FOQM

(5=
e ®

107\ dE -AKEN FROM THIS RQOM

- MULTIVARIATE DECISION TREES FOR
MACHINE LEARNING

by
Olcay Taner Yildiz
B.S. in CmpE., Bogazi¢i University, 1997

azici UmverSIty lerary

\\ll\\\\\“ I\\\l\ll l\\l\\\||\| |\I\

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

The requirements for the degree of
Master of Science
In

Computer Engineering

Bogazi¢i University
2000

cRENCE

B e R AL L R PR,

ST

iil
ACKNOWLEDGMENTS

I would like to thank Assoc. Prof. Ethem Alpaydin for his supervision in this MS
study and for his support and advises. I am also grateful to all my friends, my family, my
teachers and my love. Without their support, this thesis would have not been

accomplished.

iv

ABSTRACT

In this thesis, we detail and compare univariate, linear and nonlinear decision tree
methods using a set of simulations on twenty standard data sets. For univariate decision
tree methods, we have used the ID3 algorithm and for multivariate decision tree methods,
we have used the CART algorithm. For linear and nonlinear methods, we have used neural
networks at each decision node. We also propose to use the LDA algorithm in

constructing linear multivariate decision trees.

Univariate decision trees at each decision node consider the value of only one feature
leading to axis-aligned splits. In a linear multivariate decision tree, each decision node
divides the input space into two with an arbitrary hyperplane leading to oblique splits. In a
nonlinear one, a multilayer perceptron at each node divides the input space arbitrarily, at
the expense of increased complexity. We propose hybrid trees where the decision node
may be linear or nonlinear depending on the outcome of a statistical test on accuracy. We

also propose to use linear discriminant analysis at each decision node.

Our results indicate that if the data set is small and has few classes, then a univariate
technique does not overfit and can be sufficient and the univariate ID3 has better
performance than multivariate linear methods. ID3 learns fast, learns simple and

interpretable rules.

If the variables are highly correlated, then the univariate method is not sufficient and
we may resort to niultivariate methods. We have shown ‘that ID-LDA has better
performance than CART in terms of accuracy, node size and very significantly in learning
time. It has also smaller learning time than ID-LP and the same accuracy. ID-LDA
generates smaller trees than ID3 and CART. This shows that to generate a linear
multivariate tree, using H)-LDA is preferable over CART, and may be preferable over ID-

LP if learning time is critical.

OZET

Bu tezde, tek degiskenli, dogrusal, vé dogrusal olmayan ¢ok degiskenli karar agag
kurma metodlart kargilagtinldi. Tek degiskenli karar agaglari igin Srnek olarak ID3, cok
degiskenli karar agaglart igin CART yontemi kullamld:. Dogrusal ve dogrusal olmayan
metodlar i¢inse karar diigiimiinde degisik sinir aglar yapilarindan faydalamildi. Ayrica
Fisher’in dogrusal aymrma analizinin gok defiskenli karar agaci olusturulmasinda

kullanilmasi 6nerildi.

Tek degiskenli karar agaglar her karar diiiimiinde tek degiskenin degerine bakarak
eksenlere dik bolmeler yaparlar. Dogrusal karar agaglarinda ise her dalda giris uzayi
rasgele bir diizlemle boliiniir. Dogrusal olmayan karar agaglarinda ise ¢ok katmanli sinir
aglar1 giris uzaym rasgele boler. Bu tezde melez agaclar Onerildi. Bu agaglarda karar
diigiimii dogrusal veya degildir. Kararn dogrusal olup olmamasina ise bir istatistik
testinin sonucuna bakilarak karar verilmektedir. Dogrusal ayirma analizi ile dogrusal gok

degiskenli karar agaglari yapay sinir ag1 temelli karar agaglarindan ¢ok daha hizli grenilir.

Sonuglarimz gosteriyor ki, eger veri kiimesi kiigiik ve bu kiimede az simf varsa, tek
degiskenli metod yeterli olabilir ve ID3 gok degiskenli metodlardan daha iyi performans

gosterir. ID3 hizli ve kolay 6grenir, kurallar1 da kolayca yorumlanabilir.

Eger degiskenler birbiriyle ¢ok iligkiliyse, tek degiskenli metod yeterli olmayabilir ve
ok degiskenli metodlar: kullanabiliriz. Bu tezde gosterildi ki ID-LDA metodu CART tan
daha bagarili, daha kﬁqiik agaglar iiretmekte ve daha az zaman harcamaktadir. Ayni
zamanda ID-LP den daha hizli ve esit basarilidir. ID-LDA ID3 ve CART tan daha kiigiik
agaglar iiretir. Bu da gosteriyor ki ¢ok degiskenli aga¢ tiretmek i¢in ID-LDA CART’a gore

tercih edilebilir ve eger zaman 6nemli ise ID-LP’ye gore de tercih edilebilir.

vi

TABLE OF CONTENTS
Page
ACKNOWLEDGMENTScocivtrecrirereessstsssessesssssissessessssassessnssssssssesssssssssssssssssssasssssssenss I
ABSTRACT .. cvieeiereienenerresiessestessesessessisssssssestessessssesssstssssssssessssnsssssssssssesnsssassesassassasaans v
OZET .ooeeeereieeereeerecreressssssesestessssesesssessnsssasssssssessastsasesessistsssesssssssasesssssssassessenssssassasasssanens A%
LIST OF FIGUREScctvrtirirctenteireseeeressessessnosesssssscsssssesssessessesssssssssesssensssssssassssnsassassasnes VI
LIST OF TABLES.......coieirtreenentrneenesesesesssesesssssessistsssssessissessessessessensasssssssasassassesasssanses X1
LIST OF SYMBOLSooirrerieiereeresressessosesseosesessesesssesssssesssssessessessssssasssesssssssssssssssssananes XV
1. INTRODUCTION......ccecierrerrrrenasresesssssssssssssssesisssssesnsssssssssssessessssssssessssssssssssssnsnssasss 1
2. DECISION TREE LEARNINGcccevvcemrernisisnsssisessnsscsnisinsissississessessesssssessosessessssonnas 3
2.1. Algorithm for Tree CONStIrUCHONcvuvecericurieteisiiisesraisesssssssssasanssssssssssesssssens 6
2.2. Identification Trees (ID3)....cccererinrenrmmseisresnisisinsinsiiiissesssessssssssessnsnssssssesssassessesans 7
2.3, Partition-Merit CIItEITA . .coveerrerreereescsesssersisnssnississensstsssnessesssnessasssssssnssnsssesssesssssssans 8
2.3.1. Weak Theory Learning Measurecocweerverirersmimeeseessesnesnssussesiassesessesasssesns 9
2.3.2. Information Gaineveereeimrninesensrsnseetninesnstse st 10
2.3.3. GINL INAEX .ccouverreerercenerercnisssiesensnesenssesosstsssssnessesesesssesssesssessssssassssasssasssesssansas 11
2.4, MUIIPLE SPIILS c..ceceueeerecericrisreseniieeseteriitsesnstestsss s ssese s ssssesssssaesaasassssesessasseanscs 11
2.5. Filling in Missing ValUesccocevervieiiiniririnsiesneinententnnnsssssssesssssssssesesssesesssons 13
2.6. Avoiding OVErfittINgcccocvviriinecsrireerinnsnisiisinessessessssnssssesnesnsstsssessesissssessesssssesnans 13
2.6.1. Pre-Pruning......ccccccecerrierirenririssesisissessisesissesusssssssssssssssssssssnssssssssssessssessssssssesns 14
2.6.2. POSE-PIUNING..ccererrereserueressessesessessessisssnssnssessessessessesssssssessassassasessessessassassassons 15
3. MULTIVARIATE DECISION TREESccocvciermrimnininiiniinissiinssisieeesssseessensenas 17
3.1. Univariate vs. Multivariate SplitS.......ccccererrrinnsensiisninieisinsesiniiienenieniesteseeseennes 17 .
3.2. Symbolic and Numeric Features......cocoeveeeemcennscncscnncninsininiscnces eerreesreessnessesnesnne 20
3.3. Feature Selection devereeseesesenneestesatesesrsassraennns eeueesneeneeeseneaesnessesesesaes 21
3.4. Classification and Regression Trees (CART)cocceceeurivennns rereseeeeeesseeensnassrrenaes 22
4. NEURAL NETWORK MODELS FOR TREE CONSTRUCTION.........ovvrrrrrrrereee 25
4.1. Training Neural Networksccoeerecrueeneee oo e e 26
4.1.1. Linear Perceptron Model.........ccocoininmviininnininnninenieniinnnnsenneenssssessessennens 26

