
PARALLEL MAXIMUM FLOW SOLVER FOR MULTI-CORE MACHINES

by
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ABSTRACT

PARALLEL MAXIMUM FLOW SOLVER FOR

MULTI-CORE MACHINES

We provide a parallel algorithm for calculating maximum flow between two nodes,

in a capacitated network. The algorithm we propose is based on push-relabel algorithm

due to Goldberg and uses a modified first in first out selection strategy together with

global relabeling heuristic. Our implementation targets multi-core processors, imple-

ments task stealing to balance load between multiple threads of execution and uses

fast atomic variables for synchronization instead of costly general purpose locks. We

compare our algorithm to other push-relabel based algorithms and demonstrate that

it performs well in practice.



v

ÖZET

ÇOK ÇEKİRDEKLİ MİMARİLER İÇİN PARALEL EN

BÜYÜK AKIŞ ÇÖZÜCÜ

Sığalı ağlarda, iki düğüm arasındaki en büyük akışı hesaplayacak, paralel bir

algoritma sunuyoruz. Algoritmamız, Goldberg’in itele-tekrar-etiketle (push-relabel) al-

goritması temel alınarak geliştirilmiştir. Etkin düğüm seçimi için, paralel yürütülmeye

uygun, değiştirilmiş bir ”ilk giren ilk çıkar” (FIFO) yöntemi kullanılmaktadır. Algo-

ritmamız, pratikte oldukça hız kazandıran global-tekrar-etiketleme (global relabeling)

buluşsal (heuristic) yöntemini kullanmaktadır. Çok çekirdekli işlemcileri hedefleyen al-

goritmamız, görev çalma yöntemi ile, iş yükünü farklı iş parçacıklarına dağıtmaktadır.

Çekirdeklerin ortak kullandığı belleğe erişimin senkronizasyonu için, hesaplama açısından

pahalı genel amaçlı kilitler yerine, hızlı atomik (atomic) değişkenler kullanılmıştır. Al-

goritmamızı itele-tekrar-etiketle tabanlı seri algoritmalar ile karşılaştırdık ve başarımının

iyi olduğunu gösterdik.



vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
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1. INTRODUCTION

Maximum flow problem is, finding a flow with the maximum amount, in a network

with capacitated arcs, from a node designated as source to a node designated as sink.

This problem, which can be formulated as a linear program, can be solved in polynomial

time. We will present a parallel solver for the problem. First, we provide information

about the problem. Then sequential algorithms and implementations are discussed.

In Chapter 3, we discuss related work and parallel implementations. Our contribution

is detailed in Chapter 4. At the end, we provide results of our experiments, discuss

advantages/disadvantages of our implementation and conclude with future ideas.

1.1. Relation To Other Problems

Maximum flow problem is encountered in a variety of engineering fields such as

network planning, and also as subproblems of other problems like minimum cost flow

problem. Some of the applications related to maximum flow problem are scheduling

problems, matrix rounding, bipartite matching and network connectivity problems.

See [1, p. 169] for a comprehensive list of applications of the problem.

Maximum flow problem, is closely related to the problem of finding minimum cut

in a network. Max-flow min-cut theorem establishes this relation. Amount of maximum

s-t flow in a capacitated network equals minimum of capacity of cuts between s-t. A

proof of this relation can be found in [1, p. 184]. With this duality, maximum flow

problem can also be employed in applications of min-cut problem.

1.2. Solution Methods

Maximum flow problem has been studied extensively and there are various solu-

tion approaches. Some of these approaches are: labeling (Ford and Fulkerson), capacity

scaling, shortest augmenting path, blocking flow, network simplex method and push-

relabel [2] method. With the exception of network-simplex method, maximum flow
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algorithms can be categorized into two: those that augment flow along paths (such as

the labeling algorithm) and those that augment flow along arcs (such as the generic

push-relabel algorithm). The latter type of algorithms are proved to have better worst-

case complexity; although practical performances vary and heuristics are employed to

obtain better practical performances. [1, p. 240] presents an extensive study of various

maximum flow algorithms, together with running times and references.

Some of these methods have polynomial worst-case complexity, whereas others

have pseudo-polynomial worst-case complexity. Shortest augmenting path algorithm

of Edmonds and Karp [3] is a polynomial time algorithm with O(nm2) worst case

complexity. The algorithm is a version of augmenting path algorithms and augments

flow along shortest paths. Capacity scaling algorithm, due to Ahuja and Orlin [1,

p. 210], runs in O(nmlogU) time where U = max(c(<v,w>)). Another algorithm

for maximum flow problem is push-relabel [4] algorithm, that we based our parallel

implementation on. It yields practical implementations and has a worst case complexity

of O(n2m).

1.3. Motivation

Maximum flow problem finds extensive use in many different algorithms. Any

improvement in solving the maximum flow problem would result in practical improve-

ments in various other algorithms that need to solve the maximum flow problem. With

the advances in multi-core hardware and supporting software, we believe the maximum

flow problem would benefit from parallel implementations. However, devising a paral-

lel solver for the maximum flow problem, which performs well in practice on different

types of graphs, is not straightforward. Some problem instances lack parallelism and

on some problems, synchronization overhead (locking of nodes, arcs) may result in per-

formance degradation [5]. We present a parallel implementation that uses fast atomic

variables instead of costly general purpose locks.

Another point of interest is that best sequential implementations of maximum

flow solvers evolved over time. There are useful heuristics that improve performance
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drastically, and some of the previous work on parallel maximum flow solvers did not

know about these heuristics.

1.4. Problem Formulation

The input to maximum flow problem is a capacitated network (a directed graph

with capacities assigned to each arc) G = (V,A), where V is the set of nodes and A

is the set of arcs. We denote |V | as n and |A| as m. An element <v,w>∈ A denotes

an arc from node v to node w. There are two specially designated nodes named source

and sink, denoted by s and t respectively. Each arc <v,w> has a nonnegative capacity

assigned to it via a real-valued function c : A → R
+

0 , where c(<v,w>) = cv,w and

cv,w ≥ 0.

The problem is to calculate a flow from s to t which has maximum amount

amongst all other s-t flows. A flow from v to w is defined as a real-valued function

f : A → R, where f(<v,w>) = fv,w. A flow should honor the capacity constraints,

fv,w ≤ cv,w∀<v,w>∈ A. Formally, the problem can be formulated as a linear program

as follows.

maximize F

subject to

∑

w:<v,w>∈A

fv,w −
∑

w:<w,v>∈A

fw,v =



























F for v = s,

0 ∀v ∈ V \ {s, t},

−F for v = t

(1.1)

0 ≤ fv,w ≤ cv,w∀<v,w> ∈ A (1.2)

where fv,w are the decision variables. Equation 1.1 establishes mass balance constraints.

Equation 1.2 gives capacity constraints. A function f(<v,w>) = fv,w is called a flow,

if equations 1.1 & 1.2 are satisfied. Scalar value F corresponding to a flow, is the value

of that flow.
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2. GENERIC PUSH-RELABEL ALGORITHM

Generic push-relabel algorithm, due to Goldberg [4], is the basis of many practical

implementations. The algorithm is generic, in that basic operations of the algorithm

can be applied in any order. That is why, there are many derivatives of the algorithm

and the algorithm was a basis for our parallel implementation also. As the algorithm

proceeds, capacities on arcs are updated such that they are equal to the remaining

capacities, to reflect the current flow on each arc. The graph with updated capacities

is then called a residual graph.

