{ FOR REFERENCE

40T (= 8E +AKEN FROM THIS ROOM

IDENTIFYING PEPTIDE MOTIFS USING GENETIC ALGORITHMS

o by
Deniz Tanriseven (Saglk)

B.S. in Computer Engineering, Eastern Mediterranean University, 1998

‘/’ Bogazici UnlverSIty L|brary

WA

Submltted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of
the requirements for the degree of
Master of Science |
in

Computer Engineering

Bogazici University
2000 -

iii

ACKNOWLEDGEMENTS

I would like to thank to my dear professor Ugur Sezerman for his great efforts and

understanding in this work. Without him, I would have been lost.

Thanks a lot to Assoc. Prof. Cem Ersoy and Assoc. Prof. H. Levent Akin for their

~ valuable ideas and help.

Finally, many thanks to my family and dear friends for their support and courage.

iv

ABSTRACT

IDENTIFYING PEPTIDE MOTIFS USING GENETIC ALGORITHMS

Finding the ligand motifs binding to the receptor molecules is crucial in vaccine and
drug design, especially for the MHC-peptide problem. In this work, for determining the
peptide motifs bindingAto specific MHC molecules, we have used regression analysis. In
order to find the the optimum regression line, genetic algorithm (GA) techniques are used
because in traditional regression analysis methods, you may not be able to reach the
optimum solution. The optimum regression line generated by the GA also determines the

factors on the MHC molecules that makes the peptide bind to these MHC molecules.

The efficiency of the GA is tested by doing several tests on its different parameters,
and the optimum set of parameters are determined for this problem. Results have shown
that we are able to predict second position of a peptide motif with 95 per cent exact match
or 100 per cent close match within one standard deviation of the predicted equation. We
have divided last position’s data into two parts in order to explain it with two regression
lines. Predictions for the last position of the peptide motif with the first regression line
resulted in 80 per cent exact match. Second regression line resulted in 75 per cent exact

match.

OZET

GENETIK ALGORITMALAR KULLANARAK PEPTIiDLERDE
MOTIF BULMA

Alict molekiillere baglanan peptid motiflerini bulmak, as1 ve ilag dizayninda ¢ok
onemlidir. Bunun en 6nemli uygulamast ise MHC-peptid problemidir. Bu ¢aligmada belirli
MHC molekiillerine baglanan peptid motiflerine karar vermek igin regresyon analizi
kullamildi. Geleneksel regresyon analizi metodlar1 ile her zaman optimum sonug
yakalanamaélgl i¢in optimum regresyon dogrusunu bulmak igin genetik algoritma (GA)
teknikleri kullamldi. GA ile bulunan optimum regresyon dogrusu peptid motifini
belirlemekle beraber MHC molekiillerinde, peptidlerin bu molekiillere baglanmas: igin

gerekli olan etkenleri de bulmaktadir.

GA’nmn yeterliligi degisik uygulama teknikleri ile test edilmis ve bu problem ig¢in
optimum parametre seti belirlenmistir. Sonuglar, peptid motifinin ikinci pozisyonunun
bulunmasinda yiizde 95 birebir uyumluluk ve yiizde 100, bir standart sapma ile uyumluluk
gostermigtir. Son pozisyonu iki regresyon dogrusuyla agiklayabilmek igin veri ikiye
bélinmiigtiir. Ik regresyon dogrusu ile peptid motifinin son pozisyonunun bulunmasmnda

yiizde 80, ikinci regresyon dogrusu ile ise yiizde 75 dogru tahmin yapilabilmistir.

vi

TABLE OF CONTENTS
ACKNOWLEDGEMENTS......coiiniiiiriieninensssnsssestsssessesesssssssssssosssesssssessarsssessessssssenss iii
ABSTRAGCTcoiiiietiinritiessiitescssssessestsanesssasssssnsstsssnssssesesasssssssstossastsssssssassassensessesesss iv
OZET .oveveeterrrerereiessesesesssestssssesssssssessesssesesssssssssssessssssssesessssesessssessssssssssessssesnsssssnsasessnens v
LIST OF FIGUREScouoimmriiintstsnccnninesnssesnssssssssessasenssesstssssasssssssssassasssrassassnsensasesen ix
LIST OF TABLES ...ooocooovvsmesesriss s eesrssseseens v st st xi
LIST OF SYMBOLS/ABREVIATIONSovovverueenercressescsssesssssnesssessessessossssssonses Xiii
1. INTRODUCTIONoccvivtiiriieriinccecrsenisssessnsesresessessssessssesiossssssssssssssssssssssssasssnssnsassas 1
2. MHC — PEPTIDE PROBLEMccocvvivirrerreneneesereressssssssessessssessesssasssessessssssssessssssns 4

2.1. Biological BaCKZIOUNcueveuierieeeeeiencescaninsssesnesassessssssssssssessssssssssassassssenssns 4
2.1.1. Structure and Classes of MHC Molecules........covvurerunrererinueresnsrernsncsennnes 5
2.1.2. Antigen Processing and Presentation..........cccveereerereencsecsesaesaeseesassaessesacnns 9

2.1.2.1. MHC Class I — Peptide Association (Endogenous Processing)... 10
2.1.2.2. MHC Class II — Peptide Association (Exogenous Processing) ... 10

2.2. Historical Background..........ccccceeeerreerenrnreicecsinseeseesessesssesneeseessessessssssessessassassas 10

3. GENETIC ALGORITHMSociviritiiiienicnniiieestesssssessossossssssssssesasssesesassassassassess 15
3.1, AN OVErVIEW Of GAS ...cciiriririeiiiniinnessnnncissessssssnssssssssesssssssssssssessssssssessassareasees 15
3.1.1. Historical Background..........ccececeerrureicsnniornsnscsncancarenssssraranesnesassesaassasaenes 15

- 3.1.2. Biological Terminologyc..ccecererevessercnearecnens retsresseeesasatesestssasesssssns 16

3.1.3. Elements Of GAccoiiniininninrnnrnieinnirsnssnssesansescanssssessessessssasssessesasnes 17

" 3.1.4. A Simple Genetic AIZOTIthIMcccvieviirinuininnnraninsuncsineensisneeenesansaesnesacnne 18

3.1.5. Schema Theory and Building Blocks................. - 20

3.2. Applications of GA in MolECUIAr BIOIOEY ..eeeeeeeeeeemsmmmmmmmessssessereeseeesereeesseseseeserees 22
3.2.1. Fragment Assembly of DNAccceeeee. ettt b s et esasassassranesese 22

3.2.2. Protein Folding Problem........cccccvieviirernircerirernsensenenneesseeressseessesssseeraenns 23

3.2.3. Drug DeSiZN..cccuceiirieiiririeirnesisencssesesnstossescsssessssssssssessssssasssssssssssessanse 24

4. PROBLEM DEFINITION AND METHODOLOGY 26
4.1. Problem Definitionccccouerieerriccsinrisnseenisensiescnscscsecsssssosasssesessaessssesassessassassnsas 26
4.2, ENCOGING ...couimiiiiiririricniienierssiisiisisneresisisissssesssnsassesessssinsssssesesssssssssosssssasnsensans 27
4.3. Genetic Algorithm Implementation........covcvieiivieiinreinnieninneinienisecseeseesnsseseonens 27

4.3.1. Initialization of the Populationccceeveererecerereneercrsvercnnsessvenseesreereenss 28

vii

4.3.2. Regression and Correlation AnalysiS........ccoceeeeumreeieenrereecresenrecsesernessnnens 29
4.3.2.1. Regression ANalYSiS......ccocsesireresecerssesersersncsnssssnsssnsessessessesaenens 29
4.3.2.2. Correlation ANalysisccceccerervuerernnsiesinsuensensneseeseeseessessenessassnes 30
4.3.2.3. Matrix Representation......c.coccecvereerenrencrensncscssesnesensessensnesesnenees 31

4.3.3. SElECHOM....ciitireiiireicrinirnenererssssesaesessessesissiesesesessonssessesneraessssssessassssenses 31
4.3.3.1. Rouleﬁe-wheel Selectionceevvernuicnuenicnnnnicecctnsennennnnensereeenees 32
4.3.3.2. Stochastic Universal Samplingcocceeeeerrsersemnrnninrrenisrnnnn. 33
4.3.3.3. Tournament Selection......... tereseesesesesssnseereseseransnresssrareressnretsesssnns 34
4.3.3.4. Truncation SEleCtion.........cocereerreerersesserseseecsnossesesseseressesassesnasnses 34
4.3.3.5. Rank SeleCtionc.ccceeererereecerrecsrcennecssseesesnssesnssnssasasseseesaesessenes 34

4.3.4. ReCOMDINAtION......ccovvurururreecreereerreresreseseesseresesesssaessnssesnssssssassesssnsssssnsns 35
4.3.4.1. Single-point CrOSSOVETccceereveererevereerenssessessessessessessessesesssssanne 35
4342, Multi-point CrOSSOVETecvererereraersecsessasersasssesesssasseassassassassssassen 36
4.3.4.3. DiSCrete RECOMBINAON. ..vvvvvrvvvessesrsrssssneesssssessssssssssssssssssssssssens 37

4.3.5. MULALION.c.cuciruiiecrerienecenasenenesessnenesssessssessssessssssesssressasesseressesssssasessasnns 38

4.3.6. REINSEITION....covirirerrerrcrrisessisessersseseseronsssacasessessesassessassessassessessasasssssessasaes 39
4.3.6.1. Pure ReiNSEItioN.....cccoererrerrirerseerenseeseraesnssnssenseesassesseseesaesassassesses 39
4.3.6.2. Elitist REINSEItION ...cccveevrererrerererereeesncsesseseeressessesnesaesseesssossones 39
4.3.6.3. Rank-based ReINSErtioncccocceurrernicnrenenersensceseresncsserensassaseas 40

4.3.7. StOPPING CHIETIA.c.vrvrerveverreeeeeeeesesesesesseseesssssememmsmsnensessessssseeees R 40

5. TEST RESULTS......cccccnriccnrrrerensnsnsnens ereseeetesa ettt et st e s e s e san st s erasannnateraesaranane 41
5.1. Test Data DefiNition......c.cccceeervecrerenrnuncencstsnssnesesessenersssesnssesseressesseressessssessesesenes 41
5.2. GA Performance TestS......ccecurierenrsiiserceerenrensenseeeesesesessessessessessesssssesessesssesesns 41

5.2.1. Implementation Details........cccccerereericiinuecnrisinenneresnnsensessrensesesseseraesenens 42

5.2.2. System Parameters........ccccereereereererrrenesseesersensssnsareseersesssesserasssssssssssssessase 43

5.2.3. Tests 0N SEIECHION TYPC...vvurumrrrereerrcrnsrsscsssessssssensesssessnsaseessssnsssessesssnne 44

5.2.4. Tests 0N CroSSOVET TYPE...cccveerersersrrserseessansessessecssnessersssresssssessssssasssnes 45

5.2.5. TeSts on ReiNSErtion TYPEcoevievcnverirniirereerecncrecnnrensesesssseeessresesseesenne 47

5.2.6. Tests on Population Size...........ceeueu.. revereesaets e tase st s terenassaanaanene o 48

5.2.7. Tests on Mutation Rateccecevvirvreeneininnninennninsnneeneesresensessesesessennens 49

5.2.8. Convergence Graphs............... ettt a st st e e st sst et ssnssnaesneenane 51

5.2.9. Numerical Comparisons to Exhaustive Search and SPSS....................... 52

5.3. Tests On POCKEL B @Nd P2 u.uuuieiieeiieiiiieeiriitetieeceeeeessessssssssssessssasnesessssssssssassssesss 54

5.3.1. Test Data Preparation.........ceceererererueresisismssesesiscsesssssessssssesasssssossasaensssssoses 56

5.3.2. Tests Using Hydrophobicity Scale A........cccouemevriiiircnernesesesisannensesaenes 57

5.3.3. Tests Using Hydrophobicity Scale B.........cocovvvnivrniininincnnninencncraenenes 58

5.3.4. Tests Using Hydrophobicity Scale C........cccovvirvenininiisrineciinecrecsnecncnee 59

5.3.5. SiZ€ PrEAiCtION .couevererrerreeerererssreeeneseensssstenessesesissestsnssessesssnensssssssnnsnsssns 64

5.4, Tests on POCKEt F and Pa........oueceecreerenvensenenennsciscnceninsiniseestsscsssessesaessssesseses 65
5.5. Comparisons with Another TEChDIQUEcucurcmmcuviuimimsiisciiiciiinctiicsincne 69

6. CONCLUSIONScoiiirecccrreansesssanseresassesasnsnsens ereereneesaeneneetsasaesesaeasarsstsesasaassntaseses 70
REFERENCEScociiiininncrereniisassssessessassasessssssssassssssassssacssssssssssestossssssessssessassssssssssonce 72

REFERENCES NOT CITEDcuiiiiniriiiniinninniissiissesissessesssssssssassssnssessssssssasssssnes 76

Figure 2.1.

Figure 2.2.

Figure 2.3.

Figure 2.4.

Figure 2.5.

Figure 3.1.
Figure 4.1.
Figure 4.2.
Figure 4.3.
Figure 4.4.
Figure 4.5.
Figure 4.6.
Figure 4.7.
Figure 4.8.

Figure 4.9.

ix

LIST OF FIGURES
The structure of MHC class I and class IT molecules......cooeeevienneericcrneeereeennnes 6
MHC Class I and Class II peptide complexes........coeevnenisumrirrenensessiesennsseesenes 6

Schematic representation of the path of the polypeptide chain in the

StrUCtUIe OF HLA-AZ......uiiirrrienecicniinsenesnsssessisisiesssssssssssssnsssossssesssns 7
Schematic representation of the top surface of HLA-A2..........cocovvveerivennennns 8
Peptide at the groove of HLA-A2 mqlecule ... 9
Structure of a simple genetic algorithmcccoevcviricrcniirecnenensceccseiseennnne 19
A chromosome with integer encoding.........cccevievrnrnseseneresnsnisesesesieseennens 27
€15 TS0 TUT o) 11 11 11 LS 28
An example of a population of iIndividualscccccecrveevciereinsensinsnnnsersessnesenes 28 -
Roulette-wheel algorithm....... e s 33
Stochastic universal sampling algorithm........c.ccocevvrrvcincnensniinicnverensenenes 33
Tournament selection algorithim.........cevececereseniieiecccccceienees 34
Single-point crossover algorithm ceeersrsrssesbesaee e beatensenneane 35
An example of a single-point CrOSSOVETccivurieereivurneisnsivnsreninssesssessassssssns 36

Two-point crossover algorithmcoecvrecrneisisnniessesnnineniienennscesesseses 36

Figure 4.10. An example Of Multi-pOiNt CTOSSOVET ...c.eurireeerersrsrsississressssesesssssessasionsasasesens 37
Figure 4.11. Discrete recombination algorithmcceeeececvciiiiinciniiiiiiniiinnns 37
Figure 4.12. An example of discrete recorﬁbination .. 38
Figure 4.13. An example Qfmutation FET OO OSSO 39
Figure 5.1. Average number of iterations for selectio;l mechanismsccveirenereerenenne. 44
Figure 5.2. Predictive power for selection mechanismsc.ccoceecvcicnniiinninninninnnnnns, 45
Figure 5.37./ Average number of iterations for CroSSOVer MEChANISMS .vveuuuunorvvsssssnnnreereses 46
Figure 5.4. Predictive power for cfossover 11116 111 11S) 1 1 SO 46
Figure 5.5. Average number of iterations for reinsertion mechanismsccoeeeeeereeecees. 47
Figure 5.6. Predictive power for reinsertion mechanismsc.coceeveeverscseecsiccscsencssnesesnae. 47
Figure 5.7. Average number of iterations for different population sizes........ ereeeersemmnens 48
Figure 5.8. Predictive power of different population Sizes.........ceeuurereeeresreesesressssssssssanens 49
Figure 5.9. Average number of iterations for different mutation rates.........cceeurverevrencec. 50
Figure 5.10. Predictive power of iterations for differe_:ﬁt ﬁutation ¢:1 (1SR 50
Figure 5.11. Convergence graph of P; for 20 individuals..........ccoceveevevevennnicncnnicsivnnnnenn 51

Figure 5.12. Average convergence graph of Pa.....ceceeeeveeeneieeneeeececeieeneae, 52

Figure 5.13. Schema for input data..........ceverrerenenennereninterenninstnenenesesesesessessassassessenns 57

xi

LIST OF TABLES
Table 4.1. Parameters of the genetic algorithimcoeeeeeceevmrccenmnesinnniinninenncienncncinees 29
Table 5.1." Polymorphic positions for each MHC POCKEL ...cvovuererecesiriscnsirinininscncnnicsinsines 41
Table 5.2. Hydrophobicit); Scales A, B and C, Size Scale BL— (C)...cccovurevcrnnencrescnennnns 42
Table 5.3. Constant parameters for teStiNgcoccvrreirerveneserresnnesenessssscscssstesenessisanes 43
Table 5.4. Convergence rates for selection MechaniSMSueeveerereeeenesentesenestsssnnansasas 45
Table 5.5. Convergence rates for crossover INECRANISINS cvvvvvveeeseeeeeeeessmssnnsseesssessssssssesssses 46

Table 5.6. Convergence rates for reinsertion mechanisms

.. 48
Table 5.7. Convergence rates for population S1Z€........eeeruerrneresesesssesesnsnsssnsnsnsssasancscsenes 49
Table 5.8. ‘Convergence'rates fOr MULALION TALE....ccveerreereecsasssrneseecsemssersseessessnesansssnessenns 50
Table 5.9. Running times for exhaustive §earch and GA ..ot 52
Table 5.10. Stepwise linear regression method with SPSS for Py..cevececucusccnisicciunnnnnnnss 53
Table 5.11. Peptide residues at P, of 20 Class I MHC molecules for testing‘ 54
Table 5.12. Peptide residues at P, for 46 Class I MHC molecules for training................. 55
Table 5.13. Amino acids at pocket B for the 20 MHC Class I test molecules 55

Table 5.14. Amino acids at pocket B for 46 MHC Class I training molecules 56

Table 5.15.
Table 5.16.
Table 5.17.
Table 5.18.
Table 5.19.
Table 5.20.
Table 5.21.
Table 5.22.
Table 5.23.
Table 5.24.
Table 5.25.
Table 5.26.