4.1.2. Multilayer Perceptron Model.................. eevrereeeseesenentassesaeraeeestosstessisstasesentess 28

vii

4.1.3. The Hybrid MOdelcovrriivininiiisisniinnnsesinessssssssssssssssstesesssscensssssssensaes 30

4.2. Class Separation by Selection Methodcveerenineieienescnescscssnsenensssiiiniinnen. 31
4.3. Class Separation by Exchange Methodccueiemvnienenniicnennieciiciniinen 32
5. THE STATISTICAL MODEL FOR TREE CONSTRUCTIONccccocevrrerererurnenes 33
6. RESULTS .cvictirrerrererrerresissestrnesessessesesssssssssssssessesessessessessssmsssossosssssssssasessassasnessassaness 36
6.1. Results for Identification Treescoccevverunennens erressesseeneeseesseensearessestssateresrasssstataes 37
6.1.1. Comparison of Different Kinds of Learning Measures...........cococrerueneereciisinees 37
6.1.2. Comparison of Pruning Techniquesccecverrivtevennvcnrisininiccnieiiiiiiniiianas 46
6.1.3. Comparison of Multiple SpPlitsccccceermerermnrinniventeienrienincsecceiiees 55
6.2. Results for Classification and Regression Treescoucimrvimsvnmsrsnsississcrscissceinenns 62
6.3. Results for Neural Network Methods.......cccoceevenernmvcenisensininnnnienienniennnncnessnennen. 70
6.3.1. Comparison of Class Separation Techniquescccceeveriiveeeeireinncenncniiiiens 70
6.3.2. Comparison of Hybrid Tests in Decision Nodes for Neural Networks........... 77
6.3.3. Comparison of the Network Structures in Decision Nodes.......ccceceururueuereunce. 86
6.4. ReSults TOr LDA.....couieeeeeereerencresssessesesesesssoncsnsessessseesssesssssssesssssansssnessssssesssssssssnss 95
6.4.1. Effects of PCA on the ReSultscccovviveeernineiiinsiiiinieninseenenennenesissnennene 95
6.4.2. Effects of PCA Percentage on the Results.......ccccevevviiveiininnnnnnnnnen. rrevenraennes 101
6.4.3. Comparison of Different Linear Multivariate Techniques........ccccevevrernnece. 108
7. CONCLUSIONScorvrierrereneereesersecsessssesssesssssssessesessestossesessessnssesisssesssssnssssnessssssssnss 118
APPENDIX A....ovtveeveeeenrsseersessassessesssssssssssessssensssssstsesesssssesstssssssssssssnssnsessasssssassssnssensanes 127
APPENDIX Bh.....coriirinimiiieiisiiisisinsnssnsssissssssssssssssistssssssssssssesststscssssesssasasissssssess 131
REFERENCEScovetereeceirreereesesennesssssssesssssssessessssessissessissossessessossssssnsssssassasassassassassons 133

REFERENCES NOT CITEDccocivinininiiininteninnniinssissssnenmsisesnesssssesessesessesssssessesssens 136

LIST OF FIGURES

FIGURE 2.1. Instances of the problem Choosing Car (This is an imaginary data set)
FIGURE 2.2. Decision trée for the problem Choosing Car

FIGURE 2.3.1 Graphs of Impurity Measures

FIGURE 2.4.1 A decision tree with multiple splits

FIGURE 2.6.1. Overfitting in Learning

FIGURE 2.6.2.1 A pruned subtree

FIGURE 3.1.1 Comparison of univariate and multivariate splits on the plane
FIGURE 3.1.2. An example decision tree for replication problem

FIGURE 3.1.3. An example decision tree for fragmentation problem

FIGURE 3.1.4 Instances of the problem Choosing Car with multivariate split -
FIGURE 3.1.5 Multivariate decision tree for the problem Choosing Car

FIGURE 3.4.1 A step in CART algorithm

FIGURE 4.1 Linear perceptron model for multivariate decision trees

FIGURE 4.1.2.1 Multilayer perceptron model with one hidden layer

FIGURE 4.1.2.2 A nonlinear split to Choosing Car problem

FIGURE 6.1.1.1 Accuracy results for three types of impurity measures

FIGURE 6.1.1.2 Node results for three types of impurity measures

FIGURE 6.1.1.3 Learning time results for three impurity measures (small data sets)
FIGURE 6.1.1.4 Learning time results for three impurity measures (large data sets)

FIGURE 6.1.2.1 Accuracy results for pre-pruning and post-pruning techniques

viii

Page

12
14
16
17
18
18
19
20
23
25
28
30
42
43
44
45

51

FIGURE 6.1.2.2 Node results for two pruning techniques

FIGURE 6.1.2.3 Learning time results for two pruning techniques (small data sets)
FIGURE 6.1.2.4 Learning time results for two pruning techniques (large data sets)
FIGURE 6.1.3.1 Accuracy results for splits with degrees two, three and four

FIGURE 6.1.3.2 Node results for splits with degrees two, three and four

FIGURE 6.1.3.3 Learning time for splits degrees two, three and four (small data sets)