2.1. Distance Labels

A major improvement in theoretical performance of maximum flow algorithms

was achieved, as distance labels were introduced by Goldberg [4] in their push-relabel

algorithm. Distance labels can be considered as counterpart to layered networks used

in previous algorithms. Distance labels are assigned to each node and are used to

ensure that flow is always pushed along an arc which is a part of the shortest path to

sink. The sink is assigned a distance label of zero. A node which is d hops from the

sink would have a distance label of d. We denote the distance label of a node v as

d(v). Distance labels are updated to reflect the changes in the residual graph as the

algorithm executes, thus shortest paths are also updated.

2.2. Algorithm

Push-relabel algorithm pushes flow along arcs, as opposed to the augmenting

path algorithms which push flow along paths. At intermediate steps of push-relabel

algorithm, there are intermediate nodes for which incoming flow and outgoing flow are

not equal. This intermediate flow is called a preflow. If incoming flow and outgoing

flow are not equal on a node, the node is said to have excess on it.

Push-relabel algorithm pushes excess from nodes towards the sink in a local
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fashion, that is along arcs that are part of the shortest path to sink in the residual

graph, until the sink is not reachable in the residual graph. At that point, the excess

that cannot be pushed to the sink is returned back to the source to convert the preflow

to an actual flow. A detailed description of generic push-relabel algorithm can be found

in [2] and [4].

There are two basic operations called push and relabel. The algorithm performs

these basic operations in any order until none of them are applicable, and algorithm

terminates finding the maximum flow. There are two definitions that are used in the

algorithm. First, we call a node active if its distance label is finite and it has excess.

Source and sink are never active. Second, we call an arc <v,w> admissible if it has

residual capacity and d(v) = d(w)+1. We give a pseudo-code of the generic algorithm

in Figure 2.3, with the basic operations of push and relabel in Figures 2.1 and 2.2

respectively.

Method push(<v,w>)

Require: Arc <v,w>

Ensure: Maximum possible amount of flow is pushed on arc <v,w>

value← min(e(v), r(<v,w>))

e(v)← e(v)− value

e(w)← e(w) + value

r(<v,w>)← r(<v,w>)− value

r(<w, v>)← r(<w, v>) + value

Figure 2.1. Pseudo-code for push method

Method relabel(v)

Require: Node v

d(v)← min({d(i) + 1 : <v, i> ∈ A(v) ∧ r(<v, i>) > 0} ∪ {∞})

Figure 2.2. Pseudo-code for relabel method
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Generic push-relabel algorithm

Require: Directed graph G(V,A), source node s and sink node t and arc capacities

c(<v,w>) for each <v,w>∈ A

Ensure: Maximum flow from s to t

for all v ∈ V do

d(v)← 0

e(v)← 0

end for

d(s)← n

for all <v,w>∈ A do

r(<v,w>)← c(<v,w>)

end for

for all <s, v>∈ A(s) do

r(<s, v>)← 0

r(<v, s>)← c(<s, v>)

e(v)← c(<s, v>)

end for

while there is an active node v in the network do

if there is an admissible arc <v,w>∈ A(v) then

call push(<v,w>)

else

call relabel(v)

end if

end while

Figure 2.3. Pseudo-code for generic push-relabel algorithm
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2.3. Example

In order to better understand the generic push-relabel algorithm, we present an

example execution of the algorithm. For the example, we have a directed graph with

five nodes as shown in Figure 2.4a. It is easy to immediately see that the maximum

amount of flow that can be sent from s to t in this small graph is four units.

Firstly, in Figure 2.4b, we show the solution steps of the augmenting path algo-

rithm so as to better present the advantages of push-relabel based algorithms against

augmenting path algorithms. One unit of flow is augmented along s − a − b − t, one

unit of flow is augmented along s−a− c− t and two units of flow are augmented along

s − a − b − c − t. Notice that it takes a total of ten arc traversals to send flow along

the three augmenting paths. Furthermore, we see that <s, a> is shared by the three

augmenting paths and hence this arc is traversed three times.

Generic push-relabel algorithm example is in Figure 2.5. In Figure 2.5a, initial

distance labels are assigned as shortest path distances to t. Distance label of s is by

default equal to the number of nodes in the graph, five in this case. Initially in Figure

2.5b, a flow of four units is pushed from s to a, to saturate <s, a>. Node a is the

only active node at this point, with an excess of four units; basic operations will be

applied to a. Both <a, b> and <a, c> are saturated by pushing three and one unit

of flow respectively, in Figure 2.5c. Nodes b and c become active and node a is not

active anymore. Then, push operation is applied on <b, t> and <c, t> in Figure 2.5d.

At this point, the only active node is b and there are two arcs <b, c> and <b, a>

emanating from b. However, flow cannot be pushed on these arcs since d(c) = d(b) and

d(a) > d(b), the arcs are not admissible. Therefore, a relabeling operation is applied on

node b, relabeling it to have a distance label of two. Flow can be pushed along <b, c>

now, as depicted in Figure 2.5e, since d(c) + 1 = d(b). In the last iteration, in Figure

2.5f, excess on c is pushed towards t. There are no active nodes and the algorithm

terminates with an excess of four units on t, that is the amount of maximum flow.

The generic push-relabel algorithms example traversed a total of seven arcs in the
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push operations. Even in this small example, we can see that push-relabel algorithm

performs less arc traversals compared to augmenting path algorithm. Push-relabel

based algorithms are more efficient than augmenting path based algorithms in general.

The main reason is that, push-relabel method works locally on each arc, whereas

augmenting path method finds paths from source to sink and sends flow along these

paths. Obviously, arcs which are shared by many augmenting paths are traversed more

than once and this results in more arc traversals.

Another point of interest in comparing push-relabel method against augmenting

path method is that push-relabel method yields more parallelism than augmenting

path method. In the augmenting path example, since <s, a> is shared by the three

augmenting paths, these paths cannot be used to push flow concurrently. Flow has

to be augmented sequentially on these paths. However, in push-relabel example, the

two push operations of Figure 2.5c can be applied in parallel as well as the two push

operations of Figure 2.5d.

(a) Example input graph (b) Augmenting along s−a−b−t, s−a−c−t

and s− a− b− c− t

Figure 2.4. Example input and augmenting path operations



9

(a) Initial labelings computed (b) Push on <s, a>

(c) Push on <a, b> and <a, c> (d) Push on <b, t>, <c, t> and relabel b

(e) Push on <b, c> (f) Push on <c, t>

Figure 2.5. Push-relabel algorithm example
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2.4. Improvements

Generic push-relabel algorithm runs in O(n2m) time. However, generic imple-

mentation of push-relabel algorithm does not perform well in practice. Improvements

in practical performance can be achieved by using different active node selection meth-

ods and heuristics.

2.4.1. Active Node Selection Strategies

One practical improvement can be made by using a selection strategy for choosing

which node to push flow from. Two such strategies, FIFO selection and HL selection,

are presented in [6]. With FIFO selection strategy, a global queue is maintained and

nodes that become active are pushed to the tail of the queue. When the algorithm

needs an active node to process, it is always retrieved from the head of the queue. FIFO

selection strategy yields a O(n3) time algorithm. HL selection strategy ensures that

the algorithm always proceeds with the active node that has the highest distance label.

Worst case complexity of HL selection strategy is shown to be O(n2
√

m) [7]. Notice

that these theoretical bounds are better than previous augmenting path algorithms for

dense graphs. Practically, most of the time, HL selection strategy performs better than

FIFO selection [8].

2.4.2. Heuristic Methods

Yet another improvement in practical behaviour of push-relabel algorithms can be

achieved by using heuristics. Two such heuristics, global relabeling and gap relabeling,

are treated in [8].

As described in [8], global relabeling heuristic is a very useful addition to both

FIFO and HL selection strategy. After each n relabeling operations, all distance labels

are computed from scratch. The best labeling is calculating shortest paths from each

node to the sink. This can be done in linear time with a backwards breadth-first

search on the reverse of residual graph, starting from sink. Since global relabeling is
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an expensive operation compared to the basic operations of push and relabel, global

relabelings are performed periodically.