Table 5.27.

Table 5.28.

xii

Adjusted R? values for P, with different VAR sizes (Scale A)......cccevvevenene 58

Adjusted R? values for P, with different VAR sizes (Scale B)ccevvvvernenee 59
Adjusted R? values for P, witﬁ different VAR sizes (Scale C)ccccevuerunenee. 60
Amino acid gouping for replacement........cceeveecrneisresnsiernsnsnnrisnssensnssessnnens 60
Predictions for 46 Class I MHC Molecuies 1721 (S 0 F 61
Predictions for 20 Class I MHC test molecules (Scale C)....coeeuvvvcnrinnccrnennae 62
New predictions for 20 Class I MHC test molecules (Scale C)ccoeeucesnecen. 63
Predictions for 20 Class I MHC test molecules using size information......... 64
Peptide residues at Pq of 48 Class I MHC molecules for training sevens 65
Peptide residues at P of 20 Class I MHC molecules for testing.................... 66
Amino acids at pocket F for 20 MHC Class I test molecules....... eeeeeeeseeseenes 66
Amino acids at pocket F for 48 MHC Class I training molecules..........c...... 67
Predictions at Pq of 15 Class I MHC test mplecules 68
Predictions at Pq of four Class I MHC test moleculesoeveriienueinecennnene. 69

xiii

LIST OF SYMBOLS/ABREVIATIONS

First pocket of an MHC Class I molecule
Second pocket of an MHC Class I molecule
Third pocket of an MHC Class I molecule
Fourth pocket of an MHC Class I molecule
Fifth pocket of an MHC Class I molecule
Sixth pocket of an MHC Class I molecule
Second peptide position

Third peptide position

_Fifth or sixth peptide position

Last peptide position

Angstrom distance

Volume in Angstrom cube for sizes of amino acids
Last position of a peptide

Alpha-helix protein structure

Beta-sheet protein structure

Standard deviation

Antigen presenting cell
Deoxyribonucleic acid

Genetic algorithm

Genetic function approximation -
Human lymphocyte antigen

Low molecular-mass polypeptide
Major histocompatibility complex
Magnetic resonance imaging

Quantitative structure-activity relationship

'Rough endoplasmic reticulum

Ribonucleic acid
Simple genetic algorithm

Sum of squares error

SSR
SST
TAP
TC
TCR
TH

Sum of squares regression

sum of squares total
Transporter of antigenic peptide
Cytotoxic T cell

T-cell receptor

Helper T cell

xiv

1. INTRODUCTION

Nature has a robust way of evolving successful organisms. The organisms that are
not suitable for an environment die, whereas the ones that are fit live to reproduce. This
Darwinian theory of evolution depicts biological systems as the product of the ongoing
process of natural seiection, A genetic algorithm can be considered as a form of evolution
that occurs on a computer [1,2]. In its simplest terms, it means the survival of the fittest.
The choice of the fittest is done based on a set of operations such as selection, crossover,
and mutation applied many times. The genetic algorithm begins with a random population
- a set of individuals that are the candidate solutions, and the selection is done according to

a fitness function, which depends on the problem and is very crucial in the algorithm’s

success [3].

Genetic algorithms (GAs) can be used for both solving problems and modeling
évolutionary systems. They are widely used in function optimization, ordering problems
and automatic programming. The idea of GA is also very promising in the field of
computational molecular biology. There are several application areas such as Fragment V
Assembly — the sequence determination of DNA from DNA fragments [3,4], Structure
Determination such as structure determination of proteins [5,6], and Motif Discovery that

is finding motifs in biological sequences.

The aim of this master thesis was tb apply GA for the identification of motifs in
small protein sequences of peptides that are binding to the major histocompatibility
complex (MHC) molecules. Here a motif can be defined as a pattern common to a set of
nﬁcleic or amino acid subsequences, which share some biological property of interest such

as being DNA binding sites for a regulatory protein [7].

MHC molecules play a very important role in the intracellular immune response that
is destroying the virus that has managed to enter into the cell. The physiological function
of a MHC molecule is to bind to degraded fragments of antigen generated inside infected

cells and display them for recognition by T cells. T-cell receptors exist only on the surface

of T cells, and the antigenic determinants they recognize are peptides derived from foreign

proteins and complexed with MHC molecules on the surface of cells.

The viral peptides that bind to MHC molecules are usually eight to 10 residues long,
whereas the protein sequence of a virus is much longer than this. There are many
possibilities of eight to 10 residue long peptides for a given sequence and not all of those
can bind to the MHC. Which of the peptides among different possibilities can bind to a
MHC molecule is a major problem, known as the MHC-peptide problem [8,9]. Note that,

knowing the specific peptide sequence, which can bind to a MHC molecule is very

important for the design of new vaccines.

Antibody .and T cell mediated immune responses are initiated through genes
contained within MHC, so in this sense the MHC represents the front end of the adaptive
immune response to invading pathogens. A large amount of effort has gone into
understanding of this gene complex, the genes encoded within the region, and the role the
complex plays in v_immunobiologyk and human pathology, including diseases of both
infectious and genetic origin [10]. Many researchers are carrying out different studies to
identify peptide sequences that bind to specific MHC molecules, and there are many MHC-
peptide sequence databases constructed as a result of these studies [11-16], which were
used in our study. By using the known MHC-peptide sequences as input data, and genetic
algorithm technique for problem solving, our aim was to predict the possible peptide
motifs that will bind to MHC molecules so that for a given individual with a known MHC,

which viral peptide sequences will be able to bind to that specific MHC can be determined.

The first step in this study was to determine which of the MHC sequence positions
were the defining positions for the peptide to bind to it. These positions are called peptide-
binding motifs of the MHC molecule. After predicting these positions of a group of
different MHC moiecules, the next step was to predict the peptide anchor residues that will
bind to those positions of the unknown MHC molecules. The genetic algorithm technique
together with the multiple regression analysis has been used as the solution method to our
problem. The muitiple regression analysis was used to find the fitness values for the
individuals that will be fed into the genetic algorithm phase. Another important result of

the regression analysis is the set of MHC sequence positions that will be used to make

future predictions of peptide sequences. Initially a simple genetic algorithm (SGA) was

implemented and later modifications to it have been done in order to increase the

performance of the SGA.

The second section is devoted to the MHC-peptide problem, its biological and

historical background, which states the problem in detail, and previous works done in order

to overcome this problem.

In the third section, you will find a brief introduction to GAs, their historical

background, and some problems tackled with GAs, which are related to the problem we

were aiming to solve.

In the fourth section, the problem definition and the methodology that we have

followed in our implementation is explained in detail.

The fifth section presents the results of our implementation and the sixth section

gives the conclusion.

2. MHC - PEPTIDE PROBLEM

2.1. Biological Background

The immune system in vertebrates provides a defense mechanism against foreign
bodies such as viruses and bacteria. Three main properties are essential to its operation:
specific recognition of foreign molecules, which also involves discrimination between self
and non-self; the ability to destroy the foreign bodies; and a memory mechanism that

results in a more rapid response to a second infection by the same microorganism.

Foreign invaders are recognized through specific and tight binding of the proteins of
the immune system to molecules specific to the foreign organisms. The sites on the foreign
molecules that are recognized by the immune’ system are called antigenic determinants.
Antigenic determinants interact with two different classes of antigen receptors on the
surface of the two major cell types of the immune system. Antibodies, which are also
known as immunoglobulins, act as antigen receptors on the surface of B cells, which are
stimulated by antigen binding to secrete antibodies into the bloodstream. The major
function of a T-cell receptor, which resides on the T cell is to recognize and destroy the

virus-infected cells [17].

Antibodies at the surface of B cells are involved in the extracellular immune
response that is they recognize and bind intact soluble molecules or molecules on the
surface of invading microorganisms outside the body cells. On the other hand, T-cell
receptors are involved in the intracellular immune response that is they directly destroy the
body cells, which the foreign bodies have managed to infect. One important point in the
recognition of an antigenic determinant by the T-cell receptor is that, the antigen should be |
presented as a part of a complex with a third important class of protein molecules, the
molecules encoded by the major histocompatibility complex, shortly MHC, on &e surface
of cells. The function of the MHC molecules is to bind to degraded fragments of antigen
generated inside infected cells, also called antigen presenting cells (APC), and display

them for recognition by T cells. The complex formed by the MHC molecule and the

antigen bound to it is recognized by the T-cell receptor as a foreign organism, and

destroyed by the T cell after recognition and proper binding.

2.1.1. Structure and Classes of MHC Molecules

There are two main kinds of MHC molecules; class I and class II. Both kinds
of molecules belong to the immunoglobulin superfamily,v but they are not
immunoglobulins. The immunoglobulin, the T-cell receptor and the molecules of MHC
belong to a family of proteins that seems to have evolved by duplication and diversification
from a single ancestral domain. The crystal structure of immunoglobulin was solved long
before either of the two molecules and the presumed ancestral domain structure is thereforé
known as-an immunoglobulin or immunoglobulin-like domain and all three belong to this
superfamily [17]. Class I MHC molecules are found on all nucleated cells, while class II
molecules show a more restricted expressiori pattern. Class II molecules are always

expressed on B cells, interdigitating dendritic cells, and thymic epithelial cells.

Class I MHC molecules are composed of an o chain, which is the heavy chain of the
MHC structure and a light chain, called B,-microglobulin (B,m). The a. chain is divided
into three domains, al, a2, and o3 [18]. Class Il MHC molecules are composed of an o
chain and a B chain of which the o chain is divided into two domains, a1 and a2, and the
B chain is also divided into two domains, B; and B, as seen in Figure 2.1 [19]. The
extracellular domains of both class I and class II molecules show variability in their amino
acid sequences, yielding grooves with different shapes. The grooves cradle processed
antigens, holding the antigens steady for interaction with the T-cell receptor (TCR) on T
cells. CD8 TC cells, a type of T cells, recognize antigen in association with class I MHC
molecules, while CD4 TH cells, another type of T cells; recognize antigen in association
with class I MHC molecules. The CD8 and CD4 accessory molecules have a weak
affinity for MHC class I and class I molecules, respectively. They interact with the MHC-

antigen peptide complex, thus stimulating intracellular events that cause T cell activation.

« chain B3 chain

NH2

B2-micro-
globulin ~ 2

B2

EXTRACELLULAR

SPACE
HeHi i plasma
fé:{gﬁ%gé{g < % ": % membrane
—~— CYTOSOL
CLASS | MHC PROTEIN E CLASS It MHC PROTEIN

Figure 2.1. The structure of MHC class I and class I molecules
Figure 2.2 [19] shows a scheme for the structure of the témary complex between
MHC class I and class II molecules, foreign antigenic peptide, and the T-cell receptor. The

peptide is located in the groove formed by the al, a2 domains of the MHC class I

molecule and a1, B1 domains of the MHC class II molecule.

"CYTOTOXICT.CELL : SHELPERT.CELL . -

T cell receptor

! ‘ .
class | fragment class Il fragment
MHC \“3%;\ of foreign MHC of foreign
protein protein protein protein

-RE i

Figure 2.2. MHC Class I and Class II peptide complexes

The crystallized structure of a class I MHC molecule, human lymphocyte antigen A2
(HLA-A2) and many years of detailed molecular genetic analysis of T-cel/MHC

interactions have answered very important questions in mind about the MHC molecules

and their bindings to an unlimited number of antigens.

The structure of the HLA-A2 molecule is divided into two globular regions as shown
in Figure 2.3 [17]. The al and o2 domains are viewed from the top of the molecule,
showing the empty antigen binding site as well as the surface of that is presumably
contacted by a T-cell 'receptor. One region is built up from the two immunoglobulin-like

domains o3 and B,m. Since a3 is attached to the membrane in the intact HLA molecule,

this region is closest to the cell surface.

‘ ‘,.
to membrane
spanning
domain

Figure 2.3. Schematic representation of the path of the polypeptide chain
in the structure of HLA-A2

The second region, which presumably is facing the surface and which contains the
antigen binding site, is composed of domains a1 and o2. Each domain has a very similar
structure, which is quite simple as seen in Figure 2.4 [17]. Starting from the N terminus the
chain forms four up-and-down antiparallel B strands called “W” followed by a helical .
region across the B sheet. Two domains associate by their “W” regions such a way that
they are hydrogen bonded to each other in an antiparallel fashion. By this association the
structure of the complete region has a “floor” of a continuous eight-strand antiparallel
B sheet. This floor sits on top of the immunoglobulin-like domains a3 and B,m. The two
helical regions are above the floor almost parallel to each other and separated by a large
distance, about 18 A from center to center. A large crevice that faces the solution is thus
formed with the floor forming its bottom and the helices it sides. This crevice is the
antigen—biﬁding site. In the actual structure that was determined, this crevice was occupied
by an unknown antigen. Figure 2.5 [19] shows the crevice filled by a peptide of nine
residues. The dimensions of the crevice, 25 A long, 10 A wide, and 11 A deep, allow the
binding of peptides of eight residues if they are in extended form and of about 20 residues

if they are folded into an o helix [17].

Figure 2.4. Schematic representation of the top surface of HLA-A2

Figure 2.5. Peptide at the groove of HLA-A2 molecule

Class I MHC molecule’s heavy chain is among the most genetically polymorphic
protein known. The polymorphisms are due to a large number of point mutations at
specific positions in the amino acid sequences of ol and a2 domains. The studies on the
structure of HLA-Aw68 molecule showed that the principal differences between the |
molecules of HLA-A2 and HLA-Aw68 are in the size and precise location of 13 amino
acids that have been mutated. The studies on MHC molecules showed that the MHC
molecules are mainiy similar to each other with only size changes and amino acid
differences at few positions. These few amino acid changes caused by mutation, cause

major changes in specificity for side chains of peptide antigen [17].
2.1.2. Antigen Processing and Presentation

The APC degrades antigen into small peptides (processing), links the peptides to
MHC molecules, and then expresses the MHC- peptide complex on its cell surface
(presentation). Whether an antigen peptide binds preferentially to class I or class II MHC
molecules depends upon how that antigen entered the cell. Antigens that are produced
within the cytoplasm by endogenous processing of the APC tend to associate with class I
MHC molecules. Endogenous antigens are proteins being produced within the humarn cell

(endogenous processing), such as viral proteins produced during viral replication, proteins

10

Produced by intracellular bacteria during their replication, and tumor antigens produced by
Cancer cells. Exogenous antigens are antigens that enter from outside the body (exogenous

Processing), such as bacteria, fungi, protozoa, and free viruses tend to associate with class
II MHC molecules [20].

2.1.2.1. MHC Class I — Peptide Association (Endogenous Processing). Class I MHC
Mmolecules are thought to interact with peptides that have been degraded by proteasomes,
Part of a large cytoplasmic proteolytic complex called the low-molecular-mass polypeptide
(LMP). The degraded peptides are carried into the rough endoplasmic reticulum (RER) by
the transporter of éntigenic peptides (TAP). Upon peptide binding, the interaction between

a class I MHC a chain and By-microglobulin is stabilized and the complex is routed

through the Golgi to the plasma membrane. The complex is now available for interaction
with CD8 TC cells.

2.1.2.2. MHC Class II — Peptide Association (Exogenous Processing). Like class I
molecules, class II molecules are synthesized in the RER. The class II o and B chains
reside there as a complex with an additional polypeptide called the invariant chain (Ii). The.
Presence of the invariant chain prevents peptide binding to class I MHC molecules wifhin
the endoplasmic reticulum and facilitates their routing to an endosomal compartment. Here
in the endosomal or lysosomal compartment, there is a degraded antigen peptide. The
invariant chain comes off the complex, exposes the groove of the class II molecule, and
allows the antigen peptide to slip into the groove. The class II-antigen peptide complex is

then transported to the surface of the APC where it is available for interaction with CD4
TH cells.

2.2. Historical Background

The identification of MHC ligands is a crucial step toward establishing T-cell-based A
immunotherapies for infectious diseases, auto-immune diseases and cancers. A vaccine for
a disease is developed by using the viral peptides of that disease that bind to a specific
MHC molecule within the infected cells, so that it will be presented to the cell surface and
the infected cell is therefore be recognized and destroyed by the T or the B cells. The viral

peptide that is known to bind to the MHC molecule, is used to produce attenuated live viral

11

vaccines capable of limited growth within the cytoplasm of infected cells, so that the body

gets immunized to this disease. Therefore, knowing the specific MHC/peptide complexes,

is a major issue in developing new vaccines.