FIGURE 6.1.3.4 Learning time for splité with degrees two, three and four
(large data sets) |

FIGURE 6.2.1 Accuracy results for ID3 and CART
FIGURE 6.2.2 Node results for ID3 and CART
FIGURE 6.2.3 Learning time results for ID3 and CART (small data sets)
FIGURE 6.2.4 Learning time results for ID3 and CART (large data sets)
FIGURE 6.3.1.1 Accuracy results for ID-LPS and ID-LPE
FIGURE 6.3.1.2 Node results for ID-LPS and ID-LPE
. FIGURE 6.3.1.3 Learning time results for ID-LPS and ID-LPE (small data sets)
FIGURE 6.3.1.4 Learning time results for ID-LPS and ID-LPE (large data sets)
FIGURE 6.3.2.1 Accuracy results for hybrid network models
FIGURE 6.3.2.2 Node results for hybrid network models
FIGURE 6.3.2.3 Learning time results for hybrid network models (small data sets)
FIGURE 6.3.2.4 Learning time results for hybrid network modeis

" (medium size data sets) |
FIGURE 6.3.2.5 Learm'ng time results for hybrid network models (large data sets)

FIGURE 6.3.3.1 Accuracy results for network models

ix

52

53

54

58

59

61

66

67

68

69

73

74

75

76

81

82

83

84

85

90

FIGURE 6.3.3.2 Node results for network models

FIGURE 6.3.3.3 Learning time results for network models (small data sets)
FIGURE 6.3.3.4 Learning time results for network models (medium size data sets)
FIGURE 6.3.3.5 Learning time results for network models (large data sets)
FIGURE 6.4.1.1 Accuracy results for ID-LDA and ID-LDA-R

FIGURE 6.4.1.2 Node results for ID-LDA and ID-LDA-R

FIGURE 6.4.1.3 Learning time results for ID-LDA and ID-LDA-R

FIGURE 6.4.2.1 Accuracy results for ID-LDA-R and ID-LDA-R99

FIGURE 6.4.2.2 Node results for ID-LDA-R and ID-LDA-R99

FIGURE 6.4.2.3 Learning time results for ID-LDA-R and ID-LDA-R99

(small data séts)

. FIGURE 6.4.2.4 Learning time results for ID-LDA-R and ID-LDA-R99

(large data sets)
FIGURE 6.4.3.1 Accuracy results for linear decision tree methods
FIGURE 6.4.3.2 Node results for linear decision tree methods
FIGURE 6.4.3.3 Learning time results for linear decision methods (small data sets)
FIGURE 6.4.3.4 Learning time results for linear decision methods
(medium size data sets)
FIGURE 6.4.3.5 Learning time results for linear decision metl;ods (large data sets)
FIGURE 7.1 Comparison of accuracy results of decision tree méthods
FIGURE 7.2 Comparison of node results of decision tfee methods
- FIGURE 7.3 Comparison of learning time results of decision tree methods

(small data sets)

91
92
93
94
o8
99

100

104

105

106

107
113
114

115

116
117
120

121

122

xi

FIGURE 7.4 Comparison of learning time results of decision tfee methods

(large data sets) 123
FIGURE 7.5 Comparison of decision tree methods in terms of accuracy and tree size 124
FIGURE 7.6 Comparison of decision tree methods in terms of accuracy and learning

time | 125
FIGURE 7.7 Comparison of decision tree methods in terms of tree size and learning

time 126

xii

LIST OF TABLES

Page
TABLE 6.1 Data sets properties) 36
TABLE 6.1.1 Definition of methods | 37
TABLE 6.1.1.1 Accuracy results for three different types of impurity measures 39
TABLE 6.1.1.2 Node results for three different types of impurity measures 40

TABLE 6.1.1.3 Learning time results for different types of impurity measures (in sec.) 41
TABLE 6.1.2.1 Accuracy results for pre-pruning and post-pruning techniques 47
TABLE 6.1.2.2 Node results for pre-pruning and post-pruning techniques 48

TABLE 6.1.2.3 Learning time results for pre-pruning and post-pruning techniques

(in sec.) 50
TABLE 6.1.3.1 Accuracy results for splits with degrees two,three and four 3 55
TABLE 6.1.3.2 Node results for splits with degrees two,three and four‘ 56
TABLE 6.1.3.3 Learning time results for splits with degrees two,three and four 57
TABLE 6.2.1 Definition of tree-based methods 62
TABLE 6.2.2 Accuracy results for ID3 and CART 63
TABLE 6.2.3 Node results for ID3 and CART 64
TABLE 6.2.4 Learning time results for ID3 and CART N 65
TABLE 6.3.1 Definition of neural-network based methods ‘ 70
TABLE 6.3.1.1 Accuracy results for ID-LPS and ID-LPE 71
TABLE 6.3.1.2 Node results for ID-LPS and ID-LPE 72

TABLE 6.3.1.3 Learning time results for ID-LPS and ID-LPE 72

TABLE 6.3.2.1 Accuracy results for hybrid network models
TABLE 6.3.2.2 Node results for hybrid network models

TABLE 6.3.2.3 Learning time results for hybrid network models
TABLE 6.3.3.1 Accuracy results for different network models
TABLE 6.3.3.2 Node resﬁlts for different network models
TABLE 6.3.3.3 Learning time results for different network models
TABLE 6.4.1 Definition of neural-network i)ased methods
TABLE 6.4.1.1 Accuracy results for ID-LDA and ID-LDA-R
TABLE 6.4.1.2 Node results for ID-LDA and ID-LDA-R

TABLE 6.4.1.3 Learning time results for ID-LDA and ID-LDA-R
TABLE 6.4.2.1 Accuracy results for ID-LDA-R and ID-LDA-R99

TABLE 6.4.2.2 Node results for ID-LDA-R and ID-LDA-R99

TABLE 6.4.2.3 Learning time results for ID-LDA-R and ID-LDA-R99

TABLE 6.4.3.1 Accuracy results for linear decision tree methods
TABLE 6.4.3.2 Accuracy comparisons
TABLE 6.4.3.3 Node results for linear decision tree methods

TABLE 6.4.3.4 Node comparisons

TABLE 6.4.3.5 Learning time results for linear decision tree methods

TABLE 6.4.3.6 Learning time comparisons

xiii

78
79
80
87
88
89
95
96
96
97
101
102
103
109
109
110
110
111

111

S

H"‘

SN

A

3

Xiv

LIST OF SYMBOLS

the number of instances in a node
attribute 7 of instance

instance ¢

desired output for instance ¢

real output for instance ¢

a decision node

number of splits in a node

possible value j of an unordered feature
the number of features for a data set
class i in a node

classes in the left branch

classes in the right branch

merit value of partition i

the number of classes in a node

the number of nodes in the tree

an unpruned tree T

a pruned tree T

weight of the feature i

1. INTRODUCTION

Machine learning aims at determining a description of a given concept from a set of
concept examples provided by teacher and from the background knowledge. Concept
examples can be positi\}e or negative. Background knowledge contains the information
about the language used to describe the examples and concepts. For instance, it can
include possible values of variables and their hierarchies or predicates. The learning
algorithm then builds on the type of examples, on the size and relevance of the background

knowledge, on the representational issues (Mitchell, 1996).