Gap relabeling heuristic comes in handy for HL selection strategy. The idea is

that at certain points in the execution of the algorithm, there may be an integer g,

0 ≤ g ≤ n, such that there are no nodes with distance label g, but there are nodes

with distance label greater than g. Distance labels of such nodes can be increased to n,

since the sink is not reachable from them in the residual graph. This reasoning can be

followed from the fact that, in order for the nodes with distance label d, where g < d,

to be connected to the sink, there has to be at least one node for each distance label l

where 0 < l ≤ g. And there is no node with distance label g.

Table 2.1 presents various implementations [8] of push-relabel algorithm. Among

these implementations, F PRF and Q PRF both use FIFO selection strategy and global

relabeling heuristic, with Q PRF employing gap relabeling heuristic additionally. On

the other hand, M PRF and H PRF use HL selection strategy, with H PRF incorpo-

rating gap relabeling heuristic in addition to global relabeling heuristic used by both.

Goldberg’s code for F PRF, H PRF and others can be found in [9].

Table 2.1. Push-relabel based implementations

global relabeling gap relabeling selection

F PRF yes no FIFO

Q PRF yes yes FIFO

M PRF yes no HL

H PRF yes yes HL

Among these implementations, F PRF and H PRF are the promising ones. That

is because, incorporating gap relabeling heuristic in F PRF does not result in signifi-

cant gain (hence Q PRF is not interesting) and H PRF’s performance degrades if gap

relabeling is not employed (that is, M PRF implementation is not compelling) [8].
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Although H PRF is claimed to perform better than F PRF, our experiments found

instances of graphs on which F PRF performs as good as H PRF or even better.
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3. RELATED WORK

Various parallel implementations and algorithms have been proposed in the liter-

ature. Some of these implementations are targeting distributed memory architectures,

such as the one in [2]. However, we are interested in the shared memory parallel

implementations. We noticed that, the previous work on parallel implementations of

push-relabel algorithm either dates back to previous decades where multi-core archi-

tectures were not as advanced or that the performance evaluation of such work lacked

comparisons regarding actual speed-up (against the best known sequential implemen-

tations). In this chapter, we discuss some previous studies that are relevant to our

work.

A parallel implementation on PRAM model is discussed in [2]. Their algorithm

works in pulses. A pulse is a three stage execution in which each stage is performed

in parallel. In the first stage, flow is pushed and residual graph is modified, however

flow values are not added as excess to nodes that received flow until the last stage.

In the second stage, relabeling is performed. Finally, in the last stage, flow pushed in

stage one is added as excess to nodes that received flow. Parallelism is achieved by

running pulse for each active node in parallel, that is why a queue is not needed to buffer

active nodes. This algorithm has a theoretical time complexity of O(n2logn) with O(n)

processors. This work only discusses the theoretical complexity and do not measure

practical performance. However, parallel implementations in general suffer from issues

such as the drawbacks of hardware (PRAM architecture is only theoretical).

Another shared memory parallel implementation can be found in [5]. They pro-

vide a way to concurrently perform global relabeling heuristic. Queue of active nodes

is divided into two parts, a shared queue and local queues for each processor. Local

queue is divided into two as an in-queue and an out-queue. Each processor takes nodes

to process, from their in-queues and outputs newly active nodes to their out-queues.

If in-queue of a processor is empty, the processor fetches a batch of vertices from the

shared queue. If out-queue of a processor is full, the queue is flushed to the shared
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queue. Global relabeling is handled by making each processor collaborate. Our work

is related to this algorithm; both use FIFO active node selection strategy and both

employ global relabeling heuristic. This algorithm uses locks; on the other hand, our

algorithm was designed to minimize the high cost of locking by using atomic variables.

The significant innovation in our work is the use of atomic variables. Furthermore, we

do not use a global queue of active nodes, we only use local queues in each thread and

implement task-stealing to balance load. Finally, our algorithm does not concurrently

perform global relabeling with the basic operations, so as to reduce synchronization

overhead stemming from the need for extensive locking of nodes and arcs.

Another point of interest is that multi-core architectures have evolved. The work

in [5] was experimented on Sequent Symmetry S81 with 20 Intel 16Mhz 80386 proces-

sors, where each CPU has 64 kilobytes of cache. The system ran on DYNIX 3.0, with

32 megabytes of memory. We, on the other hand, conducted our experiments on 8

cores (two off-the-shelf quad-core CPUs), with 16 gigabytes of memory. The advance

in computers, of course, means that we can test our implementation on bigger graphs.

Our test cases require hundreds of millions of push-relabel operations to take place.

Also, better sequential implementations were developed since this work.

A parallel implementation of push relabel algorithm with gap relabeling heuristic

is presented in [10]. Their implementation is experimented on Sun E4500 which is

a parallel machine with 14 UltraSPARC II 400MHz processors and 14 gigabytes of

memory. A modified HL selection strategy is used in their work. Locking is used to

provide synchronization. Results and discussion in this work are about the impact of

cache miss and locality on the running times. The implementation is not compared to

the best known sequential implementations, only relative speed-up results are provided.



15

4. PARALLEL IMPLEMENTATION

Parallelization of push-relabel algorithm for multi-core machines is not trivial.

Complex synchronization is needed to prevent multiple threads interfering with each

other. Due to synchronization overhead and structure of different classes of input

graphs, developing scalable parallel implementations is hard. We try to tackle these

issues and provide a practical implementation that will run considerably faster than

the best serial implementations, on modern day multi-core computers.

Amongst several approaches, push-relabel based algorithms with certain heuris-

tics are known to be superior in practice [8]. Not all algorithms provide polynomial

worst-case complexity and some of these algorithms do not behave well in practice. We

have based our parallel algorithm on Goldberg’s push-relabel algorithm, with FIFO

selection strategy and global relabeling heuristic [8]. The main reason we chose push-

relabel algorithm to parallelize is that it offers more potential for parallelism (compared

to augmenting path algorithms) by employing local push operations on arcs. In case

of augmenting path algorithms, flow is sent through paths (multiple arcs, connected

to each other). This results in loss of parallelism: when a thread works on pushing

through a path, no other thread will be able to use the arcs that are part of that path.

Although practically HL selection strategy performs better, we used a FIFO se-

lection strategy (each thread has its own FIFO and task stealing balances the load).

Implementing a parallel version of HL selection would involve much overhead in terms

of synchronization, compared to FIFO selection. Also the gap in performance of FIFO

and HL selection is small. Hence, we used a slightly modified FIFO selection strategy

that accounts for synchronization needs. We will be comparing our implementation to

the work in [8].

We evaluated Intel’s Threading Building Blocks (TBB) [11] and POSIX Threads

(pthreads) [12] to implement our parallel algorithm. In the following sections, we study

TBB and pthreads in detail. Then we give an overview of our overall solving approach,
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followed by the details of our implementation.

4.1. Intel’s Threading Building Blocks

TBB is a parallel programming library. It is implemented in C++, using tem-

plates. TBB offers various constructs such as parallel for and parallel do, that allow

easy parallelization of certain tasks. Apart from parallel algorithm constructs, there

are constructs that enable developers to create synchronized variables (atomic). We use

TBB’s atomic constructs in our parallel algorithm, for synchronizing access to shared

variables.

4.2. POSIX Threads

Pthreads is a threading API that finds widespread use. Note that pthreads is

a specification, not an implementation [13]. It is lower level than the API of TBB,

and it does not have any high level constructs like the parallel for of TBB. There

are methods for creating threads, for manipulating mutexes and condition variables in

pthreads. We used pthreads to implement our parallel algorithm with our own task

stealing mechanism. Using pthreads, one has to focus on threads rather than tasks, as

opposed to TBB. This requires more effort to establish a parallel implementation, but

provides flexibility.

