
COMPUTER VISION-BASED HUMAN ACTION RECOGNITION VIA

KEYPOINT TRACKING

by

Yunus Emre Kara

B.S., in Mathematics, Boğaziçi University, 2008

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2011

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to offer my deepest gratitude to my thesis advisor

Prof. Lale Akarun. Without her guidance and patience, this thesis would not be

complete.

I also would like to thank my friends and colleagues in MediaLab and PILAB,

namely, Alp Kındıroğlu, Cem Keskin, Furkan Kıraç, Hamdi Dibeklioğlu, Heysem Kaya,

İsmail Arı, Koray Balcı, Neşe Alyüz, Onur Dikmen, Pınar Sağlam, Pınar Santemiz, and

Umut Konur for providing a fun working environment and keeping up with me.

I thank all my friends in the computer engineering department that have helped

me raise my spirits in times of bad. My thanks specifically go to Birkan Yılmaz, Can

Komar, Çetin “the Dayı” Meriçli, Itır Karaç, İlker Ulutaş, Ozan Özen “the popstar”,

Remzi Yavuz, Salim Eryiğit, Serhan Daniş, Şükrü Kuran, and Tekin Meriçli.

I would also like to thank my friends Erinç Dikici, Mehmet Ekinci, Uluç Pamuk,

and Yusuf Gören for their valuable friendship and continuous support.

I would like to offer my deepest gratitude to my parents Nevin Kara and İsmail

Hakkı Kara, and my sister Efser Kara. Without the support and encouragement of

my family throughout my educational life I would not have been the person that I am

today.

Lastly, I would like to express my deepest gratitude to Gaye Genç who has always

been there in times of need. Without her support, motivation, and patience, I could

not bear the burden.

This research is supported by the Scientific and Technical Research Council of

Turkey (TÜBİTAK) under grant numbers 108E161 and 108E207.

iv

ABSTRACT

COMPUTER VISION-BASED HUMAN ACTION

RECOGNITION VIA KEYPOINT TRACKING

Computer vision-based human action recognition is a highly active research area

which has many application areas including security, surveillance, assisted living, and

entertainment. In this thesis, a new system for computer vision-based recognition

of human actions is presented. The proposed system uses videos as input. The ap-

proach is invariant of the location of the action and zoom levels, the appearance of

the person, partial occlusions including self-occlusions and some viewpoint changes. It

is robust against temporal length variations. Keypoints are tracked through time and

the trajectories of tracked keypoints are used for interpreting the human action in the

video. Then, features from videos are extracted. A group of features for describing

a trajectory are proposed. Trajectories are clustered using these trajectory features.

The clustered trajectories are used for describing an image sequence. Image sequence

descriptors are the normalized histograms of the clusters of trajectories. At the final

stage, the proposed system uses the descriptors of the image sequences in a supervised

learning approach. An application based on the proposed method has been developed

and applied to various datasets. A new multi modal dataset, called WeCare, which is

focused on elderly care systems is introduced. The main objective of the dataset is to

detect falls of humans. For attaining this goal, some other actions that can be confused

with the falling action are included in the dataset. The evaluation of the proposed ap-

proach is done using two datasets: KTH Human Action Dataset and URADL Dataset.

The proposed technique performs comparable to the methods in the literature. It has

87.25 per cent accuracy on the KTH dataset, 88 per cent accuracy on the URADL

dataset. It has an accuracy of 98.75 per cent on the WeCare dataset.

v

ÖZET

ANAHTAR NOKTA TAKİBİ İLE BİLGİSAYARLA GÖRME

TEMELLİ İNSAN HAREKETİ TANIMA

Bilgisayarla görme temelli insan hareketi tanıma, güvenlik, gözetim, destekli

yaşam ve eğlence gibi bir çok alanda uygulaması olan çok aktif bir araştırma konusudur.

Bu tezde, bilgisayarlı görme temelli insan hareketi tanıma için yeni bir sistem sunul-

maktadır. Önerilen sistem girdi olarak videoları kullanmaktadır. Yaklaşım, hareketin

konumuna, ölçek seviyelerine, kişinin görünümüne, kendini örtmeler de dahil olmak

üzere kısmi örtmelere ve bir takım görüş açısı değişikliklerine karşı değişimsizdir. Za-

mansal uzunluk değişimlerine karşı gürbüzdür. Anahtar noktalar zaman boyunca takip

edilmektedir ve takip edilen anahtar noktaların gezingeleri videodaki insan hareketini

yorumlamak için kullanılmaktadır. Ardından, videolardan öznitelikler çıkarılmaktadır.

Gezingeyi tanımlamak için bir grup öznitelik önerilmektedir. Gezingeler, bu gezinge

öznitelikleri kullanılarak öbeklenmektedir. Öbeklenen gezingeler bir imge dizisini ta-

nımlamak için kullanılmaktadır. Imge dizisi tanımlayıcıları, gezinge öbeklerinin düzge-

lenmiş histogramlarıdır. Son aşamada, önerilen sistem, imge dizilerinin tanımlayıcıla-

rını bir güdümlü öğrenme yönteminde kullanır. Önerilen yönteme dayalı bir uygulama

geliştirilmiştir ve çeşitli veri kümelerine uygulanmıştır. WeCare adını verdiğimiz yaşlı

bakım sistemleri odaklı yeni bir çok kipli veri kümesi sunulmuştur. Veri kümesinin asıl

amacı insan düşmelerinin saptanmasıdır. Bu amaca ulaşmak için düşme hareketiyle

karıştırılabilecek bazı başka hareketler de veri kümesine dahil edilmiştir. Önerilen

yöntem KTH İnsan Hareketi Veri Kümesi ve URADL Veri Kümesi adlı iki ilave veri

kümesi ile de değerlendirilmiştir. Önerilen yöntem yazındaki yöntemlerle kıyaslanabilir

başarımdadır. KTH veri kümesinde yüzde 87,25 ve URADL veri kümesinde yüzde 88

hatasızlık başarımına sahiptir. WeCare veri kümesinde hatasızlığı yüzde 98,75’tir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . xi

LIST OF SYMBOLS/ABBREVIATIONS . xiii

1. INTRODUCTION . 1

1.1. Literature Review . 3

1.1.1. Global representations . 3

1.1.2. Local representations . 5

1.1.3. Model Fitting approaches . 7

1.1.3.1. Human detection . 7

1.1.3.2. Body tracking . 7

1.1.3.3. Model fitting . 8

1.2. Outline of the Thesis . 10

2. TECHNICAL BACKGROUND . 12

2.1. Keypoint Detection and Matching . 12

2.1.1. Feature Detection . 12

2.1.2. Descriptor Extraction . 12

2.1.3. Keypoint Matching . 13

2.1.4. Speeded-up Robust Features (SURF) 13

2.1.4.1. SURF interest point detection 13

2.1.4.2. SURF interest point description 17

2.2. Clustering . 20

2.2.1. K-Means . 20

2.2.2. Bag-of-Words . 21

2.3. Supervised Learning . 22

2.3.1. K-Nearest Neighbor (k-NN) . 22

2.3.2. Support Vector Machines (SVM) 22

vii

2.4. KLT Feature Tracker . 26

2.5. Space-Time Interest Points (STIP) . 30

3. ACTION RECOGNITION VIA KEYPOINT TRACKING 33

3.1. Outline of the System . 33

3.2. Generic Keypoint Tracker . 34

3.2.1. Outline of the Generic Keypoint Tracker Algorithm 35

3.2.2. Keypoint-Trajectory Matching 37

3.2.3. Trajectory Updating . 42

3.2.4. Elimination and Storing . 43

3.3. Feature Extraction . 46

3.3.1. Extracting Features from Video Sequences 46

3.3.2. Normalizing Against Time . 47

3.3.3. Normalizing Against Spatial Position 47

3.3.4. Extracting Sub-trajectories . 49

3.3.5. Trajectory Feature Extraction 50

3.3.6. Bag-of-Trajectories . 54

3.3.7. Classification . 55

4. EXPERIMENTS . 56

4.1. Datasets . 56

4.1.1. KTH Human Action Dataset 56

4.1.2. University of Rochester Activities of Daily Living Dataset . . . 58

4.1.3. WeCare Dataset . 60

4.2. Experiment Setup . 63

4.2.1. Training, Validation and Test sets 64

4.2.2. Parameters . 64

4.3. Validation and Parameter Selection . 65

4.3.1. Effects of the Keypoint Tracker Parameters 67

4.3.2. Effects of the Learning Parameters 69

4.4. Recognition results on the test sets . 75

5. CONCLUSIONS . 79

APPENDIX A: TABLES OF THE VALIDATION RESULTS 82

REFERENCES . 90

viii

LIST OF FIGURES

Figure 2.1. Calculating the sum of the values in a rectangular region using the

integral image [1] . 14

Figure 2.2. Filters used in SURF . 16

Figure 2.3. Filters in x and xy directions for the scale levels 9 x 9 and 15 x 15 [1] 17

Figure 2.4. Haar wavelet filters in x and y directions [1] 18

Figure 2.5. A sliding orientation window of size π
3

[1] 18

Figure 2.6. SURF descriptor calculation . 19

Figure 2.7. Change in descriptors . 20

Figure 3.1. Block diagram of the system . 33

Figure 3.2. Outline of the Generic Keypoint Tracker 36

Figure 3.3. Falling action trajectory samples from the WeCare dataset 38

Figure 3.4. Trajectory Bounding Box . 44

Figure 3.5. Flow of Feature Extraction Processes 46

Figure 3.6. Coordinate System for Trajectory Normalization 49

Figure 3.7. Sub-trajectories . 50

ix

Figure 3.8. Li, LN , Ei with trajectory keypoints 51

Figure 4.1. Sample frames from the KTH dataset [2] 57

Figure 4.2. Sample frames from the URADL dataset [3] 59

Figure 4.3. Sample frames from the WeCare dataset [4] 62

Figure 4.4. The effect of ν and σ to accuracy 68

Figure 4.5. The effect of σ and ν to accuracy 68

Figure 4.6. The effect of cluster count K and σ to accuracy 69

Figure 4.7. The effect of ρ to accuracy . 69

Figure 4.8. The effect of cluster count K and k-NN k value to accuracy 70

Figure 4.9. The effect of cluster count K and sub-trajectory length ω to accuracy 71

Figure 4.10. The effect of cluster count K and normalization to accuracy . . . 71

Figure 4.11. The effect of sub-trajectory length ω and normalization to accuracy 72

Figure 4.12. The effect of cluster count K and SVM cost C to accuracy 72

Figure 4.13. The effect of k-NN k value and sub-trajectory length ω to accuracy 73

Figure 4.14. The effect of k-NN k value and normalization to accuracy 73

Figure 4.15. The effect of SVM cost C and sub-trajectory length ω to accuracy 74

x

Figure 4.16. The effect of SVM cost C and normalization to accuracy 74

xi

LIST OF TABLES

Table 4.1. Confusion matrix . 63

Table 4.2. Validation parameters . 66

Table 4.3. Confusion matrix of the results on the test set of the KTH dataset 75

Table 4.4. Confusion matrix of the results on the URADL dataset 77

Table 4.5. Confusion matrix of the results on the test set of the WeCare dataset 78

Table A.1. Change of validation results relative to ν and σ 82

Table A.2. Change of validation results relative to σ and ν 82

Table A.3. Change of validation results relative to K and σ 83

Table A.4. Change of validation results relative to ρ 83

Table A.5. Change of validation results relative to K and k 83

Table A.6. Change of validation results relative to K and ω 84

Table A.7. Change of validation results relative to K and normalization . . . 84

Table A.8. Change of validation results relative to k and ω 85

Table A.9. Change of validation results relative to K and C 86

Table A.10. Change of validation results relative to k and normalization 87

xii

Table A.11. Change of validation results relative to ω and normalization 88

Table A.12. Change of validation results relative to C and ω 88

Table A.13. Change of validation results relative to C and normalization 89

xiii

LIST OF SYMBOLS/ABBREVIATIONS

c Counter in K-means++ method

C Cost value for SVM

dd(ξ, τ) Descriptor distance between a keypoint tuple ξ and a trajec-

tory τ

ds(ξ, τ) Spatial distance between a keypoint tuple ξ and a trajectory

τ

D(Nε,t∗(ξi)) Set of descriptor distances for each trajectory in the neigh-

borhood of ξi

D(Nε,t∗(τi)) Set of descriptor distances for each keypoint tuple in the

neighborhood of τi

Dxy Box filter approximation of the second order derivative of

Gaussian in xy direction

Ei Distance of the ith keypoint to LN

g Trajectory descriptor

Kt The set of keypoint tuples at time t

Hf Hessian of a function f

I Image

Iσ Integral image

L The line segment between the last keypoint of the trajectory

and the new keypoint to be added

Li The line segment between the ith and first keypoints of the

trajectory

Lxy The second order derivative of Gaussian in xy direction

N Number of keypoint tuple in a trajectory

N∗ Number of keypoints in the video sequence

Nε,t∗(ξ) The neighborhood of the keypoint tuple ξ = (κ, s, t∗) at time

t∗

Nε,t∗(τ) The neighborhood of the trajectory τ at time t∗

pi Projection of Li in the direction of LN

plτ (t) Path length until time t over a trajectory τ

xiv

rt Label of the sample data xt

R Length of the line segment between the last keypoint of the

trajectory and the new keypoint to be added

s Keypoint descriptor

t Time

Tt The set of trajectories at time t

w Window size for trajectory calculation

xt Sample data

β The minimum required spread

δ(·) Displacement function

ε The maximum allowed spatial position change of a keypoint

between consecutive frames

κ Keypoint

λ Threshold for matching ratio

µx x coordinate of the mean of the keypoints belonging to the

video sequence

µy y coordinate of the mean of the keypoints belonging to the

video sequence

ν The maximum allowed time since last observation

ξ Keypoint tuple

ω The maximum number of keypoints for a sub-trajectory

ρ The minimum age to be eliminated

σ The minimum required sample count

σx x coordinate of the standard deviation of the keypoints be-

longing to the video sequence

σy y coordinate of the standard deviation of the keypoints be-

longing to the video sequence

τ Trajectory

KLT Kanade-Lucas-Tomasi feature tracker

k-NN K-Nearest Neighborhood

KTH Kungliga Tekniska Högskolan

xv

MEI Motion Energy Image

MHI Motion History Image

SVM Support Vector Machine

SIFT Scale Invariant Feature Transform

STIP Space Time Interest Points

SURF Speeded Up Robust Features

URADL University of Rochester Activities of Daily Living Dataset

WeCare Wireless Sensor Network Enabled Care

1

1. INTRODUCTION

Vision based human action recognition is the process of assigning action labels

to videos. In action recognition, videos are readily segmented in time. A video is ex-

pected to have only one action. Additionally, an activity is defined to be an ordered set

of actions. For example, cooking is an activity whereas stirring is an action. Human

action understanding has many application areas concerning security, surveillance, as-

sisted living, and even entertainment. Access control, person identification, anomaly

detection, and human-computer interaction are some of the areas that can benefit from

human motion analysis.

The increasing use of security cameras requires a great amount of human labor for

monitoring purposes. The use of human motion tracking systems result in diverting

this human power to more obligatory areas. In addition, the human error caused

by fatigue and lack of caution can be eliminated. Furthermore, complementing video

cameras with additional sensors can result in a more enhanced sensing mechanism than

that of the human eye.

Another application may be crowd flux statistics and congestion analysis at

densely populated public areas [5]. Moreover, life quality improvement can be achieved

through using these systems; some examples can be tracking the elderly or children.