Having explained the principles of machine learning, we can proceed with the
decision tree construction method, which will be discussed in this thesis. The essence of
this method is very simple. The entire set of examples is split into subsets that are easier to
handle (Mitchell, 1996). The type of the split will determine type of the decision tree. The
split can be based on one feature (Quinlan, 1986) or a linear combination of features

(Breiman et. al., 1984).

The goodness of the split is based on a criterion called the partition-merit criterion.
In the literature several experiments are done to compare these criteria (Brodley and
Utgoff, 1995) (Mingers, 1989). We will also discuss three of them (Dietterich et. al.,
1996) (Breiman et. al., 1984) (Quinlan, 1986).

In this thesis, we will discuss also other aspects of decision tree construction such as
multiple splits, filling in missing values (Quinlan, 1989) and avoiding overfitting, using
different pruning techniques. Although several experiments (Breiman et. al., 1984)
(Quinlan, 1993) show that earlier pruning can decrease performance, we will compare pre-

pruning and post-pruning.

After univariate methods, we will continue with multivariate methods. The methods
can be classified by the method they use to find the contribution of the attributes. They can
be heuristic (Breiman et. al., 1984) or can be based on other machine learning methods
(Guo and Gelfond, 1992). We will also propose a statistical method to construct the tree
(Duda and Hart, 1973) (Rencher, 1995). '

In Chapter 2, we will discuss decision tree learning and issues in decision tree

construction. We will also see a univariate algorithm ID3.

In Chapter 3, we give the drawbacks of univariate algorithms and show how the

multivariate methods work introducing the CART algorithm.

In Chapter 4, we discuss neural trees, which are decision trees using neural networks

at each node. We will also propose a hybrid algorithm.

In Chapter 5, we propose a statistical method to construct multivariate decision tree

and discuss problems in this statistical method and how to get rid of them.

Chapter 6 gives simulation results. In this chapter, we see the results of several
aspects of decision tree learning, comparing different types of decision trees on twenty
standard data sets based on accuracy of classification, the size of the constructed decision

tree and learning time.

We conclude and propose future work in Chapter 7.

2. DECISION TREE LEARNING

In machine learning the knowledge is extracted from a training sample for future
prediction. Most machine learning methods make accurate predictions but are not
interpretable. In this study, we concentrate on decision trees, which are simple and easily

comprehensible. They are robust to noisy data and can learn disjunctive expressions
(Mitchell, 1996).

A decision procedure inferring from an example space can be formalized as follows:
The given data represents a set of objects or “instances”. Each object is described in terms
of a collection of discrete or continuous valued independent variables or “attributes” x;.
Each instance has a dependent variable or a “class” associated with it. The data consists of

vectors that give values for the attributes and the class of each object (x;, x2, Xy € X).

The object of supervised learning is to find the function of the attributeé that best
predicts the class of an object (a function F: X; x X3 % ... x Xy = C). The given data is

considered as the training set and the data that will be predicted is called the fest set.

Yearf

1<

<& - §

1980""" I SLmETLTETTESAL
|mistana > | H
O O .

f"<:>‘ =

20000 50000

. H - H Ferrari

- Price

FIGURE 2.1. Instances of the problem Choosing Car (This is an imaginary data set).

An example data (training set) for the problem Choosing Car is shown in Figure 1.1.
Year of the car and price are the two continuous attributes of this example. Both of the
attributes are continuous. There are 16 instances in this data set. Seven of them are for the
class Mustang (shown as diamonds) and nine of them are for the class Ferrari (shown as

squares). Data is splitted by axis-aligned lines, which define the decision tree.

Mustang FerrariMustang Ferrari
FIGURE 2.2. Decision tree for the problem Choosing Car

The constructed decision tree is shown in Figure 2.2. Decision trees consist of
internal nodes (drawn as rectangles in Figure 2.2) having one or more attributes to test and
leaves (drawn as Mustang or Ferrari in Figure 2.1) to show the decision made. The test for
the internal nodes is shown as lines below the rectangles. For example the test Year =

1980 line divides the data space in Figure 2.1 into two parts as:

o Year <1980 : Diamonds (Mustang), squares (Ferrari) and

e Year >1980: Diamonds (Mustang), squares (Ferrari).

The test for the data below the Price = 50000 line (shown as left subtree in Figure
2.2) further splits that subspace into two parts as:

e Price <50000: Diamonds (Mustang)
e Price > 50000: Squares (Ferrarti)

After the second test we have samples of only one class in each node. Hence we stop
further splitting. The leaf Mustang below Price < 50000 is a leaf node, where the decision
is made that if the year of the car is less than 1980 and the price of the car is less than
50000, we can say that this car is a Mustang. This is a rule, which we have derived from

the decision tree in Figure 2.2.

The rules of decision tree consist of disjunctions of conjunctions, which are paths

from the root node to the leaf nodes. For this example, the rules are:

If (Year < 1980 A Price <50000) v (Year > 1980 A Price < 20000), then this car is a
Mustang.

If (Year < 1980 A Price > 50000) v (Year > 1980 A Price > 20000), then this car is a

Ferrari.

After the tree is constructed, any instance can be classified given the values of Year

and Price attributes. For example the instance

< Year = 1970, Price = 60000 >

is classified as Ferrari whereas

< Year = 1990, Price = 10000 >

would be classified as Mustang. Classification of one instance is done by tracing the
corresponding path for that instance, from the root node until a leaf node. For example, for
the first instance, we compare its year with 1980, while its year is smaller than 1980, we go
to left subtree and compare its price with 50000, while its price is bigger than 50000 we

say that, this car is a Ferrari.

Readability can also be improved by changing the rules of decision tree into if-then

rules. For example the rules above could be changed into if-then rules as follows:

If the year of the car is smaller than 1980 and its price is smaller than 50000, then
this car is a Mustang.
If the year of the car is bigger than 1980 and its price smaller than 20000, then this
_car is a Mustang.
If the year of the car is smaller than 1980 and its price bigger than 50000, then this
car is-a Ferrari.
If the year of the car is bigger than 1980 and its price bigger than 20000, then this

car is a Ferrari.

Decision tree learning can also be generalized to the case where the target function is

continuous, i.e., regression. This is beyond the scope of this thesis.

2.1. Algorithm for Tree Constructibn

The basic tree construction algorithm is a greedy search on the space of possible
decision trees. The search starts by creating a root node and continues by processing the

training set according to the following steps given below.