4.3. Synchronization

Any parallel implementation targeting shared-memory computers should use syn-

chronization for accessing shared variables. There are different ways to synchronize ac-

cess to shared variables. We are interested in two such ways in our work, one is using

mutexes and the other is atomic variables. Atomic variables provide synchronization

at a smaller cost in terms of time, compared to mutexes. There is a trade-off, however,

using atomic variables require certain patterns and are less applicable compared to

mutexes. Our implementation is using atomic variables instead of mutexes. Atomic

variables we use are of type tbb::atomic<int>, of Intel’s TBB library.
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TBB and pthreads can coexist in the same implementation. We needed TBB’s

abstraction of atomic variables and low level API of pthreads. That is why we incor-

porated both TBB and pthreads in our implementation.

4.4. Overview

At the beginning, we parse the input file and create internal data structures,

which is the serial part of our implementation. Then comes the parallel part, in which

each thread gets active nodes from its local queue and processes (applying push/relabel

operations) them. When a thread causes a node to become active, that node is pushed

to the thread’s local queue. There is no global FIFO queue of active nodes. When the

local queue of a thread becomes empty, the thread signals this to other threads and

waits for some thread to donate active nodes.

Global relabeling heuristic is run periodically. Since global relabeling is an expen-

sive operation compared to the basic operations of push and relabel, global relabelings

are performed periodically. After each n relabeling operations, all distance labels are

computed from scratch by global relabeling. The best labeling is, calculating short-

est paths from each node to the sink. When global relabeling is decided, all threads

synchronize at a barrier and participate in global relabeling together. Algorithm ter-

minates when there aren’t any active nodes, that is, each local queue is empty.

We noticed that global relabeling heuristic constitutes about 30% of overall run-

ning time of the sequential implementations. This is in accordance with [5], in which

they claim as much as 40% of overall running time is spent for global relabeling. There-

fore, parallelization of global relabeling heuristic was crucial, as otherwise we would

not obtain speed-up above three. Our overall implementation can be divided into two

distinct parts: parallel global relabeling and parallel push-relabel operations.
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4.5. Data Structures & Naming Conventions

We prefix global variables with g , as a naming convention. We have two struc-

tures for data representation, Node and Arc, presented in Figure 4.1. Input graph is

represented by an array of struct Node and an array of struct Arc. Both Node array

and Arc array are global variables that are accessible to each thread. We denote Node

array as g nodes and Arc array as g arcs in the pseudo-codes. The length of g nodes

array and g arcs array (number of nodes and arcs in the graph) are denoted as g n

and g m respectively. Source and sink nodes are denoted by g s and g t respectively.

Number of threads present is denoted by g threadCount. We refer to each thread with

an index t, where 0 ≤ t < g threadCount.

Node:

• atomic int e (excess)

• atomic int d (distance label)

• Arc pointer adj (adjacency list, linked list of Arcs)

• Arc pointer cur (current arc to push from)

Arc:

• int w (tail node of this arc)

• int cap (capacity, constant)

• atomic int flow (current flow on the arc)

• Arc pointer next (pointer to next arc in adjacency

list)

• Arc pointer other (pointer to reverse arc)

Figure 4.1. Data structures for Node and Arc

4.6. Global Relabeling Implementation

Global relabeling is essentially a breadth-first traversal on an unweighted graph

to determine shortest path distances from each node to the sink. This can be done

in linear time with a backwards breadth-first search on the reverse of residual graph,



19

starting from sink.

Global relabeling is implemented by running a breadth-first traversal starting

from sink, on the reverse of the residual graph. After the traversal, all nodes that can

be used to reach to the sink are relabeled with shortest path distances to the sink.

First, we give the basic serial algorithm for performing global relabeling. Then we

present our parallel global relabeling implementation.

4.6.1. Basic Serial Algorithm

We describe global relabeling heuristic with an example in Figure 4.2, before

going into the details of its implementation. Since there are eight nodes, initially each

node is assigned a distance label of eight, except the sink node t which always has a

distance label of zero. Initial distance labels are depicted in Figure 4.2a. In the first

iteration, in Figure 4.2b, nodes that are one hop away from the sink are relabeled to

have a distance label of one. Next, nodes that are two hops away from the target are

relabeled, with a distance label of two, in Figure 4.2c. Each node except the source

and the sink are relabeled and the algorithm terminates.

Notice that, there is a potential of parallelism in global relabeling operation.

Nodes that are at the same distance from the sink can be relabeled concurrently. We

exploit this parallelism in our parallel global relabeling implementation described in

Subsection 4.6.2. In the example of Figure 4.2, nodes a and b would be relabeled by

one thread, while concurrently nodes c and d would be handled by another thread.

Serial implementation of global relabeling is straight-forward. Pseudo-code of the

basic serial algorithm that performs global relabeling is given in Figure 4.3.
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(a) Example input graph (b) Nodes e and f are relabeled

(c) Nodes a, b, c and d are relabeled

Figure 4.2. Global relabeling heuristic example
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Serial global relabeling implementation

Require: Residual graph

for all node v in g nodes do

v.d← g n

end for

g nodes[g t].d← 0

initialize traversal queue tq with g t

while tq is not empty do

v ← pop from tq

wd← v.d + 1

for all arc in v.adj do

w ← arc.w

other ← arc.other

if w.d == g n && other.cap− other.flow > 0 then

w.d← wd

push w to tq

end if

end for

end while

Figure 4.3. Pseudo-code for serial global relabeling
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4.6.2. Parallel Implementation

Parallelization is achieved, by relabeling all vertices having the same distance to

the sink, in parallel. Thus, our global relabeling algorithm performs k steps, each of

which is executed in parallel by many threads, where k is the largest distance label

excluding the label of the source node. There are synchronization barriers at the end

of each parallel step. We have a special shared queue data structure, presented in

detail in Subsection 4.6.3, that allows for parallelization of breadth-first traversal with

considerably small synchronization overhead.

Local queues of each thread is emptied at the beginning of global relabeling. As

a thread traverses the graph, relabeling nodes, it also pushes the active nodes to its

queue. Sink is relabeled to zero. All other nodes, including the source, have a distance

label of n (number of nodes) in the beginning.

Parallel algorithm is somewhat similar to the basic algorithm; a queue is used to

ensure breadth-first traversal and each thread executes the loop in Figure 4.4 concur-

rently. At the first step (step 0), distance label of the sink is set to zero. At each step

i, distance labels of nodes that are i hops away from the sink are updated in parallel

by each thread.
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Method fprf global relabeling(t)

Require: Thread t

nextlevel← 0

while g hasmore do

nextlevel← nextlevel + 1

v ← call parallel queue pop(t)

while v 6= −1 do

Node *v ← g nodes + v

for all a in v-> adj do

w ← a-> w

Node *w ← g nodes + w

if (a-> other-> cap) > (a-> other-> flow) && w-> d > nextlevel then

original← w-> d.fetch and store(nextlevel)

if original > nextlevel then

call parallel queue push(t, w)

end if

end if

end for

v ← call parallel queue pop(t)

end while

SYNCHRONIZATION BARRIER

if t = 0 then

g hasmore← call parallel queue revert()

end if

SYNCHRONIZATION BARRIER

end while

Figure 4.4. Pseudo-code for parallel breadth-first traversal
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4.6.3. Parallel Shared Queue Implementation

Our parallel shared queue structure, allows a parallel breadth-first traversal to

be implemented with little synchronization overhead. The API for our shared queue

contains the following methods:

• void parallel queue init (n, p)

• void parallel queue uninit ()

• int parallel queue pop (t)

• void parallel queue push (t, v)

• int parallel queue revert ()

where n denotes the number of nodes, p is the number of threads, t is a thread ID

and v is a node. Notice that push and pop methods require thread ID t, so that the

operation is applied on the appropriate in-queue or out-queue.