There are many studies being carried by researchers on both class I and II MHC
molecules. The following observations stated are obtained from studies on MHC class 1
molecules. Researchers have managed to divide the binding groove of MHC class I
molecules into pockets [21,22], and further studies on these pockets resulted in the

classification of pockets of different class I molecules into pocket families and

superfamilies [23].

Studies have shown that, each individual has a limited number of different MHC
proteins (e.g. six MHC molecules at most for a human), but hundreds of various peptides
are displayed on the cell surface. Therefore, each protein must be able to display many
different peptides [24]. On the other hand, the MHC molecule binds to peptides tightly,
allowing one to assume that a very specific fit is required. Consequently, how can the
MHC protein bind with high affinity for peptides but also be promiscuous in its binding
specificity? The answer to this question lies in the groove of the molecule. Only a single
antigen-binding site exists. If this groove acted as the lock in the very common lock and
key model of many \pr(‘)teins, each MHC molecule could only bind to a single selected
peptide. Instead, the studies on the MHC class I [22] showed that the groove consists of
various pockets. A pocket is defined as the unit having an affinity for a corresponding
peptide side chain. Some pockets have a well-shaped structure with an affinity for only one
side chain. Other pockets have an affinity for a group of side _chains, and sometimes the
boundaries between the pockets are not clear. In order to locate the pockets of a molecule’s
binding groove, Matsumura and co-workers [22] calculated the solvent-accessible surfaces
with probes of different radii. They were not only able to locate these pockets, but also find
their varying depths. Six pockets, designated as A through F, were found. A, B, C, and F
are considered deep pockets. Pockets D and E are considered shallow pockets. Some
residues are involved in only one well-defined pocket, whereas others are actually shared

by two or more pockets.

12

Pockets A and F play key roles in this binding. They are located at the ends of the
groove and accommodate the NH, and COOH termini, respectively. The positioning of the
NH; terminus is achieved by three, conserved tyrosine residues at positions 7, 159, and
171. The hydroxyl groups of these residues form hydrogen bonds with the amino group
and the carbonyl oxygen of the peptide’s first residue. The side chain of the first residue
points upwards towards the solvent. Therefore, there is little restriction on the type of

amino acids that can be accommodated by Pocket A [22].

Pocket F consists of a hydrophobic floor and a hydrophilic entrance. The carboxyl
group of the last residue and the carbonyl oxygen of the penultimate residue form
hydrogen bonds with the side chains of Tyr84, Thr143, Lys146, Tryl47, and Asp70.
Unlike the residues accommodated by Pocket A, these amino acid side chains point toward |

the floor of the groove. Therefore, bulky aromatic residues are restricted from Pocket F
[22]. |

Peptides recognized by the MHC class I molecules tend to be eight to 10 amino acids
long. The ends of the peptide are bound to Pockets A and F, and some anchor residues may
bind to the middle of the groove. Depending on the length of the peptide, a prominent
bulging from the groove will occur. Longer peptides will have a more pronounced bulging
from the middle of the groove [25]). The bulging may allow for recognition by and direct
interaction with the T-cell receptors. The MHC class I molecule can bind to a variety of
peptides, because it binds to the region that is common among peptides - the backbone

(anchor positions), and it ignores the varying side chains of the peptides.

Now we will see how researchers have divided the pockets stated above into families
and superfamilies. As mentioned before, peptides that bind class I MHC molecules are
restficted in length and often contain key amino acids, anchor residues, at particular
positions. The side-chains of peptide anchor residues interact with the polymorphic
complementary pockets in MHC peptide-binding grooves and provide the molecular basis
for allele-specific recognition of antigenic peptides. In their study [23] the researchers
established correlation between class I MHC sequence markers that occur at the
polymorphic positions lining structural pockets. They have analyzed the structures of nine
crystallized class I MHC molecules and modeled structures of another 39 class I MHC

13

molecules, and showed that class I pockets can be classified into families that are
distinguishable by their common physico-chemical properties and peptide side-chain
selectivities. They have tested the correctness of their results on 20 other MHC class ‘1
molecules. Their study can be used to expand the repertoire of known, peptide-binding

motifs of class I MHC molecules. Below, we will take a closer look to their study.

For peptides binding to a particular class I allele, some peptide positions (anchor
positions) are primarily occupied by a particular residue or by a few closely related
residues. These positions include P, frequently, which is contained in pocket B, P3
infrequently, which is contained in pocket D, Pss infrequently, which is contained in
pockets C/D and Pq always, which is contained in pocket F. The occurrence of sequence
patterns defined by anchor positions and anchor residues i.e. the peptide-binding motifs

explains why each allelic form of class I molecule binds a broad, yet dgﬁned range of

peptides.

The procedure they have followed in their study can be summarized as follows.
Initially, sequence alignment and profile analysis of the experimentally identified peptides
associated with each of the 68 class I MHCs were used to gather the amino acid occurrence
frequencies at Py, P3, Psjs and Pq. For 48 class I MHC molecules that had six or more
known peptide ligands, peptide anchor positions and associated anchor residues were
obtained from the frequency data. The working assumption was that anchor residues
identified at peptide positions P;, P3, Psss and Pq will bind, respectively, pockets B, D, C/D
and F. MHC residues forming these pockets were identified by an analysis of the solved
crystal structures; conserved pocket residues delineate the framework, whereas
polymorphic residues of a particular pocket determine its unique environment. The
structural modeling of the polymorphic pocket side-chains and corresponding anchor side-
chains demonstrated that the observed pocket specificities are derivative of the pocket
structures. The observation that groups of MHC pockets exhibit similar physical properties
and peptide side-chain selectivities led to a natural classification of the 48 class I MHC
pockets into distinct pocket families. MHC sequence markers and consensus peptide
anchors were identified for each pocket family. The sequence markers were used to
allocate the pockets of the other 20 class I molecules, which had fewer than six known

peptide ligands, and the accuracy of using the family consensus anchors as a prediction of

14

the anchors for the unknown class I molecules was assessed. The test results of this study

were promising, and widely being used to search a protein sequence for peptides that fit the

class I-binding motifs.

15

3. GENETIC ALGORITHMS

3.1. An Overview of GAs

3.1.1. Historical Background

Evolutionary Algorithms have been independently studied with the idea that
evolution could be used as an optimization tool for engineering problems by several
computer scientists during 1950s and 1960s. By using operators inspired by natural genetic

variation and natural selection in their systems, researchers tried to evolve a population of

candidate solutions to a given problem.

Evolutionary algorithms evolved during Jast 30 years are a branch of Guided
Random Search Techniques, which are based on enumerative techniques but use additional
information to guide the search. Evolutionary algorithms are based on natural selection
principles. This form of search evolves throughout generations improving the features of
potential solutions by means of biologically inspired operations. They can be divided inv
three main categories: Evolutionary Strategies, developed by Rechenberg [26] in 1973 and
further developed by Schwefer [27] in 1977, Evolutionary Programming, developed by
Fogel and co-workers [28] in 1966; and GAs, developed by Holland [29] in 1975.
Holland’s original goal was to formally study the phenomenon of adaptation as it occurs in
nature and to develop ways in which the mechanisms of natural adaptation might be
imported into computer systems rather then to design algoritﬁms to solve specific

problems.

Evolutionary strategies use mutations as search mechanisms and selection to direct
the search toward the prospective regions in the search space. Evolutionary programming
is a technique in which candidate solutions to given tasks were represented as finite-state
machines, which were evolved by randomly mutating their state-transition diagrams and
selecting the fittest. GA generates a sequence of populations by using a selection
mechanism, and use crossover and mutation as search mechanisms. The principal

difference between GAs and the other two is that GAs rely on crossover, a mechanism of

16

probabilistic and useful exchange of information among solutions, to locate better

solutions, while evolutionary strategies and evolutionary programming use mutation as
their primary search mechanism.

Holland’s GA is a method for moving from one population of chromosomes (eg.
strings of bits) to a new population by using a kind of natural selection together with the
genetic-inspired operators of crossover, mutation and inversion. The working of GA is

based on the schema theory and the building block hypothesis of Holland [29] and
Goldberg [30], which will be explained in later sections.

3.1.2. Biological Terminology
The biological terms used in GAs are borrowed from biology, but they usually refer

to the entities that are much simpler than the real biological ones as stated below [8,31].

The information that is necessary to build each protein or RNA (Ribonucleic acid)
found in an organism is encoded in DNA (Deoxyribonucleic acid) molecules. For this
reason, DNA is sometimes referred to as the “blueprint of life”. All living organismsr
consist of cells, and each cell of an organism has a few long DNA molecules, called
chromosomes. Certain contiguous stretches along a DNA molecule encode information for
building proteins and to each kind of protein in an organism, there is usually only one
contiguous stretch called a gene. Each gene is located at a particular locus (position) on the
chromosome. A gene can be considered as encoding a trait, such as eye color. The different

possible settings for a trait (e.g. blue, brown) are called alleles.

Complete set of chromosomes inside a cell is called a genome. The number of
chromosomes in a genome is characteristic of a species. The particular set of genes
contained in a genome is called genotype. Under fetal and later development, the genotype
gives rise to the organism’s phenotype, which forms the physical and mental

characteristics of the organism.

Organisms whose chromosomes are in' pairs are called diploid; organisms whose

chromosomes are unpaired are called haploid. During sexual reproduction, recombination

17

(crossover) occurs: in each parent, genes are exchanged between each pair of chromosomes
to form a gamete (a single chromosome), and then gametes from the two parents pair up to
create a full set of diploid chromosomes. In haploid sexual reproduction, genes are
exchanged between the two parents’ single-strand chromosomes. Offspring are subject to
mutation, in which single nucleotides (elementary bits of DNA) are changed from parent to
offspring, the changes often resulting from copying errors. The fitness of an organism is
typically defined as the probability that the organism will live to reproduce, or as a

function of the number of offspring the organism has. -

In GAs, chromosome is a candidate solution to a problem, and it is often encoded as
a bit string. The genes are either single bits or short blocks of adjacent bits that encode a
particular element of the candidate solution. An allele in a bit. string is either 0 or 1.
Crossover is the exchange of genetic material between two single-chromosome haploid
parents. Mutation is the flipping of a bit at a randomly chosen locus, or for larger

alphabets, replacing a symbol at a randomly chosen locus with a randomly chosen new

symbol.

Most applications of GA employ single-chromosome individuals, The genotype of an
individual in a GA using bit strings is simply the configuration of bits in that individual’s

chromosome, and often there is no notion of phenotype in the context of GAs.

3.1.3. Elements of GA

GAs are constructed by the following elements: a population of chromosomes,
selection according to a fitness criterion, crossover to produce new population and

mutation to change a chromosome randomly.

A chromosome is usually encoded as a string of bits and each locus of a chromosome
takes value either 0 or 1. Each chromosome is a potential solution in the entire search

space of candidate solutions.

GA requires a fitness function that assigns a fitness score to each chromosome,

depending on how well that chromosome solves the problem in consideration. The fitness

18

function depends on the problem at hand and its definition should be done correctly in
order for GA to perform well.

There are threg: basic operators of GA: selection, crossover (recombination) and
mutation. Selection operator selects chromosomes that will join the reproduction process.
High fitness value gives a chromosome more chance of being selected for mating.
Crossover operator randomly chooses a locus, and exchanges subseQuences of randomly
selected two chromosomes after that locus. GAs assume that high-quality parent candidate
solutions from different regions in the space can be combined via crossover to, on
occasion, produce high—quality offspring candidate solutions. Finally, mutation operator
randomly changes the value of bits in a chromosome. Mutation is done for the chance of

regeneration of lost good solutions that may not be obtained again with the crossover

operator.
3.1.4. A Simple Genetic Algorithm

In a simple genetic algorithm (SGA), binary valued encoding is done, i.e. the
chromosomes are encoded as strings of bits. The structure of a SGA can be seen in Figure
3.1. At the beginning of computation, a population is randomly generated. The objective
function (fitness function) is then evaluated for each individual in the population. The
optimization criteria are checked. If the optimization criteria are not met, creation of new
generation is started. Selection is done according to the fitness values of the individuals,
then parents are crossed to produce offspring and at last, all offspring will be mutated with
a certain probability. The fitness of newly generated population is computed after replacing
the parents with the offspring. This cycle is performed until the optimization criteria are

met or a certain number of iterations achieved.

19

evaluate ohjective Are op timization
_ function criteria met?

Figure 3.1. Structure of a simple genetic algorithm

The selection mechanism of a SGA is “based on ﬁtness-prdportionate selection
method, in which the number of times an individual is expected to reproduce is equal to its
fitness divided by the average fitness of the population. A simple method of implementing
fitness-proportionate selection is roulette-wheel selection [30], which is conceptually
equivalent to giving each individual a slice of a circular roulette wheel equal in area to the

individual’s fitness, of whose details will be given in the implementation phase.

The crossover is done by randomly selecting two individuals from the mating pool
after selection operation performed, and crossing them with a crossover probability. SGA
uses one-point crossover mechanism, where a cross-site is randomly selected and the

portions of each individual after that site is exchanged.

In SGA, the generation of new population is performed by completely replacing the

old population with the new population obtained after selection, crossover and mutation.

There are many selection, crossover and reinsertion techniques that can be
implemented in order to improve the SGA’s performance. Some of these techniques that

were used in our implementation will be explained in Section 4.

20

3.1.5. Schema Theory and Building Blocks

Despite the successful use of GAs in a large number of optimization problems,
progress on the theoretical front end has been rather slow. A very clear picture of the
working of GA has not yet emerged, but the schema theory and the building-block
hypothesis of Holland [29] and Goldberg [30] capture the essence of GA mechanics.

A schema is a similarity template describing a subset of strings with similarities at
certain positions. A schema represents a subset of all possible strings that have the same
bits at certain string positions. For example the schema #1101#0 represents the set of
strings {1110110, 1110100, 0110110, 0110100}, where each string is an instance of the
schema. Here the sign “#” represents the “don’t care” bit which can represent either 0 or 1.
The number of fixed positions (0s and 1s) of a schema is its order. In our example, the
order is five. Defining length of a schema is the distance between the outermost fixed
positions, again five in our case. Any specific string is simultaneously an instance of 2!
possible schemata, where 1 is the length of the string. A fitness value can be assigned to a
schema, which is the average ﬁﬁless of the schema and calculated as the average fitness of
instances of the schema, and this fitness value varies with the population’s composition

from one generation to another.

Consider a schema with k fixed positions. There are 2% distinct schemata that
generate a partitioning of all possible strings. Each such set of k fixed positions generates a
schema competition, a survival competition among the 2% schemata. Since there are 2!
possible combinations of fixed positions, 2! distinct schema conipetitions are possible.
Therefore, the execution of GA generates 2! schema competitions and locates the best
schema for each set of fixed positions. GAs search can be visualized as a search for the
optimal string as a simultaneous competition among schemata to increase the number of
their instances in the population. The schema with high fitness value and small defining
length is called a building block and the winner of the competition is the optimal string of
that schema. The notion that the strings with high fitness values can be located by sampling
building blocks with high fitness values and combining the building blocks effectively is
called the building-block hypothesis [29,30]. -

21

The genetic operators generate, promote and juxtapose building blocks to form
optimal strings. Crossover tends to conserve building blocks whereas mutation tends to .
generate new building blocks. Selection provides the increase in representation of high
fitness valued blocks from generation to generation. The building-block hypothesis
assumes that the juxtaposition of good building blocks yields good strings.

A high average fitness value grows exponentially to win the competition, but a high
average fitness value alone is not sufficient for a high growth rate. A schema must have a
short defining length, because higher the defining length of a schema, the higher
probability that the crossover point will fall between its fixed positions and an instance will
be destroyed. Thus, the schemata with high fitness values and small defining lengths grow
exponentially with time. This is the essence of the schema theorem first proposed by

Holland [29], as the fundamental theorem of GAs. In (3.1), you can see the formal
statement of the schema theorem.

Nt +1)2 Nt 1)L j(fzt;)[l - p. ‘73%)— pmo(h)] 3.1)

where;

f (h, t) : average fitness value of schema & in generation #

f (t) : average fitness value of the population in generation ¢

D. : crossover probability

Pm : mutation probability

5(h) : defining length of the schema

o(h) : order of the schema &

N{h,t) : expected number of instances of schema 4 in generation ¢

l , : the number of bit positions in a string ’

D. —f—(—hlz : the probability that an instance of the schema A is disrupted by

Crossover
p,oh) ~ : the probability that an instance is disrupted by mutation

22
3.2. Applications of GA in Molecular Biology

GAs are widely used in many areas of molecular biology. Some of these applications -
will be stated below.

3.2.1. Fragment Assembly of DNA

The sequencing of whole DNA molecule directly is not possible with today’s
“technology. Instead, the fragments of DNA molecules obtained from the studies in
laboratories (through DNA cutting, breaking and cloning) are sequenced (their nucleic acid
sequence obtained) separately and then they should be combined in order to obtain the
whole DNA molecule. The whole DNA sequence can be obtained by positioning
fragments so that they align well with each other. The overall aligned sequence is the

consensus sequence.

Parsons and co-workers [3] used GA in order to solve ‘the fragment assembly
problem. They have used two fitness functions, which both performed well for different
encoding techniques and operators. The encoding used is the sorted-order representation.
This representation provides a rather complex mapping from the individual to the
permutation encoding. The two requisite properties for a legal ordering are that all
fragments be present in the ordering and that there be no duplication in the ordering. Both
uniform and two-point crossover methods are used for recombination, and they have found
that uniform crossover does not perform wéll for this problem. They have also tried special

operators such as edge-recombination, order crossover, and swapping instead of mutation.