1. If all of the instances belong to the same class C; stop and return the leaf node with
class C;.

2. Find the split that best classifies the instances (as will be explained later).

3. Each split divides the data into subsets. (For example the split Year = 1980 divides the
data into two subsets with seven and nine instances in each)

4. For each subset of the data, repeat steps 1, 2, 3 and 4 to construct the decision tree.

So this algorithm is recursive. For each node of the tree it is called once. Finding the
best split takes most of the time. Time complexity of the algorithm is O (=

Timecomplexity (Best Split Function)), where [is the number of nodes in the decision tree.

2.2. Identification Trees (ID3)

Identification trees classify instances by sorting them down the tree from the root to
some leaf node. Each internal node in the tree specifies a test of one attribute of the
instance, and each branch descending from that node corresponds to-one of the possible
values or intervals for this attribute. An instance is classified by starting at the root node of
the tree, testing the attribute specified by this node, then moving down the corresponding
tree branch. This process is recursively repeated for the subtree of the new node until a

leaf node is reached. The leaf .node stores the class code.

In the ID3 algorithm (Quinlan, 1989) the best split is found as follows:

1. For each attribute x; do the following:
‘o If the feature is symbolic with m possible values, the instances are divided into
m groups, where in each group the instances have the same value for the
attribute x;. Calculate the partition-merit criteria (will be explained in Section
2.3) as pi.
o If the feature is numeric, b« instances could be divided into two in k different

ways where £ is the number of different values of the attribute x;. For each of

these k ways, the partition-merit criterion is computed and the best is selected as
Di '
2. Find the attribute j such that p;= min; p; as the split node attribute.
e If x; is symbolic with m possible values, partition the set of instances into
subsets where at each paﬁition xj=ap k=1, , m.
o If x; is numeric, partition the set of instances into ’two; x; <a and x; > a, where a

is the split threshold that optimizes the partition-merit criterion.

This algorithm has a complexity of O (f* n) where fis the number of attributes and »

is the number of instances.

To classify the instances in tile test set, we start from the root node and trace the tree
node by node. At each internal node, we take the subtree for which the insfance has the
correct attribute value or on the correct side of the split threshold. At each leaf node, if the
instance has the same class as the class of the leaf node the instance is correctly classified,

else it is misclassified.

2.3. Partition-Merit Criteria

The central choice in tree algorithms is finding the best split. Each split partitions the
sample into two or more parts and each subset of the partition has one or more classes in it.
If there is only one class in a subset, then it is pure, else it is impure. The purer the
partition is, the better it is. This measure of impurity is speciﬁed as the partition-merit
criteria. An impurity measure has the characteristic of being minimum when there are only
instances from one class and maximum when all classes have the same number of

instances.

There are different types of partition-merit criteria. A comparative study (Mingers,

1989), found mio significant differences in accuracy whereas there could be an interaction

between partition-merit criteria and data sets (Brodley and Utgoff, 1995). We have used

three types of impurity measures. They are:

1. Weak Theory Learning Measure
2. Information Gain

3. The Gini Index

__ Information
Gain

W - Weak Theory

Leaming

_ _ Gini Index

FIGURE 2.3.1 Graphs of Impurity Measures

Impurity measures are shown graphically in Figure 2.3.1. For simplicity, this graph
is plotted for two classes. p denotes the probability of occurrence of the first class and I (p)
denotes the calculated impurity measure. We see that the Weak Theory Learning Measure
has the highest concavity whereas the Gini Index has the lowest concavity. So the Weak

Theory Learning Measure is the most discriminating function.
2.3.1. Weak Theory Learning Measure

Theoretical motivation for an impurity measure is defined as

10

G (p)= 24P~ P) 2.1)

where p is the probability of positive instances (Dietterich et. al., 1996). This model gives
a basis for our implementation. So given a node ¢ with ¢ different classes where each class

C;has the probability of occurrence p;, the impurity of node ¢ is

Gy = P02 22)

Let S be a split at a node ¢ with m-way split. Assume there are ¢ classes and there are

ny instances having the attribute value ai, where ny of them belong to class . nis the total

number of instances at that node satisfying DM = ks Dk =0 Then the impurity

of split S is
Impurity () = = 1“—’[—-”L') | (2.3)

2.3.2. Information Gain

This measure of information gained from a particular split is popularized in (Quinlan,
1986). Quinlan takes the famous entropy formula of Information Theory, which is the
minimum number of bits to encode the classification of an arbitrary member of a collection

S. So if we transform this idea into our problem, the entropy of node ¢ is

[4

Entropy (¥) = Z— p; log, p; (2.4)

i=1

11

whereas the entropy of a split S is

n n
Entropy (S) = Z k Z Pl 1og, =K (2.5)
ny=1 Mk R

2.3.3. Gini Index

The Gini Criterion (or Index) was first proposed in (Breiman et. al., 1984). The Gini
Index is originally defined as the probability of misclassification of a set of instances,

rather than the impurity of the split. Gini index of anode ¢ is
Gini ()= 1-.p,’ (2.6)
i=1

From that index we can refer the Gini index of a split as

Gini(s) = 3% 12[”"’) @.7)

k=17 =

2.4. Multiple Splits

In the univariate decision tree algorithm ID3, there are m splits for symbolic
attributes, one for each possible value of that attribute and there are two splits for numeric
attributes as x; < a and x; > a. Most of the partition-merit criteria give good results for
more splits. So in the selection of the attribute, to make the split, the symbolic attributes

have greater advantage over numeric features. To see and test if this is an advantage we

12

have also put a multiple split option to our decision tree induction algorithms (basically for
ID3).

If there are s splits then the instances are divided into s+ parts as x;<aj, a;=x;<az
...as.] < xi <as and x; > a;, where ay, aa, ..., ds are the. split points. If the feature x; has k£
values, then s-way split can be done in ¥ different ways. During splitting, we split
instances into possible different s+ parts and for each partition we calculate the partition-

merit criterion p;and choose the best one.

This multiple splits only apply to numeric attributes; the data sets with only symbolic
attributes will have no change in their results. Also this replacement prefers smaller split

numbers in case of ties, so that the tree will have less nodes.

/<5 5<=A<7 T<=A<10 A==10
‘(Iass.". l | (lass B l

B=1 B==1 azis” 15<=0<24 A==24

o @ s i

FIGURE 2.4.1 A decision tree with multiple splits

‘Figure 2.4.1 shows a decision tree with multiple splits. For the first decision node
three split points are selected as a<5 5<a<7 7 <a<10anda > 10 whereas there are
one split point for the second decision node and two split points for the third decision node.

As can be seen, the attribute 4 is used twice while constructing the tree.

But we also change the iteration time of the algorithm. The algorithm has a time
complexity of O (1) instead of O () because of the search in a space of &. So the. total

13

complexity is O (f* »°) instead of O (f* n), which can be very huge with large number of

samples. So we have decided S to be at most three.