Each thread has a logical in-queue and a logical out-queue, all of which use the

same underlying array for storage. In addition to the logical queue data structures,

parallel shared queue uses a contiguous underlying array for storage. Out-queue is used

for pushing newly encountered nodes, which are yet to be relabeled. In-queue is used

for popping nodes, so that they can be relabeled. Members of the two logical queue

data structures are presented in Figure 4.5, where pointers point to certain parts of

the underlying array. Out-queue of thread t is accessed by g outq[t] and in-queue of

thread t is accessed by g inq[t] in the pseudo-codes.

Space complexity of this data structure is O(p · n) where p is the number of

threads and n is the number of nodes. We need O(p · n) space, since it might be the

case that any of the threads push all n − 1 nodes (excluding sink node) in a single

parallel step. That is, each out-queue should be able to hold n − 1 nodes. Therefore,

storage requirement for a single thread is O(n), since there are n nodes in total and

duplicate items are not allowed in the queues.



25

Underlying storage can be thought of as p chunks of size n. Out-queues and

in-queues are maintained such that there is no need for synchronizing access, since the

queues never overlap on the underlying array. Out-queue of thread i is always using

chunk i and never uses other threads’ chunks. Therefore, there is no contention among

threads for push operations. As for the in-queues, an in-queue may span more than

one chunk. Furthermore, one chunk may provide storage for more than one in-queue.

Maintenance is performed by parallel queue revert, which scans each in and out

queue and flushes out-queue contents to in-queues. This needs to be done in serial by a

single thread, while other threads are waiting on the barrier. Benefit of the maintenance

step is that, pop and push methods can be called in parallel with no synchronization

cost. Notice that, this parallel queue is only used in global relabeling step and is not

related to the active node queues which are local to each thread.

in-queue:

• int pointer head (moving head of an in-queue)

• int pointer tail (moving tail of an in-queue)

• int direction (direction in which an in-queue

shrinks)

out-queue:

• int pointer head (moving head of an out-queue)

• int direction (direction in which an out-queue

grows)

• int count (number of items)

• int pointer fixedhead (pointer to head of a chunk)

• int pointer fixedtail (pointer to tail of a chunk)

Figure 4.5. Data structures for parallel queue
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An in-queue’s head is where items are popped from, it points to the head of the

in-queue. An in-queue is empty if its head equals its tail. In other words, the item

at the tail of an in-queue does not belong to that in-queue, tail points to one position

further from the last item in an in-queue. Direction field indicates the direction towards

which head pointer moves as items are popped and gets the value -1 or +1. Notice

that an in-queue is only used when popping items and in-queues are arranged such

that each of them use a distinct part of the underlying array without any overlapping

region. Figure 4.6 describes parallel queue pop method.

Method parallel queue pop(t)

Require: Thread t

Return: Head of the queue or -1 if the in-queue is empty

if inq[t].head = g inq[t].tail then

return -1

end if

v ←*(g inq[t].head)

while v < 0 do

*(g inq[t].head)← 0

g inq[t].head← g inq[t].head− (v ∗ g inq[t].direction)

if inq[t].head = g inq[t].tail then

return -1

end if

v ←*(g inq[t].head)

end while

*(g inq[t].head)← 0

g inq[t].head← g inq[t].head + g inq[t].direction

return v

Figure 4.6. Pseudo-code for parallel queue pop

Out-queue’s are used for pushing new items. Head pointer points to the location

where an item will be pushed. Direction is used for the same purpose as in an in-queue,
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here it shows the direction towards which an out-queue grows. Count is a counter of

the items in an out-queue and fixedhead and fixedtail point to the beginning and end

of the chunk which belongs to the owner thread of that out-queue. Notice that an out-

queue is only used when pushing items and out-queues do not share common storage

on the underlying array. Figure 4.7 describes parallel queue push method.

Method parallel queue push(t, v)

Require: Thread t, item v

Ensure: Item v is pushed to the out-queue of thread t

*(g outq[t].head)← v

g outq[t].head← g outq[t].head + g outq[t].direction

g outq[t].count← g outq[t].count + 1

Figure 4.7. Pseudo-code for parallel queue push

Next, we describe the maintenance method parallel queue revert. This method

transforms out-queues into in-queues with some pointer manipulations, with no mem-

ory copying. Prerequisite of this method is that the in-queues are all empty. After this

method executes, out-queues will be empty and directions of in and out queues will be

flipped. Contents of the underlying array in a small example run would reveal more

than a pseudo-code involving pointer arithmetic. We describe the execution of revert

method, in a problem with four nodes and two threads.

After thread #0 first pushes node 10 and then node 20 onto its out-queue, contents of

the array is as follows:

0 0 20 10 0 0 0 0

At this point, out queues and in queues have the following contents:
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g outq[0].head 1

g outq[0].direction -1

g outq[0].count 2

g outq[1].head 7

g outq[1].direction -1

g outq[1].count 0

g inq[0].head 0

g inq[0].tail 0

g inq[0].direction 1

g inq[1].head 4

g inq[1].tail 4

g inq[1].direction 1

After calling revert, the array contents is as follows:

0 0 20 10 0 0 0 -4

And out queues and in queues have the following contents:

g outq[0].head 0

g outq[0].direction 1

g outq[0].count 0

g outq[1].head 4

g outq[1].direction 1

g outq[1].count 0

g inq[0].head 2

g inq[0].tail 1

g inq[0].direction -1

g inq[1].head 7

g inq[1].tail 2

g inq[1].direction -1

Notice that the two items are fairly shared between the two threads after revert.

Negative values in the array (−4 in this case) are not actual items to be popped. These

negative values are used to span a single in-queue among multiple chunks. Although

thread #1’s in-queue has just one item in it, it spans two chunks. Let’s look at what

happens when thread #1 tries to pop an item from its in-queue. Its in-queue’s head

pointer points to 7, in which a value of -4 is encountered. This value is used to jump

the pointer to point to 3 (7 − 4 = 3). Now head points to the value 10 and 10 is

returned from the pop method. Next time thread #1 tries to pop an item, it will see

its in-queue’s head to be equal to its in-queue’s tail and will return -1 indicating that

the queue is empty.
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Maintenance method parallel queue revert runs in O(p) time, since it scans out-

queues and converts them to in-queues without moving the actual items around.

4.7. Parallel Algorithm

Our algorithm uses global relabeling and a FIFO selection strategy that is local

to each thread. Each thread maintains a queue of active nodes and runs the main loop

described in Figure 4.9. A thread gets nodes from its queue and pushes nodes that

become active to its queue. Only when a thread’s queue becomes empty, that thread

waits until another thread sees it and transfers tasks to the waiting thread. Notice

that, we continue to push from a node until either no excess remains at that node or

the node cannot be used to push more flow since its arcs are saturated. In the latter

case, a relabel operation is performed for that node and push operation again takes

place, if possible.

Basic operations push and relabel do not take place while global relabeling is going

on. That explains the synchronization barriers before and after global relabeling.

