep3 ∗/

. . .

mcapi msg recv ( ep3 , bu f f e r , BUFF SIZE,& r e c v s i z e ,& s t a tu s ) ;

. . .

mcapi msg recv ( ep3 , bu f f e r , BUFF SIZE,& r e c v s i z e ,& s t a tu s ) ;

. . .

}

Figure 5.2. Mutation results in race condition.

5.2. Mutation Coverage Tool for MCAPI

We have developed an automated tool that inserts relevant mutations to the

multicore programs one by one and then checks if the mutant program is killed by any

of the tests. The mutation coverage tool consists of 3 main modules: generator, tester,

and library. The generator has three sub modules which are analyzer, instrumentor,

and mutant generator.

The mutation testing process of MCAPI programs starts with program analysis.

The analyzer records the locations (function name, source file path, and line number)

of MCAPI functions by statically analyzing the source code and then instrumentor

module automatically replaces original function calls with wrapper function calls in
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void∗ run thread 1 (void ∗ t ) { /∗ Thread1 has ep1 ∗/

. . .

mcapi msg recv ( ep1 , bu f f e r , BUFF SIZE,& r e c v s i z e ,& s t a tu s ) ;

mcapi msg send ( ep1 , ep2 , ‘ ‘ msg1 ’ ’ , msgSize , p r i o r i t y ,& s ta tu s ) ;

. . .

}

void∗ run thread 2 (void ∗ t ) { /∗ Thread2 has ep2 ∗/

. . .

mcap i msg recv i ( ep2 , bu f f e r , BUFF SIZE,& request ,& s t a tu s ) ;

mcapi wait(&request ,& r e c v s i z e ,10 ,& s ta tu s ) ; /∗ // o r i g i n a l ∗/

/∗ mcapi wait(&reques t ,& r e c v s i z e ,MCAPI INFINITE,& s t a t u s ) ; // mutant ∗/

mcapi msg send ( ep2 , ep1 , ‘ ‘ msg2 ’ ’ , msgSize , p r i o r i t y ,& s ta tu s ) ;

. . .

}

Figure 5.3. Mutation results in deadlock.

void mcapi mut msg recv i (char∗ f i l e , mcap i u int32 t l i n e ,

mcapi endpo int t r e c e i v e ep , void∗ bu f f e r , s i z e t b u f f e r s i z e ,

mcap i r eque s t t ∗ request , s t a t u s t ∗ s t a tu s )

{

s i z e t r e c e i v e d s i z e = 0 ;

i f ( l i n e == mut l ine && strcmp ( f i l e , mu t f i l e ) == 0) {

switch ( mut type ) {

case 1 : /∗ remove ∗/

∗ s t a tu s = MCAPI ERRMUTATION;

return ;

case 2 : /∗ exchange with b l o c k i n g ∗/

mcapi msg recv ( r e c e i v e ep , bu f f e r , b u f f e r s i z e ,& r e c e i v e d s i z e , s t a tu s ) ;

break ;

default :

mcap i msg recv i ( r e c e i v e ep , bu f f e r , b u f f e r s i z e , request , s t a tu s ) ;

break ;

}

} else {

mcapi msg recv i ( r e c e i v e ep , bu f f e r , b u f f e r s i z e , request , s t a tu s ) ;

}

}

Figure 5.4. mcapi mut msg recv i function from our mutation library.
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order to handle mutation operations in wrappers. The instrumentor needs the location

of the MCAPI functions in the program and this information is supplied by the ana-

lyzer. The instrumented user program contains wrapper function calls instead of the

original MCAPI library function calls. The mutant generator creates a list of mutants

according to the function list and predefined mutation operators. For instance, we have

two different mutation operators MPF and RCF for mcapi endpoint create function.

To summarize, the generator module generates instrumented multicore program and

creates a list of possible mutants for the given multicore program.