2.5. Filling in Missing Values

In some cases, some of the values of features may not be available. In such cases we

must fill in the values of missing cases. There are a number of ways (Quinlan, 1989):

1. Ignoring any instance with a missing value of an attribute. This will reduce the number
of available instances.
2. Filling in with the most likely value of the attribﬁte with missing value of the instance.
3. Combining the results of classification using each possible value according to the

probability of that value.

In our implementation, if the missing value is for an ordered feature, we fill it with
the sample mean value of that attribute as it appears in the training set. When the missing
feature is unordered, we fill it with the most probable value of that attribute in the data set.
These statistics are stored so that the same filling can also be done for the test set. This

method is called mean imputation.

2.6. Avoiding Overfitting

The algorithms growing the tree deeply enough to perfectly classify all of the
training examples will not give always good results. This mainly occurs due to two
different causes. Firstly, the data set may contain noise and if we learn all examples we
will also learn noise, which will reduce our performance over the test set. Secondly, our

training set data may not be a good representative (big enough) of the data set. In either of

14

these cases, univariate and multivariate algorithms can produce trees that overfit the

training examples.

Training Set

/"_____

e

Acqiracy

Test Set

Tree Size

FIGURE 2.6.1. Overfitting in Learning

As the ID3 algorithm adds new nodes to the tree, the training set accuracy increases.

However the test set accuracy first increases then decreases as can be seen in Figure 2.6.1.

One possibility is to prune unnecessary nodes or subtrees after the construction of the
tree to avoid overfitting. In our implementation, we have used two types of pruning

methods namely pre-pruning and post-pruning.

2.6.1. Pre-pruning

Pr’e;pruning methods simplify decision trees by preventing the tree to be complete.
A simple form of pre-pruning that stops tree expansion in depth two performs surprisingly
well (Holte, 1993). Usually, however the tree is no more expanded when no or not enough

gain is expected.

Pre-pruning methods are more efficient than post-pruning methods because they
terminate tree. generation earlier whereas post-pruning methods require a post-processing

step, where the tree is pruned back to give a smaller tree.

15

In our implementation of pre-pruning, we stop splitting further when the instance
ratio (the number of instances of that node divided by the number of instances of the whole
data set) is below a threshold (e.g., five percent). Then we create a leaf node and label it

with class C; where C;is the class having the most instances.

Pre-pruning methods give inconsistent performance because of the horizon effect
(Breiman et. al., 1984). This occurs mainly by stopping tree expansion prematurely. After
this inconsistent behavior is noticed, the research in this area is abandoned in favor of post-
processing methods. But in the case of large-scale data sets, where efficiency may be more

important than accuracy, pre-pruning methods will be considered again.
2.6.2. Post-pruning

Post-pruning is the most frequently used tree simplification algorithm, producing
from an unpruned tree T, a pruned tree 7°. Pruning the tree replaces a subtree with a leaf

node, if doing so, the accuracy on a pruning set, distinct from the training set, improves.

If a decision tree is expanded using only the homogeneity stopping criteria, it will
contain no resubstitution errors on the training set. Thus post-pruning can only increase
resubstitution errors. However when the tree is expanded it may overfit the sample space

by learning noise. So post-pruning can decrease error rate on unseen test cases.

16

" pruned subtree

FIGURE 2.6.2.1 A pruned subtree

In the post-pruning algorithm, at each internal node, we check the classification
accuracy change on the pruning set by pruning the subtree having that node as its root. If
the classification accuracy does not decrease, we decide to prune that subtree into a leaf

node.

Figure 2.6.2.1 shows a decision tree where nodes numbered 8 and 9 are pruned.

After pruning, the subtree below the decision node 7 is converted into a leaf node.

In post-pruning, we use a set other than the training and test sets, called the pruning
set. So in our implementation, we divide the whole data set equally into two parts; one
training set and one test set and then we take 80 percent of the train set to form the growing
set and 20 percent to obtain the pruning set. One observed disadvantage of this division is
that it reduces the number of training cases involved in tree induction, which is not

desirable for small data sets.

17

3. MULTIVARIATE DECISION TREES

3.1. Univariate vs. Multivariate Splits

Multivariate decision trees mainly differ from univariate decision trees in the way
- they test the attributes. Univariate decision trees test only one attribute at a node whereas
multivariate decision trees test more than one attribute (generally a linear combination of
attributes) at a node. This limitation to one attribute reduces the ability of expressing
concepts. It shows its disability in three forms. Splits could only be orthogonal to axes,

subtrees may be replicated in the decision tree and there may be fragmentation.

For the first disability, consider the two-dimensional instance space shown in Figure
3.1.1. To approximate the class boundary, the corresponding univariate decision tree uses

a series of orthogonal splits, whereas the multivariate test uses only one linear split.

Year 4

1930

2000 — SDUDD — Price

FIGURE 3.1.1 Comparison of univariate and multivariate splits on the plane

18

This example shows the well-known problem that a univariate test using feature x;
can only split a space with a boundary that is orthogonal to the x; axis. This results in larger

trees and poor generalization.

Attribute A

Attribute C Attribute B

Class - | |Attribute D| [ﬁtributeﬂ% Class + |
Class- | | Class+ | Class- §|Kttributeﬂ

——

i Class - i iClass +1

FIGURE 3.1.2. An example decision tree for replication problem

The second problem is the replication of trees. The decision tree shown in Figure
3.1.2 gives an inefficient representation of the proposition (4 A B) v (Ca D). While the
term (A A B) is described efficiently, the term (Ca D) requires two identical subtrees to be
represented. In general, conjunctions can be described efficiently by decision trees while
disjunctions require a large tree to describe (Pagallo and Haussler, 1990) (Mathues and
Rendell, 1989). One solution to the replication problem is to allow decision nodes

consisting of more than one feature by combining them with an appropriate function.

FIGURE 3.1.3. An example decision tree for fragmentation problem

19

Figure 3.1.3 shows another kind of replication problem that can occur when the data
contains attributes with high arity values i.e., attributes with large number of possible
values. If a tree has high arity attributes (say arity > 5) then it will quickly fragment the
data in that node into small partitions. To avoid this problem we can construct subsets of

the attribute values (Fayyadl and Irani, 1992), e.g., seasons instead of months.

But in a multivariate decision tree, each test can be based on more than one feature.
In Figure 3.1.1, we can separate the examples of two classes with one line. The test node
is the multivariate test w; x; + w2 x2 < ¢. Instances for which w; x; + w3 x; is less than or

equal to c are classified as one class; otherwise they are classified as the other class.

The multivariate decision tree-constructing. algorithm selects not the best attribute

f

but the best linear combination of the attributes: > wix; >wg . w; are the weights
i=1

associated with each feature x; and wy is the threshold to be determined from the data. So
there are basically two main operations in multivariate algorithms: Feature Selection
determining which features to use and finding the weights w; of those features and the
threshold wy.