Next, we define in detail two basic operations, push and relabel. Push operation

sends as much flow as possible through arcs emanating from a node. Pseudo-code

for push operation is in Figure 4.10. At any point in the execution of the algorithm,

we guarantee through synchronization via atomic variables, that a node appears in at

most one queue. Therefore, we do not need to lock nodes when pushing flow out of

them. When pushing out from a node v, v’s excess value will change, and that value is

also possibly needed by other threads that may push towards v. That is why, Node.e

is made atomic. Notice, also, Arc.flow is an atomic variable. The reason for this is

that, when a thread is pushing in one direction, another thread might be pushing in

the opposite direction. A visual depiction of parallel pushing is given in Figures 4.8a

and 4.8b, in which two threads concurrently push flow to the sink. Since excess values

are atomic variables, multiple threads can safely update the excess at the same time,

there is no need to lock any nodes.
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(a) Flow is pushed on <b, t> and <c, t>

concurrently by two threads

(b) Excess at t is updated atomically

by each thread

Figure 4.8. Parallel pushing by two threads

Relabel operation is described in detail in Figure 4.11. When a node is being

relabeled, obviously its label is subject to change. At the same time, a thread might

be pushing flow towards this node, hence needs to check the label. For this reason, we

make Node.d an atomic variable.

Next, we describe how task-stealing is implemented. A thread that has no task

left in its queue signals this by setting an idle flag which is an atomic variable. Each

thread has its own idle flag and these flags are accessible from all threads. An idle flag

is set only by the corresponding idle thread, and reset by another thread which has

transferred a task from its own queue to the idle thread’s queue. At each iteration in

a thread’s main loop, other threads are checked to see if there is an idle thread waiting

for a task transfer. If there is an idle thread, and if a thread can atomically reset

the corresponding idle flag, then that thread wins permission to transfer the task. We

choose the oldest task (front of the queue) to transfer.

It is guaranteed that only a single thread transfers a task to an idle thread at

any time. This is ensured by using fetch and store method of TBB’s atomic variables.

In particular, idle.fetch and store(0) will store the value 0 in idle and return idle’s

previous value. By checking the return value, we can make sure if the call changed

idle’s value from 1 to 0 or from 0 to 0. If the call changed idle’s value from 1 to 0,

then the thread making the call can safely transfer a task to the idle thread, knowing
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that no other thread will attempt to transfer a task to the idle thread. If, on the other

hand, the call returned 0; this means the value of idle was already reset to 0, that is,

another thread got permission to transfer.

Parallel maximum flow solver(t)

Require: Thread t

Ensure: Maximum flow from g s to g t

while true do

if labelingcounter > g n then

SYNCHRONIZATION BARRIER

call fprf global relabeling(t)

SYNCHRONIZATION BARRIER

if activenodecount = 0 then

break

end if

end if

if t.queue is empty then

wait until a task is transferred to this thread

end if

transfer a task to an idle thread if possible

v ← pop from t.queue

d← v.d

while d < g n do

if (call fprf push(t, v)) = 0 then

break

end if

d← call fprf relabel(v)

end while

end while

Figure 4.9. Pseudo-code for parallel maximum flow solver
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Method fprf push(t, v)

Require: Thread t, Node v

Return: push status: 1 for push more, 0 otherwise)

for all arc in v.adj do

if arc.cap− arc.flow > 0 && arc.w.d = v.d− 1 then

flow ←MIN(arc.cap− arc.flow, v.e)

arc.flow ← arc.flow + flow

arc.other.flow ← arc.other.flow − flow

oldE ← arc.w.e.fetch and add(flow)

if oldE = 0 && arc.w.d > 0 then

push arc.w to t.queue

end if

v.e← v.e− flow

if v.e = 0 then

return 0

end if

end if

end for

return 1

Figure 4.10. Pseudo-code for fprf push
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Method fprf relabel(v)

Require: Node v

Return: new label for v

v.d← g n ∗ 2

wd← g n ∗ 2

for all arc in v.adj do

if arc.cap− arc.flow > 0 && arc.w.d < wd then

wd← arc.w.d

end if

end for

wd← wd + 1

if wd < g n ∗ 2 then

v.d← wd

end if

return wd

Figure 4.11. Pseudo-code for fprf relabel
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5. RESULTS

5.1. Test Environment

We ran all our tests on CentOS release 5.3 with 2 Intel Xeon X5355 @2.66GHz

quad-core CPUs and 16 gigabytes of RAM. Our test setup is fair. Each binary is run

on the same computer with the same resources. Furthermore, binaries are generated

on the same computer with the same compiler and optimization flags. We used GCC

[14], version 4.1.2 20080704 (Red Hat 4.1.2-48) as compiler. Optimization level we used

is O4. TBB version 2.2 and pthreads version NPTL 2.5 is used.

Input graphs we used are divided into two categories: synthetic graphs created

using generators and graphs encountered in vision, that mimic real-life data. For

the synthetic benchmark data, we used three different generators to generate various

types of input graphs. These generators, namely ”genrmf”, ”washington” and ”acyclic-

dense”, can be found in [15].

Graph instances from computer vision domain are present at [16]. We present

the size of these vision domain graphs in Table B.1. In various image processing re-

lated studies, these graphs are encountered. Finding minimum cut of a graph (hence

maximum flow), is a basic building block of many image processing related algorithms

and thus fast computation of maximum flow on these graphs affect other algorithms

that depend on this computation [16]. It is important that our parallel implementa-

tion runs considerably faster than the best serial implementations on these real-life

problems, which results show it does.

We collected two different measurements from our tests. First, we present how

much parallelism is achieved by our parallel implementation by providing speed-up

factors (relative to running our implementation with a single thread). Then, we refer

the reader to the tables found in Appendix C and Appendix D. These tables pro-

vide a comparison of our implementation to the best sequential implementations, by
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presenting average running times excluding input parsing. Input parsing times of our

implementation and the sequential implementations were more or less the same.

5.2. Evaluation On Synthetic Data

We followed a similar path to [5] in experiment design. For a given input graph

class, we generated 20 instances by supplying different seed values for the random

number generator. Then, we ran each implementation three times on each instance.

We then calculated the average running times for each input class, calculated from

20 x 3 = 60 samples. Furthermore, we calculated relative speed-up for our parallel

global relabeling implementation described in Subsection 4.6.2. Standard deviation of

running times for each input set was calculated below 15% of the mean.

We used six different graph types, from the three generators. Running genrmf

generator, we generated genrmf-wide and genrmf-long graphs with the parameters given

in Table A.1. The number of nodes (N) and the number of arcs (M) are presented also.

Using washington generator, we generated three different types of graphs. Parameters

for washington-rlg-wide, washington-rlg-long and washington-line-moderate types can

be found in Table A.2. For generating ac-dense types of graphs, we used size parameter

as 8192 (first parameter supplied) and capacity parameter as 10000 (second parameter

supplied) as demonstrated in Table A.3. For each type of graph, we used seeds in the

range [0, 19] for generating 20 different instances.

5.2.1. Performance of Parallel Global Relabeling

We measured the performance of our parallel global relabeling algorithm. We

managed to get a speed-up of about two on certain graphs. This speed-up governs 30%

of execution (since global relabeling constitutes about 30% of the sequential algorithm).