Each position in a chromosome represented a fragment, and their goal was to find the
optimum ordering and alignment of fragments that will give the highest fitness value. They
have concluded that GA performs quite well with the appropriate representation and

operator set both in terms of speed and solution quality.

23

3.2.2. Protein Folding Problem

Finding the 3-D geometry or tertiary structure of an arbitrary protein is vital to.
understanding the functionality of that protein. The prediction of this structure is known as

the protein folding problem, and it is very difficult and has been labeled as one of the grand
challenge problems for thg scientific community.

Currently, biochemists use techniques such as MRI (magnetic resonance imaging)
and X-ray crystallography on protein crystals in order to view the conformation of a
protein. These techniques are expensive, in terms of equipment, computation and time.
Additionally, both of these techniques require isolation, purification, and crystallization of
the target protein, which may be difficult or impossible depending upon the particular

protein under study, therefore faster, and cheaper methods are required for efficient studies

on proteins.

Patton and co-workers [32], used GAs in order to solve this problem. Their approach
to encoding an individual folded state for a protein was to represent a single relative move
for each peptide in the protein. Thus each peptide has five possible values (up, down, right,
left, and forward) encoded in seven bits rather than three, in order to reduce the number of

illegal states searched. Thus, each peptide was represented with an ordered list of preferred

directions.

An individual genotype is evaluatéd under each encoding by plotting the course
encoded by the genotypic movement list in a 3-D lattice. After a protein is plotted, each
occupied cell is tested for the presence of a hydrophobe. If one is present and no additional
peptides (collisioh) are detected in the cell, all adjacent points are tested for the presence of
a hydrophobe, and a single point is awarded each contact. At the same time, each cell is

tested for the presence of multiple peptides, and if there are, they are penalized.

They have tried different operators and parameters in order to find the best
performing algorithm. Two-point crossover and bit-mutation used as operators. The results
of their work have shown that they have achieved very good performance compared to

previous works on this problem.

24

3.2.3. Drug Design

GAs can be used in order to design new drugs. The central application task is the .
prediction of the biological activity of a novel compound given a collection of similar
compounds with known activities. One approach can be stated in a form known as
quantitative structure-activity relationship (QSAR) analysis, in which the activity is
modeled by constructing a mathematical relationship between activity and the

physicochemical properties of the series of compounds.

Rogers [33] has developed a genetic algorithm called genetic function approximation

(GFA) algorithm in the area of QSAR modeling, which can be used by pharmaceutical
companies for drug design.

QSAR models are represented as sums of "'linear or nonlinear terms. The model is
(3.2). The terms are called basis functions, and are denoted ¢y, these are functions of one or
more features, such as (X5-10)2, Sin(X;)*Sin(Xy), or Xio, where the Xj’s are the feature
measures. The model coefficients ax are determined using least-squares regression or
another suitable fitting technique. The linear strings of basis functions play the role of the
DNA for the application of genetic algorithm.

F(X)=a, +iak¢k(X) (3.2)

The initial QSAR models are generated by randomly selecting some number of
features from the training data set, building basis functions from these features using the
user-specified basis function types, and then constructing the genetic models from random
sequences of these basis functions. Each model of the population, that is the individual is
represented as a linear string of basis functions. F;: {LOGP; DIPV_Y; VOL; (LOGP-S 1%}
is an example individual form standard QSAR data set.’

The fitness function used during the evolution is derived from Freidman’s lack-of fit
scoring function, which is a penalized least-squares error measure. This measure balances

the decrease in error as more basis functions are added against a penalty related to number

25

of basis functions and complexity of the model. The goal is to maximize the fitness
function.

After initial population generation, genetic crossover is performed repeatedly. Two
good models are probabilistically selected as parents, proportional to their fitness. Each is
randomly cut into two sections. The cuts occur between the basis functions. A new model
is created using the basis functions taken from a section of each parent. Optional mutation
operators may alter the newly-created model. The model with the worst fitness is replaced
by this new model. Algorithm stops when the average fitness of the models in the

population stops improving. GFA analysis generates a population of solution models

instead of presenting the user with a single best model.

The combinations of models discovered by GFA algorithm yields models, which are
more predictive than the combinations of features discovered by either the forward-
stepping regression, stepwise regression, or the neural-network technique. This is because
the genetic algorithm specifically searches for combinations of features, which score well,
rather than trying to identify individual feature. Tests on the algorithm showed that the
GFA algorithm was able to meet or surpass the quality of models discovered through
standard methods in use in QSAR, and to provide additional information, such as multiple
models, automatic estimation of model size, and population statistics of feature use that are
not available from other techniques. The GFA algorithm is proved to | be better at
discovering combinations of basis functions that take advantage of correlation only

available in combination.

%@AZICI ONIVEKSITES KOTUPHANFS!

26

| 4. PROBLEM DEFINITION AND METHODOLOGY

In this section, the implementation details will be discussed. In our implementation,
initially SGA is implemented and then different modifications to SGA’s selection
mechanism, and operators are performed in order to increase GA’s performance. The

fitness function of each individual is evaluated using regression and correlation analysis.
4.1. Problem Definition

In the MHC-Peptide problem, we have a set of MHC molecules with known amino
acid sequences, and for each of these MHC molecules we have a set of peptide amino acid
sequences that are known to bind to them. Our peptide sequences are eight to 10 residues
long and our problem is to find the set of MHC amino acid positions, which plays
important role in binding to a peptide for each peptide position separately and therefore the

peptide motifs of the corresponding MHC molecules.

The set of MHC molecule positions for each peptide position will be represented in a

form of equation (4.1), where Y value represents the peptide residue (amino acid), and
Xu’s represent the MHC residue at m™® position. Here by’s are the parameters of the

equation, by is the constant term and VAR is the number of independent variables.

. VAR : k
Y=by+D.b,X, 4.1)

m=]

In order to find the parameters, by, a curve-fitting technique, regression analysis is
performed. The “best fit” equation in the population is determined through correlation
analysis. Both of these techniques will be stated in the following sections. The bgst set of
positions, i.e. the best equation is the one that the strehgth of the equation is maximized,

that is the error in curve-fitting is minimized.

27
4.2. Encoding

Although SGA uses binary encoding of chromosomes, in our implementation we -
have used integer encoding since it is more appropriate for our problem. In this encoding,
each bit of a chromosome will be an integer from one to VART, i.e. the total number of
MHC positions to be considered. Each chromosome will be composed of VAR MHC
positions, where VAR is a parameter of our implementation. Each chromosome is of the
form of equation (4.1) where Xps range from one to VART as stated above. An example of

a chromosome can be seen in Figure 4.1, where VART is 20 and VAR is six in this case.

Chromosome; 1 |12 131201 5 3

X] Xz X;; X4 XS X6

Figure 4.1. A chromosome with integer encoding

In our encoding, the ordering of bits in a chromosome does not matter, but duplicates

are not allowed, since each bit represents a MHC position and should appear only once in a

solution set.

4.3. Genetic Algorithm Implementation

Figure 4.2 shows the genetic algorithm used throughout our implementation phase.
Initially a random population is generated and evaluated. Then the parents that will be
involved in mating phase are selected according to their fitness. After generation of mating
pool, the individuals are randomly paired for mating. The next step in the algorithm is the
mating, where certain parts of paired individuals are exchanged with the hope of
generating fitter individuals for next generation. After mating, mutation occurs with a
certain probability that alters some of the bits of individuals. Then the new individuals are
evaluated and reinserted into the next generation with a reinsertion mechanism. These

steps will be explained in detail in the following sections.

28

Algorithm Genetic_Algorithm

Initialize population: /I Random initialization of individuals
Evgluate population; Il Regression and Correlation Analysis
while not stopping condition reached

Select mating pool; // Selection Phase

Recombination; {l Crossover Phase
Mutation; // Mutation Phase
Evgluate population; // Regression and Correlation Analysis
Reinsertion; /I Determination of new population for
next generation
end while

end Genetic_Algorithm

Figure 4.2. Genetic algorithm

4.3.1. Initialization of the Population

The first step is the initialization of a population of individuals. As we have
mentioned before, we have to choose VAR variables out of total VART variables for each
individual. Each individual may contain some common variables with another individual,
but two individuals cannot be exactly the same, i.e. no duplication at the initial phase
allowed. This is for examining as many solutions as possible ‘at the initial step. The
number of individuals in the population is a parameter, labeled as POP. The initialization

of the population is done at random, and we have a population like shown in Figure 4.3.

P4 123456 VART 10
P2 5678910 VAR 6
P3 2571910 POP 3

Figure 4.3. An example of a population of individuals

The paramefers to our algorithm are given in Table 4.1. These are the parameters that

will be optimized in order to increase the GA performance.

29

Table 4.1. Parameters of the genetic algorithm

Parameter Name Definition

POP Number of individuals in the population

VAR Number of independent variables in an individual
VART Total number independent variables available

M Number of regression coefficients + the constant term
N Number of input samples for algorithm training
Cross prob Crossover probability

Mutat prob Mutation probability

4.3.2. Regression and Correlation Analysis

After the initialization of our population, the next step is to evaluate the individuals
fitness values according to a fitness function. Our fitness function is the coefficient of

determination, R, which is calculated through regression and correlation analysis.

As stated in the problem definition, we have a set of Y values where Y is the
dependent variable to our problem and these values represent the hydrophobicity or size
score of a peptide at a given position. Also we have a corresponding X set for each Y
where Xp’s are the independent variables to our problem and these values represent the
hydrophobicty score or size of the MHC molecule at the m™ position. Here regression
analysis is done to describe the nature of the relationship between the dependént variable’s
data and the independent variables’ data, whereas the correlation analysis is done to
investigate the strength of the relationship defined by regression. Regression analysis is
concerned with the problem of estimating the value of one variable, called the dependent
variable, on the basis of one or more other variables, called independent variables [34]. The
strength of the relationship among the dependent and independent variables will be our
fitness function, and our aim is to maximize the fitness function, and therefore maximize

the relationship strength of our input data so that we can make powerful predictions.

432.1. Regression Analysis. Regression is a curve-fitting technique that gets a set of
dependent and independent variables’ data as input and produces an equation that best
represents the input data. If the number of independent variable is one, than this is called

simple regression. On the other hand, if we have more than one dependent variable, this is

30

called multiple regression. The solution technique of multiple regression is an extension of

the simple one. Depending on the relationship among the dependent and independent
variables, the regression can be either linear or nonlinear.

In our implementation, we looked for a linear relationship among our input data. Our
regression equation was stated in (4.1). The regression model is (4.2). Here, f',.is the

predicted value and note that Y; is the actual value of Y in (4.3), at input line i that ranges
from one to N in our case. bys are the regression coefficients, by is the constant term, and
Xmi is the X value at position m of the MHC molecule at i™ line. Finally, e; is the
regression error defined in (4.3), which is the difference between the predicted value f’i and

the actual value Y.

N VAR . :
Y, =by+) b, X, +e 4.2)

m=1
e = Y’ — YA: . (43)

The approach almost universally adopted to find the line of best fit in regression
analysis is to determine the values of b’s, which minimize the sum of squared errors. This
procedure is the method of least squares. The method is defined as (4.4). After applying
this method, we have obtained the regression parameters and therefore the regressioh

equation of (4.1).

2

N N "
Minimize) e} = Z(Y,. -7) | (4.4)

i=1 i=]

The method 6f regression described above can further be extended for introducing

nonlienar terms into the regression equation.

4.3.2.2. Correlation Analysis. After determining the regression coefficients, the next step

is to determine the fitness of that equation.. Our fitness function is the coefficient of

determination, R?, which is expressed as (4.5). The term SSR is the explained variation,

31

and the term SST is the total variation shown in (4.6). SSE in (4.6) is the unexplained

variation and Y is the mean of the actual Y values.

R =§§—1;, 0<R?<1 (4.5)

SS§T SSE SSR
N - 2 2

S(4-7) =3 -7F+ 2 (0 - 7) (46)

i=] i=1 i=]

R? shows that the regression equation derived explains R? per cent of the input data.
The higher the R? value is, the better fit is made. One important feature of multiple
regression ‘énalysis is that, as you increase the number of independent variables, R? value
increases. To eliminate this, R? value is adjusted to Adj-R* as shown in (4.7). We have

used Adj-R? as our fitness function throughout our implementation.

(=R (v-1)

Fitness _Function: Adj—-R*=1-
N-M

4.7)

4.3.2.3. Matrix Representation. In order to implement the regression analysis, a matrix

representation is used. The dependent variable, Y’s data and the independent variables’,
~ X’s data are represented in matrix notation, and the unknown regression parameters are
denoted as B matrix, and are calculated using matrix operations such as multiplication,
transposition, and inversion. (4.8) shows the matrix representation of our regression
equation.

Yya= X pens * B (4.8)

4.3.3. Selection
After the evaluation of the fitness values of individuals in the population, the next

step is the selection of the mating pool, i.e. the set of individuals that will mate

(recombine). Selection determines which individuals are chosen for mating and how many

32

offspring each selected individual produces. The purpose of selection is to emphasize the
fitter individuals in the population in hopes that their offspring will in turn have even
higher fitness. Selection has to be balanced with variation from crossover and mutation. -
Too strong selection means sub-optimal highly fit individuals will take over the

population, reducing the diversity needed for further change and progress; on the other

hand, too weak selection will result in too slow evolution.

Numerous selection schemes have been proposed in the GA literature. Some of the

most common of these selection mechanisms together with the ones we have used in our

implementation are explained below.

4.3.3.1. Roulette-wheel Selection. This is a stochastic algorithm and it is also called

stochastic sampling with replacement. This selection mechanism is a fitness-proportionate
selection. Fitness-proportionate selection is based on the expected number of times an

individual will be selected to reproduce, and this number is the individual’s fitness divided

by the average fitness of the population.

In roulette-wheel selection, each individual is assigned a slice of circular roulette
wheel. The size of the slice is proportional to the individual’s fitness. The wheel is spun as
much as the number of individuals in the population. On each spin, the individual under

the wheel’s marker is selected and put into the mating pool for recombination.

The roulette-wheel selection algorithm provides zero bias but it does not guarantee
minimum spread. The algorithm can be seen in Figure 4.4. This algorithm is implemented

in our study since it is the most widely used selection mechanism, also included in SGA.

Algorithm Roulette_Wheel_Selection

Compute_ to@a-l_ﬁtness; I total fitness of population
for each individual i I from 1 to POP

Compute sel_prob(i); / Divide i" individual's fitness to total fitness

o . (selection probability of each individual)

for each individual i I/l from 1 to POP

Choqs.e_r;' /10 <r <1, floating point number

sum initialized to 0;

while sum<r

sum=sum-+sel_prob(i); // add selection probability of each individual
select i; . Il Select individual whose addition to sum exceeds or

becomes equaltor
end for;

end Roulette_Wheel_Selection

Figure 4.4. Roulette-wheel algorithm

4.3.3.2. Stochastic Universal Sampling. This selection mechanism is also fitness-

proportionate. Stochastic universal sampling is. similar to roulette-wheel selection, but

instead of selecting the individuals one by one, it selects all at once.

The algorithm can be seen in Figure 4.5. This algorithm provides zero bias and
minimum spread (the range of possible actual values, given an expected value) by rather

than spinning the roulette POP times to select POP individuals, spinning it once, but with

POP equally spaced pointers. This algorithm is also implemented in our study.

33

Algorithm Stochastic_Universal_Sampling
Compute total_fitness; 1/ total fitness of population
for each individual i I/ from 1 to POP
Compute sel_prob(i); // Divide i"individual's fitness to total fitness (selection
probability of each individual)

dist = 1/POP; /l distance between the POP pointers.
Chooser; I 0 < r < dist, floating point number
for each individual i /I from 1 to POP
sum initialized to O;
while sum<r
sum=sum+sel_prob(i); // add selection probability of each individual
selecti; - // Select individual whose addition to sum exceeds or

becomes equaltor
r=r+dist; // move to next pointer
end for;
end Stochastic_Universal_Sampling

Figure 4.5. Stochastic universal sampling algorithm

34

4.3.3.3. Tournament Selection. In this selection, a number Tour of individuals is chosen
randomly from the population and the best individual from this group is selected as parent.
This process is repeated as often as individuals to choose. The algorithm parameter, Tour.

ranges between 2 — POP. Usually Tour is selected as two as we did in our implementation.
We have also tried three. The algorithm is in Figure 4.6.

Algorithm Tournament_Selection

for each individual i
Select Tour individuals;

Select the one with highest fitness
end for;

end Toumament_Selection

Figure 4.6. Tournament selection algorithm

4.3.3.4. Truncation Selection. This is an artificial selection method. In this selection,
individuals are sorted according to their fitness. Only the best individuals are selected for
parents. The parameter for truncation selection is the truncation threshold Trunc. Trunc
indicates the proportion of population to be selected as parents and takes values ranging
from 50 to 10 per cent. Individuals below the truncation -thresholc-I do not produce
offspring. This kind of selection may easily cause loss of diversity, and therefore
premature convergence. In order to avoid early convergence, the mutation rate should be
kept high. This selection is not suitable for our implementation since it favors only the
individuals whose fitness are high and eliminates individuals with low fitness, which may

be the potential solutions in future generations, so we did not include it.