The use of these systems can be extended to the area of entertainment, such as con-

trolling video games [6] or using for motion capture in cinema. All these application

areas make the problem of human motion tracking attractive for academic research.

The performances of actions have large variations among different people. For in-

stance, walking speed and stride length may differ in different performances. Let alone

the fact that walking speed and stride length of the same person may vary from time

to time, they would drastically yield dissimilarities among different people. Moreover,

anthropometric differences of individuals hardens the problem. Clothing changes can

sometimes make the problem harder. There may be some combined actions. The pri-

2

mary action may be combined with some other action which can be regarded as noise,

such as avoiding obstacles while walking. These inter-class and intra-class variations

must be considered in a human action recognition system.

Illumination variances, shadows, and occlusions are challenging situations in hu-

man tracking. Cluttered and dynamic environments make the problem of person lo-

calization harder. Illumination variances and shadows make it hard to acquire the

data and upgrade the background. Handling occlusions is especially a hard problem

when working with a single camera. Occlusions can be handled more effectively using

multiple cameras.

Temporal variations present another challenging situation. Segmentation of ac-

tions in time can prove difficult. Rate of performance is an issue that should be taken

into consideration.

Obtaining and labeling training data is another difficulty. When obtaining the

dataset, previously mentioned variances should be taken into account. Variations of

an action must be accommodated. Also, including different illuminations and environ-

ments makes the data more realistic. Moreover, it is very difficult to determine the

beginning and end of an action.

In addition, different zoom levels, and the location of the action in the scene

present challenges. Furthermore, observations of the same actions from different view-

points can be very different. A human action recognition system should work under

different scales, should be invariant of the location of the action and the viewpoint.

For overcoming some of the mentioned problems, we propose a local represen-

tation based approach. Local representations are somewhat invariant to viewpoint

changes, the appearance of the person, and partial occlusions [7]. Accurate localization

of people, and background subtraction in an environment (such as simple, cluttered,

or dynamic backgrounds) are not required. We track local keypoints, and extract in-

formation form the trajectories of these tracked keypoints. This makes our approach

3

local and invariant against the previously mentioned problems. In addition, we nor-

malize the trajectories against time for overcoming the problem of the temporal length

variations. Moreover, we normalize the trajectories against spatial position for dealing

with different zoom levels and making it invariant of the location of the action.

Furthermore, we introduce a new dataset with a main concentration on fall de-

tection. Fall detection is a major part of elderly care systems.

1.1. Literature Review

There are numerous surveys in the literature addressing the problems of hu-

man motion tracking, action recognition and their challenges [6, 8, 7]. Moeslund et

al. addresses the advances in human motion capture and analysis [6]. Poppe also ad-

dresses the advances in vision-based human motion analysis [8]. In [7], Poppe addresses

the advances in vision-based human action recognition.

We divide the feature extraction methods from the images of a video sequence

into two categories: global and local representations. In global representations, the

person is localized first, then the region of interest is encoded as a whole. On the other

hand, in local representations, some patches in the images are encoded separately.

These patches are usually extracted from the neighborhoods of interest points. The

representation is found by combining the information of these patches.

In addition, some approaches fit human body models onto video sequences and

recognize the actions using these models.

1.1.1. Global representations

Bobick and Davis [9] construct a binary motion energy image which they call

MEI. In MEI, the pixels where a motion occurred since the start frame are shown in

white, and the other pixels are shown in black. They also construct a motion history

image(MHI), where pixel intensity is a function of the temporal history of the motion

4

at that point. In MHI, more recently moving pixels are brighter [9]. They use these

two images together, and extract seven Hu moments to the describe the motion of a

sequence.

Weinland and Boyer [10] find edges of the frames of a sequence and match these

with previously labeled silhouette templates using Chamfer distance. Then, they use

the vector of minimum distances between silhouettes and frames to describe the se-

quence.

Efros et al. [11] calculate optical flow measurements in a spatio-temporal volume

for figure centered images. They use sports footage in which the people in the image

are very small, thus noisy. Instead of using the measurements as they are, they treat

optical flow measurements as a spatial pattern of noisy measurements and blur them

by smoothing. They divide both horizontal and vertical components of optical flow

into positively and negatively directed parts, yielding 4 distinct channels. They do the

smoothing for each channel. At the end, they do a nearest neighbor search using these

values in a database of preclassified actions to find labels of actions, joint locations,

and appearance informations.

Tran and Sorokin [12] compute optical flow using Lucas-Kanade algorithm [13]

and smooth using Efros’ method [11]. They use background subtraction to find the

silhouette and a bounding box. They use two components of optical flow together with

the silhouette. They rescale the part in the bounding box and split the rescaled part

into 2 x 2 sub-windows. Then each sub window is divided into 18 pie slices covering

20 degrees each. They calculate the sum of the values in the regions to form a 216

dimensional frame descriptor. They stack together the descriptors of five consecutive

frames to form a descriptor of the moment. They use one nearest neighbor to classify

actions.

Gorelick et al. [14] stack silhouettes of the consecutive frames to form space-

time volumes. They regard actions as three dimensional shapes using these space-

time volumes. They solve the Poisson equation to extract space-time features such as

5

local space-time saliency, action dynamics, shape structure and orientation. They use

weighted moments over these features to find global features.

Batra et al. [15] find silhouettes in the frames and extract three dimensional sub-

patches of the stacked silhouettes which they call Space-Time Shapelets. They propose

a dictionary of these three dimensional patches and represent an action using a bag of

words approach over these space-time patterns.

Ogata et al. [16] construct space-time volumes of optical flow for event detection

and use Efros’ method [11] for describing motions. They combine these two methods

with boosting.

1.1.2. Local representations

Laptev [17] proposed space-time interest points by extending the Harris interest

point detector to 3D. Space-time interest points are the points where local neighbor-

hood has a significant change in both the temporal and the spatial domain. We give the

details of the work of Laptev in Section 2.5. Schuldt et al. [2] used space-time interest

points for recognition. They use a bag of words approach on space-time interest point

and classification is done using support vector machines.

Oikonomopoulos et al. [18] use three dimensional spatio-temporal salient point

detection. They measure the variations in the information content of pixel neighbor-

hoods for detecting the points. The centers of the spatio-temporal cuboids with local

maximum energy are selected as salient points. They introduce a distance metric based

on the Chamfer distance to measure the distance between collections of salient points.

Dollar et al. [19] propose a method for detecting spatio-temporal interest points

with the claim that 2D interest point detectors’ 3D extensions are not adequate enough

for detecting spatio-temporal feature points. They use Gabor filters both on spatial

and temporal dimensions individually. By changing the neighborhood’s spatial and

temporal sizes, the number of interest points are adjusted.

6

Willems et al. [20] use integral videos to find salient points. By the use of inte-

gral videos, they easily filter the spatio-temporal space for finding both spatially and

temporally scale-invariant cuboids. They use box filters and use determinant of a 3D

Hessian matrix as saliency measure.

Wang et al. [21] evaluate and compare different space-time feature methods in a

common experimental setup. They use bag of features approach and use support vector

machines for classification. They show that the tested space-time interest point detec-

tors are outperformed by regular sampling of space-time features for human actions in

realistic settings.

Sun et al. [22] find scale invariant feature transform (SIFT) [23] descriptors and

track interest points using these descriptors. They use Markov chains to represent

trajectories as dynamic systems. Then, they use bag of words approach on Markov

chain representations and classify actions using nonlinear support vector machines.

Messing et al. [3] use the Kanade-Lucas-Tomasi (KLT) tracker to track features

and extract trajectories. They find each trajectory’s quantized velocity over time.

They quantize velocity histories uniformly in log-polar coordinates and use eight bins

for direction, and five bins for magnitude. They use a bag of words approach on these

velocity features to describe the video and use naive Bayes for modeling. Additionally,

they augment the codeword of the position of the face detected by Viola-Jones algo-

rithm [24] and the codewords of the initial and the final positions of the trajectories to

their features. When adding these features, the codewords are independently generated

by clustering the set of related positions in the training set separately. This leaves the

codewords highly dependent on the position of the action on the frame. The details of

the KLT tracker are given in Section 2.4.

Niebles et al. [25] extract space-time interest points and represent a video as a

collection of these points using a bag of words approach. Then, a generative model is

constructed for each class using probabilistic latent semantic analysis.

7

1.1.3. Model Fitting approaches

In the literature, human detection, and body tracking are usually done before

model fitting. Recognition is done using the models after the model fitting stage.

1.1.3.1. Human detection. Human body detection starts with finding the moving re-

gions in an image, then classifying these regions into human and non-human objects.

Background subtraction, temporal differencing and optical flow are some of the com-

monly used motion detection techniques [5].

For stationary backgrounds, background subtraction can be used for motion seg-

mentation. However, this method is very sensitive to the changes in the lighting condi-

tions of the scene. Therefore, a good background model should be used [5, 26, 27, 28].

Temporal differencing compares the pixels of two or three consecutive frames for ex-

tracting moving regions. In [29], temporal differencing is used for detecting moving

targets in real-time videos. After motion detection, some filtering techniques, mor-

phological operators and connected component analysis may be used for improving

results.

Object classification can be categorized into two approaches, which are shape-

based classification and motion-based classification. In shape-based classification, ob-

jects are classified according to their modal features such as points, boxes, silhouettes

and blobs [5]. Lipton et al. [29], classified moving objects as humans, vehicles and clut-

ter. In motion-based classification, objects are classified according to their movement

characteristics. Since human motion has a periodic property, this has been used as a

classification feature [5].

1.1.3.2. Body tracking. Tracking stage deals with matching a human body blob with

its temporal correspondent and tracking it through time. There may be more than

one person in the scene and also there may be some occlusions during the observation.

Human body tracking also tries to deal with these types of situations. Generally, dif-

8

ferentiation of tracking from detection and model fitting stages are not very clear, since

numerous tracking algorithms incorporate detection or model fitting in the pipeline.

Tracking can be categorized into region-based tracking, active-contour-based tracking,

feature-based tracking and model-based tracking [5].

In region-based tracking methods, objects are tracked according to variations

of image regions. Region-based tracking algorithms usually detect motion regions by

background subtraction [5]. McKenna et al. [27], combine color and gradient informa-

tion for dealing with shadows and unreliable color cues, which is used in an adaptive

background subtraction method.

As the name implies, active-contour-based tracking algorithms track objects by

representing their boundaries as contours which are updated dynamically. Paragios et

al. [30], use geodesic active contours for tracking multiple moving objects.

Feature-based tracking algorithms extract features of objects for each frame and

track objects by matching these features. Centroids, perimeters, areas, colors, line

segments, curve segments, and corner vertices are some of the features that are used

in the literature [5].

In model-based tracking algorithms, objects are tracked by matching the pro-

jections of object models, which are produced with prior knowledge, to the image.

Model-based tracking has significant overlap with model fitting and will be discussed

in the next section.

1.1.3.3. Model fitting. Model fitting is done for finding the pose of the tracked person,

which can also be used for behavior analysis. The main objective is minimizing the

error between the observation and the human body model. Pose estimation can be done

in either 2D or 3D, using either monocular or multi-view images. A variety of models

can be used; such as stick figures, 2D contours, volumetric models, and hierarchical

models [5].

9

Some notable works in the literature have been on using multi-view images for

obtaining 3D models. Deutscher et al. [31] develop a modified particle filter, termed as

annealed particle filtering, for searching in high dimensional configuration spaces. The

method combines annealing with stochastic sampling. Kehl et al. [32] use stochastic

sampling and stochastic meta descent optimization for full body pose tracking with

24 degrees of freedom from multiple views. In [33], partitioned sampling is used on

articulated objects such as the hand for estimating the pose. In [34], Plankers et

al. tracked arm movements using stereo and silhouette cues.

There are also monocular approaches, since for many applications only a single

camera is available [8]. The major drawbacks of using a monocular approach arise from

the difficulties in solving depth and occlusion problems. Eliminating these drawbacks

requires using constraints on kinematics and movement [6]. 3D pose estimation using

monocular images is much more difficult than using multiple cameras.

There are two main approaches for estimating the pose parameters of the tracked

human body. They are classified as top-down and bottom-up approaches. In addition,

some researchers use a combination of both approaches [8] for fitting the human body

model onto the tracked human body.

Top-down approaches deal with searching the appropriate model pose that match-

es the observation with a minimum error. This is also called as analysis-by-synthesis.

In [35], a local search is performed around the initial estimate. In [36], physical forces

are used for minimization of the differences between the pose of the model and the

observation. Since search is costly, they use the estimate of the previous frame as an

initial estimate for the current frame to reduce the search space. However, manual

initialization is needed for the first frame, since it does not have a previous frame.

Rendering the model and calculating the error is also costly. Erroneous estimation

of head or torso parts affects other body parts in the lower kinematic chain. These

drawbacks are reported in [8].

Bottom-up approaches deal with finding the individual body parts and assembling

10

them. During the assembly, some physical constraints are considered, such as body

part proximity. Appearance models are widely used for modeling body parts. In [37],

the appearances of individual body parts are modeled by a 2D approach. In [38], the

images first pass through a segmentation phase and then body part locators are used

on the segmented image. The outputs of the body part locators are combined into a

human model. The templates may produce false positives misguided by the limb-like

regions in the image. Also each template often needs its own part detector [8].

Combination of both the top-down and bottom-up approaches can help eliminate

the drawbacks mentioned above. The initialization problem of the top-down approach

can be solved with the bottom-up approach using a decent part detection framework.

In [39], search space decomposition is used. Part detectors for the lower kinematic

chain are used on the image region defined by the parent in the kinematic chain. This

approach is computationally cheaper yet the individual part detectors need to have a

good performance. Bottom-up information can also be used in a statistical framework,

such as in [40]. Part of the pose space can be estimated by using part detectors and

inverse kinematics [41]. This approach solves the problems of a pure top-down approach

by using the bottom-up information only when available. This way there is no need for

a part detector for each body part [8]. The combined approach has also been utilized

in some recent work for the recovery of poses in cluttered scenes, as reported by [8].

1.2. Outline of the Thesis

Chapter 2 describes the mathematical details of the methods used throughout

the thesis. In addition, it covers some other notable methods in the literature which

are used for human action recognition tasks.

In Chapter 3, the outline of the system is explained. The Generic Keypoint

Tracker method is proposed and elaborated. Also in Chapter 3, the details of feature

extraction from trajectories and video sequences are given. Moreover, the classification

method is explained.

11

In Chapter 4, a new dataset is introduced. In addition, the datasets that are used

in the evaluation of the thesis are described. Chapter 4 also describes the experiment

setup. Analysis of validation results and parameter selection is explained in Chapter

4. Finally, test results are presented.

Chapter 5 concludes this thesis with a summary of the obtained results, followed

by possible future work.

12

2. TECHNICAL BACKGROUND

This chapter provides the details of the methods that are used throughout this

thesis and some other notable methods that are used in the literature for human action

recognition tasks.

2.1. Keypoint Detection and Matching

Keypoint detection and matching is generally used for object detection, image

registration, and camera calibration. There are three main steps in the task of finding

point correspondences between two images:

• Feature Detection

• Descriptor Extraction

• Keypoint Matching

2.1.1. Feature Detection

Feature detection is the task of finding important points in the images that we

try to match. We call these points keypoints or interest points. In a feature detec-

tor, repeatability is a very important concern. Here, repeatability denotes the ability

of the feature detector to find the same physical point under different conditions of

illumination and position.