Results are presented in Figure 5.1. Notice that, our parallel implementation will spend

about 30%/2 = 15% of the total execution time for global relabeling. This means that,

we cannot obtain an overall speed-up of more than about six, which can be seen

from our overall speed-up results presented in Subsection 5.2.2. For long types of
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graphs (genrmf-long and washington-rlg-long families), there is no gain from parallel

implementation. On the contrary, overhead of synchronization causes speed-up to be

slightly less than one.
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(a) genrmf-wide family (b) washington-rlg-wide family

(c) ac-dense family (d) genrmf-long family

(e) washington-rlg-long family (f) washington-line-moderate family

Figure 5.1. Speed-up of parallel global relabeling on synthetic graphs
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5.2.2. Overall Performance

Overall performance and the parallelism achieved are presented here. We ex-

cluded input parsing (which is performed serially) times while measuring speed-up fac-

tors. We achieved speed-up of about five on certain types of graphs. Relative speed-up

factors for genrmf-wide, washington-rlg-wide, ac-dense, genrmf-long, washington-rlg-

long and washington-line-moderate are given in Figures 5.2a, 5.2b, 5.2c, 5.2d, 5.2e and

5.2f respectively.
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(a) genrmf-wide family (b) washington-rlg-wide family

(c) ac-dense family (d) genrmf-long family

(e) washington-rlg-long family (f) washington-line-moderate family

Figure 5.2. Speed-up on synthetic graphs
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Note that, different types of graphs yield different parallelism. The case of

washington-line-moderate type of graphs need explaining. If we look at the execu-

tion of our algorithm on washington-line-moderate types of graphs, parsing dominates

the overall execution. This is not because parsing washington-line-moderate types of

graphs are any different than other types. The reason is, push-relabel based algorithms

perform exceptionally well in practice on these types of graphs; thus, making parsing

time appear large compared to the solving time. Hence, about 90% of execution is

spent for parsing washington-line-moderate type of inputs. Since we have memory and

time constraints (we cannot test on arbitrarily large graphs, and our washington-line-

moderate input graph is considerably large), we were forced to take our measurements

on an execution for which about 3-4 seconds were parallel and about 40 seconds were

serial time spent for parsing. Although we exclude parsing times from our speed-up

measurements, a parallel execution of 3-4 seconds is not significant enough to achieve

considerable speed-up, due to parallelization overhead.

Notice that we ran our tests on a hardware with eight cores. That is why, as

number of threads approach eight, increase in speed-up diminishes. In most of the re-

sults, performance of running with eight threads is actually slightly worse than running

with seven threads. The reason for this is, our tests are not the only processes that are

using the computer resources. There are other processes, in a time-shared system, so

most of the time one core is actually serving processes other than our implementation.

Next, in Tables C.1, C.2, C.3, C.4, C.5 and C.6, we compare practical performance

of our parallel implementation to Goldberg’s F PRF, H PRF, HI PR, HI PRO and

HI PRW implementations (HI PR* implementations are derivatives of H PRF, with

heuristic parameters adjusted for better performance on certain instances) [9]. For

washington-rlg-long and genrmf-long types of graphs, implementations that employ

gap relabeling heuristic are superior. For both types of graphs, implementations with

gap relabeling detected many gap nodes per gap and saved time by not inspecting

those gap nodes. Notice that our parallel implementation is, overall, superior to the

serial implementations. The execution times are directly proportional to the number

of basic operations.
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5.3. Evaluation On Vision Data

For tests on the data from [16], we used a slightly different experiment setup.

For a given instance, we ran each implementation 20 times. Notice that there isn’t

any randomness in these instances. We then presented the average running times for

each input class, calculated from 20 samples. Standard deviation for each input set

was calculated below 15% of the mean.

5.3.1. Performance of Parallel Global Relabeling

Performance of our parallel global relabeling implementation on vision domain

graphs are similar to that of synthetic data. A speed-up of about two is observed, in

Figure 5.3. Notice again that, this speed-up concerns about 30% of overall execution.

(a) BL06-gargoyle-lrg instance (b) BL06-gargoyle-med instance

(c) LB07-bunny-med instance (d) babyface.n6c100 instance

Figure 5.3. Speed-up of parallel global relabeling on vision graphs
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(e) babyface.n6c10 instance (f) BL06-camel-lrg instance

(g) BL06-camel-med instance

Figure 5.3. Speed-up of parallel global relabeling on vision graphs (continued)

5.3.2. Overall Performance

Relative speed-up factors (again input parsing times are excluded, which is per-

formed serially) for BL06-gargoyle-lrg, BL06-gargoyle-med, LB07-bunny-med, baby-

face.n6c100, babyface.n6c10, BL06-camel-lrg and BL06-camel-med are given in Figures

5.4a, 5.4b, 5.4c, 5.4d, 5.4e, 5.4f and 5.4g respectively.

Comparison of our implementation to sequential implementations on vision in-

stances can be found in Tables D.1, D.2, D.3, D.4, D.5, D.6 and D.7 respectively,

for BL06-gargoyle-lrg, BL06-gargoyle-med, LB07-bunny-med, babyface.n6c100, baby-

face.n6c10, BL06-camel-lrg and BL06-camel-med instances.
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(a) BL06-gargoyle-lrg instance (b) BL06-gargoyle-med instance

(c) LB07-bunny-med instance (d) babyface.n6c100 instance

Figure 5.4. Speed-up on vision graphs
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(e) babyface.n6c10 instance (f) BL06-camel-lrg instance

(g) BL06-camel-med instance

Figure 5.4. Speed-up on vision graphs (continued)

5.4. Comments On Parallel Implementation Efficiency

Results regarding relative speed-up, presented in Subsections 5.2.2 and 5.3.2,

show that the efficiency of our parallel implementation varies over different classes of

input graphs. The main reason for this varying levels of speed-up is not cache related.

On some graphs, our modified FIFO selection strategy (local queues for each thread)

requires more basic operations, for the algorithm to terminate. That is because, global

FIFO order cannot be maintained; hence, there is a trade-off between using multiple

threads (thereby altering global FIFO order) and performing more basic operations.

Since running times are directly proportional to the number of basic operations per-

formed, an increase in the number of basic operations result in a lesser speed-up, than
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what our implementation can achieve given that the number of basic operations do not

increase.

Another contributing factor for varying speed-up levels is, certain graphs do not

yield much parallelism for our implementation. That is, in the course of an execution,

amount of active nodes is limited. There is not enough work to distribute among the

threads and utilize all the threads.
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6. CONCLUSION

We presented a parallel implementation for solving maximum flow problem in ca-

pacitated networks. Our implementation targets multi-core computers and uses FIFO

selection strategy local to each processor. A parallel version of global relabeling heuris-

tic is incorporated into the implementation. Our implementation uses separate queues

for each processor and a task stealing mechanism to balance load. Main contribution

of our work is that, we make extensive use of atomic variables to avoid explicit locks,

this leads to a faster implementation. Synchronization overhead is minimized, thus

available parallelism is better utilized.

In order to evaluate practical performance of our parallel implementation, we

used Goldberg’s various serial implementations in our comparisons. Since there is no

single winner among these implementations, we included each of them in our experi-

ments. Even then, our parallel implementation is shown to perform better overall. Our

code outperforms its serial counterpart F PRF of Goldberg on each graph instance we

experimented. Except long types of graphs (washington-rlg-long and genrmf-long), our

parallel implementation is faster than other implementations. Our parallel implemen-

tation performs exceptionally well on the vision data of [16]. Experiments suggest our

implementation performs about twice as good as the fastest serial implementations.

These results establish that our parallel implementation is robust and can be used as a

replacement for the serial implementations of push-relabel based solvers on multi-core

machines.

A few points need mentioning, concerning the performance of our implementation

on synthetic washington-rlg-long and genrmf-long types of graphs. For long types of

graphs, gap relabeling heuristic seems to boost performance. Another factor that

explains why on long types of graphs our implementation performs slower, is that HL

selection strategy yields a faster algorithm in practice for certain graphs (compared to

FIFO selection strategy). Furthermore, we have experimented in our parallel global

relabeling implementation, that these long types of graphs yield less parallelism. Even
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though we achieved considerable speed-up over F PRF on long types of graphs, serial

implementations employing gap relabeling heuristic perform better than our parallel

implementation. For further study, bottlenecks in our implementation can be identified

empirically for different graph families.