" Year?

- Price

FIGURE 3.1.4 Instances of the problem Choosing Car with multivariate split

20

Figure 3.1.4 illustrates a multivariate split for the same problem in Chapter 2. Asit
can be seen, the classes (Ferrari’s and Mustang’s) can now be splitted using only one
multivariate split. The corresponding multivariate decision tree is shown in Figure 3.1.5.
The split fof the first node is |

w; Year + wy Price <wy,
which is a linear combination of features. The size of the tree is now reduced from seven

nodes into three nodes.

wPrice < vy

Mustang Ferrari
FIGURE 3.1.5 Multivariate decision tree for the problem Choosing Car

Multivariate decision trees differ from univariate trees in two other respects: First,
because the features in the linear combination split are multiplied with the coefficients, we
must convert the symbolic features into numeric features. And second, because the final

weighted sum is numeric, all splits are binary.

3.2. Symbolic and Numeric Features

A decision tree algorithm must handle both ordered and unordered features. In a

univariate decision tree algorithm, we can use ordered features as x; < a, where a is in the

21

observed range of the feature i and unordered features as x; = a; Where g; are possible

values of the unordered feature x;in the train set.

In a multivariate decision tree algorithm, we must convert each unordered feature i
into a numeric representation to be able to take a linear combination of the features. So in
our implementation, where i is the unordered feature with possible values ay, ..., dm W€
convert it into multiple feature set as i;, ...,in Where i = 1 if x; takes value a; and 0
otherwise. At the end of this preprocessing we convert previous features (some ordered,
some unordered) X7, ..., %s into all ordered features as X, X1, X22, X23 +-- X2m> X31, X325 X33 +--

X3ps X4, e 5 Xf where x; , x4... are ordered, xz; X3 ... are unordered features.

This encoding avoids imposing any order on the unordered values of the feature
(Hampson and Volper, 1986), (Utgoff and Brodley, 1991). Note that the dimensionality

and complexity increases when the number of attributes is increased.

3.3. Feature Selection

In multivariate decision tree construction, we take a linear combination of features.
Our main purpose is to find the coefficients w; for these features. But using all of the
features may be costly and may lead to overfitting on a small training set. So in order to
get rid of these unnecessary features, we use feature selection, thereby effectively setting

w; of unnecessary features to 0.

Feature selection algorithm proceeds as follows: Firstly the coefficients of all
attributes are determined. Afterwards, each attribute x; is dropped by setting w; = 0 and the
increase in the impurity for that attr1bute is found. If dropping an attribute increases
impurity significantly, it is an important attrlbute. Applying this rule we can find the most
and least important attributes. Then we check if the impurity increase for the least

important attribute is Jess than the impurity increase for the most important attribute by a

22

constant ¢ (normally 0.1 or 0.2). If the difference is smaller we conclude that it is an

unnecessary attribute and we drop it. We repeat this process until this condition is not

satisfied for any attribute.

3.4. Classification and Regression Trees (CART)

CART algorithm (Breiman et. al., 1984) for finding the coefficients of the available
features is a step-wise procedure, where in each step, one cycles through the features x;, x2,
..., xr doing a search for an improved linear combination split. If there are symbolic
features, they are converted to numeric features. Each instance is normalized by centering
each value of each feature at its median and then dividing by its interquartile range. CART
algorithm is very similar to ID3.

Finding the best split with CART algorithm is done as follows:
1. While disorder decreases
2. For each of the feature x;
3. Forye {-0.25,0,0.25}

o Let the current split be v < ¢, where v= zf: B Xm, the aim is to find the best split of

m=1
the form v -8 (x;+y) < c.
e Divide the instances into two groups as

v—C v—¢C
,xi+y20and5S
X, +y X, +

o2

,x,~+y<0.

H

4. For each instance:

—-C :
e Calculate u,= Y _ Divide the instances into two groups as for all u, such that
Xin +y -

xin+ 7y = 0, the algorithm finds the best split of the form u < 8;. For all %, such that
Xin+7y<0,the algorithm also finds the best split of the form u > 8. Take the better
of these two splits and let & be the corresponding threshold.

5. These three best splits are compared and §, v values corresponding to the best of the

three are used to update v as follows:

23

f
V= z B'mXm, Bi=pi-8 f'm=pPmm>1landc’=c+9Yy.

m=1
6. At this point the updated split is of the form v; < ¢;. The cycle is completed by finding

the best split of the form v; < ¢’ as ¢;” ranges over all values.

Initial Line x1

FIGURE 3.4.1 A step in CART algorithm

Figure 3.4.1 shows the first step of the CART algorithm for an example data set. The
initial line is given as x;+x2<0. The lines shown as -0.25,0 and 0.25 are the best splits
found for y=-0.25,0 and 0.25. Here only the coefficient of attribute x; is changed. The

Jine with y = 0 will be selected for further iteration.

!
Once the best split is found, we create two children as v =. Z Bnxm<candv>c,

m=1
and divide the set of instances into two. We then continue recursively until either a subset

is pure enough or the subset is small enough.

This algorithm has a complexity of O (6 * k * f* n) where k is the number iterations

done while disorder decreases, fis the number of features, NV is the number of instances.

24

Loop (1) is iterated k times, loop (2) is iterated three times, loop (3) is iterated f times and
loop (4) is iterated 2*n times. Also the algorithm is called for each node one time so the

total complexity in training phase is O (6 * k£ * f * n).

The testing phase of the algorithm is as follows: Each instance is first normalized
according to the median and quartile computed from the training set. Then the tree is
traversed until a leaf node is encountered, by taking the linear combination of input
attributes with the coefficients found by the CART algorithm for that node. If the instance
has the class code same as the code of the leaf node, it is correctly classified else it is

misclassified.

Although CART is a good multivariate algorithm it has some basic limitations. First
of all, it is fully deterministic as ID3. There is no built in mechanism for escaping local
minima, although such minima may be very g:ommoﬁ for some domains. Secondly, it
sometimes makes adjustments that increase the impurity of the split. This feature was

probably included to overcome local minima problem but it also has a drawback.

There is no upper bound on the time spent at any node in the decision tree. Loop (1)
halts when no perturbation changes the impurity more than €, but because impurity may
increase and decrease, the algorithm can spend arbitrarily long time, or in some times
infinite time, at a node. To overcome this problem, we have included also an iteration
constant. If the algorithm cycles more than this iteration constant, it stops and returns the

current split.

25

4. NEURAL NETWORK MODELS FOR TREE CONSTRUCTION

As we have seen in Chapter 3, the aim in multivariate decision tree construction is to
find a way to determine the coefficients of the attributes. In this chapter, we will discuss

how to determine these set of coefficients by using methods based on neural networks.

When neural networks.are used in decision trees, at each node of the decision tree,
there is a neural network trained with its corresponding data. Once the weights of the

neural networks are found, they can be used to classify a test example.