43.3.5. Rank Selection. In order to prevent too quick convergence, this method is an

alternative. The individuals in the population are ranked according to fitness, and the
expected value of each individual depends on its rank rather than on its absolute fitness. In
some cases it might be important to know that one individual is far fitter than its nearest
competitor, so this method is not applicable. This aiso holds for our case, since small

differences in fitness values play important role for our solution.

35

4.3.4. Recombination

The completion of selection described in the previous section resulted in the
population of individuals that will mate. Recombination phase is the step in which the

individuals will be randomly divided into two groups and get crossed.

Before crossover operation is performed, the individuals in the mating pool are
randomly paired, so that these selected pairs can be crossed at recombination phase. Each

pair is crossed based on a crossover probability, cross_prob.

There are a number of different recombination mechanisms present in the literature.

Here we will describe some of the most popular ones including the ones that we have

implemented.

4.34.1. Single-point Crossover. This is the simplest form of recombination. In single
point crossover, a single crossover position is chosen at random in the range from one to
VAR-1, where VAR is the number of variables in an individual. The variables after the
selected crossover position are exchanged between the individuals. We have applied a
modified version of single-point crossover in our implementation. Since we do not allow
duplication of variables in an individual, before selecting the cross-site, first we have to
isolate the variables that are the same in both individuals. Then a cross-site is selected and
the remaining elements of the individuals are crossed. Figure 4.7 shows the algorithm we

have used, and Figure 4.8 shows an example of a single-point crossover.

Algorithm Single_point_Crossover

Select mating pairs; I/ Random pairing of individuals for mating
for each mating pair i; Il i ranges from 1 to POP/2

select prob; // probability of individual for crossing

if prob < cross_prob /I do crossover

Separate common variables; // notincluded in crossing
Select a cross-site cs;
Exchange two parents after cs;
end if;
end for;
end Single_point_Crossover

Figure 4.7. Single-point crossover algorithm

36

Before Crossover:

Parent1: 1 2 3 4 5 6
Parent2: 7 8 1 6 9 10

After determining common points:

Parent1; 1 6 2 3 4 5
Parent2; 1 6 7 8 9 10

Select a random cross-site; say 2
(crossover applies only to non-bold variables):

Parentl: 1 6 2 3! 4 5
Parent2: 1. 6 7 8i 9 10

Cross-site=2
After Crossover:

Offspring 1: 1 6 2 9 10
Offspring 2: 1 6 7 8 4 5

Figure 4.8. An example of a single-point crossover

4.3.4.2. Multi-point Crossover. For multi-point crossover, m crossover positions ranging
from one to VAR-1 are chosen at random with no duplicates and sorted in ascending order.
Then, the variables between successive crossover points are exchanged between two
parents to produce two new offspring. The section between the first variable and the first
crossover point is not exchanged between individuals. m is usually selected as two, this is
called tWo-point crossover. The algorithm can be seen in Figure 4.9. Figure 4.10 illustrates
this process on two binary encoded individuals where m is 3. We have implemented two-

point crossover in our study.

Algorithm Two_point_Crossover

Select mating pairs; // Random pairing of individuals for mating
for each mating pairi; /i ranges from 1 to POP/2
select prob; /1 probability of individual for crossing

if prob < cross_prob 1/ do crossover
Separate common variables; // notincluded in crossing|.
Select two cross-sites cs1, ¢s2;
Exchange parts between cs1 and cs2;
end if;
end for;
end Two_point_Crossover

Figure 4.9. Two-point crossover algorithm

37

Before Crossover:

Parent1: 0 1 1 0 0 1 1 0 1 0

Parent2: 1 0 1 0 1 1 0 0 1 0 1

Select cross-sites, say 2, 6 and 10 in this case where m=3;

After Crossover:

Offpringl: 0 1 1 0 1 1 /o 1 1 11

Offspring2: ‘1 0 i1 1 o0 o0 {0 0 1 0i O
cs: 2 cs: 6 cs: 10

Figure 4.10. An example of multi-point (3-point) crossover

4.3.43. Discrete Recombination. Discrete recombination makes every position in an
individual a potential crossover point. A crossover mask, same length as the individual
structure is created at random and the parity of the bits in the mask indicate which parent
will supply the offspring with which bits. The algorithm shown in Figure 4.11 is
implemented in our study. See Figure 4.12 for an example of this technique.

Algorithm Discrete_Recombination -
Select mating pairs; // Random pairing of individuals for mating
for each mating pair i - /i ranges from 1 to POP/2
select prob; // probability of individual for crossing
if prob < cross_prob // do crossover
Separate common variables; // not included in crossing
for offspring 1 and 2
for each differing bits j ,
Selectr; // ris 1 for parent 1 and 2 for parent 2
if requal to 1
Select variable from parent 1;
else ‘
Select variable from parent 2;
end for;
end for;
end if;
end for;
end Discrete_Recombination

Figure 4.11. Discrete recombination algorithm

38

Before Crossover:

W
N

Parent1: 1 2 3 4
Parent2: 7 8 1 6

After determining common points:

Parentl: 1 6 2 3 4 5
7 9

Parent2:. 1 6 8 10
Generate Mask (for variable selectioﬁ):

Sample 1: 1 1 2 1

Sample2: 2 1 1 2

After Crossover:

Offspring 1: 1 6 2 3 9 5
Offspring 2: I 6 7 3 4 10

Figure 4.12. An example of discrete recombination

4.3.5. Mutation

After recombination, offspring undergo mutation. Offspring variables are mutated
with a low probability. The probability of mutating a variable, mutat_prob, is set inversely
proportional to the number of variables. The more variables one individual has, as smaller

is the mutat_prob.

Each variable in each individual has the chance of being mutated. Mutating a
variable means in general, changing that variable with another one in the variable set. For

every individual, the variable to change is chosen at random.

In our implementation, we have defined a mutation rate, for each individual’s
variables, we have generated a floating-point number r. If the variable’s r is less than or
equal to the mutation rate, another variable from the total variable set is selected and

replaced by the variable in consideration. As mentioned before, we do not allow duplicates

39

of variables within an individual, therefore a check is made before exchange, and if the
variable is already in the individual, then a new one is selected. This selection is done until

a variable differing from all the other variables in the individual is reached. An example of .
mutation we have applied can be seen in Figure 4.13.

Before mutation:

Individual: 1 4 2 10 5 6

{Xssume va}riables 1, 10 and 6 are going to be mutated to 3, 7 and 1. Since 1
is already in the set, we choose another variable, say 8 and mutate.

After mutation:

Individual: 3 4 2 7 5 8

Figure 4.13. An example of mutation

4.3.6. Reinsertion

Once the offspring have been produced by selection, recombination and mutation of
individuals from old population, the fitness of the offspring may be determined. The
evaluation of offspring is done as described in section 4.3.2 using regression and

correlation analysis.
The next step is to form the new population for the continuation of the search. There
are different reinsertion techniques that will be stated below. All the techniques described

are implemented in our study.

4.3.6.1. Pure Reinsertion. This reinsertion technique is the one described in SGA. Here,

the offspring are replaced by their parents completely. That is, the new population is

formed by the offspring only.

40

4.3.6.2. Elitist Reinsertion. In this technique, again the offspring form the new population,
but a number of best parents replace the worst offspring. Elitism forces GA to retain some
number of the best individuals at each generation. Such individuals can be lost by -
crossover or mutation. Many researchers have found that elitism significantly improves

GA’s performance. The number of parents to be kept depends on the implementation.

Usually keeping the best parent is sufficient to achieve optimum results.

4.3.6.3. Rank-based Reinsertion. In ranked-based reinsertion, parents and offspring are
ranked in descending order together and the best, that is the first half is selected as the new
population. This kind of reinsertion may cause premature convergence since the diversity

is minimized. To overcome this problem, the mutation rate should be kept high, but this
also may not be the solution to this problem.

4.3.7. Stopping Criteria

GA continually performs the steps of selection, recombination, mutation, evaluation
and reinsertion described in previous sections until a stopping criterion is met. Stopping
criteria depends on the application. One would like to stop the algorithm whenever a
sufficient result near optimum is achieved or continue until the algorithm finds an optimal
solution. Usually the algorithm is terminated after a certain number of iterations where no

more achievement in the results is obtained or the time is crucial.

Our algorithm stops whenever one of the following criteria is met:

e All the individuals are converged to the same fitness value, or

¢ 1o more improvement on the results can be obtained within

a certain number of iterations, or

e a predefined number of iterations is achieved.

41

S. TEST RESULTS

5.1. Test Data Definition

In our tests on Class I MHC molecules, we have used the data set prepared by Zhang
and co-workers [23]. They have obtained their data set from the MHCPEP [10] and Kabat
[12] databases. This training data set is composed of 48 Class I MHC molecule sequence
of which the crystallized structures of 9 are known, and the structure of the remaining 39
modeled. There is also another data set consisting of 20 MHC Class I molecule sequences
that is used for testing the correctness of the applied technique. Both training and test data
have a set of peptide sequences that bind to each of the corresponding MHC Class I

molecules. For the test set, these peptide sequences are few in number, usuélly not more
than six. '

P,, P3, Psjs and Pq peptide sequence positions bind, respectively, to pockets B, D, C/D
and F of the MHC Class I molecules as described in previous sections. We, therefore
divide our data sets into four groups for each pocket. Note that Q in Po represents the last
position of the peptide, and it usually refers to nine. The tests were done séparately for
each pocket and the corrésponding peptide position in order to locate the peptide residue
that can bind to each MHC molecule’s pocket under study. Table 5.1 shows the MHC
sequence positions that form each pocket together with the positions around these pockets
that affect the binding of the peptide to that pocket. Residues at these positions are the ones
that are polymorphic and within 6 A of crystallographically ‘observed positions of the
corresponding peptide residue. The amino acids at these positions determine the peptide

amino acid that will bind to that pocket.

Table 5.1. Polymorphic positions for each MHC pocket

Pocket MHC Positions

B 9 (24 (45 {63 |66 |67 70 99 152 1156 |- -
D 74 177 |95 {97 |99 |114 |116 |152 156 |- - -

CD 9 |70 {74 |77 |95 197 99 114 116 | 152 | 155 | 156
F 74 177 |95 [97 |99 |114 |116 152 {155 |- - -

42

As an input to our algorithm, the hydrophobicity and size values for each of the 20
amino acids at positions stated in Table 5.1 of each MHC molecule are given. Initially
three different hydrophobicity scales are tried; Scale A [35], Scale B [36], and finally Scale -
C [37]. All three scales are shown in Table 5.2. The size scale, which is also shown in

Table 5.2 is developed by Tsai and co-workers [38]. The size is a measure of volume and
the unit for volume is A’.

Table 5.2. Hydrophobicity Scales A, B and C, Size Scale BL~ (C)

Amino acid Scale A | Scale B | Scale C | Size Scale BL— (C) in A°
Phenylalanine (F) | 2.8 2.45 3.7 191.9
Methionine (M) | 1.9 1.68 34 167.0
Isoleucine (I) 4.5 2.46 3.1 '163.9
Leucine (L) 3.8 2.32 2.8 164.0
Valine (V) 4.2 1.67 2.6 139.0
Cysteine (C) 2.5 2.1 2.0 103.3
Tryptophan (W) | -0.9 3.07 1.9 228.2
Alanine (A) 1.8 0.42 1.6 90.0

| Threonine (T) -0.7 0.36 1.2 121.5
Glycine (G) -0.4 0.0 11.0° 64.9
Serine (S) -0.8 -0.05 0.6 95.4
Proline (P) -1.6 0.67 -0.2 122.9
Tyrosine (Y) -1.3 1.31 -0.7 197.0
Histidine (H) -3.2 0.18 -3.0 160.0
Glutamine (Q) -3.5 -0.79 -4.1 149.4
Asparagine (N) -3.5 -0.3 -4.8 124.7
Glutamic acid (E) | -3.5 -0.87 | -8.2 142.2
Lysine (K) -3.9 -1.35 -8.8 167.3
Aspartic acid (D) | -3.5 -1.05 |-9.2 117.3
Arginine (R) -4.5 -1.38 -12.3 194.0

5.2. GA Performance Tests
5.2.1. Implementation Details

All the modules of our genetic algorithm are implemented in ANSI C and compiled
both in Microsoft® Visual C++ 6.0 and Unix gcc environment. Therefore both Unix and

Windows platforms are supported. Hardware configuration of the system used for

43

compilation and testing of programs is Pentium II 300 MHz CPU, 128 MB RAM, and 3
GB HDD.

5.2.2. System Parameters

| In our implementation, our parameters are the generation of initial population, fitness
function, population size, crossover rate, mutation rate, independent variable size, stopping

criteria, selection type, crossover type, and reinsertion type.

Intially we have determined to randomly generate the population as mentioned in
previous sections. Our fitness function was also clearly defined and not subject to any
change during execution. After a series of runs, by keeping in mind that our individuals are
rather small in length, we have decided to fix the crossover rate to 1.0, that is we cross
every time. Another parameter to be kept constant is the stopping criteria, that we have
mentioned in previous sections. Variable size selection is mentioned in the previous

sections, where we have evaluated the test results of our algorithm.

In order to evaluate the performance of genetic algorithm and to find the best
performing parameter set, we have decided to change the population size, mutation rate,
selection type, crossover type and reinsertion type. In the following sections we will deal

with different values of these parameters and their consequences on the results.
In all our tests we have used the data set for the second peptide position which is
explained in detail in later sections. Table 5.3 shows the parameters that are kept constant

during executions for this peptide positon’s data set.

Table 5.3. Constant parameters for testing

Parameter Value
N 1430
VART 20
VAR 6
cross_prob 1.0
Scale C
Independent variable, Y | Hydrophobicity scores

5.2.3. Tests on Selection Type

As mentioned before we have implemented three different selection mechanisms;
roulette-wheel selection, tournament selection and stochastic universal sampling. Their
performance results are shown in Figure 5.1 and Figure 5.2. Figure 5.1 shows the average
number of iterations each one takes in order to stop execution. If there is no change in the
best parent within 200 iterations, the program stops. Figure 5.2 shows the percentage of the

optimum results obtained. The executions are done using two-point crossover, and elitist
reinsertion mechanisms.

300
o T
s
'-E 250
8 Roulette w heel
« 200 - :
g , W Tournament
L u
g 150 & Stochastic
% 100 4 Universal Sampling
o
il
g
<

L' P. Population Size

P=20, P=20, P=30, P=30, mt mutation rate
n=0.01 m=0.02 m=0.01 nm=0.02

Figure 5.1. Average number of iterations for selection mechanisms

Figure 5.1 shows that as the mutation rate and population size are increased, the
average number of iterations increases for every type of selection used. Here tournament
selection seems to be the fastest method, but if we check Figure 5.2 we easily see that its
predictive power is very low. Stochastic universal sampling is the slowest method but it
has high predictive power. However it has the problem of convergence, i.e. it does not
converge most of the time. Table 5.4 shows the convergence rates of the selection

mechanisms discussed here.

Predictive Power (%)

- P=20,
m=0.01

P=20,
m=0.02 m=0.01

P=30,

P=30,
m=0.02

Roulette w heel
W Tournament

Stochastic Universal
Sanpling

P: Population Size

nt mutation rate

Figure 5.2. Predictive power for selection mechanisms

Table 5.4. Convergence rates for selection mechanisms

Convergence Rate (%)
Selection Mechanism | P:20, P:20, P:30, P:30,
m:0.01 | m:0.02 | m:0.01 | m:0.02
Roulette-wheel 100 100 90 0
Tournament 100 100 100 100
SUS 80 0 0 0

45

We have concluded that Roulette-wheel selection is better than the other two

selection mechanisms on the average of the displayed criteria for our problem.

5.2.4. Tests on Crossover Type

For crossover, we have implemented three mechanisms; one-point, two-point and

uniform crossover. We have decided to omit the results of uniform crossover and continue

with one-point and two-point crossover because we did not find the results of uniform

crossover promising for our problem. Figure 5.3 and Figure 5.4 show average number of

iterations and predictive power of the two mechanisms respectively. The convergence rates

are shown in Table 5.5. The selection mechanism used is roulette-wheel selection and the

reinsertion mechanism is elitist reinsertion, which will be shown to be very efficient for

our problem.

46

M 1-point Crossover
" | @ 2-point Crossover

Average Number of Iterations
o
o

) — 0y -
P=20, P=20, P=30, P=30, P: Population Size

- m=0.01 me0.02 ne0.01 me0.02 m mutation rate

Figure 5.3. Average number of iterations for crossover mechanisms

100 -
& 80
g
s 60 1 | 1-point Crossover
%: 40 - 0O 2-point Crossover
® 204
a
0 - - -l
P=20, P=20, P=30, P=30, P: Population Size
ne0.01 m=0.02 m=0.01 m=0.02 m mutation rate

Figure 5.4. Predictive power for crossover mechanisms

Table 5.5. Convergence rates for crossover mechanisms

Convergence Rate (%)
Crossover Mechanism | P:20, P:20, P:30, P:30,
m:0.01 | m:0.02 | m:0.01 |m:0.02
One-point 100 90 70 0 ‘
Two-point 100 100 90 0

As it is clearly seen from the figures and convergence values, two-point crossover
performs better in every instance for our problem, therefore we have selected two-point

crossover as our crossover mechanism.