2.1.2. Descriptor Extraction

Descriptor extraction is the process of extracting meaningful descriptors about

the neighborhoods of interest points. A descriptor should make a distinction between

unrelated keypoints. In addition, it should be similar between related keypoints that

are having different illumination conditions or geometric transformations.

13

2.1.3. Keypoint Matching

A descriptor matcher matches keypoints between two images using the explained

descriptor extractor. The keypoints are matched using the distance between their

descriptors. The distance measure can differ among different descriptor matchers such

as Euclidean distance or Mahalanobis distance. Matching can be done using nearest

neighbors, thresholding, or any other method.

2.1.4. Speeded-up Robust Features (SURF)

Speeded-up Robust Features (SURF) provides solutions to both keypoint detec-

tion and descriptor extraction problems. It is first proposed in 2006 by Bay et al. [42],

and later elaborated in 2008 [1]. The algorithm is faster than Scale-invariant feature

transform (SIFT) which was introduced by Lowe [43], and detailed in [23]. In addition,

Bay et al. show that SURF is more robust under some image transformations. SURF

algorithm has two main parts:

• Interest point detection

• Interest point description

2.1.4.1. SURF interest point detection. There are three subparts in SURF interest

point detection; integral image calculation, scale space representation, and interest

point localization.

Integral images: In 1984, Crow et al. introduced the concept of summed area

tables to the computer graphics world [44]. Later in 2001, Viola and Jones used the

concept for object detection [24] and named it integral images. It is an algorithm for

efficiently calculating the sum of the values of any rectangular subpart of an image.

The value of a pixel of an integral image is the sum of the values of the rectangular

region of the original image formed by the origin and that pixel.

14

The integral image IΣ of an image I is defined as

IΣ(x, y) =

i≤x∑
i=0

j≤y∑
j=0

I(x, y). (2.1)

Figure 2.1. Calculating the sum of the values in a rectangular region using the

integral image [1]

This operation can be easily done by cumulatively summing all the pixels. After

calculating the integral image, only three additions are needed to calculate the sum of

the values in a rectangular region. Figure 2.1 shows this operation.

Hessian matrix-based interest points: We know that using the second partial

derivative test we can classify the extrema of a function. We can do the test using the

determinant of the Hessian of a function f . Hessian of f is

Hf (x, y) =

 ∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂y

∂2f
∂y2

 . (2.2)

And the determinant of the Hessian of f is

detHf (x, y) =
∂2f

∂x2

∂2f

∂y2
−
(
∂2f

∂x∂y

)2

. (2.3)

If detH(x, y) < 0, the point (x, y) is not a local extremum. If detH(x, y) > 0, the point

15

(x, y) is a local extremum. If detH(x, y) = 0, the point (x, y) the test is inconclusive.

For using this method on images, we need to calculate the second order partial

derivatives of an image. The derivatives are found using Laplacian filters. Derivative

filters are very sensitive to noise. Thus, the image is smoothed before applying the

Laplacian. This is equivalent to convolving the smoothing filter with the Laplacian.

Gaussians are used in SURF.

detHI(x, y, σ) = Lxx(x, y, σ)Lyy(x, y, σ)− (Lxy(x, y, σ))2, (2.4)

where

Lxy(x, y, σ) =
∂2g(σ)

∂x∂y
◦ I(x, y), (2.5)

is the second order derivative of g(σ) in xy direction, and g(σ) is the Gaussian with

scale σ.

Lowe approximated Laplacian of Gaussian using the difference of two nearby

scales separated by a constant multiplicative factor [23]. Bay et al. pushed the approx-

imation further using box filters. This way integral images can be used efficiently and

computational cost decreases significantly. This makes calculation time independent

of the filter size. Bay et al. found that the multiplicative factor of 0.9 is suitable for

their approximations.

detHapprox = DxxDyy − (0.9Dxy)
2, (2.6)

where Dxy is the box filter approximation of Lxy. Figure 2.2 shows discretized and

cropped Gaussian filters and box filter approximations.

Scale space representation: Interest points may appear in different scales. Thus,

they are needed to be searched in different scales. In computer vision, image pyramids

are commonly used to construct the scale-space.

16

Figure 2.2. Filters. Top: The discretized and cropped Gaussian second order partial

derivatives in the x, y and xy-directions. Bottom: Weighted box filter approximations

in the x, y and xy-directions. [45]

Previously explained integral image and box filter approaches used together speed

up this search. Increase in the filter size corresponds to decrease in the image scale.

Initial scale layer is the output of the 9 x 9 box filter, referred as scale s=1.2, since it

approximates Gaussian filters with σ = 1.2. Scales are calculated with the formula

σf = 1.2
f

9
, (2.7)

where f is the filter size. Figure 2.3 shows the change in filter size when the scale

changes. The scale space is divided into octaves. An octave is a series of response

maps obtained by filtering the same input image with a filter of increasing size. Each

octave is divided into a number of scale levels. Difference between scale levels depend

on the length of the lobes of the partial second order derivative. In a 9 x 9 filter, this

number is 3. Since we require a central pixel in each lobe, we need to enlarge these

lobes from each side. Thus, we need to add an even integer, a minimum number of

two. Since there are three lobes in Dxx and Dyy, we need to increase the filter size by

six. The filter sizes for the first octave are 9 x 9, 15 x 15, 21 x 21, and 27 x 27. The

filter size increase is doubled on each new octave. At the second octave it is increased

from six to 12, at the third octave it is increased from 12 to 24, so on and so forth.

17

Figure 2.3. Filters in x and xy directions for the scale levels 9 x 9 and 15 x 15 [1]

The formula for filter size is

FilterSize = 3 ∗ (2octave ∗ layer + 1) (2.8)

as shown by Evans [45]. For each octave and layer couple, the response of the pixels

are calculated.

Interest point localization: Non-maxima suppression is applied in a 3 x 3 x 3

neighborhood for localizing the interest points. The first two dimensions of the neigh-

borhood represent the spatial position and the third dimension represents scale. Every

response is compared with its neighboring responses. If a response is greater than all

its neighboring responses, then it is classified as an interest point. Then, the method

proposed by Brown and Lowe [46] is used for interpolating the responses to find the

sub-pixel accurate location in both space and scale.

2.1.4.2. SURF interest point description. There are two subparts in SURF interest

point description; interest point orientation assignment, and descriptor calculation.

18

Orientation assignment: For achieving invariance to image rotation, the orienta-

tion of the detected interest point is found. First, for each interest point, Haar wavelet

responses of size 4s within a circular neighborhood of radius 6s are calculated, where

s is the scale at which the interest point was detected. The sampling step is chosen

to be s. Figure 2.4 shows Haar wavelet filters. Then, they are weighted with a Gaus-

Figure 2.4. Haar wavelet filters in x and y directions [1]

sian having σ = 2s, centered at the interest point. After weighting, the responses

are mapped to a new space where the response in x direction is the abscissa and the

response in y direction is the ordinate. The dominant orientation is found by rotating

a sliding orientation window of size π
3

and calculating the sum of all responses within

the window to form a new two dimensional vector. Then, the orientation having the

longest of such vectors defines the orientation of the interest point. Figure 2.5 shows

the orientation assignment.

Figure 2.5. A sliding orientation window of size π
3

[1]

Descriptor based on sum of Haar wavelet responses: For the descriptor extraction

stage, a 4 x 4 grid of regions having a size of 20s x 20s and oriented along the previ-

ously found orientation is placed around the interest point. For each of these regions,

19

Haar wavelet responses are computed at 5 x 5 regularly spaced sample points and the

responses are weighted with a Gaussian filter having σ = 3.3s, centered at the interest

point. Figure 2.6 shows the oriented grid and sample points. Calling these weighted

responses dx and dy, four dimensional descriptor vectors are extracted from each of the

16 regions which are of the form

(∑
dx,
∑

dy,
∑
|dx|,

∑
|dy|
)
. (2.9)

Figure 2.6. The green square shows a region of the 4 x 4 grid and blue circles

represent the sample points at which the wavelet responses are computed. Haar

wavelet responses are calculated relative to the dominant orientation. [45]

Then, these vectors are concatenated to form the 64 dimensional descriptor vector

of the interest point. The 64 dimensional vector is normalized to form a unit vector

for bringing invariance to contrast. Absolute valued sums give information about the

polarity of the intensity changes. Figure 2.7 shows the difference in descriptor vectors

in three different situations.

Fast indexing for matching: For fast indexing during the matching stage, the

sign of the Laplacian is used. It needs no extra computation since it was already

computed during the detection stage. The sign of the Laplacian distinguishes the dark

blobs on bright backgrounds from the bright blobs on dark backgrounds. Thus, before

calculating Euclidean distance between two descriptors it is advantageous to check

whether the signs match.

20

Figure 2.7. Change in descriptors. Left: In a homogeneous region, all values are low.

Middle: In the presence of frequencies in x direction, the value of |dx| is high, but

others remain low. Right: If the intensity is gradually increasing in x direction, both

values dx and |dx| are high. [42]

2.2. Clustering

2.2.1. K-Means

K-means is a method for clustering. It was proposed by MacQueen in 1967 [47].

The purpose of the k-means method is to partition data having N observations into K

clusters.

Let xt be an observation. First, we start with some cluster centers mi, initialized

randomly or via another method, where mi and xt has the same number of dimensions

and i ∈ 1, . . . , K. We define bti as

bti =


1 if ||xt −mi|| = min

j
||xt −mj||

0 otherwise

. (2.10)

Then, for each observation, we assign xt to the cluster i if bti = 1. After assigning each

observation, we update our cluster centers [48] using

mi =

N∑
t=1

btix
t

N∑
t=1

bti

. (2.11)

21

We repeat these two steps until cluster assignments do not change.

K-means++: K-means++ is a method for choosing the initial centers for k-

means. It is proposed by Artur and Vassilvitskii in 2007 [49]. In this algorithm,

initially, a center is chosen uniformly at random from the data points and a counter c

is initialized to one. Then, for each data point xt, D(xt) = minj ||xt−mj|| is computed,

where j ∈ 1, . . . , c. Using a weighted probability distribution where a data point xt

is chosen with probability proportional to D(xt)2, another data point is chosen, then

assigned as a new cluster center, and c is incremented by one. These steps are repeated

until c = K centers are chosen.

2.2.2. Bag-of-Words

Bag of words method has been proposed for document classification. In this

method, d words are chosen that are believed to give information regarding the class.

The representation of the text is a d dimensional vector where the value of a component

of the vector is one if the corresponding word exists in the text, zero otherwise [48].

Alternatively, the histogram of the text can be found by counting the repetitions

of these words. Therefore, given any text, d dimensional histogram vector of the text

can be found which simplifies the comparison process. In addition, the histograms are

normalized to have one as the sum of the elements of the vector. This normalization

process makes the representation invariant of the text length.

The application of bag of words to computer vision problems is simple. We count

the number of objects or some other features instead of words.

22

2.3. Supervised Learning

2.3.1. K-Nearest Neighbor (k-NN)

K-Nearest Neighbor is a simple classification method, sometimes referred to as k-

NN. In K-Nearest Neighbor, given any vector, the distance of this vector to every vector

in the training set is computed. Then, K training vectors which give the minimum

distances are selected as the nearest neighbors. The class having the most examples in

these neighbors is assigned as the class of the sample vector.

2.3.2. Support Vector Machines (SVM)

Support vector machines (SVM) are proposed by Vapnik [50]. In 1995, Cortes

and Vapnik suggested the usage of soft margin for allowing nonseperable instances [51].

SVM is a discriminant based method. It tries to separate the data into two classes

using a hyperplane. In addition, a margin is used for better generalization [48].

Let xt be a sample, and rt be the label of xt. rt can be +1 or −1 depending on

the class. We would like to find w and w0 such that rt(wTxt + w0) ≥ 1.

rt(wTxt+w0)
||w|| gives the distance of xt to the discriminant. We would like this dis-

tance to be greater than or equal to some value ρ:

rt(wTxt + w0)

||w||
≥ ρ, ∀t. (2.12)

For maximizing the margin, we minimize ||w||. The problem can be defined as

min
1

2
||w||2 subject to rt(wTxt + w0) ≥ 1,∀t. (2.13)

23

The problem can be redefined using Lagrange multipliers αt [48]:

Lp =
1

2
||w||2 −

∑
t

αtrt(wTxt + w0) +
∑
t

αt. (2.14)

We would like to minimize Lp with respect to w and w0.

∂Lp
∂w

= 0 =⇒ w =
∑
t

αtrtxt (2.15)

∂Lp
∂w0

= 0 =⇒
∑
t

αtrt = 0 (2.16)

Dual of the problem can be defined by plugging Equations 2.15 and 2.16 into Lp [48]:

Ld = −1

2

∑
t

−
∑
s

αtαsrtrs(xt)Txs +
∑
t

αt, (2.17)

which must be maximized with respect to αt, subject to the constraints
∑
t

αtrt = 0,

and αt ≥ 0,∀t.

After solving Equation 2.17 using quadratic optimization methods [48], most of

αt will be 0. The set of xt having αt > 0 are support vectors. w can be computed by

Equation 2.15, and w0 can be computed by w0 = rt −wTxt. This should be done for

all support vectors and the average is to be taken for numerical stability.

While using a soft margin, we relax the requirement as

rt(wTxt + w0) ≥ 1− ξt, (2.18)

where ξt ≥ 0 are slack variables. If 0 < ξt < 1, xt is in the margin and correctly

classified. If ξt ≥ 1, xt is misclassified. Soft error is the sum of the slack variables. It

is multiplied by a penalty factor C and added to the problem. Therefore, the problem

24

becomes minimizing

min
1

2
||w||2 + C

∑
t

ξt subject to rt(wTxt + w0) ≥ 1− ξt,∀t. (2.19)

New Lagrange parameters are added to the problem to guarantee the positivity of

ξt. The derivatives with respect to w, w0, and ξt are taken and set to 0 for minimization.

Then, the results are plugged similarly. The dual is:

Ld = −1

2

∑
t

−
∑
s

αtαsrtrs(xt)Txs +
∑
t

αt, (2.20)

which must be maximized with respect to αt, subject to the constraints
∑
t

αtrt = 0,

and 0 ≤ αt ≤ C, ∀t.

The set of xt having αt > 0 are support vectors; they define w. The xt having

αt < C are on the margin; they have ξt = 0 and define w0. xt having αt = C are in

the margin or misclassified.

For dealing with nonlinear problems, we can map the instances to a new space,

then use a linear model in the new space. This linear model corresponds to a nonlinear

model in the original space [48]. In the SVM case, we map x as

z = φ(x), (2.21)

where zj = φj(x), j = 1, . . . , k, x is d dimensional, z is k dimensional, and z1 = φ1(x) =

1. Then, we define the discriminant function:

g(x) =
k∑
j=1

wjφj(x). (2.22)

25

Similar operation as the soft margin case gives the dual:

Ld = −1

2

∑
t

−
∑
s

αtαsrtrsφ(xt)Tφ(xs) +
∑
t

αt, (2.23)

subject to the same constraints as Equation 2.20.

Then, we define a kernel function K(xt,xs) = φ(xt)Tφ(xs) and plug it into the

Equation 2.23:

Ld = −1

2

∑
t

−
∑
s

αtαsrtrsK(xt,xs) +
∑
t

αt. (2.24)

Then, the discriminant becomes:

g(x) =
∑
t

αtrtK(xt,x). (2.25)

It is much simpler to define and use a kernel function instead of defining φ(x)

and calculating φ(xt)Tφ(xs).