The library module includes two types of libraries. The first library is the original

MCAPI library and the second library is our mutation library. The mutation library

contains wrapper functions that handle mutation operations and then call the original

library function. In each wrapper function, we check the mutation parameters (source

file name, line number, mutation type) that are passed to function and if they match

with the current function then we activate the mutant, otherwise this function directly

calls the original library function. Figure 5.4 shows part of the mcapi mut msg recv i

function from our mutation library. In order to generate a mutant by exchanging

mcapi msg recv i function with mcapi msg recv function, we set mut file as the file

name of the multicore program, mut line as the line of this function, and mut type as

4.

The last module, tester, inserts mutation operators that are in mutants list one

at a time. The tester module then execute mutant program with each test in the test

set and checks if there exists a test that kills the mutant. When all relevant mutation

operators are inserted successfully, this module returns the mutation coverage result of

the test set. Higher coverage values indicate that the test set is capable of detecting

concurrency bugs.
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6. EXPERIMENTAL RESULTS

We have developed tools for both predictive verification and mutation testing. We

obtained a scalable and fast solution that can be seamlessly integrated with current

multicore programs. We tested our tools successfully on multicore programs supplied by

MCAPI and developed by us because no publicly available benchmark using MCAPI is

currently available. Table 6.1 shows the characteristics of multicore programs we used.

The first five multicore programs are from MCAPI tests and the remaining multicore

programs are developed by us. The first column in the table shows the name of the

multicore program, the second column denoted by #line shows the number of lines in

the multicore program,the column denoted by #ep shows the number of the endpoints

created during the multicore program execution, and the last column gives a brief

description of the multicore program. These multicore programs cover message, packet

channel, scalar channel operations of MCAPI as well as blocking and non-blocking

operation types. All the experiments were performed on a PC running Linux with

an Intel Core2 Duo CPU of 800MHz and 4GB of memory. The performance metrics

we measured are running time (seconds) and memory usage (megabytes). The results

represented in the tables are the average values that we got after running our tools one

hundred times.

6.1. Predictive Verification Experiments

We have performed two experiments on multicore programs using our predictive

verification tool. In the first set of experiments, we check assertion violations and detect

deadlocks, race conditions as well as unmatched calls. In the second set of experiments,

we only detect deadlocks, race conditions and unmatched calls. Unmatched calls con-

tain unmatched sends and unmatched receives of messages, packets, and scalars as well

as unmatched channel open calls. If an opened channel is not closed with a channel

close call, this causes an unmatched channel open call.
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Table 6.1. Characteristics of the Benchmarks.

Multicore

program

#line #ep Description

msg2 186 2 Tests blocking message send and receive calls be-

tween endpoints.

msg11 374 2 Tests non-blocking message send and receive calls

between endpoints.

pkt5 402 2 The packet channel version of msg11. The order

of the calls (send or receive) is chosen randomly as

well as the number of packets sent or received each

time.

scl1 451 8 Tests scalar channel send and receive calls.

multiMessage 419 12 A simple work pool multicore program that per-

forms matrix multiplication and uses blocking mes-

sage exchange operations.

pv1 200 16 Message exchanging between endpoints where each

endpoint first sends messages and then receives the

incoming messages.

pv2 156 2 Predictive assertion verification example in Fig-

ure 3.1.

drc1 183 32 Blocking message send/receive calls. Each endpoint

sends a message to a specific endpoint. The order

of the calls generates a cycle that contains all end-

points.

drc2 189 3 Predictive deadlock and race condition detection

example in Figure 4.3.

drc3 200 32 Multicore program pv1 with 32 endpoints.

rc1 233 3 Two endpoints concurrently sending messages to

the same endpoint.
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Table 6.2. Properties for the Benchmarks.