47

5.2.5. Tests on Reinsertion Type

For reinsertion, pure, elitist and rank-based reinsertion mechanisms are implemented.-
Figure 5.5 and Figure 5.6 show average number of iterations and predictive power for each

mechanism respectively. The convergence rates are given in Table 5.6. Tests are done
using roulette-wheel selection and two-point crossover.

450 -
17}
@] c
8 400 % S Pure
5 N
g 3801 § m Eitist
= 300 N
S \ B Rank-based
5 250 - N
€ 200 § .
S)
ﬁ 150 | %j P: Population Size
o _
g 100 § m mutation rate
= 50 271 \ ’
< i \
0 NN N

P=20, P=20, P=30, P=30,
me0.01 mF0.02 me0.01 me0.02

Figure 5.5. Average number of iterations for reinsertion mechanisms

100 -
90 Pure
g 901 m Bitist
E 704 W Rank-based
2 60
‘g 50 -
[}
g 40 P: Population Size
T 30
o 20 m: mutation rate
‘ 10 -
04 i
P=20, P=20, P=30, P=30,
m=0.01 n~0.02 n=0.01 m=0.02

Figure 5.6. Predictive power for reinsertion mechanisms

Table 5.6. Convergence rates for reinsertion mechanisms

Convergence Rate (%)

Reinsertion Mechanism P:20, P:20, P:30, P:30,
m:0.01 | m:0.02 | m:0.01 | m:0.02
Pure 10 " |0 0 0
Elitist 100 100 190 0
Rank-based 100 100 100 100

48

Pure reinsertion performs very bad in all aspects observed. Rank-based reinsertion

stops at low iteration numbers but has low prediction power, and even increasing the

mutation rate higher to stop premature convergence, it still converges soon to a local

maxima. The best performing mechanism is the elitist reinsertion with low iteration

numbers, high prediction power and high convergence rate.

5.2.6. Tests on Population Size

In order to see the effect of population size to the solution, we have chosen four

population sizes; 10, 20, 30 and 40. The results are shown in Figure 5.7 and Figure 5.8.

The convergence rates are given in Table 5.7. For these tests, roulette-wheel selection, two-

point crossover and elitist reinsertion are used.

500

400

300

200

100

Average Number of lterations

10 20

30

Population Size

—&— Pure, n+0.01

—m— Pure, m=0.02
—h— Hitist, m=0.01
—e— Hitist, m=0.02

m mutation rate

Figure 5.7. Average number of iterations for different population sizes

100

60 L

80 1

40

20 +

Prediction Power (%)

10 20 30

Population Size

40

—e—Pure, n=0.01
—&— Pure, m=0.02
—A— Hitist, m=0.01
—o— Hitist, m=0.02

m: mutation rate

Figulre’ 5.8. Predictive power of different population sizes

Table 5.7. Convergence rates for population size

Convergence Rate (%)
Population size Pure, Pure, Elitist, | Elitist,
m:0.01 | m:0.02 | m:0.01 | m:0.02
10 100 100 100 100
20 10 0 100 100
30 0 0 90 0
40 0 0 0 0

As the population size increases, the quality of results increase because the set of
possible results observed at the same time increases, since this depends on the population
size. However increasing the population size after a certain limit prevents the program’s
convergence and further increasing leads to a random search. From our results we can

conclude that population size 20 or 30 are fine and 20 seems to be better on the average for

all the criteria observed.

5.2.7. Tests on Mutation Rate

49

In order to test the effect of mutation rate on the solution, three mutation rates are

tested. The results are shown in Figure 5.9, Figure 5.10, and Table 5.8. For thése tests,

roulette-wheel selection, two-point crossover and elitist reinsertion are used.

50

2
S 500 ——
o
S 400 |-
5 300 —— Pure, P=20
E —m— Pure, P=30
§ 200 —a— Hitist, P=20
e 100 —e— Hitist, P=30
o

0.01 0.015 0.02 P. Population Size

Mutation Rate

Figure 5.9. Average number of iterations for different mutation rates

100
<
< g0
] —&— Fure, P=20
3 60
e —a— Pure, P=30
S 40 —A— Hitist, P=20
s 90 —eo— Bitist, P=30
[N

0 . :

0.01 0.015 0.02 P Population Size
Mutation Rate

Figure 5.10. Predictive power of iterations for different mutation rates

Table 5.8. Convergence rates for mutation rate

Convergence Rate (%)
Mutation rate | Pure, Pure, Elitist, | Elitist,
P:20 P:30 P:20 P:30

0.01 10 0 100 90
0.015 0 0 100 0
0.02 0 0 100 0

As the mutation rate is increased, the average number of iterations increases and also
predictive power increases. However the convergence problem occurs, i.e. as the mutation
rate is increased, the program cannot converge. From the above results, 0.02 mutation rate

is fine for our problem.

51

5.2.8. Convergence Graphs

After a series of performance tests, we have concluded that our problem best
performs with Roulette-wheel selection, two-point crossover, elitist reinsertion, 0.02 as the
mutation rate and 20 as the population size. Figure 5.11 shows the convergence graph for a

single run using these parameters. In Figure 5.12 the average of the 20 individuals is
displayed.

0.85

0.8 -

0.75 |

0.7 4

0.65

0.6

0.55

Adjusted-R2

0.5

0.45

0.35

0.3

g

Ger i ra o

IO R R RN I N TR R Y R}

1 11 21 31 41 51 61 71 81 91 101 111 121 131

Number of lieratlons

Figure 5.11. Convergence graph of P for 20 individuals

52

0.85 ——
0.82 L
0.79
0.76
0.73

Average Adjusted-R2

0.7 ‘IEI;I‘I‘IIII“IIIllllllllll|“’I~I‘|Ti‘ll-lrllllﬂl.liill’llllilI;IVKYI.‘;I'I-'llrlrllrglrl“lilvtxiyi;ITI'I
1 11 21 31 41 51 81 71 81 91 101 111 121 131
Number of lterations

Figure 5.12. Average convergence graph of P,

5.2.9. Numerical Comparisons to Exhaustive Search and SPSS

We have tested the correctness of our results using exhaustive search method. We
were able to do exhaustive search because the problem we were dealing was not so large;
but there are other receptors with higher number of variables that we are aiming to solve.
By seeing the correctness of our results, we are now eligible to deal with larger problems
of whose the exhaustive search will cost much both in space and time complexity. Table
5.9 shows a comparison of running times for exhaustive search and GA with optimized

parameters, where running time of GA is given as the average of 10 runs.

Table 5.9. Running times for exhaustive search and GA

VAR =4 VAR =5 VAR =6
Exhaustive Search | 40 minutes | 1 hour, 5 minutes | 2 hours, 15 minutes
GA 20 seconds | 1 minute 4 minutes

Another comparison is done with the SPPS statistical software package. Different
linear regression methods such as stepwise, forward and backward regression are i:ried. We
have seen that SPSS sometimes cannot address the optimum solution that we are looking

for. For P,, the results of SPPS stepwise linear regression method are given in Table 5.10.

53

Table 5.10. Stepwise linear regression method with SPSS for P,

Model R R Square |Adjusted R Square Std. Error of the
Estimate
1 .834 .696 .695 2.9688
2 .868 754 : 754 2.6698
3 879 773 773 2.5633
4 .893 .798 797 2.4237
5 .902 814 814 2.3225
6 910 .828 .828 2.2343
7 915 .837 836 2.1771
8 918 - .842 842 2.1414
9 920 .846 845 - 2.1185
10 923 852 851 2.0742
11 .926 857 .856 2.0442
12 927 .860 .858 2.0247
13 .928 .862 861 2.0079.
14 .928 .862 .861 2.0072
15 .930 .866 .864 1.9819
16 932 .868 867 1.9609
17 .933 871 870 1.9401
18 934 873 872 1.9278
19 935 .875 .873 1.9173

a Predictors: (Constant), V4

b Predictors: (Constant), V4, V8

¢ Predictors: (Constant), V4, V8, V12

d Predictors: (Constant), V4, V8, V12, V7

¢ Predictors: (Constant), V4, V8, V12, V7, V6

f Predictors: (Constant), V4, V8, V12, V7, V6, V15

g Predictors: (Constant), V4, V8, Vi2, V7, V6, V15, V14

h Predictors: (Constant), V4, V8, V12, V7, V6, V15, V14, V9

i Predictors: (Constant), V4, V8, V12, V7, V6, V15, V14, V9, V5

j Predictors: (Constant), V4, V8, V12, V7, V6, V15, V14, V9, V5, V11

k Predictors: (Constant), V4, V8, V12, V7, V6, V15, V14, V9, V5, V11, V13

I Predictors: (Constant), V4, V8, V12, V7, V6, V15, V14, V9, V5, Vi1, Vi3, V20

m Predictors: (Constant), V4, V8, V12, V7, V6, V15, V14, V9, V5, V11, V13, V20, VI8

n Predictors: (Constant), V4, V8, V12, V6, V15, V14, V9, V5, V11, V13, V20, V18

o Predictors: (Constant), V4, V8, V12, V6, V15, V14, V9, V5, V11, V13, V20, V18, V2

p Predictors: (Constant), V4, V8, V12, V6, V15, V14, V9, V5, V11, V13, V20, V18, V2, V19

q Predictors: (Constant), V4, V8, V12, V6, V15, V14, V9, V5, V11, V13, V20, V18, V2, V19,

Vié

r Predictors: (Constant), V4, V8, V12, V6, V15, V14, V9, V5, V11, V13, V20, V18, V2, V19,
Vie, V7

s Predictors: (Constant), V4, V8, V12, V6, V15, V14, V9, V5, V11, V13, V20, V18, V2, V19,
V16, V7,V3

For six variables, SPSS results are V4, V8, V12, V7, V6, V15, where these
correspond to MHC positions 45, 63, 66, 70, 9_s (size of position 9), 67_s (size of position
67) with an adjusted R? value 0.828. Our GA selects 45, 63, 67, 9_s, 45_s and 67_s with an

adjusted R? value 0.832, which will be explained in detail in the following sections.

54

We have concluded that optimum regression line generation with genetic algonthm
techniques is much more efficient than traditional regression analysis methods and ‘the
exhaustive search. In the remaining sections, tests on different data sets for different pocket.

positions will be done using GA with roulette-wheel selection, two-point crossover, elitist
reinsertion, point mutation with 0.02 rate, and population size 20.

5.3. Tests on Pocket B and P,

The specificity of the P, side-chain is determined primarily by 10 MHC polymorphic
residues. These residues were stated in Table 5.1. Table 5.11 shows the 20 MHC Class I
molecules and the corresponding peptide residues at P, for testing. The data set used for
training ig/given in Table 5.12. This table shows the 46 MHC Class I molecules and the
correspohding peptide residués at P, together with their number of occurrences at that
position. Residues for the 20 MHC test molecules and 46 training MHC molecules for
pocket B are shown in Table 5.13 and Table 5.14 respectively.

Table 5.11. Peptide residues at P, of 20 Class I MHC molecules for testing

MHC Residues at P, MHC Residues at P,
B*42 P(2) Cw*0102 I(1)

B*5103 . | A(1), G(1), F(1) B*18 D(1)

B*5501 P(4) B*3901 H(2), R(1)
B*5502 P(5) - H-2Dk R(2) -

B*5601 P(3) A*0203 I(1), V(1)
H-2Dgq P(1) A*0209 L(2), I(2), T(1)
Cw*0801 A(D), S(1), T(1) A*32 L(1)

Cw*1601 | A(2) B*5701 S(4), A(1)
Cw*0201 I(1) Cw*0401 F(1)

Cw*0304 | A(D) Cw*0602 R(3), Q(1), A(1)

55

Table 5.12. Peptide residues at P, for 46 Class I MHC molecules for training

MHC Residues at P, - MHC i
B*0702 |P(25) A*0204 |L(10), I(6) Restiues 2t Py
B*3501 _ |P(80) A*0207 |L(3),1(3)
B*5101 _ |P(11), A(5), GB3) |A*0205 |L(3), 1(3), V(3)
B*5102 _|P(5), A(2) A*0206 |L(7),1(6), V(2)
B*5301 |P(10) A*0214 |L(3), V(2), A(2), Q(2)
H-2Ld [P(19) A*0301 _ |L(42), V(24), T(11), I(9)
B*40012 |E(6) A*1101 _ }V(23), T(13), S(6)
B*4002 |E(28) A*2601 _|V(2), L(2), T(1), (1)
B*4006 |E(8) A*6801 |[V(21), T D), L(9), S(5), A(3)
B*4402 |E(27) A*6901 [T(10), L(4), A3), V(2), S(2)
B*44031 [E(7) A*0101 _ [T(16), S(11), I(6), A(6), V(5)
B*3701 |D(10), E(4) B*5801 |T(5), A(2)
H-2Kk |E(20), D(2) A*2902 |E(20)
B*14 R(14) A*31012 [V(15), T(7), L(6), R(6), M(3), A(3)
B*3801 |H(8) A*3301 _ |V(9), T(7), L(6), M(4), S(3), 1(2)
B*2701 |R(6) 1A*3302 {M(2), 1(2), V(1), S(1), Y(1)
B*2702 |R(10) B*1501 |Q(9), L(6)
B*2703 |R(22) B*52011 |Q(4), M(2), G(2)
B*2704 |R(15) A*2401 _ |Y(36), F(12), W(10)
B*2705 [R(80), K(4) H-2Kd Y(36), F(7)
B*2706 |R(19) Cw*0702 _[Y(6), R(1), K(1)
A*0201 |L(244), I(46), H-2Kb 5(6), V(5), R(4), G(4), A(3), 1(3), Q(2), E(2), L(2),
M(43), V(27) Y(1), P(1), K(1), D(1), C(1), W(1), N(1)
A*0202 [L(8) H-2Dd G(29)

Table 5.13. Amino acids at pocket B for the 20 MHC Class I fest molecules

Amino acids at Positions:

MHC

63

66 | 67 | 70

e
(7]
N
-t
(7]
(-}

B*42

B*5103

r4lel

B*5501

B*5502

B*5601

H-2Dq

Cw*0801

lcw*1601

[lcw*0201

[[Cw*0304

fICw*0102

IB*18

1B*3901

- [H-2Dk

A*0203

A*0209

A*32

B*5701

Cw*0401

[[Cw*0602

(S1 7Y 5 71 5 01 o) (S 1ol [C01 1O 101 10 19 11 81 B B 189 B [

Z1ES B B B 2] (Y (7 (2 B e B B] o el 8 o] 1
o] (] K4 K4 K4 K4 =1 1 [2) 2] [2) (2] (2] B G e ool B o] B

o |m|m|m|m|m|m|Z| Z2imjm o oo = 22 2] 2] 2

|||t en ||| [|| | | [| [| <} 18

~<|=<IZl<l<]l<|>|ojuj<i<]|=<]|=<]|<]> <] =<]|=<]|m]<

m|ml<|<|<jm> |<|<|m|m|a|> 3> | <|<|m|=|<

b E A0 A0S P P P B P B et i B B B B BT B
ololwlzzlziz|z|zloklo |zl
éwrrrécr‘t—'wrsor‘err‘rrc

56

Table 5.14. Amino acids at pocket B for 46 MHC Class [training molecules

Amino acids at Positions:
66 | 67 | 70

MHC
B*0702
iB*3501
[B*5101
B*5102
B*5301
H-2Ld
B*40012
B*4002
B*4006
B*4402
B*44031
B*3701
H-2Kk
B*14
B*3801
(B*2701
1IB*2702
IB*2703
[B*2704
[B*2705
B*2706
A*0201
A*0202
A*0204
A*0207
A*0205
A*0206
A*0214
A*0301
A*1101
A*2601
A*6801
A*6901
A*0101
B*5801
A*2002
A*31012
A*3301
A*3302
B*1501
B*52011
A*2401
H-2Kd
Cw*0702
H-2Kb
H-2Dd

b
wn
~
S
th
-3

<l<|ole|mlie| =l || << | <] << <] | m o < < T << T < e < < e

mmmommmzzwommzzmemmmmmmmmmmmmmzzzmmmmmm-—zzzzza

>wm‘11'ﬂ—<-<'-<-<-<~<-<'<~<'-<'-<'<'-<-<'-<'<O'-<'-<-<-<-<-<~<-<-<-<-<—<m—<-<-<~<~<-<~<'<~<-<-<8

>>-<><wU:<<<<ZZ<<<<<<<<<<<<onoooooo>mmwmww>'ﬂ"n’ﬁ'ﬂ-<
zzocmzzzmmOmmoomoo::mmm:mwmwwxwzzzzzzZZZOZZZZO
:>m>U<mm<<<:<<><<m:>m<<<<<<<m<m<<<<mo<<<<<<><mm<m
Urr<or2hrrrrwrééorrrsrﬁsrrﬁrrrrrrccrorrr<rrrrw

<|<|ol=lz|=|zlzlzlzlzi=lzlzZl2|2]|2 2 2|2 2 (2 =2 | [0 |0 | ot o | o | e et [e o | o [o | o [o | o o < [2 [3} 3 3 e |

mmw>>>>>>>>>>>>>>>>>>>>>>~l-i»—!»—]>—i»—1mmmm—]—i-i-—!-im>>>>m§

5.3.1. Test Data Preparation for Pocket B and P,

The data set consists of 1430 input lines, represented by N. These lines are a

combination of data obtained from Table 5.12 and Table 5.14. Each line’s first element,

57

that is the independent variable Y represents the hydrophobicity or size value of the
peptide residue at P, for the MHC of that line. The rest of the input line is the set of MHC
residues stated in Table 5.14 represented by the dependent variables Xi, where i ranges.
from one to 20 represented by VART. First 10 values of X’s are the hydrophobicity scores
for the corresponding MHC sequence and the remaining 10 values are the sizes of these
residues. A diagram showing the input data is in Figure 5.13. Our aim is to find the set of

X’s that will best represent Y in the form of an equation Y=aX+b, where b is the constant
term and a’s are the parameters of the equation.