In multiclass classification, there are two widely used approaches. Let K be the

number of classes. In the one-vs-all approach, K two class problems are defined, each

one separating one class from all others. In this approach, the test data is compared

with all discriminants and the maximum one is selected as the class. In the one-vs-one

approach, K(K−1)/2 classifiers are defined, each one separating a pair of classes. In the

classification phase of this approach, the test data is compared with all discriminants,

each resulting in a candidate class, and a voting is done among these candidate classes.

The class receiving the most votes is assigned as the class of the test data.

χ2 Kernel: Schiele and Crowley showed that χ2 distance is suitable for comparing

histograms [52]. Chapelle et al. used χ2 distance in SVM kernels [53]. We define χ2

26

kernel as

Kχ2(xt,xs) = 1−
n∑
i=1

(xti − xsi)2

1
2
(xti + xsi)

. (2.26)

2.4. KLT Feature Tracker

The name KLT is derived from the initials of the last names of the authors

Kanade, Lucas, and Tomasi. KLT is a feature tracking method. It is based on the

work of Lucas and Kanade [13]. Its development is completed by Tomasi and Kanade

[54], and it was clarified by Shi and Tomasi [55]. The algorithm is widely used in the

literature for tracking and action recognition purposes. In this section, we are going to

give a brief explanation about some details of the algorithm.

As described in [13], the algorithm does not track single pixels, but windows of

pixels, and it requires windows that contain sufficient texture. It models the motion of

the window using an affine motion field [55]. We define the displacement function δ(x)

as

δ(x) = Dx+ d, (2.27)

where D =

dxx dxy

dyx dyy

 is a deformation matrix, and d is the translation of the window.

Assuming I to be the first, and J to be the second image:

J(Ax+ d) = I(x), (2.28)

where A = 12x2 +D, and 12x2 is the 2 x 2 identity matrix. Tracking means finding the

six parameters of D and d.

We try to minimize the dissimilarity between two images for a given feature

27

window. We define dissimilarity as

ε =

∫ ∫
W

[J(Ax+ d)− I(x)]2w(x)dx, (2.29)

where W defines the feature window, and w(x) is a weighting function.

We differentiate it with respect to the unknowns D and d.

1

2

∂ε

∂D
=

∫ ∫
W

[J(Ax+ d)− I(x)]gxTwdx (2.30)

1

2

∂ε

∂d
=

∫ ∫
W

[J(Ax+ d)− I(x)]gwdx, (2.31)

where g =
(
∂J
∂x
, ∂J
∂y

)T
is the spatial gradient of the image intensity.

We approximate J(Ax+ d) by its Taylor series expansion to the linear term.

J(Ax+ d) = J(x) + gT (u), (2.32)

where u = Dx+ d. Then, using Equations 2.30, 2.31, and 2.32, we have

∫ ∫
W

gxT (gTu)wdx =

∫ ∫
W

[I(x)− J(x)]gxTwdx, and (2.33)

∫ ∫
W

g(gTu)wdx =

∫ ∫
W

[I(x)− J(x)]gwdx. (2.34)

In adjacent frames, the affine deformation D is expected to be very small, for

tracking to work at all. Thus, it is safer to set D to the zero matrix, initially. Then,

the goal is to determine d. It is shown in [55] that this system is equivalent to

Tz = a, (2.35)

28

where

T =

∫ ∫
W

 U V

V T Z

wdx, (2.36)

z = (dxx, dyx, dxy, dyy, dx, dy)
T , (2.37)

a =

∫ ∫
W

[I(x)− J(x)]



xgx

xgy

ygx

ygy

gx

gy


wdx, (2.38)

and U , V , and Z are matrices of the variables x, y, gx, and gy.

U =


x2g2

x x2gxgy xyg2
x xygxgy

x2gxgy x2g2
y xygxgy xyg2

y

xyg2
x xygxgy y2g2

x y2gxgy

xygxgy xyg2
y y2gxgy y2g2

y

 . (2.39)

Z =

 g2
x gxgy

gxgy g2
y

 . (2.40)

V =


xg2

x xgxgy

xgxgy xg2
y

yg2
x ygxgy

ygxgy yg2
y

 . (2.41)

29

Since we assume pure translation, we need to solve a smaller system

Zd = e, (2.42)

where e collects the last two entries of the vector a. As time passes, the dissimilarity

between the first and the current frame will increase. Therefore, it may be essential to

solve the entire system.

The symmetric 2 x 2 matrix Z must be above the image noise level and well-

conditioned. These requirements imply that the eigenvalues of Z must be large and

cannot differ by several orders of magnitude [55]. Salt and pepper textures, or any

other pattern that can be tracked results in two large eigenvalues. Let λ1 and λ2 be

the two eigenvalues of Z. Then, we accept a window if

min(λ1, λ2) > λ, (2.43)

where λ is a predefined threshold. For determining this threshold, two measurements

are taken with the camera to be used during the tracking. As a first measurement, the

eigenvalues of a region of approximately uniform brightness are measured. Then, the

eigenvalues of a highly textured region are measured. The halfway in-between these

two eigenvalues is chosen to be the threshold.

Bouguet proposed a pyramidal implementation of the algorithm [56]. Bouguet

defines pyramid levels, starts from the deepest level and iterates the solution through

levels. The aim of this method is to track large windows along with small windows. The

pyramidal tracking algorithm proceeds as follows. First, the optical flow is computed

at the deepest pyramid level. The result of the computation is propagated to the upper

level as an initial guess for the pixel displacement. The refined optical flow is computed

at the upper level using the previously computed initial guess. The same procedure is

repeated until reaching the level of the original image.

30

2.5. Space-Time Interest Points (STIP)

Space-Time Interest Points (STIP) is an interest point detection and descriptor

extraction method in which the notion of interest points is extended into the spatio-

temporal domain. In this method, the behavior of interest points are investigated in

spatio-temporal scale space and both spatial and the temporal scales of the detected

features are adapted [17].

Interest Points in the Spatial Domain: The detection is based on Harris and

Förstner interest point operators. Let I be an image in spatial domain and gsp be the

Gaussian with scale σ, then

Lsp = gsp ◦ I. (2.44)

The idea of the Harris detector is to find the locations where I has significant

changes in both directions [17]. Such points can be found by:

µsp = g ◦

 (Lspx)2 Lspx L
sp
y

Lspx L
sp
y (Lspy)2

 , (2.45)

where Lspx and Lspy are Gaussian derivatives of Lsp. For detecting points

Hsp = λ1λ2 − k(λ1 + λ2)2, (2.46)

is used, where λ1 and λ2 are eigenvalues of µsp. By setting k value and finding positive

local maxima of Hsp the interest points can be detected. k = 0.04 is a commonly used

value in the literature [17].

Interest Points in the Spatio-Temporal Domain: Laptev extended this notion into

the spatio-temporal domain. Let f be a spatio-temporal image sequence and g be the

31

Gaussian with scale σ in the spatio-temporal domain, then

L = g ◦ f, (2.47)

where ◦ denotes the convolution operator.

Then, µ becomes

µ = g ◦


L2
x LxLy LxLt

LxLy L2
y LyLt

LxLt LyLt L2
t

 (2.48)

in spatio-temporal domain, where Lx, Ly and Lt are Gaussian derivatives of L. Hence,

H is

H = λ1λ2λ3 − k(λ1 + λ2 + λ3)3, (2.49)

where λ1, λ2 and λ3 are eigenvalues of µ. For sufficiently large values of k, positive

local maxima of H correspond to interest points in spatio-temporal domain. Laptev

showed k = 0.005 is a good value for k.

Scale Selection in Space-Time: Let us assume that the blob that defines the

interest point is a spatio-temporal Gaussian blob. Then, convolving a Gaussian with

another Gaussian results in a Gaussian with scale equal to the sum of the scales of

the operands. Thus, L becomes a Gaussian. We define a normalized spatio-temporal

Laplacian operator

∇2
normL = σ2τ 1/2(Lxx + Lyy) + στ 3/2Ltt, (2.50)

where σ is the spatial, and τ is the temporal scale of the Gaussian,Lxx, Lyy, and Ltt

are the second order partial derivatives of L. Finding the extrema of ∇2
normL over

spatial and temporal scales, helps to estimate the spatio-temporal Gaussian extent of

32

the Gaussian.

Scale Adapted Space-Time Interest Points: We want to detect interest points

that are both the maxima of the spatio-temporal corner function H and the extrema

of the normalized spatio-temporal Laplace operator ∇2
normL. Since it is very costly

to compute space-time maxima of H for each spatio-temporal scale level and then

selecting the ones that maximize ∇2
normL, we use an alternative setup for sparsely

distributed scale values.

First, interest points are detected as the maxima of H (Equation 2.49). Then,

we select the neighboring spatio-temporal scale that maximizes (∇2
normL)2. After that,

we re-detect the space-time location of the interest point at the new scale.

33

3. ACTION RECOGNITION VIA KEYPOINT TRACKING

3.1. Outline of the System

Our system uses the trajectories of keypoints for recognizing human actions.

Figure 3.1 shows the outline of the action recognition system. In our system, we

Keypoint

Tracking

(Trajectory

Building)

Normalization

and Feature

Extraction

Classification

Figure 3.1. Block diagram of the system

first find keypoints in each frame and track their trajectories throughout the video.

When the recognition of the action is to be performed, we describe the state using the

trajectories at a given time instant ti. For this purpose, we extract descriptors not only

from the trajectories at that time but also from a timespan [ti−n, ti].

For making our decisions invariant of both the timespan and the spatial posi-

tion, we do some normalizations before extracting features from the trajectories. In

addition, it is not guaranteed that the number of the keypoints belonging to any two

different trajectories are equal. Thus, the dimension of our trajectory descriptor must

be independent from the number of the keypoints of the trajectory.

Moreover, the equality of the number of the trajectories among different videos is

also not guaranteed. In dealing with this problem, we use a bag-of-words approach. We

quantize trajectories, and use the histogram of the quantized trajectories in a timespan

to describe that timespan.

At the end, we use supervised learning for recognizing the human actions. The

34

next section explains the details of our keypoint tracking algorithms.

3.2. Generic Keypoint Tracker

Keypoint tracking defined as the task of following a keypoint throughout the

frames of a video. A trajectory is the motion history of a keypoint throughout its life

time. Some critical points should be considered.

One is to avoid losing track in the existence of short occlusions. A keypoint

can disappear in tracking of some frames. This can be the result of self-occlusion or

occlusion caused by any other object. In both cases, the keypoint can reappear a few

frames later. In a keypoint tracking system, it is important not to lose the track of

such keypoints prematurely. In addition, there should be an interpolation system for

predicting the missed positions of keypoints.

Another essential feature is the ability of the system to deal with noisy matches.

There can be incorrect matches of keypoints. These incorrect matches can cause jumps

of keypoints between very distant parts of the video frame. This can be dealt with by

disallowing matches having a spatial distance higher than a certain threshold at the

time of matching, or by removing such trajectories later.

Another matter is stationary points. Since not every part of a frame of the video

is expected to move, tracking of still keypoints can occur. In some systems, stationary

points can be used, and in some, they can be discarded for narrowing down the search

space.

In each frame, a large number of keypoints are introduced to the system. Some

of these keypoints can be continuations of previous trajectories, and some can be the

beginnings of new trajectories. As the time progresses, the search space for matching

new keypoints can become huge. It is important to take into account that this problem

can slow down the system as the time passes. Consequently, it is crucial to eliminate

some of the trajectories for narrowing down the search space.

35

We propose an algorithm called the Generic Keypoint Tracker to deal with the

keypoint tracking problem. There are five main modules of the Generic Keypoint

Tracker algorithm:

• Keypoint Detection

• Descriptor Extraction

• Keypoint-Trajectory Matching

• Trajectory Updating

• Elimination and Storing

The Generic Keypoint Tracker tracks keypoints in a sequence of images. Even

though it has a built-in “Keypoint Matching” module, it is designed for allowing the use

of different algorithms in “Feature Detection” and “Descriptor Extraction” modules.

In the next subsections, we first give an outline of the keypoint tracker and then

describe it in detail.

3.2.1. Outline of the Generic Keypoint Tracker Algorithm

At the start of each frame, the frame is fed into the Generic Keypoint Tracker

which detects keypoints and extracts their descriptors. It then matches newly found

keypoints to the trajectories: when a match is detected, the trajectory is updated.

Otherwise, a new trajectory is started. At the end, it checks whether a trajectory is

mature enough to be used or erroneous to be removed. Figure 3.2 shows the outline of

the Generic Keypoint Tracker algorithm. Each newly detected keypoint either becomes

a part of a trajectory or starts a new trajectory itself.

If there does not exist any trajectory, a new trajectory is initiated for each of

the detected keypoints. The absence of trajectories in a frame may occur in two ways.

It may be the first frame. Since, there are no trajectories in the first frame, a new

trajectory is initiated for each keypoint of the first frame. Moreover, the absence of

trajectories may occur in an intermediary frame, due to the fact that all trajectories

36

Frame Grabbing

Descriptor

Extraction

Keypoint

Detection

Trajectory

Updating

Elimination and

Storing

Keypoint-

Trajectory

Matching

Foreground

Detection

O
pt
io
na
l

Start

Generic Keypoint Tracker

Figure 3.2. Outline of the Generic Keypoint Tracker

may be eliminated in the elimination phase.

Elimination phase follows these operations. Elimination phase is for narrowing

down the search space. In our system, stationary points are regarded as insignificant

trajectories and can be removed from the search space. Also, there may be some sig-

nificant trajectories which have not been seen for some time. We want to remove those

insignificant trajectories and store the significant but not lately modified trajectories.

The remaining trajectories are left in the search space to be evaluated at the next

frame.

37

Optionally, a background subtraction method can be used for decreasing the

number of the detected keypoints at the first phase.

Figure 3.2.1 shows some sample frames with corresponding trajectories tracked

with the Generic Keypoint Tracker.

3.2.2. Keypoint-Trajectory Matching

Let us start by giving the definitions of a keypoint and a trajectory. We define a

keypoint κ as

κ := (x, y)T (3.1)

where x is the abscissa and y is the ordinate of the keypoint.

The keypoint descriptor vector is defined as

s := (s1, s2, . . . , sd)
T , (3.2)

where d is the dimension of the vector.

Let us define a three tuple, namely keypoint tuple, as

ξ := (κ, s, t), (3.3)

where s is the descriptor of the keypoint κ, and t is the time when κ is seen.

Then, we define a trajectory τ as the ordered set of such tuples, and represent it

as

τ := {ξi = (κi, si, ti) : ti < ti+1, i ∈ 1, . . . , N} (3.4)

38

Figure 3.3. Falling action trajectory samples from the WeCare dataset

39

where ξi is a keypoint tuple defined in Equation 3.3, and N is the number of keypoint

samples forming the trajectory. Note that the value of N can differ between different

trajectories.

Trajectory descriptor g of a trajectory τ is defined to be the average of the

descriptors of the last w keypoints of τ , and can be represented as

g :=
1

w

N∑
i=N−w+1

si, (3.5)

where 1 ≤ w ≤ N , and N = |τ |.

First, we calculate “spatial” distances between keypoints and trajectories. Here,

we emphasize the word “spatial” due to the fact that we also have “descriptor” distances

between keypoints and trajectories. Deducing from the definitions of the trajectory

(Equation 3.4), the keypoint tuple (Equation 3.3), and the keypoint (Equation 3.1),

κN = (xN , yN) defines the spatial position of the lastly added keypoint to the trajectory

τ . Then, we can define the “spatial distance” between the keypoint tuple ξ = (κ, s, t)

and the trajectory τ as

ds(ξ, τ) :=
√

(xN − x)2 + (yN − y)2, (3.6)

where κ = (x, y).