Multicore

program

Property

msg11 Overflow or underflow occurs at any time during execution. Overflow oc-

curs when the number of the un-received messages is greater than 16 and

underflow occurs when the number of un-sent messages is greater than 16:

(EF ((i s >= i r + 16)|(i r >= i s + 16)))

pkt5 Overflow, underflow, memory limit error in sender, or request limit error

in receiver occurs at any time during execution:

(EF (((i s >= i r + 64)|(i r >= i s + 64))|((sender status ==

MCAPI ERR MEM LIMIT )|(recvr status ==

MCAPI ERR REQUEST LIMIT ))))

scl1 The return codes (rc) of the function calls in main function are always true:

(AG(rc == MCAPI TRUE))

pv1 Sent message size is greater than MCAPI MAX MSG SIZE or received

message is truncated at any time during execution:

(EF ((s size > MCAPI MAX MSG SIZE)|(recv status ==

MCAPI ERR MSG TRUNCATED)))

pv2 Two endpoints are in critical section at the same time:

(EF ((cs1 == MCAPI TRUE)&(cs2 == MCAPI TRUE)))

rc1 It is always true that if one of the senders sends a message, eventually the

receiver receives the message:

AG(((is sender1 turn == MCAPI TRUE)|(is sender2 turn ==

MCAPI TRUE))⇒ EF (is receiver turn == MCAPI TRUE))
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6.1.1. Predictive Assertion Verification Experiments

For the first set of experiments, we used six of the benchmarks for validating

our predictive assertion verification tool. Table 6.2 contains the multicore programs

and the properties for each multicore program that we developed. Our properties

are related with problems that occur in concurrent message passing systems. For

instance, the size of the sent message being larger than the maximum message size

defined in MCAPI library or the received message being truncated since the size

of the available buffer, which is used for storing received message, is not sufficient.

In addition, we can define properties for checking whether a specific status such as

MCAPI ERR MEM LIMIT or MCAPI ERR REQUEST LIMIT returns from

a MCAPI function call at any time during the execution of a multicore program.

Table 6.3. Experimental Results of Predictive Assertion Verification.

Multicore

program

Satisfied ORGtime Itime IRtime TCtime BTVtime Mem TotTime

msg11 Yes 0.022 0.19 0.027 0.269 0.028 0.32 0.514

pkt5 Yes/No 0.022 0.20 0.031 0.517 0.098 0.32 0.846

scl1 Yes 0.021 0.21 0.025 0.317 0.010 0.01 0.562

pv1 No 0.102 0.18 0.118 0.105 0.004 0.32 0.573

pv2 Yes 0.010 0.17 0.013 0.092 0.001 0.01 0.276

rc1 Yes 0.049 0.20 0.058 0.269 0.014 0.32 0.541

Table 6.3 shows our predictive assertion verification results. In the table, column

denoted by Satisfied represents whether property given in Table 6.2 is satisfied or not.

We denote the running time of original multicore program in the column ORGtime and

the running time of the instrumented multicore program in IRtime column. Column de-

noted by Itime represents the time used by the instrumentor Inspect for shared variable

instrumentation. Column denoted by TCtime represents the time used by our trace

converter that converts a partial order trace generated by execution of instrumented

multicore program to the input format of BTV for assertion verification. We represent
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the time and the memory used by BTV in columns BTVtime and Mem, respectively.

The last column, TotTime, represents the total time that includes instrumentation,

running time of instrumented multicore program, conversion of the partial order trace,

and BTV analysis time. Note that during the execution of the instrumented program,

we run our vector clock algorithm, deadlock and race condition detection algorithms,

and check unmatched calls. We also generate the partial order trace of the execution.

We verified that msg11, scl1, pv2, and rc1 always satisfied the properties and pv1

never satisfied the property. Multicore program pkt5 satisfied the property for some

observed executions and did not satisfy for other observed executions since messages

are randomly sent and received. In other words, depending on the execution order of

send/receive calls the property is satisfied or not. Two components, namely the trace

converter and the Inspect instrumentor, result in the largest slow down for our approach

although the instrumented program and the BTV analyzer run fast. For example, we

have the largest slowdowns for pkt5 and pv2 since the values of variables relevant to the

property are updated many times in these programs, and for each update we dump the

new value of the variable in the trace. That is, the sizes of the partial order traces to

be converted are large and more time is spent on instrumenting the programs. We also

observed that for programs with more complex assertions the BTV analysis time goes

up, e.g., pkt5 example. Similarly, the more complex temporal assertions we have, the

higher the memory we use during the analysis of the property. Our predictive assertion

verification tool found not only actual assertion violations but also potential ones. For

instance, when we observed the execution of pv2, there is no state where both cs1 and

cs2 is true. However, our tool found a state where the property is satisfied, and found

the error, by exploring the partial order trace generated during execution of pv2.