Y X1X2............ X10| X11X12............. X20
(} MHC 1
Hydro- .
N phobicity] Hydrophobicity . Size
ﬁ or Values _ Values - l L
Size
Values }MHC 46
\.

Figure 5.13. Schema for input data

5.3.2. Tests Using Hydrophobicity Scale A

By using the input data whose format is shown in Figure 5.13, GA is applied »_many
times and a set of best equations are generated for different number of independent
variables, starting with VAR=1. Our runs on different VAR sizes have shown that VAR=6;
that is six independent variables out of 20 were enough to explain the independent variable
Y. We have stopped increasing the variable count as soon as there is no more than one per
cent increase in adjusted R2 value by adding an new variable. We have decided that
increasing the number of independent variables after six did not contribute very .much to
the equation’s success. The maximum adjusted R? value that can be obtained using all 20
variables is 0.778 and 0.752 with only six variables. Predictions on different variable sizes

are checked, and it is found that increasing variable size after six does not improve the

58

prediction accuracy. Table 5.15 shows adjusted R?

value changes by adding new variables
one by one.

Table 5.15. Adjusted R? values for P, with different VAR sizes (Scale A)

Independent | Adjusted R* Value
Variable Size

1 0.587

2 0.692

3 0.717

4 0.730

5 0.741

6 0.752

7 0.755

The regression line and the corresponding adjusted R* value obtained with six
variables are as follows: |

Y = -8.65+0.041* X, , +0.431* X, +0.039* X, ,
+0.590* X —0.011* X, —0.494* X (5.1)

Adj - R?* =0.752 - (5.2)

In the above equation, “_s” means the size of the residue at that location. In order to
determine P, residues for a given MHC molecule, the above equation should be applied.
This equation determines Y with 75 per cent accuracy as shown by the adjusted R? value.
During prediction, "the hydrophobicity value obtained from equation (5.1) is assigned to its
nearest amino acid. The results of predictions have shown that nine exact matches are
obtained out of 20. Only 45 per cent of test data could be explained with Scale A, so we

have moved to Scale B for better predictions.
5.3.3. Tests Using Hydrophobicity Scale B
Six independent variables out of 20 were enough to explain the independent variable

Y since again increasing the number of independent variables after six did not contribute

very much to the equation’s success. The maximum adjusted R? value that can be obtained

59

us;mg all 20 variables is 0.793 and 0.764 with only six variables. Table 5.16 shows adjusted
R”value changes by adding new variables one by one.

Table 5.16. Adjusted R? values for P, with different VAR sizes (Scale B)

Independent | Adjusted R? Value
Variable Size :

1 0.554

2 0.703

3 0.730

4 0.742

5 0.754

6 0.764

7 0.769

The equation and the corresponding adjusted R? value obtained with six independent
variables are as follows:

Y =1.535-0470% X +0.012% X,;, , +0373* X,
~0.025*% X,, | +0.621* X, +0.154* X, (5.3)

Adj - R* =0.764 (54

This equation determines Y with 76 per cent accuracy as shown by the adjusted R?
value. The results of predictions have shown that five exact matches are 6btained out of 20.
During predictions, the hydrophobicity valﬁe obtained from equation (5.3) is assigned to its
nearest amino acid shown in Table 5.2 according to Scale B. Only 25 per cent of test data

could be explained with Scale B, so we have moved to Scale C for better predictions.
5.3.4. Tests Using Hydrophobicity Scale C

Tests using Scale C have shown that six variables are enough to explain the training
data with 83 per cent accuracy. The computed adjusted R? value for six variables is 0.832,
whereas maximum is 0.873 with 20 variables. Table 5.17 shows adjusted R* value changes

by adding new variables one by one.

60

Table 5.17. Adjusted R? values for P, with different VAR sizes (Scale C)

Independent | Adjusted R? Value
Variable Size

1 0.695

2 ' 0.754

3 0.781

4 0.797

5 0.820

6 0.832

7 0.838

The equation and the corresponding adjusted R? value obtained for six independent
variables are as follows:

Y =-28.840+0.075% X, | +0.083% X, , —0.220% X, 5.5
+0.553% X, —0.891% X, +0.032* X, . ©-3)

Adj - R*=0.832 | (5.6)

According to the physico-chemical properties of the amino acids, the ones having
similar properties can replace each other easily. Groups of amino acids where an amino

acid can replace another one in the same group are shown in Table 5.18. Our predictions

are done based on that table.

Table 5.18. Amino acid grouping for replacement

Grouping | Amino acids
1 L,LMV

2 Y,F

3 K,R

4 E,D

5 Q. N

6 S,T,A

Predictions on the 46 molecules used in the algorithm are shown in Table 5.19.
Results on 20 test MHC molecules are shown in Table 5.20. During predictions, the

hydrophobicity value obtained from equation (5.5) is assigned to its nearest amino acid

61

shown in Table 5.2 according to Scale C, or to the amino acids that it can replace. Also

variation and standard deviation () of the equation are calculated and predictions are done
within one o distance.

Table 5.19. Predictions for 46 Class I MHC Molecules (Scale C)

MHC P, Prediction MHC P icti
B*0702_[P25) R N G R
B*3501 P(80) Y o |A*0207 L(3),1(3) L N
B*5101 Ié((l3 1)), AG), ¥ o |A*0205 [L(3), 13),V(3) I v
B*5102_|P(5), AQ) |¥ s |A*0206 |L(7), 1(6), V() 1 V
B*5301 [P(10) Y s [A*0214 |LG3), V(2), AR), O) I v
H2Ld _ [P(19) N +V_|A*0301 _|L(42), V(24), T(11), 10) C,V v
B*40012 |E(6) E V_|A*1101 _[V(23), T(13), 5(6) C,V v
B*4002 |E(28) E V_[A%2600 _[V(2), L2), T(1), 1(D) C.V N
B*4006 |E(3) E V_|A%6801 _|V(21), T(11), L©9), SG). AG) |,V N
B*4402 |EQ27) E V_[A*6901 _[T(10), L(4), AG), V(2), S22) [,V v
B*44031 |E(7) E v [A*0101 T(16), S(11), I(6), A(6), V(5) F c
B*3701 |D(10),E(4) [E Y [B*5801 T(5), A(2),5(5) Y c
H-2Kk E(20),D(2) |Q X |A*2902 E(20) P X
B*14 R(14) R v |A*31012 V(15), T(7), L(6), R(6), M(3), A(3) |P o
B*3801 |HR)K(Z) |R V_|A*3301 _[V(9), T(7), L(6), M(4), S3), 12) [P s
B*2701 [R(6) R v [A*¥3302 M(2), 1(2), v(1), S(1), Y(1) P c
B*2702 |R(10) R N |B*1501 Q(9), L(6) Y X
B*2703 |R(22) R v [B*52011 Q(4), M(2), G(2) N N
B*2704 |R(15) R v |A*2401 Y(36), F(12), W(10) P c
B*2705 |R(80),K(4) |R v [H-2Kd Y(36), F(7) P,T o
B*2706 |R(19) R v |Cw*0702 Y(6), R(1), K(1) Y- v
A¥0201 |L(244), ‘IL v |H-2Kb S(6), V(5), R(4), G(4), A(3),(3), |H N

1(46), M(43), Q@) EQ2), L(2), Y(1), (1), K(1),
V(27) D(1), C(1), W(1), N(1)
A*0202 |L(8) L v |H-2Dd G(29), Y(5),P(1),F(1),R(1),A(1) Y]

W: Exact match

X: Mismatch

o: Within one standard deviation (0=2.2)
*: Special case explained in text

Out of 46 MHC training molecules, we are able to predict 32 of them exactly. During
our search we have found that N or Q is the third position for the H-2Ld and. crystal
structures show that instead of P molecule at the second position, N or Q at the third

position binds to pocket B. Also there are 43 matches within one o distance.

62

Table 5.20. Predictions for 20 Class I MHC test molecules (Scale C)

MHC Actual Bindings Prediction

B*42 P(2) P v
B*5103 A1), G(1), F(1) P p
B*5501 P(4) - P N
B*5502 P(5) P 3
B*5601 | P(3) P N
H-2Dq P(1) N, Q X
Cw*0801 | A(1), S(1), T(1) A N
Cw*1601 | A(2) A v
Cw*0201 | K1) A c
Cw*0304 | A(1) A ~I
Cw*0102 [1(1) A o
B*18 D(1) E v
B*3901 H(2), R(1) D,K v
H-2Dk R(2) R]
A*0203 I(1), V(1) L v
A*0209 L(2), 1(2), T(1) L v
A*32 L(1) C,V 2
B*5701 S(4), A(1) F X
Cw*0401 | F(1) Y <
Cw*0602 | R(3), Q(1), A(D) Y X
V: Exact match

X: Mismatch

o: Within one standard deviation (0=2.2)

The results of predictions have shown that 14 exact matches are obtained out of 20.
There are three mismatches and the other three predictions are within one standard
deviation. After this low prediction accuracy obtained, we have checked the MHCPEP
[10] database for new peptides that can bind to the above test data in order to increase the
accuracy of our predictions. Table 5.21 shows the actual bindings of the above 20 test
MHC molecules obtained from MHCPEP [10]. The MHC molecule Cw*0201 could not be

found in the latest archive, so we have omitted that molecule.

63

Table 5.21. New predictions for 20 Class I MHC test molecules (Scale C)

MHC Actual Bindi icti

e 0 L(l)lndmgs }I:redlctlon -
B*5103 P(18), A(7), G(3), F(1) P ¥
B*5501 P(2) P v
B*5502 P(5) P v
B*5601 P(3) P v
H-2Dq P2), 1(1), T(1) N, Q *
Cw*0801 | A1), S(1), T(1) A N
Cw*1601 | A(2) A v
Cw*0201 | --- A
Cw*0304 [A(1) A v
Cw*0102 | A(5), (1), T(1), L(1), C(1) A v
B*18 E(10), P(2), D(1), R(1), Y(1), V(1) E v
B*3901 R(1) D,K v
H-2Dk R(2) R v
‘A*0203 L(13), I(3), V(1), M(1) L «I
A*0209 L(4), I(1), A(1), T(1) L +
A*32 L(2),1(2) ' C,V v
B*5701 A(3), S(2), F(1), P(1), M(1), T(1), R(1) F v
Cw*0401 | Y(9), F(1) Y v
Cw*0602 | Q(4), A(3), R(2) Y G
v: Exact match

o: Within one standard deviation (6=2.2)

*: Special case explained in text

As you can see from Table 5.21 we are able to predict 18 out of 19 MHC molecules
exactly. For B¥5103 we were always predicting P, but Zhang and co-workers [23] depicted
in their study that this molecule can bind A, G, and T only. After our search in the updated
database archive, we have seen that actually there are 18 peptides that show P at their
second position for B*5103. Same corrections are done on Cw*0102, B*.18, A*0203,
B*5701 and Cw*0401 which are shown to bind A in five peptides, E in 10 peptides, Lin
13 peptides, F in one peptide, and Y in nine peptides réspectively. There remained one
mismatch after correction, and our predictions on the remaining three molecules show high
physiological similarities to the actual bindings. H-2Dq in Table 5.21 is shown to bind to P
at position two but we always predict that as an N or Q so we do encounter a mismatch for
this case as for H2-Ld in Table 5.19. During our search we have found that N or Q is the
third position for this MHC molecule also and crystal structures show that instead of P

molecule at the second position, N or Q at the third position binds to pocket B so our

64

prediction is correct. Also within one o distance we are able to predict all the molecules

accurately. Our prediction accuracy for exact matches is 95 per cent, and with one standard
deviation it is 100 per cent.

5.3.5. Size Prediction

After predicting the peptide at P, using the predicted hydrophobicity scores, we have
decided that Scale C performs best, and we will continue to use it all through the remaining
tests. Here we have tried to obtain the peptide at P, by predicting the size values of amino

acids at P,. The equation for size prediction with six variables is as follows:

Y% =179.580 + 0.906 * Xy , +2771% X 5 — 0297 * X
+14.463853% Xo) —4.445% X, ~1.196* X, ,

67_s

(5.7)

Adj - R* =0.652 | (5.8

Table 5.22. Predictions for 20 Class I MHC test molecules using size information

MHC Actual Bindings Prediction
B*42 P(L), L(1) P <
B*5103 P(18), A(7), G(3), F(1) P v
B*5501 P(2) H X
B*5502 P(5) H X
B*5601 P(3) H X
H-2Dgq P(2), I(1), T(1) \ v
Cw*0801 | A(1), S(1), T(1) E X
Cw*1601 | A(2) P X
Cw*0201 | --- P —
Cw*0304 | A(1) E X
Cw*0102 | A(5), I(1), T(1), L(1), C(1) LL N
B*18 E(10), P(2), D(1), R(1), Y(1), V(1) E]
B*3901 R(1) R v
H-2Dk R(2) E,Q X
A*0203 L(13), I(3), V(1), M(1) E,QV ‘J
A*0209 L(4), I(1), A(1), T(1) LL N
A*32 L(2), 1(2) LL N
B*5701 A(3), S(2), F(1), P(1), M(1), T(1), R(1). A N
-Cw*0401 | Y(9), F(1) Y N
Cw*0602_| Q@) AG),R?) P X
~: Exact match
X: Mismatch

65

As the Table 5.22 shows, by using predicted size information from equation (5.7), we

are able to find 11 exact matches out of 19. Accuracy is 58 per cent.
S.4. Tests on Pocket F and Pq

The specificity of the Py side-chain is determined primarily by nine MHC
polymorphic residues. These residues are stated in Table 5.1. The data set for training is in
Table 5.23. Table 5.24 shows the 20 MHC Class I molecules and the corresponding
peptide residues at P for testing. This table shows the 48 MHC Class I molecules and the
corresponding peptide residues at Pq and théir number occurrences at that position.

Residues for the 20 MHC test molecules and 48 MHC molecules for pocket F are shown in
Table 5.25 and Table 5.26 respectively.

Table 5.23. Peptide residues at Pq of 48 Class I MHC molecules for training

MHC [P, MHC Pq

B*0702 |L(15),V(5).I(5) A*0207 I(3),V(3)

B*3501 |L(37),Y(26),M(7),1(6),F(4) A*0205 |V(8),L(3),](3)
B*5101 [V(7),I(7),L(3) A*0206 |V(7),L(D,I(3)
B*5102 [V(4),I(3) A*0214 |L(4),V(3)

B*5301 [L(3),F(2),W(2),I(2) A*0301 |K(50),R(24),Y(22)
H-2Ld |L(10),F(8) A*1101 [K(39),R(21),Y(6)
B*40012 |L(6) A*2601 |V(4),L(1),A(1)
B*4002 |L(13) A*6801 |R(30),K(13)

B*4006 [V(5) __1A*6901 [R(10),V(7),L(4),K(2)
B*4402 |Y(14),F(8) A*0101 |Y(54)

B*44031 {F(5),Y(2) ' B*5801 [F(5),W(2)

B*3701 11(9),L(6),T3) A*2902 |[Y(9),L(6),F(3)
H-2Kk |I(19),L(2),V(1) A*31012 |R(32),K(13)

B*14 |L(13),G(3),V(2) A*3301 |R(24),K(10)

B*3801 |L(4),Y(3),F(3) A*3302 |R(D)

B*2701 |F(2),L(2) B*1501 |Y(9).,F(4)

B*2702 |Y(5),F(3) B*52011 [1(4),L(2),V(2)
B*2703 [R(1D,K(5) A*2401 |L(34),F(15),1(10)
B*2704 |R(6),K(3),L(2),A(2) H-2Kd _ [L(31),}(9),V(3)
B*2705 |K(27),R(26),L(12) Cw*0702 |Y(6),L(2)

B*2706 |L(5),R(3),K(2) B*0801 [L(29),I(5),F(4),V(3)
A*0201 |V(147),L(130),1(47),A29),M(17) |H-2Db _ |1(22),1.(18),M(12),V(3)
A*0202 |V(6),L(2),1(2) H-2Kb _ |L(25),M(4),V(4),1(2)
A*0204 |V(8),L(6),1(3) H-2Dd __ {L(17),l(6),M(3),Y(3),F(3)

Table 5.24. Peptide residues at Py, of 20 Class I MHC molecules for testing

MHC Pq MHC Py

B*42 L(1),Y(1) Cw*0102 | L(I)

B*5103 [V()[(1),F(1) | B*18 A(l)

B*5501 | A(3),T(1) B*3901 | I(1),V(1),M(1)
B*5502 | A(3),V(2) H-2Dk | L(1),G(1)
B*5601 | A(3) A*0203 | L(3)

H-2Dq | M(1) A*0209 [L)LV.A(N
Cw*0801 | 1(2),V(1) A¥32 R(1) |
Cw*1601 | L(2) B*5701 | WQ3),F(2)
Cw*0201_| W(1) Cw*0401 | F(1)

Cw*0304 | L(1) Cw*0602 | Y(3),L(1),V(1)