We define “descriptor distance” between the keypoint tuple ξ = (κ, s, t) and the

trajectory τ as

dd(ξ, τ) := ||s− g||, (3.7)

where g is the descriptor of the trajectory τ .

40

Let us define the set of keypoint tuples at time t as

Kt := {ξi = (κi, si, ti) : ti = t}, (3.8)

where ξi is a keypoint tuple.

We define the set of trajectories at time t as

Tt := {τi : τi is a trajectory at time t}. (3.9)

We define the neighborhood of the trajectory τ at time t∗ as

Nε,t∗(τ) := {ξ : ξ ∈ Kt∗ , ds(ξ, τ) ≤ ε}, (3.10)

where τ ∈ Tt∗ , and ε is a scalar defining the neighborhood diameter.

We define the neighborhood of the newly detected keypoint tuple ξ = (κ, s, t∗) at

time t∗ as

Nε,t∗(ξ) := {τ : τ ∈ Tt∗ , ds(ξ, τ) ≤ ε} (3.11)

where ε is a scalar defining the neighborhood diameter.

In Equation 3.10 and Equation 3.11, ε represents the maximum allowed spatial

position change of a keypoint between consecutive frames.

In matching, we use a modified version of the method proposed by Lowe [23].

Lowe’s method is for matching a keypoint in the first image to one of the keypoints in

the second image. First, the “descriptor distances” of the keypoint in the first image

to every keypoint in the second image are computed. Then, the ratio of the minimum

distance divided by the second minimum distance is calculated. If this ratio is less

41

than a certain threshold, the matching is done between the keypoint in the first image

and the keypoint that gives the minimum distance in the second image.

In our modified version, we first select a newly detected keypoint. Then, we

find its matching trajectory. If the matching trajectory passes the threshold condition

of Lowe’s method, we find that trajectories matching keypoint, again using Lowe’s

method. If its matching keypoint satisfied the threshold condition, we check whether

this keypoint is the same with our initial keypoint. If two keypoints are same, we do

the matching.

Let us elaborate the details of the method. First, we select a keypoint tuple, say

ξi, from Kt∗ . Then, for each trajectory in the set Nε,t∗(ξi), we calculate “descriptor

distances”. Let us define the set of these distances as

D(Nε,t∗(ξi)) := {dd(ξi, τ) : τ ∈ Nε,t∗(ξi)}. (3.12)

Then, the trajectory that gives the minimum distance is denoted

τm = argmin
τ

(D(Nε,t∗(ξi))). (3.13)

If the ratio of the minimum distance divided by the second minimum distance is

less than a threshold λ, then we mark τm as a candidate to be matched to ξi.

min(D(Nε,t∗(ξi)))

min(D(Nε,t∗(ξi) \ τm))
≤ λ =⇒ Mark τm, (3.14)

where 0 ≤ λ ≤ 1.

If τm is not marked, then continue with the next keypoint tuple in Kt∗ . Other-

wise, let us build another set consisting of “descriptor distances” between τm and the

42

keypoints in the set Nε,t∗(τm) as shown in Equation 3.15.

D(Nε,t∗(τm)) := {dd(ξ, τm) : ξ ∈ Nε,t∗(τm)}. (3.15)

The keypoint tuple that gives the minimum distance is denoted

ξm = argmin
ξ

(D(Nε,t∗(τm))). (3.16)

Thus,

min(D(Nε,t∗(τm)))

min(D(Nε,t∗(τm) \ ξm))
≤ λ =⇒ Mark ξm, (3.17)

where 0 ≤ λ ≤ 1.

If at the end, ξm is marked and is the same with ξi , we match ξi = ξm with τm.

3.2.3. Trajectory Updating

After matching keypoints with trajectories, we either add the keypoint to a tra-

jectory or initiate a new trajectory with the keypoint. First, every keypoint that is

matched to a trajectory is added at the end of its matching trajectory, causing it to

grow. Note that using the previous matching strategy, a keypoint found in a frame

can only be added to at most one trajectory. Additionally, this also guarantees that at

most one keypoint can be added to a trajectory at a time.

Since we allow trajectories to be occluded for a few frames, when a new keypoint

is added to a trajectory, some gaps may occur. We fill these gaps by interpolation.

Let trajectory τ have N elements. Then, the last element is ξN = (κN , sN, tN)

according to the definition of the trajectory (Equation 3.4). Let ξ = (κ, s, t) be the

43

candidate keypoint tuple, where κ = (x, y). We need to add t−tN−1 many interpolated

elements to τ before adding the candidate keypoint tuple. We prefer linear interpolation

for its simplicity. Thus, we find the line passing through the points κ = (x, y) and

κN = (xN , yN). The line segment between these points and its length are

L = κ− κN = (x− xN , y − yN), (3.18)

R = ||L|| = ||κ− κN || =
√

(x− xN)2 + (y − yN)2, (3.19)

respectively.

We divide L into t− tN many equal length pieces having lengths

∆ =
R

t− tN
. (3.20)

Then, for each interpolated keypoint i, we find its coordinates as

κN+i = (xi, yi) = p2 + ∆i, (3.21)

where i ∈ 1, . . . , t − tN − 1 and add (κN+i, ∅, tN+i) keypoint tuple to the trajectory.

Finally, after adding each interpolated element, we add the candidate keypoint tuple

ξ to the trajectory.

At the end, for each unmatched keypoint, we initialize a new trajectory, having

that keypoint as the starting keypoint.

3.2.4. Elimination and Storing

At the end of each frame iteration, there is an elimination and storing phase. The

first task in this phase is checking every trajectory whether they need to be eliminated

or not.

44

At the first step, we mark the trajectories that satisfy at least one of the elimi-

nation conditions as a candidate for elimination. These conditions are:

• Bounding box diagonal length of the trajectory(τ) is less than a certain threshold

√
(max(xi)−min(xi))2 + (max(yi)−min(yi))2 ≤ β, (3.22)

where κi = (xi, yi) represents a keypoint of τ , and β is a scalar, namely, the

minimum required spread. This condition helps us to eliminate the stationary

points and the points that are moving very little. Figure 3.4 shows the bounding

box.

Bounding box

Figure 3.4. Trajectory Bounding Box

• Not enough samples are added to the trajectory since its creation

N ≤ σ, (3.23)

where N is the total number of keypoints of τ , and σ is an integer, namely, the

minimum required sample count.

We mark these trajectories as candidates for elimination and proceed to the second

step.

45

At the second step, we check unmarked trajectories to see whether they are

modified lately or not. If they are not modified for a long time, we store them for using

later. Conditions for storing a trajectory τ are

• Not marked as a candidate for elimination, and

• Not modified for a long time

t− tN ≥ ν, (3.24)

where tN is the time stamp of the last keypoint of τ , and ν is an integer, namely,

the maximum allowed time since the last observation. ν also defines the maximum

length for gaps between consecutive keypoints of trajectories on occlusions.

Trajectories are stored immediately if the conditions are satisfied.

At the last step, we check marked trajectories to see whether they have lived for

some time, or not. We do not want to remove a trajectory if it is not mature enough.

Conditions for eliminating a trajectory are

• Marked as a candidate for elimination, and

• Has lived for some time

tN − t1 ≥ ρ, (3.25)

where t1 and tN are the time stamps of the first and the last keypoints of τ ,

respectively, and ρ is an integer, namely, the minimum age to be eliminated.

We remove stored trajectories from the search space along with the eliminated

ones.

46

3.3. Feature Extraction

In this section, we explain how we extract features for describing videos. Figure

3.5 shows the flow of feature extraction processes.

BoW: Clustering

Trajectories

BoW: Calculating

Trajectory

Histogram in a

Time Window

Trajectory

Feature

Extraction

Splitting

Trajectories into

Sub-trajectories

Normalizing

Against Time

Normalizing

Against Spatial

Position

Feature Extraction

Figure 3.5. Flow of Feature Extraction Processes

3.3.1. Extracting Features from Video Sequences

We define a video sequence as a sequence of images having only one person and

one action. We assume that the region of interest is cropped to include only one

person and the sequence contains only one action of this person. Cropping the region

of interest and segmenting the actions are not parts of our work.

Since we want to recognize the action on a video sequence, a comparison metric

between two different video sequences is required. To compare two video sequences,

we need to solve three problems:

(i) The first problem is that the lengths of the video sequences may differ. Since

we need to compare video sequences, we want to extract the same dimension

47

descriptors from each video sequence.

(ii) The second problem is that the height and width of the regions of interests of

different video sequences may differ. We need to extract trajectories considering

this problem and extract descriptors that are invariant to the height and width

of the region of interest.

(iii) Another problem occurs when the video sequences are filmed using different zoom

levels. An action has different appearance under different zoom levels. We should

normalize the scale.

3.3.2. Normalizing Against Time

As the first step in video sequence feature extraction, we normalize against time.

Let tf be the time stamp of the first frame of the video sequence, and tl be the time

stamp of the last frame of the video sequence. Furthermore, let tj,i be the time stamp

of the ith element of the trajectory τj. We update the time stamp of every element of

each trajectory in a video sequence with

tupdated
j,i =

tj,i − tf
tl − tf

, (3.26)

resulting in 0 ≤ tupdated
j,i ≤ 1.

3.3.3. Normalizing Against Spatial Position

As the second step, we normalize the positions of the keypoints belonging to the

trajectories of the video sequence. Let T be the total number of trajectories in a video

sequence, and Nj be the number of elements of the trajectory τj where j ∈ 1, . . . , T .

Then, there are a total of

N∗ =
T∑
j=1

Nj (3.27)

keypoints in the video sequence.

48

We calculate the mean of the keypoints belonging to the video sequence separately

for each dimension as

µx =
1

N∗

T∑
j=1

Nj∑
i=1

xi,j, (3.28)

µy =
1

N∗

T∑
j=1

Nj∑
i=1

yi,j, (3.29)

respectively, where κi,j = (xi,j, yi,j) is the ith keypoint of the trajectory τj.

Furthermore, we calculate the standard deviation of the keypoints belonging to

the video sequence separately for each dimension as

σx =

√√√√ 1

N∗ − 1

G∑
j=1

Nj∑
i=1

(xi,j − µx)2, (3.30)

σy =

√√√√ 1

N∗ − 1

G∑
j=1

Nj∑
i=1

(yi,j − µy)2, (3.31)

respectively, where κi,j = (xi,j, yi,j) is the ith keypoint of the trajectory τj.

Then, we update each keypoint κi,j = (xi,j, yi,j) by doing Student’s t-statistic

normalization with

κupdated
i,j =

(
xi,j − µx

σx
,
yi,j − µy
σy

)
. (3.32)

In Figure 3.6, asterisks are keypoints of the trajectories, the red circle represents

the mean point (µx, µy), and the grids are aligned to integer multiples of corresponding

standard deviations (σx and σy).

49

Figure 3.6. Coordinate System for Trajectory Normalization

Since the mean of the keypoints are now translated to the origin, the second

problem has been overcome. In addition, we deal with the third problem by scaling

the coordinates by the related standard deviations. From now on, we are going to use

the updated coordinates.

3.3.4. Extracting Sub-trajectories

After normalizing the time stamps and keypoint coordinates, we extract sub-

trajectories from the trajectories. We decide on a length ω and split the trajectories in

our sequence of interest into sub-trajectories having at most ω many points. Let τj be

50

a trajectory having Nj elements, then we define sub-trajectories of length ω of τj as

τj,1 := {ξi,j = (κi,j, si,j, ti,j) : ti,j < ti+1,j, i ∈ 1, . . . , ω}

τj,2 := {ξi,j = (κi,j, si,j, ti,j) : ti,j < ti+1,j, i ∈ 2, . . . , ω + 1}
...

τj,N−ω+1 := {ξi,j = (κi,j, si,j, ti,j) : ti,j < ti+1,j, i ∈ Nj − ω + 1, . . . , Nj} (3.33)

which are also trajectories, where ξi,j ∈ τj,∀i ∈ 1, . . . , Nj. Figure 3.7 illustrates some

trajectories and their corresponding sub-trajectories.

Video Sequence

t

 Sub-trajectories

Trajectories

 Sub-trajectories

Figure 3.7. Sub-trajectories

3.3.5. Trajectory Feature Extraction

Different trajectories may have different number of elements. However, we want

to compare trajectories with each other. Thus, we need to describe trajectories on

a common basis. For fulfilling this necessity, we extract some features from the tra-

jectories. Note that we use normalized time stamps and keypoint positions in the

calculation of trajectory features. Moreover, we would like to emphasize that we ex-

tract features not from the whole trajectories but only from the sub-trajectories. This

is possible since the definition of the sub-trajectories in Equation 3.33 states that the

sub-trajectories are also trajectories themselves.

51

Let κi = (xi, yi) be the coordinates of the ith keypoint of a trajectory τ . We first

define the vector from κ1 to κi as

Li = κi − κ1 = (xi − x1, yi − y1),∀i ∈ 1, . . . , N (3.34)

where N is the total number of keypoints in τ .

Our first and second trajectory features are the first and second coordinates of

LN , respectively.

F1 = xN − x. (3.35)

F2 = yN − y. (3.36)

Next, we find the distances of keypoints to LN . Then, pick the keypoint giving the

maximum distance. As our third feature, we multiply this distance value by the sign

of the side of LN that this keypoint resides. The following are the detailed calculations

for this feature.

Figure 3.8. Li, LN , Ei with trajectory keypoints

52

The magnitude of the projection of Li in the direction of LN is calculated by

||pi|| = Li ·
LN
||LN ||

=
Li · LN
||LN ||

=
(xN − x1)(xi − x1) + (yN − y1)(yi − y1)√

(xN − x1)2 + (yN − y1)2
(3.37)

By Pythagorean theorem, we calculate the distance of κi to LN as

Ei =

√
||Li||2 − (||pi||)2

=

√√√√√(xi − x1)2 + (yi − y1)2 −

(xN − x1)(xi − x1) + (yN − y1)(yi − y1)√
(xN − x1)2 + (yN − y1)2

2

=

√
(xi − x1)2 + (yi − y1)2 − ((xN − x1)(xi − x1) + (yN − y1)(yi − y1))2

(xN − x1)2 + (yN − y1)2 . (3.38)

We find the keypoint having the maximum value of Ei. The index of that keypoint

is

j = argmax
i∈1,...,N

Ei. (3.39)

We use the sign of the third component of LN × Lj for determining the side of

the line that κj resides and use the multiplication of this sign with the corresponding

error Ej as our third feature.

For calculating the cross product between LN and Lj, we need to extend our Li

vectors which reside in 2D into 3D. We extend them by adding a third component

53

with value 0.

Lextended
j = (Lx,j, Ly,j, 0). (3.40)

Then, the calculation of the cross product between Lextended
N and Lextended

j is done as

Lextended
N × Lextended

j = (xN − x1, yN − y1, 0)× (xj − x1, yj − y1, 0)

= (0, 0, LN,xLj,y − Lj,xLN,y)

= (0, 0, (xN − x1)(yj − y1)− (xj − x1)(yN − y1)). (3.41)

Thus, our third feature becomes

F3 = Ej sgn ((xN − x1) ∗ (yj − y1)− (xj − x1) ∗ (yN − y1)). (3.42)

We use the ratio between the magnitude of the projection of Lj in the direction

of LN and the magnitude of LN as our fourth feature.