Although combinatorial problems might not allow immediate parallelism, this

area of research is promising with the recent advance in multi-core processors. There are

various serial algorithms for solving maximum flow problem, with push-relabel based

algorithms being the most practical. These algorithms can be studied to devise different

types of parallel implementations for the maximum flow problem. In particular, our

atomic variable usage can be employed to devise a parallel implementation making use

of gap relabeling heuristic which improves practical performance further.
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APPENDIX A: GENERATOR PARAMETERS FOR

SYNTHETIC DATA

Table A.1. Parameters for genrmf-wide and genrmf-long types.

parameter a b c1 c2 N M

genrmf-wide 400 16 1 10,000 2,560,000 12,614,400

genrmf-long 32 1,024 1 10,000 1,048,576 5,110,784

Table A.2. Parameters for washington-rlg-wide, washington-rlg-long and washington-

line-moderate types.

parameter fct dim1 dim2 range N M

washington-rlg-wide 2 32,768 64 10,000 2,097,154 6,258,688

washington-rlg-long 2 64 65,536 10,000 4,194,306 12,582,848

washington-line-moderate 6 65,536 4 128 262,146 33,521,502

Table A.3. Parameters for ac-dense type of graphs.

size capacity N M

8,192 10,000 8,192 33,550,336
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APPENDIX B: VISION DOMAIN GRAPH INSTANCES

Table B.1. Number of nodes & number of arcs for vision instances.

graph number of nodes number of arcs

BL06-gargoyle-lrg 17,203,202 86,175,090

BL06-gargoyle-med 8,847,362 44,398,548

LB07-bunny-med 6,311,088 38,739,041

babyface.n6c100 5,062,502 30,386,370

babyface.n6c10 5,062,502 30,386,370

BL06-camel-lrg 18,900,002 93,749,846

BL06-camel-med 9,676,802 47,933,324
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APPENDIX C: TEST RESULTS ON SYNTHETIC DATA

Table C.1. Comparison on genrmf-wide family. Times in seconds.

# of global

time # of pushes # of relabels relabelings

our impl. 144.56 608,354,883 324,971,087 42

F PRF 472.2 604,329,223 265,709,785 104

H PRF 168.94 357,932,622 210,455,046 82

HI PR 153.85 345,341,109 203,143,194 81

HI PRO 152.9 342,331,384 201,709,409 80

HI PRW 146.9 331,505,857 195,644,032 78

Table C.2. Comparison on washington-rlg-wide family. Times in seconds.

# of global

time # of pushes # of relabels relabelings

our impl. 34.15 126,367,606 52,292,047 17

F PRF 64.07 92,457,946 30,672,323 15

H PRF 41.42 91,626,681 37,085,639 18

HI PR 45.35 92,383,060 37,477,319 19

HI PRO 44.96 92,311,356 37,445,503 19

HI PRW 44.65 91,140,000 36,790,682 19
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Table C.3. Comparison on ac-dense family. Times in seconds.

# of global

time # of pushes # of relabels relabelings

our impl. 20.61 278,379 128,737 6

F PRF 36.29 202,765 74,208 9

H PRF 19.18 134,287 46,827 6

HI PR 32.86 181,995 52,971 8

HI PRO 27.9 133,111 46,101 7

HI PRW 34.04 182,576 53,466 8

Table C.4. Comparison on genrmf-long family. Times in seconds.

# of global

time # of pushes # of relabels relabelings

our impl. 17.28 59,429,217 17,250,374 16

F PRF 34.68 66,248,774 17,965,208 17

H PRF 11.8 33,646,761 26,848,312 26

HI PR 10.2 33,412,519 26,636,933 27

HI PRO 10.19 33,448,035 26,670,890 27

HI PRW 11.34 37,272,662 29,120,180 29
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Table C.5. Comparison on washington-rlg-long family. Times in seconds.

# of global

time # of pushes # of relabels relabelings

our impl. 74.71 416,787,522 61,070,981 7

F PRF 156.08 455,468,236 36,393,644 9

H PRF 2.22 17,066,286 2,757,994 1

HI PR 2.52 17,078,084 2,764,515 2

HI PRO 2.43 17,066,286 2,758,057 2

HI PRW 2.63 17,435,751 2,773,932 2

Table C.6. Comparison on washington-line-moderate family. Times in seconds.

# of global

time # of pushes # of relabels relabelings

our impl. 3.09 1,619,893 371,663 2

F PRF 1.81 970,826 170,807 1

H PRF 0.92 473,983 12,576 1

HI PR 2.53 473,904 12,536 2

HI PRO 2.53 473,983 12,576 2

HI PRW 2.54 473,912 12,550 2
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APPENDIX D: TEST RESULTS ON VISION DATA

Table D.1. Comparison on BL06-gargoyle-lrg instance. Times in seconds.

# of global

time # of pushes # of relabels relabelings

our impl. 139.35 481,472,484 185,776,642 10

F PRF 361.42 515,678,942 137,625,624 9

H PRF 327.64 593,231,209 288,901,272 17

HI PR 252.31 573,404,232 277,538,216 17

HI PRO 316.25 573,404,232 277,538,311 18

HI PRW 235.23 545,866,547 252,860,479 16

Table D.2. Comparison on BL06-gargoyle-med instance. Times in seconds.

# of global

time # of pushes # of relabels relabelings

our impl. 62.45 224,193,550 89,910,873 9

F PRF 151.7 228,801,386 61,931,541 8

H PRF 146.5 250,236,488 124,966,936 15

HI PR 117.77 258,291,346 129,415,650 15

HI PRO 144.41 258,291,346 129,415,725 16

HI PRW 108.12 234,920,307 113,515,312 14
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Table D.3. Comparison on LB07-bunny-med instance. Times in seconds.

# of global

time # of pushes # of relabels relabelings

our impl. 22.65 68,152,847 28,370,124 5

F PRF 36.08 59,696,211 25,244,356 5

H PRF 42.8 61,505,463 35,620,715 6

HI PR 46.83 62,132,193 35,947,981 7

HI PRO 47.02 63,901,025 35,923,078 7

HI PRW 63.93 114,232,037 59,410,754 11

Table D.4. Comparison on babyface.n6c100 instance. Times in seconds.

# of global

time # of pushes # of relabels relabelings

our impl. 27.68 102,149,201 45,417,102 8

F PRF 51.67 66,512,855 25,710,368 6

H PRF 70.89 144,081,054 67,919,846 14

HI PR 69.96 144,727,796 68,305,595 15

HI PRO 69.76 145,046,119 68,172,555 15

HI PRW 65.3 137,095,408 63,109,261 14
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Table D.5. Comparison on babyface.n6c10 instance. Times in seconds.

# of global

time # of pushes # of relabels relabelings

our impl. 24.06 68,909,744 31,885,082 8

F PRF 51.7 60,133,237 25,339,596 6

H PRF 52.86 108,512,380 55,665,530 11

HI PR 52.27 107,922,330 55,655,142 12

HI PRO 51.9 107,959,242 55,596,317 12

HI PRW 54.5 111,159,170 57,578,572 13

Table D.6. Comparison on BL06-camel-lrg instance. Times in seconds.

# of global

time # of pushes # of relabels relabelings

our impl. 163.84 518,414,986 201,545,792 10

F PRF 318.19 438,198,557 151,200,025 9

H PRF 401.1 830,152,726 392,764,654 21

HI PR 399.37 846,148,257 404,634,873 22

HI PRO 431.78 846,148,257 404,634,929 23

HI PRW 389.83 848,117,029 397,136,601 22
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Table D.7. Comparison on BL06-camel-med instance. Times in seconds.

# of global

time # of pushes # of relabels relabelings

our impl. 72.49 240,321,840 98,548,804 9

F PRF 132.17 194,376,600 67,737,622 8

H PRF 163.62 337,977,034 159,339,534 17

HI PR 163.42 350,016,127 168,312,018 18

HI PRO 178.47 350,016,127 168,312,066 19

HI PRW 150.38 336,872,618 158,178,409 17
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