Table 5.25. Amino acids at pocket F for 20 MHC Class I test molecules

Amino acid Positions
116

MHC
B*42
B*5103
B*5501
B*5502
B*5601
"H-2Dq
iCw*0801
[Cw*1601
[Cw*0201
[Cw*0304
[Cw*0102
(B*18
B*3901
H-2Dk
A*0203
A*0209
A*32
B*5701
Cw*0401
Cw*0602

o
N

| o] o] o O] o] | O] O] O] O] M| O] O] T| O] O| O O| O &
3]

CIFRNEEENEREEEEENHEEHERER
ZZZ(DUUUUJU)(I)U)ZCD(DU)U)(DU)ZU):‘I
HEEEBEEE B EEEBEEEEEEEREEEE
A=<= <[<] 0] <[=<| o] <[<[<I<]<[<]=<[<[<]<|8
UZUOIINZUUUUUZI’HZZZZZE

m|m} <[<[<[m| > <] <] m|m]| m| > >|<]|<|m|m} <| =

ol ol<[<|T 7] <] <|n]|n]|m|T| || <] <

67

Table 5.26. Amino acids at pocket F for 48 MHC Class I training molecules‘

MO‘QQQ [ed [«4 - (=4 QQQQQQQQQQQQQQQQQQEEQQQYQQHRR
mEVEE > [l [53] VEVVVVVVVEAEVVAVVVVVEEVDAVAEA
MMYSYV.. o= kel [DV..YV.V.YV..YV..DDDDYDSDDDDSYYFSYFYF
DM..MDDNN Z | Z m |z HDHHHHHHHRRQRHRDRQQQDNHQDNLQW
=} .
.m.”v..v.v..v. fal Eall Cal Yv..Yv..YCYYYYYYYYYYYYYYYYFFSYSSA
.meRTT = e |3 Z)z od ot |5 e |t |t et | [(2 Sl | e SIS Slel-iESleilelnlol
S EE = 1z, | alal>jalz]>lal> b e (e > e e e e e L 1B L e L [[[
E | ln |z Iz w | (n |Z |z Z |lwnl|Z |z |z SDSDDDDDDDDDNDDNNNDDDSNNSSSSDD
.MDYYV..YFYV..v..v..v..v..FDv..V..DDDDDHHHHHHHDDDDDDYDDDDYV.DFDDFFF
mmmmmmdmmmmmm slziglglzlsiglzleRslzlgizlzlzlzslslslsizlelElzielzlElsl<Elzls sl
M.mmmuwnwmmu«,nmmmnnnnnmmmmmmmmmnmwwmwmuunmmnmmmmmm
ED.LWLEEEBwEEEBHBEEEEPEmAmmAmAMA.A»»AAmmmm.Aww.AH.W.whm.lanm.h

68

Tests on Pq resulted in very low adjusted R? value. Maximum R? that can be obtained
using all 18 variables (same as P,: nine for hydrophobicity scores and nine for the size
scores) is 0.701. The predictions are found to be very poor, therefore i
prediction power, we have divided the train data into two lo

chemical properties of amino acids.

n order to increase

gical groups using physic-

First group contains 33 training and 15 test molecules, second group contains 12
training and four test molecules,

The equation of the first group with six independent variables is as follows:

Y _egl=-26.788-0.005* Ko +0.152% X, , -0.004% X, | (5.9
—0.057*X,,, +0.224% X, +*X,,, | ?
Adj-R* =0.976 (5.10)

Predictions for training molecules are in Table 5.27 for test molecules.

Table 5 .27.‘ Predictions at Pq of 15 Class I MHC test molecules

MHC Pq MHC Pq

B*42 LY V B*3901 ILVM |V
B*5103 V,LF v H-2Dk LG V
B*5501 AT X A*0203 L V
B*5502 | AV X A*0209 LVA [+
B*5601 A X A*32 R v
H-2Dq M V Cw*0304 | L v
Cw*0801 | LV vV Cw*0401 | F v
Cw*0102 | L v

V: Exact match

X: Not included in the training MHC molecule set

Predictioris have shown that we are able to predict the test data with 80 per cent -

accuracy with first equation.

69

The equation of the second group with four independent variables is as follows:

(
Yo ~€92=-20.520+0.145* X,;, -0.121*X,, ~0.026* X, '
+0.012* X, . G1D
Adj - R* =0.564 (5.12)

Predictions for training molecules are in Table 5.28 for test molecules.

Table 5.28. Predictions at Pq of four Class I MHC test molecules

MHC Po MHC [P,
B*5701 WF [+ Cw*0602 | Y,L,V |+
Cw*1601 L X | B*18 A v

v: Exact match .
X: Not included in the training MHC molecule set

Predictions have shown that we are able to predict the test data with 75 per cent

accuracy with second equation.

5.5. Comparisons with Another Technique

Our results showed that we can predict second and ninth positions of a peptide
sequence by using one or two regressioh lines. Zhang and co-workers [23] managed to
explain the data only by dividing it into very small groups. For second position, they have
divided the data into twelve and.in addition to this, they proposed many conditions in order
for the division to hold. We have managed to explain their data with a single regression
line with 95 to 100 per cent accuracy. They have also divided the data for ninth position
into 4 groups and they could not be able to explain one of the groups and called it as being
nonspecific. We are able to explain ninth position with two regression lines, and one of our
groups was the one that is found to be nonspecific by them. We have explained the first

group with 80 per cent and second group with 75 per cent accuracy.

70

6. CONCLUSIONS

With today’s technology and present methods, it is very difficult to identify peptide

motifs. As it is described by Zhang and co-workers [23], researchers usually divide the

data set into several small groups in order to predict the peptide motifs of a given test data.
They have managed to explain all the data for the second peptide position by dividing the

data set into 12 groups. They have applied the same method to ninth position by dividing it
into four parts.

In our technique of regression analysis using GAs, we have managed to explain all
the data for second peptide position with only one regression line with six MHC sequence
positions. We have predicted with 95 per cent accuracy all the test data for second position.
This value becomes 100 per cent if we look for one standard deviation away from our
predictions. For position nine, we have divided the set into two because one part of the set
has a high variation. The first group predictions resulted in 80 pervcent accuracy. The
second group predictions resulted in 75 per cent accuracy. These predictions imply that
there is a linear relationship between the MHC molecules’ sequences and the peptide
sequences. Our technique makes possible the ligand design for a given receptdr and can be

applied to other problems rather than MHC receptors.

In addition to peptide motif discovery, we are also able to determine the positions of
MHC molecules that are the determining positions for the peptide to bind to them.
Applying this technique to other receptor-ligand problems makes it possible for us to

determine the positions of the receptors of which are important in binding to the ligand.

GAs are very efficient in determining the optimum regression line. There are many
application areas in molecular biology that GA is applied in regression analysis such as
drug design. Since our problem size is small, it can be solved with exhaustive tec.hniques
but the problerh size can be extended for other receptor-ligand problems and therefore
exhausti\;e search may not be possible or it may be very time and space consuming. We
are planning to attack such problems in near future, and we believe that GA will perform

very well on larger problems.

71

After doing a series of performance optimization tests, we have concluded that our

problem is best solved with roulette-wheel selection, two-point crossover, elitist

reinsertion, and with population size 20, mutation rate 0.02. This set finds the optimum

result 90 per cent of the time with 90 iterations on the average and it converges all the
time.

This project enabled us to find the MHC binding motifs of peptides out of all the

possible peptide sequences. Knowing this method will allow us to select the candidate

peptides that are the ones that have the motif for that specific MHC molecule, so that they
can be used to develop a vaccine against a virus.

As a future work, we aim to organize this technique into a software package that will

provide great help to the people doing research on vaccine design.

72

REFERENCES

1. Russel, S. and P. Norvig, Artificial Intelligence —
New Jersey, 1995.

A modern Approach, Prentice Hall,

2. Forrest, S., “Genetic Algorithms: Principles of Natural Selection Applied to

Computation”, Science, Vol. 261, pp.872-878, August 1993,

3. Parsons, R. J., S. Forrest and C. Burks, “Genetic Algorithms, Operators, and DNA
Fragment Assembly”, Machine Learning, Vol. 21, pp. 11-33, 1995.

4. Hunkzibiller, T., R. Kaiser, B. Koop and L. Hood, “Large-Scale Automated DNA
Sequence Determination”, Science, Vol. 254, pp. 59-67, 1991.

5. Shulze-Kremer, S., Genetic Algorithms and Protein Folding, 1995,
http://igd.rz-berlin.mpg.de/~steffen/bee/111 . html

6. Mitchell, M., An Introduction to Genetic Algorithms, The MIT Press, England, 1996.

7. Bailey, T. L. and C. Elkan, “Unsupervised Learning of Multiple Motifs in Biopolymers
Using Expectation Maximization”, Machine Learning, Vol. 21, pp. 51-80, 1995.

8. Gaur, A. and C. G. Fathman, “Immunotherapeutic strategies directed at the
trimolecular complex”, Advan. Immunol., Vol. 56, pp. 219-265, 1994

9. Zhang, C,, J. L. Cornette, J. A. Berzofsky and C. Delisi, “The organization of human
leukocyte antigen class I epitopes in HIV genome products: implications for HIV

evolution and vaccine design”, Vaccine, Vol. 15, pp. 1291-1302, 1997

10. Rhodes, D. and J. Trowsdale, Genetics and Molecular Genetics of the MHC, 2000,
http://www.path.cam.ac.uk/~immuno/mhc/mhe.html

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

73

Robinson, J., A. Malik, P. Parham, J. G. Bodmer, S. G. E. Marsh, “ IMGT/HLA

database — a sequence database for the human major histocompatibility complex”,
Tissue Antigens, Vol. 55, pp. 280-287, 2000.

Brusic, V., G. Rudy, A. Kyne and L.C. Harrison, “MHCPEP, a database of MHC-
binding peptides: update 1997”, Nucleic Acids Research, Vol. 26, pp. 368-371, 1998.

Korber, B., C. Brander, J. Moore, P. D’Souza, B. Walker, R. Koup, B. Haynes and G.
Myers, HIV Molecular Immunology Database, 1996,

http://hiv-web.lanl.gov/immuno/

Kaba?,/E. A., T. T. Wu, H. M. Perry, K. S. Gottesman and C. Foeller, Sequence of

Proteins of Immunological Interest, 2000,

http://immuno.bme.nwu.edu/sequence_name.html
Korber, B., J. P. Moore, C. Brander, B. D. Walker, B. F. Haynes and R. Coup, 4
database of MHC Ligands and Peptide Motifs, 1999, '

http://www.uni-tuebingen.de/uni/kxi/

Brusic, V., FIMM, a database of functional molecular immunology, 2000,
http://sdmc.hrdl.org.sg/fimm |

Branden, C. and J. Tooze, Introduction to Protein Structure, Garland Publishing, Inc.,
New York and London, 1991.

Parham, P., “Getting into the groove”, Nature, Vol. 342, pp. 617-618, 1989.

Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts and J. D. Watson, Molecular
Biology of the Cell, Garland Publishing, Inc., New York and London, 1994.

The Immune Responses (Adaptive Immunity), 1999,
http://wwwi/cat/md/us/courses/bio141/lecguide/unit3/u3iab.html

21.

22.

23.

24.

25.

26.

217.

28.

29.

74

Bjorkman, P. J., M. A. Saper, B. Samraoui, W. S. Bennett, J. L. Strominger and D. C.
Wiley, “The foreign antigen binding site and T cell recognition regions of class I

histocompatibility antigens”, Nature, Vol. 329, pp. 5120-518, 1987.

Matsumura, M., D. H. Fremont, P. A. Peterson and I. A. Wilson, “Emerging principles

for the recognition of peptide antigens by MHC class I molecules”, Science, Vol. 257,
pp. 927-934, 1992. '

Zhang, C., A. Anderson and C. DeLisi, “Structural Principles that Govern the Peptide-

binding Motifs of Class I MHC Molecules”, J. Mol. Biol., Vol. 281, pp. 929-947,
1998.

Baringa, M., “Getting some backbone: How MHC binds peptides”, Science, Vol. 257,
pp. 880-881, 1992. ' |

Parham, P., “Deconstructing the MHC”, Nature, Vol. 360, pp. 300-301, 1992.

Rechenberg, 1., Evolutionsstrategie: Optimierung techniser Systeme nach Prinsipien

der biologische Evolution [Evolutionary Strategy: Optimization of Technical Systems

According to the Principles of Biological Evolution], Frommann Holzboog Verlagm

Stuttgart, Germany, 1973.

Schwefer, H. P., “Numerische Optimierung von Computer-Modellen mittels der
Evolutionsstrategie” [Numerical Optimization of Computer Models by Means of the
Evolutionary Strategy], Interdisciplinary Systems Research, Vol. 26, Birkéuser, Basel,
Switzerland, 1977.

Fogel, L.J., A. J. Owens and M.J. Walsh, Artificial Intelligence through Simulated
Evolution, Wiley, 1966.

Holland, J. H., Adaptation in Natural and Artificial Systems, Univ. of Michigan Press,
Ann Arborm Mich., 1975.

30.

31.

32.

33.

34.

35.

36.

37.

38.

75

Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley, Reading, Massachusetts, 1989.

Setubal J. and J. Meidanis, Introduction to Computational Molecular Biology, PWS
Publishing Company, Boston, 1997,

Patton, A. L., W. F. Punch Ill and E. D. Goodman, “A Standard GA Approach to
Native Protein Conformation Prediction”, Proceedings of the Sixth International
Conference on Genetic Algorithms, University of Pittsburgh, 15-19 July 1995, pp.
574-581, Morgan Kaufmann Publishers Inc., San Francisco, 1995.

Rogers, D., “Development of the Genetic Function Approximation Algorithm”,
Proceedings of the Sixth International Conference on Genetic Algorithms, University

of Pittsburgh, 15-19 July 1995, pp. 589-596, Morgan Kaufmann Publishers Inc., San
Francisco, 1995.

Harnett, D. L. and K. S. Ashok, Statistical Methods for Business and Economics,
Addison-Wesley, Reading, Massachusetts, 1991.

Kyte, J. and R. Doolittle, “A simple method for displaying hydropathic character of a
protein”, J. Mol. Biol., Vol. 157, pp. 105-132, 1982. '

Edelman, J. “Quadratic Minimization of Predictors for Protein Secondary Structure.
Application to Transmembrane alpha-Helices”, J. Mol. Biol., Vol. 232, pp. 165-191,
1993.

Engelman, D. M., T. A. Steitz and A. Goldman, “Identifying nonpolar transbilayer
helices in amino acid sequences of membrane proteins”, Annu. Rev. Biophys. Biophys.
Chem., Vol. 15, pp. 321-353, 1986.

Tsai, J., R. Taylor, C. Chothia and M. Gerstein, “The Packing Density in Proteins:
Standard Radii and Volumes”, J. Mol. Biol., Vol. 290, pp. 253-5266, 1999.

76

REFERENCES NOT CITED

Black, J. and J. F. Bradley, Essential Mathematics Jor Economists, John Wiley & Sons
Ltd., England, 1994,

Chatterjee, B. and B. Price, Regression Analysis by Example, John Wiley & Sons, Inc.,
New York, 1991.

Filho, J. L. R.. and P.C. Treleaven, “Genetic-Algorithm Programming Environments”,
IEEE Computer, Vol. 27, pp. 28-43, June 1994,

Johnson, R. A., Miller & Freund’s Probability & Statistics For Engineers, Prentice Hall,
New Jersey, 1995.

Miller, A. J., Subset Selection in Regression, Chapman and Hall, London, 1990.

Sen, A. and M. Srivastava, Regression Analysis Theory, Methods, and Applications,
Springer-Verlag, New York, 1990.

Shields, P. C., Elementary Linear Algebra, Worth Publishers Inc., New York, 1969.

Stuart, M., Major Histocompatibility Cdmplex, 1997
http://www.kcom.edw/faculty/chamberlain/Website/MSTUART/lect6.htm

	Tez734001
	Tez734002
	Tez734003
	Tez734004
	Tez734005
	Tez734006
	Tez734007
	Tez734008
	Tez734009
	Tez734010
	Tez734011
	Tez734012
	Tez734013
	Tez734014
	Tez735001
	Tez735002
	Tez735003
	Tez735004
	Tez735005
	Tez735006
	Tez735007
	Tez735008
	Tez735009
	Tez735010
	Tez735011
	Tez735012
	Tez735013
	Tez735014
	Tez735015
	Tez735016
	Tez735017
	Tez735018
	Tez735019
	Tez735020
	Tez735021
	Tez735022
	Tez735023
	Tez735024
	Tez735025
	Tez735026
	Tez735027
	Tez735028
	Tez735029
	Tez735030
	Tez735031
	Tez735032
	Tez735033
	Tez735034
	Tez735035
	Tez735036
	Tez735037
	Tez735038
	Tez735039
	Tez735040
	Tez735041
	Tez735042
	Tez735043
	Tez735044
	Tez735045
	Tez735046
	Tez735047
	Tez735048
	Tez735049
	Tez735050
	Tez735051
	Tez735052
	Tez735053
	Tez735054
	Tez735055
	Tez735056
	Tez735057
	Tez735058
	Tez735059
	Tez735060
	Tez735061
	Tez735062
	Tez735063
	Tez735064
	Tez735065
	Tez735066
	Tez735067
	Tez735068
	Tez735069
	Tez735070
	Tez735071
	Tez735072
	Tez735073
	Tez735074
	Tez735075
	Tez735076