F4 =
||pi||
||LN ||

=
(xN − x1)(xi − x1) + (yN − y1)(yi − y1)

(xN − x1)2 + (yN − y1)2 . (3.43)

As fifth and sixth features, we use both x and y coordinates of the mean of the

keypoints belonging to the trajectory. We calculate them as

F5 =
1

N

N∑
i=1

xi, (3.44)

F6 =
1

N

N∑
i=1

yi, (3.45)

respectively, where N is the total number of the keypoints belonging to the trajectory.

54

Color coded filled squares in Figure 3.6 represents the means of the keypoints belonging

to the corresponding trajectories.

Our seventh and eighth features are the time codes of the first and last keypoints

of the trajectory, respectively.

F7 = t1. (3.46)

F8 = tN . (3.47)

We define a path length function over a trajectory τ as

plτ (t) :=
∑
ti≤t

i∈2,...,N

√
(xi − xi−1)2 + (yi − yi−1)2

+
t− tj
tj+1 − tj

√
(xj+1 − xj)2 + (yj+1 − yj)2, (3.48)

where j = argmin
t<ti

i∈2,...,N

(ti − t).

Then, we set our ninth and tenth features as the path length from start of the

trajectory to the half-time

(
tN − t1

2

)
, and the remaining path length, respectively.

F9 = plτ

(
tN − t1

2

)
. (3.49)

F10 = plτ (tN)− plτ

(
tN − t1

2

)
. (3.50)

3.3.6. Bag-of-Trajectories

We calculate features for each sub-trajectory of the trajectories of the video se-

quence. Our problem was comparing two video sequences. It is possible to have differ-

ent number of sub-trajectories for different video sequences. We use the bag-of-words

55

method for getting the same dimension descriptors for different video sequences.

First, we normalize the features of each trajectory on our training data. Then, we

find cluster centers using K-Means clustering method on these data. Later, we assign

each sub-trajectory of the video sequence to these cluster centers. Then, we count the

number of sub-trajectories assigned to each cluster. We use this histogram to describe

the video sequence.

3.3.7. Classification

After extracting bag-of-trajectories histograms, we use the descriptors of the

training data to train a supervised classifier. We use k-NN and SVM as classifiers.

When a new video sequence is to be classified, first the bag-of-trajectories histogram

of the sequence is found using the previously calculated cluster centers. Then, we find

the label of this histogram using the trained classifier.

In the next section, we give information about the datasets used, the experiment

setups, and the results of the experiments.

56

4. EXPERIMENTS

4.1. Datasets

In this study, we used three different datasets to measure the performance of our

method under different conditions. The details of these datasets are explained in this

section.

4.1.1. KTH Human Action Dataset

KTH Human Action Dataset was presented in 2004 by Schuldt et al. [2]. There

are six actions in this dataset:

• Walking

• Jogging

• Running

• Boxing

• Hand waving

• Hand clapping

All actions are performed 12-16 times by 25 subjects. The resolution of the

sequences is 160 x 120 pixels having a length of four seconds on average. They are

filmed at 25 frames per second over homogeneous backgrounds with a static camera.

The dataset consists of a total of 2391 video sequences in four different scenarios:

• Outdoors

• Outdoors with scale variation

• Outdoors with different clothes

• Indoor

57

Figure 4.1. Sample frames from the KTH dataset [2]

58

There are a total of 227637 frames in the dataset. The shortest sequence has

24 frames, and the longest sequence has 362 frames. The average number of frames

among all sequences is approximately 95.

The authors divided the dataset into three subsets with respect to the subjects:

a training set including the sequences of eight persons, a validation set also including

the sequences of eight persons, and a test set including the sequences of nine different

persons.

4.1.2. University of Rochester Activities of Daily Living Dataset

University of Rochester Activities of Daily Living Dataset (URADL) was intro-

duced to the literature in 2009 by the work of Messing et al. [3].

The dataset includes 10 actions, which are

• Answering a phone

• Chopping a banana

• Dialing a phone

• Drinking water

• Eating banana

• Eating snack chips

• Looking up a phone number in a phone book

• Peeling a banana

• Using silverware

• Write a phone number on a white board

The activities are performed by five different people. The subjects are selected to have

different shapes, sizes, genders, and ethnicities. Every performer repeats each activity

three times. Hence, the dataset has a total of 150 videos.

Each video has a resolution of 1280 x 720 pixels. They are filmed at 30 frames

59

Figure 4.2. Sample frames from the URADL dataset [3]

60

per second. A tripod-mounted camera located approximately two meters away from

the scene is used for shooting.

The dataset consists of 72729 frames, having approximately 485 frames in average

per sequence. The shortest video sequence has 104 frames, and the longest one has

1506.

The authors did not separate a subset of the dataset as a test set, instead they

used leave one person out method for each person, and reported the average accuracy.

4.1.3. WeCare Dataset

As a part of this work, we introduce a new dataset for the recognition of human

actions, called WeCare. The dataset is collected as a part of a wireless sensor network

project to implement an elderly care system. It is the abbreviation of Wireless Sensor

Network Enabled Care [4]. WeCare is a multi-modal dataset, other than the video

data it also includes accelerometer data. The primary objective of this dataset is to

advance the fall detection module of the system. Hence, it is designed to include a set

of actions that are expected to be confused with fall either by accelerometer data or

video data.

Every video in the dataset is a series of actions performed continuously. There

are 12 actions in the sequence. The ordered list of action sequences in a video is

(i) Walking from the outside to the front of the armchair

(ii) Jumping

(iii) Sitting on the armchair

(iv) Standing up from the armchair

(v) Walking to the front of the gym mat

(vi) Lying on the gym mat

(vii) Standing up from the gym mat

(viii) Walking to the front of the armchair

61

(ix) Falling onto the armchair

(x) Standing up from the armchair

(xi) Walking to the front of the gym mat

(xii) Falling onto the gym mat

Even though there are 12 action sequences in a video, eight distinct actions exist.

The set of actions in the dataset with corresponding action sequences are

• Walking: action sequences i, v, viii, xi

• Jumping: action sequence ii

• Sitting on the armchair: action sequence iii

• Standing up from the armchair: action sequences iv, x

• Lying on the gym mat: action sequence vi

• Standing up from the gym mat: action sequence vii

• Falling onto the armchair: action sequence ix

• Falling onto the gym mat: action sequence xii

The data of the WeCare dataset was collected using a single 3-axis accelerometer

located at the chest of the performer, and two cameras surveying the scene from two

different viewing angles. Network cameras were used in collecting the dataset. For

reducing the network load, the resolutions of the videos were set to 320 x 240 pixels.

The frame rate is 20 frames per second.

There are six performers in the dataset. Every performer repeated the previously

defined series of actions 10 times. Therefore, this resulted in 120 action sequences per

performer, and 720 action sequences in total.

The sequences of two of the performers are left out to be used as a test set. Hence,

there are 240 sequences for testing. The sequences of the other four performers are

used for training and validation. The total number of sequences left for training and

validation sets is 480.

62

Figure 4.3. Sample frames from the WeCare dataset [4]

63

4.2. Experiment Setup

In this section, we give information about some basic methods and tools that are

used in the validation of our method. Then, we describe the training, validation and

test sets of the datasets we use. At the end, we give information about the parameters

and the tested parameter ranges for each of the dataset.

In K-fold cross validation, the dataset is divided into K equal parts. Then, we

use one part for forming the validation set and combine the remaining K − 1 parts for

forming the training set. Doing this for every distinct part, we get K many different

validation and training set pairs. We do the training on the formed training set and

validate the method on the related validation set. Then, we get K many validation

results which we use together for validating the method. We use stratification on

forming the folds, for maintaining the class proportions on each fold.

Confusion matrix is a matrix which shows relations between the predictions and

actual classes. An entry ai,j of a confusion matrix shows the number of samples which

actually belong to class j but predicted as class i. It is easy to see if the system confuses

two classes with each other using a confusion matrix. Table 4.1 shows the structure of

a confusion matrix.

Table 4.1. Confusion matrix

Actual Class

C1 C2 · · · Cn

P
re

d
ic

ti
on

C1 a1,1 a1,2 · · · a1,n

C2 a2,1 a2,2 · · · a2,n

...
...

...
. . .

...

Cn an,1 an,2 · · · an,n

Accuracy is the ratio of correctly classified sample count to the total number of

samples. It can be calculated from the confusion matrix by dividing the trace of the

64

confusion matrix to the sum of all values in it. It is equivalent to 1-error rate.

4.2.1. Training, Validation and Test sets

KTH dataset: Schuldt et al. [2] separated the KTH dataset into training, valida-

tion and test sets according to the persons. Their training set has eight persons which

are 11, 12, 13, 14, 15, 16, 17, 18; validation set also has eight persons which are 19, 20,

21, 23, 24, 25, 01, 04; and the test set has nine persons which are 22, 02, 03, 05, 06,

07, 08, 09, 10. We combined the training and validation sets of Schuldt et al. and used

10-fold cross validation on this combined set. We leave the test set as is and used it

on our tests which are reported in Section 4.4.

URADL dataset: Messing et al. [3] used leave-one-person out method in their

tests on the URADL dataset and repeated this for each person. There are five persons

in the dataset, so they have five folds. They did not separate a test set, since the

amount of data is relatively small. We use the setup of Messing et al. as is in our tests.

WeCare dataset: We separate the six persons of the WeCare dataset into two

groups: a combined training and validation set of four persons, and a test set of two

persons. We use 10-fold cross validation on the combined training and validation set.

We report our tests on the test set in Section 4.4.

4.2.2. Parameters

Recalling from Section 3.2, we have six parameters for the Generic Keypoint

Tracker which are:

• w of Equation 3.5, window size for trajectory descriptor calculation

• β of Equation 3.22, the minimum required spread

• σ of Equation 3.23, the minimum required sample count

• ν of Equation 3.24, the maximum allowed time since last observation

• ρ of Equation 3.25, the minimum age to be eliminated

65

• ε of Equation 3.11, the maximum allowed spatial position change of a keypoint

between consecutive frames

• λ of Equation 3.14, threshold for matching ratio

We also have parameters for feature extraction and learning:

• ω of Equation 3.33, the maximum number of keypoints for a sub-trajectory

• Normalization method before bag-of-trajectories

• Cluster count K for K-means of bag-of-trajectories

• SVM cost parameter C or k-NN k value depending on the method. Note that,

all SVM tests in this work use χ2 kernel.

For normalization before bag-of-trajectories, we tried two different normalization

methods:

• Student’s t-statistic normalization: First, mean and standard deviation values for

each of the ten features of the trajectories in the training data are found. Then,

from each trajectory feature the corresponding mean value is subtracted and the

result is divided by the corresponding standard deviation.

• Min-max normalization: First, minimum and maximum values for each of the

ten features of the trajectories in the training data are found. Then, from each

trajectory feature the corresponding minimum value is subtracted and the result

is divided by the difference of corresponding maximum and minimum values.

Table 4.2 presents the tried feature extraction, learning and the Generic Keypoint

Tracker parameters for validation.

4.3. Validation and Parameter Selection

In this section, we discuss the effects of different pairs of parameters on the ac-

curacy. In all our experiments, we use SURF with Hessian threshold 300, two octaves

and two octave layers for keypoint detection and descriptor extraction. First, we inves-

66

Table 4.2. Validation parameters

Dataset Parameter Name Parameter Values

A
ll

d
a
ta

se
ts

Sub-trajectory length ω 2, 4, 5, 8, 10

Normalization t-statistic, min-max

Cluster count K
1000, 2000, 3000, 4000, 5000,

6000, 7000, 8000, 9000, 10000

SVM cost C
0.1, 0.4, 1.6, 6.4, 25.6, 102.4, 409.6,

1638.4, 6553.6, 26214.4, 104857.6

k-NN k All integers between 1 and 32

w 1

λ 1

K
T

H

β 15

σ 1

ν 2

ρ 3

ε 45

U
R

A
D

L

β 40, 60

σ 1, 5, 8, 10, 12, 15

ν 0, 2, 4, 5

ρ 3, 5, 8, 12, 15

ε 40

W
e
C

a
re

β 30

σ 1

ν 2

ρ 3

ε 60

67

tigate the effects of the keypoint tracker parameters. The experiments on the keypoint

tracker parameters are done on the URADL dataset. We try different combinations of

keypoint tracker parameters to see their cross effects on accuracy. The experience we

gain at these experiments help us fixing the parameter sets for learning parameters.

In addition to the experiments on keypoint parameters, we also have experi-

ments on learning parameters. All cross-combinations of ten different values of bag-

of-trajectories word count, five different values of maximum sub-trajectory lengths,

and two types of normalizations are experimented on all of the three datasets. For

all parameter combinations, SVMs are trained for 11 values of the cost parameter and

k-NNs are trained with 32 different k values. Thus, for a fixed set of keypoint tracker

parameters, we have 4300 experiments on learning parameters for each dataset. We

performed a total of 23994 experiments for investigating the effects of the parameters.

4.3.1. Effects of the Keypoint Tracker Parameters

In this section, we investigate the effects of the keypoint tracker parameters on

accuracy. SVM with χ2 kernel is used for obtaining the results of this section. The

cost parameter of SVM is fixed to C = 1.6. Student’s t-statistic normalization is

used in normalization step. The maximum number of keypoints for a sub-trajectory

is fixed to ω = 4. The minimum required spread β and the maximum allowed spatial

position change of a keypoint between consecutive frames ε are fixed to 40. The bag-

of-trajectories cluster count is fixed to K = 1000, the minimum age to be eliminated

is fixed to ρ = 15 in the majority of the tests. For those tests that these last two

parameters are not fixed, their values are additionally denoted in the related tests.

Different values of the minimum required sample count σ, and the maximum allowed

time since the last observation ν are used in the tests.

When we have smaller ν, using larger and smaller σ values perform similar to

each other with a larger σ being slightly favorable. When we relax the constraint on

ν by letting it obtain larger values, lower values of σ perform better than the higher

values. For smaller values of ν, the accuracy increases very slowly when σ increases but

68

this increase results in a rapid decrease. For moderate values of ν, having too small or

too large σ results in degraded accuracy. Figures 4.4 and 4.5 shows these phenomena.

The related results can also be observed in Tables A.1 and A.2.

Figure 4.4. The effect of ν and σ to accuracy

Figure 4.5. The effect of σ and ν to accuracy

For smaller values of σ, increasing bag-of-trajectories size is preferable because of

the increase in accuracy. However, as σ gets larger increasing bag-of-trajectories size

does not necessarily mean a higher accuracy; in fact the accuracy starts to decrease

after some value of K. In Figure 4.6, we show a sample of this behavior. In addition,

69

Table A.3 shows the numerical values associated with Figure 4.6.

Figure 4.6. The effect of cluster count K and σ to accuracy

Figure 4.7 and Table A.4 display the effect of the change in ρ on accuracy. Ma-

nipulation of the parameter ρ induces a small but insignificant variance on accuracy.

Figure 4.7. The effect of ρ to accuracy

4.3.2. Effects of the Learning Parameters

In this section, we investigate the cross effects of the learning parameters on

the accuracy. We show the results on the validation set of the URADL dataset to

70

be consistent with the results related to the effects of the keypoint tracker parame-

ters. We fixed the keypoint tracker parameters as w = 1, β = 40, σ = 10, ν = 2,

ρ = 15, ε = 40, λ = 1 in these tests. Then, we do tests for cross combinations

of ω ∈ {2, 4, 5, 8, 10}, K ∈ {1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000},

normalization ∈ {t-statistic,min-max}.