6.1.2. Predictive Deadlock and Race Condition Detection Experiments

For the second set of experiments, we used all multicore programs given in Ta-

ble 6.1. Table 6.4 shows our predictive deadlock, race condition and unmatched call

detection results. In the table, column denoted by #DL represents the number of dead-

locks detected, and #RC represents the number of race conditions detected. Column
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Table 6.4. Experimental Results of Predictive Deadlock and Race Condition

Detection.

Multicore

program

#DL #RC Unmatched

Calls

ORGtime Itime IRtime TotalTime

msg2 - - No 0.011 0.15 0.012 0.162

msg11 - - Yes 0.022 0.17 0.023 0.193

pkt5 - - Yes 0.022 0.18 0.024 0.204

scl1 - - Yes 0.021 0.15 0.023 0.173

multiMessage - - No 0.033 0.16 0.035 0.195

pv1 1 2 No 0.102 0.14 0.115 0.255

pv2 - - No 0.010 0.15 0.011 0.161

drc1 1 - No 0.200 0.17 0.208 0.378

drc2 1 2 No 0.016 0.18 0.019 0.199

drc3 4 7 No 0.221 0.17 0.283 0.453

rc1 - 99 No 0.049 0.16 0.055 0.215
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denoted by Unmatched Calls represents whether unmatched calls were detected or not.

We denote the running time of the multicore program in column ORGtime and the

running time of the instrumented multicore program in column IRtime. The column

Itime represents the instrumentation time by Inspect and the last column represents

the total time used.

Our deadlock and race condition detection algorithms work online and do not use

the entire partial order trace. However, predictive assertion verification works off-line

and needs all of the partial order trace to detect temporal assertions. Additionally, we

need to monitor the variables relevant to the property in predictive assertion verification

as well as shared variables. Hence, the times have gone down in Table 6.1 for the same

examples compared with Table 6.3.

Experimental results in Table 6.4 show that multicore programs msg2, multiMes-

sage, and pv2 are error-free programs. Six of the programs do not include deadlocks

or race conditions but three of the programs have unmatched calls. We detected

unmatched calls for multicore programs msg11, pkt5, and scl1. First, msg11 has 4

unmatched message receive calls. Second, pkt5 has 3 unmatched packet send calls, 1

unmatched packet send open call and 1 unmatched packet receive open call. Last, scl1

has 4 unmatched scalar send calls.

We observe that multicore programs with a large number of deadlocks have larger

slowdowns. In fact, the slowdown mostly depends on the number of the endpoints in

the cycle. For instance, we have the largest slowdown for drc3 and where we detected

4 deadlocks and each detected deadlock has more than 20 endpoints that generated

the cycle. Figure 6.1 shows the slowdown values for different number of endpoints for

deadlock, race condition checking. We used pv1 for obtaining slowdown values where

we incremented the number of the endpoints while the other parts of the multicore

program was the same. For instance, the slowdown of checking errors in pv1 is 1.18x

for 32 endpoints and 1.24x for 64 endpoints, which shows that we do not suffer from

performance when the number of endpoints is increased.
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Figure 6.1. Slowdown of pv1 deadlock, race condition detection.

Figure 6.2. Performance improvement due to reduced vector clock comparisons in

race condition detection.
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For estimating the efficiency of our race condition detection technique, we use the

multicore program rc1. This program consists of mcapi msg send and mcapi msg recv

operations and users can change the number of those operations. In this program,

there are three endpoints and only the second endpoint receives messages sent from

the first and the third endpoints. We disabled deadlock and unmatched call detection

mechanisms in order to see only the slowdown of race condition detection. Moreover,

we extended our experiment in order to see the improvements due to Theorem 4.3.2.