We try SVM with cost parameter C ∈ {0.1, 0.4, 1.6, 6.4, 25.6, 102.4, 409.6,

1638.4, 6553.6, 26214.4, 104857.6}, we also try k-NN with k ∈ {1, . . . , 32}. We see that

Figure 4.8. The effect of cluster count K and k-NN k value to accuracy

if we use k-NN for training, an increase in bag-of-trajectories size means a decrease in

accuracy for almost all k values we tried. In Figure 4.8, we show this phenomenon.

Moreover, we also see a drop in accuracy when the k value increases. If we investigate

further, we see a peek in the accuracy at k = 7, then it decreases again for further

values. In addition, we show the numerical values of these accuracies in Table A.5.

When we cross compare the change in bag-of-trajectories size and sub-trajectory

length, we see that increasing the maximum sub-trajectory length threshold does not

always mean an increase in accuracy. In Figure 4.9, we show this comparison. For

some values of K, greater sub-trajectory length results in lower accuracy. In addition,

increasing K not necessarily increases accuracy. Table A.6 gives detailed values of this

comparison.

71

Figure 4.9. The effect of cluster count K and sub-trajectory length ω to accuracy

Figure 4.10. The effect of cluster count K and normalization to accuracy

We also observe that t-statistic normalization is better then min-max normaliza-

tion for any value of bag-of-trajectory size when we use SVM for training. Figure 4.10

shows this result. Here, the value of SVM cost is set to 1.6 and sub-trajectory length

is set to 4. Table A.7 shows some accuracies of these experiments. If we change the

sub-trajectory length, we see that for some values of sub-trajectory length, min-max

normalization can over perform t-statistic normalization. In Figure 4.11, it is seen that

for a maximum sub-trajectory length of eight, min-max normalization is better. Table

A.11 shows the related accuracies.

72

Figure 4.11. The effect of sub-trajectory length ω and normalization to accuracy

For low values of SVM cost, increasing bag-of-trajectory size is preferable since

it means an increase in accuracy. However, when SVM cost exceeds a value, in our

case 1.6, increasing bag-of-trajectories is not a good choice. In Figure 4.12, we also see

increasing SVM cost further does not bring any increase in accuracy. Table A.9 show

the comparison of bag-of-trajectory size and SVM cost parameters.

Figure 4.12. The effect of cluster count K and SVM cost C to accuracy

For almost all k values for k-NN, smaller sub-trajectory lengths are preferable. In

Figure 4.13, we show this effect for some k values and in Table A.8 we give numerical

values.

73

Figure 4.13. The effect of k-NN k value and sub-trajectory length ω to accuracy

Unlike the SVM case, min-max normalization gives better accuracies than t-

statistic normalization with k-NN training. We give detailed information in Figure

4.14 and Table A.10.

Figure 4.14. The effect of k-NN k value and normalization to accuracy

The change in sub-trajectory length does not result in a uniform change in ac-

curacy. This trend can also be observed in Figure 4.15. The saturation point of SVM

cost parameter in terms of accuracy differs when using different sub-trajectory lengths.

However, the saturation point of accuracy never requires the SVM cost parameter to be

74

larger than approximately 6.4. The details of the results are given in Table A.12. For

Figure 4.15. The effect of SVM cost C and sub-trajectory length ω to accuracy

low values of SVM cost, t-statistic normalization is better than min-max normalization.

When the SVM cost increases, min-max normalization has a more rapid increase than

t-statistic normalization and outperforms it on middle values. Nevertheless, t-statistic

normalization outperforms min-max normalization at the saturation point. Figure 4.16

and Table A.13 shows this phenomenon.

Figure 4.16. The effect of SVM cost C and normalization to accuracy

75

4.4. Recognition results on the test sets

In this section, we select parameter sets based on our tests on validation sets

for each dataset and use the selected parameters during the testing stage. We select

the parameter sets giving the maximum validation accuracy. Then, we used those

parameters to train the system on the combined set of training and validation sets.

For KTH and WeCare datasets, the results that we report in this section are obtained

on test sets of the related dataset. However, for making our results comparable to the

results of Messing et al. [3], we report the results of the URADL dataset as the average

of each fold of the validation set.

The test set results of the KTH dataset are obtained using the parameters: w = 1,

β = 15, σ = 1, ν = 2, ρ = 3, ε = 45, λ = 1, ω = 4, normalization=t-statistic,

K = 6000, C = 1.6. The training is done using SVM with χ2 kernel. We get 87.25 per

cent accuracy using these parameters. The confusion matrix of the test results of the

KTH dataset is given in Table 4.3.

Table 4.3. Confusion matrix of the results on the test set of the KTH dataset. The

classes are C1: walking, C2: jogging, C3: running, C4: boxing, C5: hand clapping, C6:

hand waving

Actual Class

C1 C2 C3 C4 C5 C6

P
re

d
ic

ti
on

C1 130 8 0 0 0 0

C2 14 126 26 0 0 0

C3 0 10 118 0 0 0

C4 0 0 0 139 15 5

C5 0 0 0 4 129 28

C6 0 0 0 0 0 111

76

As can be seen from the confusion matrix of the KTH results, jogging action is

confused with walking and running actions. Running action is confused with the jogging

action. These results are expected since they do not differ very much except from their

speed. The boxing action is confused with the hand clapping action, and vice versa. In

addition, the hand clapping and the hand waving actions are also confused with each

other. These results arise from the fact that they involve lots of arm movement.

The reported results of the URADL dataset are obtained using the parameters:

w = 1, β = 40, σ = 10, ν = 4, ρ = 15, ε = 40, λ = 1, ω = 4, normalization=t-statistic,

K = 1000, C = 1.6. The training is done using SVM with χ2 kernel. We get 88

per cent accuracy with these parameters. The confusion matrix of the results of the

URADL dataset is given in Table 4.4.

The test set results of the WeCare dataset are obtained using the parameters:

w = 1, β = 30, σ = 1, ν = 2, ρ = 3, ε = 60, λ = 1, ω = 8, normalization=min-max,

K = 2000, C = 1.6. The training is done using SVM with χ2 kernel. We get 98.75

per cent accuracy using this setting. The confusion matrix of the test results of the

WeCare dataset is given in Table 4.5. As can be seen from the confusion matrix falling

onto the armchair action is confused with sitting on the armchair action and lying on

the gym mat action is confused with falling onto the gym mat and walking actions.

77

Table 4.4. Confusion matrix of the results on the URADL dataset. The classes are

C1: answer phone, C2: chop banana, C3: dial phone, C4: drink water, C5: eat

banana, C6: eat snack, C7: lookup in phonebook, C8: peel banana, C9: use

silverware, C10: write on whiteboard

Actual Class

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

P
re

d
ic

ti
on

C1 15 0 1 0 0 0 0 0 0 0

C2 0 14 0 0 0 0 0 0 0 0

C3 0 1 14 0 2 0 0 1 0 0

C4 0 0 0 14 0 0 0 1 0 0

C5 0 0 0 0 12 0 0 2 0 0

C6 0 0 0 0 0 12 0 2 0 0

C7 0 0 0 0 0 2 14 0 1 0

C8 0 0 0 1 1 1 0 8 0 0

C9 0 0 0 0 0 0 1 1 14 0

C10 0 0 0 0 0 0 0 0 0 15

78

Table 4.5. Confusion matrix of the results on the test set of the WeCare dataset. The

classes are C1: walking, C2: jumping, C3: sitting on the armchair, C4: standing up

from the armchair, C5: lying on the gym mat, C6: standing up from the gym mat,

C7: falling onto the armchair, C8: falling onto the gym mat

Actual Class

C1 C2 C3 C4 C5 C6 C7 C8

P
re

d
ic

ti
on

C1 80 0 0 0 1 0 0 0

C2 0 20 0 0 0 0 0 0

C3 0 0 20 0 0 0 1 0

C4 0 0 0 40 0 0 0 0

C5 0 0 0 0 18 0 0 0

C6 0 0 0 0 0 20 0 0

C7 0 0 0 0 0 0 19 0

C8 0 0 0 0 1 0 0 20

79

5. CONCLUSIONS

In this study, we present a new system for computer vision-based recognition of

human actions. The proposed system uses videos as input. Our approach is invariant

of the appearance of the person, partial occlusions including self-occlusions and some

viewpoint changes. Even though it does not require background subtraction and accu-

rate localization of people, it can benefit from these. In addition, it is robust against

temporal length variations, since we normalize the trajectories against time. Further-

more, it is invariant of the location of the action and zoom levels, since the trajectories

are normalized against spatial position.

The system has three main steps for recognizing actions in videos. First, we

track keypoints, also known as interest points, throughout time. The tracking stage

has major challenges. It must be robust and handle noise. The trajectories of tracked

keypoints are used for interpreting the human action in the image sequence.

In the second step, features from videos are extracted. First, we divide trajec-

tories into smaller parts, which we call sub-trajectories. We propose ten features for

describing a trajectory. Using the trajectory features, sub-trajectories are categorized

into clusters. Then, the clusters of these sub-trajectories are used for describing an

image sequence. The used image sequence descriptor is the normalized histogram of

the clusters of trajectories.

At the final step, the proposed system uses the descriptors of image sequence in

a supervised learning approach. The system is trained using some ground truth videos

and is tested on other videos.

Using different combinations of the keypoint tracker parameters result in a wide

range of recognition accuracies. Depending on different parameter sets, we can have

shorter, longer, noisy, a few or a lot of trajectories. These parameters should be fine

tuned because of their effect on the recognition rate.

80

In addition, we introduce a new dataset, called WeCare, to the human action

recognition literature which is focused on elderly care systems. The main objective of

the dataset is to detect falls of humans. For attaining this goal, some other actions

that can be confused with the falling action are included in the dataset. The proposed

dataset is multi modal. In addition to video data, the dataset contains accelerom-

eter data. Thus, the actions in the dataset are chosen considering both video and

accelerometer data. However, we have not used the accelerometer data in this study.

We use three datasets including our newly proposed one for evaluating our ap-

proach. We chose the other two datasets according to their use in the literature. The

KTH dataset is a widely used dataset for human action recognition purposes in the

literature and the last dataset used in our work, URADL dataset, is used in a similar

trajectory based work [3] in the literature.

The performance of our approach is comparable to the methods in the literature.

We have 87.25 per cent accuracy on the KTH dataset. The first result using the KTH

dataset has an accuracy of 71.72 percent by Schuldt et al. [2]. Niebles et al. [25] has

81.5 per cent accuracy, Laptev et al. [57] has an accuracy of 91.8 per cent, and Messing

et al. [3] has 74 per cent accuracy.

We have 88 per cent accuracy on the URADL dataset. Messing et al. [3] tried

three methods on this dataset. Their methods have 63 per cent, 67 per cent, and 89

per cent accuracies. However, the last method they used is highly dependent on the

position of the action on the frame and it requires the position of the face.

Our performance on the WeCare dataset is 98.75 per cent. In the future, we need

to add more challenging scenarios to the WeCare dataset for testing our work.

As future directions, the elimination module of the Generic Keypoint Tracker

must be made more robust. The elimination rate of significant trajectories must be

reduced and the elimination rate of noisy trajectory must be increased. The recognition

performance must be improved. Human action detection must be done in cooperation

81

with the current human action recognition system. This way, the need for isolated

single actioned videos must be overcome.

The system must be made invariant of viewpoint changes. Currently, the system

needs to be trained with action samples from different viewpoints for recognition of

the same action from different viewpoints. The concept of trajectories with 3D spatial

positions must be investigated. This way, we expect to make the system invariant of

viewpoint changes.

New trajectory features must be extracted and their performance to the current

trajectory features must be evaluated. Effects of different subsets of the current tra-

jectory features must be investigated. The use of a subset of the features is expected

to bring the system performance closer to real time.

The system runs close to real time. Improvements and optimizations must be

done to enable it to run in real time.

82

APPENDIX A: TABLES OF THE VALIDATION RESULTS

In this appendix, we present the numerical values of the validation results reported

in Section 4.3.

Table A.1. Change of validation results relative to ν and σ

σ

8 12

ν

2 83.33% 84.00%

4 82.00% 78.67%

5 86.00% 79.33%

8 82.67% 78.67%

10 83.33% 80.00%

Table A.2. Change of validation results relative to σ and ν

ν

2 4 5

σ

5 82.00% 78.00% 75.33%

8 83.33% 82.00% 86.00%

10 83.33% 88.00% 88.00%

12 84.00% 78.67% 79.33%

15 76.00% 76.00% 71.33%

83

Table A.3. Change of validation results relative to K and σ

σ

5 8 10

K

1000 82.00% 83.33% 83.33%

2000 82.00% 84.67% 86.00%

3000 83.33% 84.00% 82.67%

Table A.4. Change of validation results relative to ρ

ρ

5 8 10 12 15

ν 2 80.00% 82.67% 80.67% 78.67% 82.00%

Table A.5. Change of validation results relative to K and k

k-NN k value

1 7 13 19 25 31

B
ag

-o
f-

tr
a
je

ct
or

ie
s

si
ze

1000 68.00% 70.00% 66.67% 61.33% 53.33% 52.00%

2000 70.67% 71.33% 67.33% 63.33% 59.33% 52.67%

3000 68.67% 69.33% 66.67% 60.00% 56.00% 46.00%

4000 66.67% 68.00% 65.33% 60.00% 57.33% 47.33%

5000 62.67% 62.00% 58.00% 55.33% 53.33% 46.00%

6000 61.33% 61.33% 56.00% 55.33% 50.00% 42.00%

7000 62.67% 58.67% 52.67% 51.33% 49.33% 39.33%

8000 61.33% 59.33% 54.67% 48.67% 44.00% 36.67%

9000 57.33% 58.67% 52.00% 48.67% 42.67% 33.33%

10000 56.67% 56.67% 52.00% 43.33% 36.00% 28.67%

84

Table A.6. Change of validation results relative to K and ω

Sub-trajectory length

2 4 5 8 10
B

ag
-o

f-
tr

a
je

ct
or

ie
s

si
ze

1000 83.33% 83.33% 84.00% 82.00% 82.67%

2000 83.33% 86.00% 84.00% 84.00% 84.67%

3000 85.33% 82.67% 84.00% 84.00% 84.67%

4000 83.33% 82.00% 82.00% 82.67% 83.33%

5000 82.67% 82.67% 82.67% 84.00% 84.00%

6000 83.33% 82.67% 83.33% 84.00% 84.00%

7000 82.00% 83.33% 84.00% 84.00% 84.00%

8000 82.00% 84.00% 83.33% 82.67% 83.33%

9000 82.00% 83.33% 83.33% 82.67% 82.00%

10000 82.00% 82.00% 82.67% 82.67% 83.33%

Table A.7. Change of validation results relative to K and normalization

Normalization

min-max t-statistic

B
ag

-o
f-

tr
a
je

ct
or

ie
s

si
ze

1000 81.33% 83.33%

2000 82.00% 86.00%

3000 82.00% 82.67%

4000 80.67% 82.00%

5000 81.33% 82.67%

6000 80.67% 82.67%

7000 81.33% 83.33%

8000 81.33% 84.00%

9000 78.67% 83.33%

10000 81.33% 82.00%

85

Table A.8. Change of validation results relative to k and ω

Sub-trajectory length

2 4 5 8 10

k
-N

N
k

va
lu

e

1 72.00% 68.00% 68.67% 62.67% 59.33%

3 72.00% 69.33% 67.33% 68.00% 65.33%

5 76.67% 68.67% 70.67% 64.67% 66.67%

7 75.33% 70.00% 72.00% 67.33% 66.67%

9 72.67% 67.33% 68.67% 66.00% 66.67%

11 70.00% 70.00% 64.00% 62.67% 63.33%

13 69.33% 66.67% 66.00% 64.00% 63.33%

15 66.00% 64.67% 62.67% 64.67% 63.33%

17 68.67% 61.33% 64.00% 64.00% 56.67%

19 67.33% 61.33% 62.67% 61.33% 54.67%

21 66.67% 59.33% 58.67% 57.33% 50.00%

23 62.00% 57.33% 58.67% 54.67% 52.67%

25 61.33% 53.33% 56.00% 54.00% 52.00%

27 58.00% 58.00% 58.67% 56.00% 52.67%

29 57.33% 54.00% 55.33% 52.67% 50.00%

31 51.33% 52.00% 51.33% 48.67% 43.33%

86

Table A.9. Change of validation results relative to K and C

SVM cost parameter

0.1 0.4 1.6 6.4 25.6

B
ag

-o
f-

tr
a
je

ct
or

ie
s

si
ze

1000 71.33% 76.67% 83.33% 83.33% 83.33%

2000 72.67% 80.00% 86.00% 86.00% 86.00%

3000 73.33% 82.00% 82.67% 82.67% 82.67%

4000 74.00% 81.33% 82.00% 82.00% 82.00%

5000 74.00% 82.00% 82.67% 82.67% 82.67%

6000 76.00% 80.00% 82.67% 82.67% 82.67%

7000 74.00% 80.00% 83.33% 83.33% 83.33%

8000 74.00% 81.33% 84.00% 84.00% 84.00%

9000 74.67% 80.00% 83.33% 83.33% 83.33%

10000 75.33% 81.33% 82.00% 82.00% 82.00%

87

Table A.10. Change of validation results relative to k and normalization

Normalization

min-max t-statistic

k
-N

N
k

va
lu

e

1 70.67% 68.00%

3 72.00% 69.33%

5 72.67% 68.67%

7 72.67% 70.00%

9 72.00% 67.33%

11 67.33% 70.00%

13 68.67% 66.67%

15 67.33% 64.67%

17 67.33% 61.33%

19 66.00% 61.33%

21 62.00% 59.33%

23 62.67% 57.33%

25 64.00% 53.33%

27 61.33% 58.00%

29 59.33% 54.00%

31 58.00% 52.00%

88

Table A.11. Change of validation results relative to ω and normalization

Normalization

min-max t-statistic

ω

2 81.33% 83.33%

4 81.33% 83.33%

5 82.00% 84.00%

8 84.00% 82.00%

10 82.00% 82.67%

Table A.12. Change of validation results relative to C and ω

Sub-trajectory length

2 4 5 8 10

S
V

M
co

st
p
ar

am
et

er

0.1 72.00% 71.33% 72.00% 71.33% 72.00%

0.4 78.67% 76.67% 78.00% 78.67% 77.33%

1.6 83.33% 83.33% 84.00% 82.00% 82.67%

6.4 83.33% 83.33% 84.00% 83.33% 82.67%

25.6 83.33% 83.33% 84.00% 83.33% 82.67%

102.4 83.33% 83.33% 84.00% 83.33% 82.67%

409.6 83.33% 83.33% 84.00% 83.33% 82.67%

1638.4 83.33% 83.33% 84.00% 83.33% 82.67%

6553.6 83.33% 83.33% 84.00% 83.33% 82.67%

26214.4 83.33% 83.33% 84.00% 83.33% 82.67%

104857.6 83.33% 83.33% 84.00% 83.33% 82.67%

89

Table A.13. Change of validation results relative to C and normalization

Normalization

min-max t-statistic

S
V

M
co

st
p
ar

am
et

er

0.1 68.67% 71.33%

0.4 79.33% 76.67%

1.6 81.33% 83.33%

6.4 81.33% 83.33%

25.6 81.33% 83.33%

102.4 81.33% 83.33%

409.6 81.33% 83.33%

1638.4 81.33% 83.33%

6553.6 81.33% 83.33%

26214.4 81.33% 83.33%

104857.6 81.33% 83.33%

90

REFERENCES

1. Bay, H., A. Ess, T. Tuytelaars and L. V. Gool, “Speeded-Up Robust Features

(SURF)”, Computer Vision and Image Understanding , Vol. 110, No. 3, pp. 346–

359, 2008.

2. Schuldt, C., I. Laptev and B. Caputo, “Recognizing Human Actions: A Local SVM

Approach”, Proceedings of the 17th International Conference on Pattern Recogni-

tion, 2004. ICPR 2004., Vol. 3, pp. 32–36 Vol.3, Ieee, 2004.

3. Messing, R., C. Pal and H. Kautz, “Activity recognition using the velocity histories

of tracked keypoints”, IEEE 12th International Conference on Computer Vision,

pp. 104–111, Sep. 2009.

4. Alemdar, H. O., Y. E. Kara, M. O. Ozen, G. R. Yavuz, O. D. Incel, L. Akarun

and C. Ersoy, “A robust multimodal fall detection method for ambient assisted

living applications”, 2010 IEEE 18th Signal Processing and Communications Ap-

plications Conference, pp. 204–207, IEEE, Apr. 2010.

5. Hu, W., T. Tan, L. Wang and S. Maybank, “A Survey on Visual Surveillance of

Object Motion and Behaviors”, IEEE Transactions on Systems, Man and Cyber-

netics, Part C (Applications and Reviews), Vol. 34, No. 3, pp. 334–352, 2004.

6. Moeslund, T. B., A. Hilton and V. Krüger, “A survey of advances in vision-based

human motion capture and analysis”, Computer Vision and Image Understanding ,

Vol. 104, No. 2-3, pp. 90–126, 2006.

7. Poppe, R., “A survey on vision-based human action recognition”, Image and Vision

Computing , Vol. 28, No. 6, pp. 976–990, 2010.

8. Poppe, R., “Vision-based human motion analysis: An overview”, Computer Vision

and Image Understanding , Vol. 108, No. 1-2, pp. 4–18, 2007.

91

9. Bobick, A. and J. Davis, “The recognition of human movement using temporal tem-

plates”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 23,

No. 3, pp. 257–267, Mar. 2001.

10. Weinland, D. and E. Boyer, “Action recognition using exemplar-based embedding”,

IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–7, Jun. 2008.

11. Efros, A. A., A. C. Berg, G. Mori and J. Malik, “Recognizing action at a distance”,

Proceedings Ninth IEEE International Conference on Computer Vision, Vol. 2, No.

October, pp. 726–733, 2003.

12. Tran, D. and A. Sorokin, “Human activity recognition with metric learning”, Com-

puter Vision–ECCV 2008 , , No. Section 2, pp. 548–561, 2008.

13. Lucas, B. and T. Kanade, “An iterative image registration technique with an ap-

plication to stereo vision”, International joint conference on artificial intelligence,

Vol. 3, pp. 674–679, Citeseer, 1981.

14. Gorelick, L., M. Blank, E. Shechtman, M. Irani and R. Basri, “Actions as space-

time shapes.”, IEEE transactions on pattern analysis and machine intelligence,

Vol. 29, No. 12, pp. 2247–2253, Dec. 2007.

15. Batra, D., T. Chen and R. Sukthankar, “Space-Time Shapelets for Action Recog-

nition”, IEEE Workshop on Motion and video Computing , pp. 1–6, Jan. 2008.

16. Ogata, T., W. Christmas, J. Kittler and S. Ishikawa, “Improving human activity

detection by combining multi-dimensional motion descriptors with boosting”, 18th

International Conference on Pattern Recognition (ICPR’06), pp. 295–298, 2006.

17. Laptev, I., “On Space-Time Interest Points”, International Journal of Computer

Vision, Vol. 64, No. 2-3, pp. 107–123, Sep. 2005.

18. Oikonomopoulos, A., I. Patras and M. Pantic, “Spatiotemporal salient points for

visual recognition of human actions.”, IEEE transactions on systems, man, and

92

cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and

Cybernetics Society , Vol. 36, No. 3, pp. 710–9, Jun. 2006.

19. Dollar, P., V. Rabaud, G. Cottrell and S. Belongie, “Behavior Recognition

via Sparse Spatio-Temporal Features”, IEEE International Workshop on Visual

Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 65–72,

2005.

20. Willems, G., T. Tuytelaars and L. Van Gool, “An efficient dense and scale-invariant

spatio-temporal interest point detector”, Computer Vision–ECCV 2008 , pp. 650–

663, 2008.

21. Wang, H., M. Ullah, A. Kläser, I. Laptev and C. Schmid, “Evaluation of local

spatio-temporal features for action recognition”, British Machine Vision Confer-

ence, 2009.

22. Sun, J., X. Wu, S. Yan, L. Cheong, T. Chua and J. Li, “Hierarchical spatio-

temporal context modeling for action recognition”, Computer Vision and Pattern

Recognition, 2009. CVPR 2009. IEEE Conference on, pp. 2004–2011, 2009.

23. Lowe, D. G., “Distinctive Image Features from Scale-Invariant Keypoints”, Inter-

national Journal of Computer Vision, Vol. 60, No. 2, pp. 91–110, 2004.

24. Viola, P. and M. Jones, “Robust real-time object detection”, International Journal

of Computer Vision, Vol. 57, No. 2, pp. 137–154, 2002.

25. Niebles, J. C., H. Wang and L. Fei-Fei, “Unsupervised Learning of Human Action

Categories Using Spatial-Temporal Words”, International Journal of Computer

Vision, Vol. 79, No. 3, pp. 299–318, Mar. 2008.

26. Stauffer, C. and W. E. L. Grimson, “Adaptive background mixture models for

real-time tracking”, IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, pp. 246–252, 1999.

93

27. McKenna, S. J., S. Jabri, Z. Duric, A. Rosenfeld and H. Wechsler, “Tracking

Groups of People”, Computer Vision and Image Understanding , Vol. 80, pp. 42–

56, 2000.

28. Haritaoglu, I., D. Harwood and L. S. Davis, “W4: Real-Time Surveillance of Peo-

ple and Their Activities”, IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 22, No. 8, pp. 809–830, 2000.

29. Lipton, A. J., H. Fujiyoshi and R. S. Patil, “Moving Target Classification and

Tracking from Real-time Video”, IEEE Workshop on Applications of Computer

Vision, pp. 8–14, 1998.

30. Paragios, N. and R. Deriche, “Geodesic Active Contours and Level Sets for the De-

tection and Tracking of Moving Objects”, IEEE Transactions on Pattern Analysis

and Machine Intelligence, Vol. 22, No. 3, pp. 266–280, 2000.

31. Deutscher, J., A. Blake and I. Reid, “Articulated Body Motion Capture by An-

nealed Particle Filtering”, IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, pp. 126–133, 2000.

32. Kehl, R., M. Bray and L. V. Gool, “Full Body Tracking from Multiple Views Using

Stochastic Sampling”, IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, Vol. 2, p. 129, 2005.

33. Maccormick, J. and M. Isard, “Partitioned Sampling, Articulated Objects, and

Interface-Quality Hand Tracking”, In Proc. 6th European Conf. on Computer Vi-

sion, pp. 3–19, 2000.

34. Plänkers, R. and P. Fua, “Articulated Soft Objects for Multi-View Shape and Mo-

tion Capture”, IEEE Transactions on Pattern Analysis and Machine Intelligence,

Vol. 25, No. 9, pp. 1182–1187, 2003.

35. Barr’on, C. and I. A. Kakadiaris, “Monocular Human Motion Tracking”, Multime-

94

dia Systems , Vol. 10, pp. 118–130, 2004.

36. Delamarre, Q. and O. Faugeras, “3D Articulated Models and Multiview Tracking

with Physical Forces”, Computer Vision and Image Understanding , Vol. 81, No. 3,

pp. 328–357, 2001.

37. Ioffe, S. and D. A. Forsyth, “Probabilistic Methods for Finding People”, Interna-

tional Journal of Computer Vision, Vol. 43, No. 1, pp. 45–68, 2001.

38. Mori, G., X. Ren, A. A. Efros and J. Malik, “Recovering Human Body Con-

figurations: Combining Segmentation and Recognition”, IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 2004.

39. Navaratnam, R., A. Thayananthan, P. H. S. Torr and R. Cipolla, “Hierarchical

Part-Based Human Body Pose Estimation”, British Machine Vision Conference,

2005.

40. Hua, G., M.-h. Yang and Y. Wu, “Learning to Estimate Human Pose with Data

Driven Belief Propagation”, IEEE Computer Society Conference on Computer Vi-

sion and Pattern Recognition, p. 747, 2005.

41. Lee, M. W. and I. Cohen, “Proposal Maps driven MCMC for Estimating Human

Body Pose in Static Images”, IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, Vol. 00, pp. 334–341, Washington, DC, 2004.

42. Bay, H., T. Tuytelaars and L. V. Gool, “SURF: Speeded Up Robust Features”,

European Conference on Computer Vision, pp. 404–417, 2006.

43. Lowe, D. G., “Object recognition from local scale-invariant features”, International

Conference on Computer Vision, pp. 1150–1157, Published by the IEEE Computer

Society, Corfu, Greece, 1999.

44. Crow, F. C., “Summed-area tables for texture mapping”, ACM SIGGRAPH Com-

puter Graphics , Vol. 18, No. 3, pp. 207–212, Jul. 1984.

95

45. Evans, C., “Notes on the OpenSURF Library”, University of Bristol, Tech. Rep.

CSTR-09-001, January , , No. 1, 2009.

46. Brown, M., “Invariant features from interest point groups”, British Machine Vision

Conference, Cardiff, Wales , 2002.

47. MacQueen, J., “Some methods for classification and analysis of multivariate ob-

servations”, Proceedings of the fifth Berkeley symposium on mathematical statistics

and probability , Vol. 1, p. 14, California, USA, 1967.

48. Alpaydin, E., Introduction to machine learning , The MIT Press, 2004.

49. Arthur, D. and S. Vassilvitskii, “k-means++: The advantages of careful seed-

ing”, Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete al-

gorithms , pp. 1027–1035, Society for Industrial and Applied Mathematics, 2007.

50. Vapnik, V. N., Estimation of dependences based on empirical data, Springer New

York, 2 edn., 2006.

51. Cortes, C. and V. Vapnik, “Support-vector networks”, Machine Learning , Vol. 20,

No. 3, pp. 273–297, Sep. 1995.

52. Schiele, B. and J. Crowley, “Object recognition using multidimensional receptive

field histograms”, Computer Vision - ECCV ’96, 4th European Conference on

Computer Vision, Vol. 1, pp. 610–619, 1996.

53. Chapelle, O., P. Haffner and V. N. Vapnik, “Support vector machines for

histogram-based image classification.”, IEEE transactions on neural networks /

a publication of the IEEE Neural Networks Council , Vol. 10, No. 5, pp. 1055–64,

Jan. 1999.

54. Tomasi, C. and T. Kanade, “Detection and tracking of point features”, CMU-CS-

91-132, Carnegie Mellon University Technical Report , Carnegie Mellon University,

1991.

96

55. Shi, J. and C. Tomasi, “Good features to track”, TR 93-1399, Cornell U., IEEE

Comput. Soc. Press, 1993.

56. Bouguet, J.-Y., “Pyramidal implementation of the lucas kanade feature tracker

description of the algorithm”, Intel Corporation, Microprocessor Research Labs,

OpenCV Documents , Vol. 3, No. 2, pp. 1–9, 1999.

57. Laptev, I., M. Marszalek, C. Schmid and B. Rozenfeld, “Learning realistic human

actions from movies”, Computer Vision and Pattern Recognition, 2008. CVPR

2008. IEEE Conference on, pp. 1–8, IEEE, 2008.