We know that if two endpoints concurrently send messages to the same endpoint, a

message race occurs in the receive operation. We can check whether the sender events

can be concurrent by two comparisons when using ECC and 2n comparisons when

using CC, where n is the number of endpoints in the system. In CC, we need 2n

comparisons since we compare each component of two vector clocks with n elements

for two happened-before relation. We further improved the performance by the help of

Theorem 4.3.2, where a single comparison to check happened-before relation as shown

in EHB is sufficient.

Figure 6.2 shows the slowdown of our technique and compares the results of a

single comparison with two comparisons and 2n comparisons. For example, when we set

the number of send/receive operations to 5000, the original program took 3.018 seconds.

When we ran with our verification tool, it took 3.712 seconds with single comparison,

3.727 seconds with two comparisons, and 3.801 seconds with 2n comparisons. As we

increase the number of send/receive operations, the enhancement that comes from

doing single comparison becomes more visible. Therefore our tool is efficient as an

on-the-fly detection tool and can work on large scale multicore programs.

In summary, our tool meets scalability while providing fast predictive verification.

6.2. Mutation Coverage Experiments

We have performed experiments on multicore programs using our mutation cov-

erage tool. In the experiments, due to the lack of test sets, we used a single test that

checks the exit code of the given multicore program. If a mutant multicore program
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exits with a code that is equal to the exit code of original multicore program, then we

say that the mutant is alive, otherwise it is killed. We ran our mutation coverage tool

and obtained the mutation coverage results in Table 6.5.

Table 6.5. Experimental Results for Mutation Testing.

Multicore

program

#Mutants #Killed

Mutants

MutCov (%) Runtime

msg2 17 11 65 0.562

msg11 26 12 46 0.308

pkt5 34 13 38 0.294

scl1 91 57 63 0.905

multiMessage 20 10 50 1.112

pv1 11 6 55 0.297

pv2 25 15 60 0.612

drc1 17 14 82 1.115

drc2 23 12 48 0.070

drc3 11 7 64 0.411

rc1 16 27 59 0.685

In the table, we denote the number of generated mutants in column #Mutants

and the number of killed mutants in #Killed Mutants column. Column denoted by

MutCov represents mutation coverage percentage. Finally, the last column represents

the total time that is consumed for mutant generation and executing all mutants.

Experimental results show that mutation coverage is over 50% for many programs.

The running time of our tool is nearly one second even for high number of mutants.

For instance, our tool generated 91 mutants for scl1 and 57 of them are killed by the

test set in less than one second. The running time increases if an actual deadlock

occurs when a mutant executes. In order to detect deadlocks in a mutant, we used

a timeout approach, which declares a deadlock if a specified time period has elapsed.

Multicore program drc1 has the maximum time (1.115 seconds) and we know that

many of the generated mutants result in actual deadlocks. For instance, when we
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remove the matching send call of a blocking receive call in drc1, this causes an actual

deadlocks. We obtained low coverage for mutants where the injected mutation code

does not execute in the observed execution.

The user can improve the mutation coverage by checking the exit status after

every MCAPI function call. For example, in the multicore program pv2, although the

coverage was 44%, we increased it to 68% after the addition of six status checks. It

is clear that checking status of MCAPI function calls is efficient in killing a mutant

obtained by RCF operator. For killing the mutants injected using other operators, the

user can iteratively improve the test set by adding new tests.

Generated mutant multicore programs can potentially have different execution

schedules than the original multicore program. For instance, multicore program in Fig-

ure 3.1 can have a mutant that uses a blocking message receive call (mcapi msg recv)

instead of a non-blocking one. The execution order of send/receive operations in the

original multicore program depends on the thread schedule. The send operation in

the mutant always completes before the receive operation since the receive operation

blocks Thread2 until a matching send is called. Mutants generated by our tool can

help detect errors due to other possible executions of the same program.
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7. CONCLUSIONS AND FUTURE WORK

The main applications of our project are in the field of verification and testing

multicore programs. We have developed the first verification and coverage techniques

for multicore applications that handles both blocking and non-blocking communication

constructs of the message passing MCAPI standard. Our techniques are dynamic and

predictive, which allow us to efficiently detect not only actual errors but also potential

ones. Specifically, we implemented predictive temporal assertion verification algorithms

and specialized algorithms for predictive deadlock and race condition detection.

We experimentally showed the effectiveness of our techniques on several applica-

tions, where we found bugs that were not found using traditional dynamic verification

approaches. Performance was also an important factor in developing our algorithms.

We observed that the specialized deadlock and race condition detection algorithms run

much faster compared to the assertion verification algorithms. We further improved

performance of our race condition detection algorithm by developing a faster compar-

ison engine for concurrent events while exploiting the MCAPI standard. We believe

that the performance of our tools can further be improved since the main slowdown

comes from the partial order trace converter and the program instrumentor.

In order to develop and measure the quality of tests for message passing multicore

programs, we developed mutation operators for MCAPI standard. We observed that

the mutant programs obtained by inserting mutations to the original programs can

potentially explore execution schedules different than the original program. This is a

useful tool for analyzing different behaviors of concurrent systems. Also, we showed

that the coverage can be improved by writing new tests.

We also have given feedbacks to MCA and enhanced some parts of the MCAPI

library developed by MCA during our work. This is an example of how a formal

verification work can contribute to development of an API.
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In summary, our solutions can improve the reliability of heterogeneous embedded

multicore systems by pruning out actual and potential errors and determining the

verification coverage all in a time and space efficient manner.

7.1. Future Work

We are working on additional techniques that can further enhance the usability

and scalability of our techniques. One potential way is to use chain clocks for capturing

happened-before relationships between relevant events. A component of the vector is

associated with an endpoint in the vector clocks. However, chain clocks decompose

the partial order trace into a set of chains and then associate a component in the

vector clocks with every chain. Chain clocks can decompose a partial order trace into

fewer components compared to vector clocks and can provide tremendous speedup and

reduce memory requirement for multicore programs.

A future research topic could be developing an AND⊕OR model for detecting

deadlocks in multicore programs using MCAPI. Currently, we use AND model and

check deadlocks in send calls. However, receive calls also cause deadlocks. AND model

is not sufficient for handling wildcard receive calls. Using AND⊕OR model handles

more deadlock situations and increases deadlock detection coverage.

A mutation coverage tool that uses multiple schedules will certainly make mu-

tation coverage results much more accurate. Our mutation coverage tool uses single

schedule and kills a mutant if it has different output than the original program for

observed execution. Although the original program and mutant can have same out-

puts for some schedules, they can produce different outputs for other schedules. A

mutation coverage tool that uses multiple schedules kills a mutant when the mutant

produces different outputs than the original program for all possible schedules. We can

also consider the number of equivalent mutants while computing mutation coverage.

In this case, the ratio of the number of mutants killed to the number of all mutants

minus equivalent mutants gives mutation coverage. A new technique for reducing the

number of mutants can be very useful. We can relate a mutant with others and decide
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if the mutant should be run according to results (killed or alive) of the other mutants.

For instance, we have three mutants and we know that if the first mutant is killed, the

second mutant is also killed. In this case, depending on the result of the first mutant,

we can run two mutants instead of three. Ultimately, knowing the relation between

mutants decreases the running time of our mutation coverage tool.

As the experimental results showed, the main slowdown comes from instrumen-

tation and trace conversion. We plan to implement more efficient instrumentation

techniques. Also, MCAPI lacks larger benchmarks, hence we plan to work on develop-

ing benchmarks that will allow us to better measure the effectiveness of our techniques.

It would also be interesting to see the applications of our tools in visualization software.
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