=1 b X
xu b4

FIGURE 4.1 Linear perceptron model for multivariate decision trees

A model for a linear perceptron is shown in Figure 4.1 (Bishop,-1996). xo, X1, X2 -.- X5
form the input layer of the neural network whereas the node on top is the output node of
' the neural network denoted by y. The output of the neural network is binary. w;’s are the
weights of the input neurons. The weight of xo = 1.0 is wy, which will be used as a

threshold unit (Corresponding to ¢ of CART). y is computed as follows:

1
1+ e_z"f=° i

y = sigmoid(zlfzowix,-)# 4.1)

nOE A7 TINIVERSITEST KUTUPHANESH

26

The sigmoid function gives a value between 0 and 1.

In order to train the linear perceptron, gradient-descent is used. This algorithm is
used to train a single-output linear perceptron to differentiate between two disjoint groups
of classes, which are the cllasses in the left branch C; and the classes in the right branch Ckg.
The desired output for an instance is 1 when its class belongs to the group C; and 0 when
its class belongs to the group Cr. If there are only two classes present in that node, one
class belongs to C;, and other to Cr. Otherwise we must select an appropriate partition for

the classes available.

Finding the best split with neural network algorithms is done as a nested optimization
problem. In the inner optimization problem, the gradient-descent algorithm is used to
minimize the mean-square error and so find a good split as defined by w; for the given two
distinct groups of classes Cr, and CR. In the outer optimization problem, we find the best

split of classes into the two groups, C; and Ck.

4.1. Training Neural Networks

The inner optimization problem will be solved by using neural networks at each node
of the decision tree. For this purpose we have used three different kinds of neural network

models. These are linear perceptrons, multilayer perceptrons and a hybrid combination.

4.1.1. Linear Perceptron Model

A linear perceptron neural network model is shown in Figure 4.1. The training of
this network is done by gradient-descent algorithm. Let (x', d) denote the training data,
where x' is the instance ¢ and d is the desired output for that instance, which is 1 for left

child and 0 for right child. 3 is the real output found by the formula:

27

f
y! = sigmoid(Y wix; +wp) (4.2)

i=1

A stochastic gradient algorithm for minimizing the mean-square error criterion is

used.

E= l}i—:(d’ —y? (4.3)
M1

At each epoch of training, all instances are passed one at a time in random order.
While passing the coefficients of the input layer, w; and threshold unit wy are updated by
the given formulas. In these formulae 7 stands for learning rate. Learning rate is started as
0.3 / f and decreased to 10” by multiplying at each epoch with a constant. « stands for
momentum rate (0.7 in our application). It is used to update w; by multiplying with the

previous update value as:
awl=n(d-y)y (1-y)xi +a Awl?t,i=0,...,n, xo=+1 (4.4)
witl=w! + Aw/ (4.5)

The training of linear perceptron takes O(e * n * (f+1)) where e is the number of
epochs to train the network, # is the number of instances and (f+1) is the number of inputs

(+threshold), which is the number of weights to updaté.

28

4.1.2. Multilayer Perceptron Model

A multilayer perceptron model for decision making at a node is shown in Figure
4.1.2.1.

FIGURE 4.1.2.1 Multilayer perceptron model with one hidden layer

. There is a hidden layer between input and output Jayers which makes y a nonlinear
function of x. xg, xJ, X2 ... X5 form the input layer, Hp, Hj, .. H,, form the hidden layer and y
denotes the output of the neural network. For the weights connecting the layers, wi
connects input neuron i to hidden neuron 4 and T}, connects hidden neuron h to the output
layer. xo and kg denote the bias units for the input and hidden layers respectively. The
number of units in the hidden layer is taken as half of the number of features, for suitable

dimensionality reduction from fto 1.

At instance ¢ the real output ' and the hidden layer output H,/ are found as:

29

S
H;, = sigmoid(th,-xf +Wpo) (4.6)
i=0
) m
Y= sigmoid(ZThH;, +Hy) “.7n
h=0

The update rules are different from single layer perceptron. There are two layers so
there are two update rules, one for updating the wy; and the other for updating T}. Learning
rate is started as 0.3 / fand decreased as explained in linear perceptron model. The update

rules are:

ATy = n(d=y)y (1-Y)Hi+ a AT, h=0,...,m, Hy=+1 4-8)
Tht+I=Tht + ATht : 4.9)
dwit =1 (d=y)y (1-Y)Ti Hil (1- Hy) xi + o AT, (4.10)

where h=0,...,m and i=0,...,n Hy=+1 xo="+1

wit T =wht+Awi (4.11)

The training of the multilayer perceptron takes O(e * N * f %y where e is the number
of epochs to train the network, » is the number of instances and fis the number of features.
Itis f 2 pecause there are m * fupdates for the weights in the first layer and m updates in

the second layer. m equals to f/ 2 as explained before. So the total number of updates is /'

/2 +f/2 which is O(f?).

30

Multilayer perceptron models differ from other multivariate models in its nonlinear
nature. With this model one can have nonlinear split at a decision node. In Figure 4122,

an example nonlinear split is shown to solve the problem Choosing Car.

“Year

> Price

FIGURE 4.1.2.2 A nonlinear split to Choosing Car problem

4.1.3. The Hybrid Model

If we cbmpare the complexity of the decision at a node, we see that the univariate
methods are the simplest methods as they test only one feature. Linear methods, which take
a linear combination of features, are more complex and nonlinear methods such as
multilayer perceptrons are the most complex. But the aim of the decision trees is to find a
way of representation of the decision that is as simple as possible and as accurate as
| possible. So we should not use always nonlinear methods, which have the additional

disadvantage that they are not easily interpretable.

Therefore, it seems better to find a way of combining linear and nonlinear methods in
a hybrid model. In this model, at each node we train both a linear and nonlinear perceptron
and use a statistical test to check if there is a significant performance difference between
the two. If the performance of the ’multilayer perceptron is better then the performance of

the linear perceptron with a confidence level of %95, the multilayer perceptron is chosen

31

to have a nonlinear decision node, else linear perceptron is chosen to have a linear decision

node.

The tests we have used to compare linear and nonlinear models are combined 5X2 cv
F test and 30 fold cross-validation paired t test. The details of the two tests are given in

Appendix B.

4.2. Class Separation by Selection Method

Class separation is a process that must be done when there are three or more classes
available at the decision node. If there are c classes, then there are 2°'-1 distinct partitions
possible. Because we can not test for all, we use heuristics to get a reasonable partition in
a reasonable amount of time. The first method we have used in class separation is the
selection method, which is a depth-first search method with no backtracking. Let tbe a

decision node and C={Cj, ..., Cn} be the set of ¢ classes at node ?.

1. Select an initial partition, Cy, and Cr where each part only consists of examples of two
arbitrarily chosen classes C; and C; respectively.

2. Train the network at node ¢ with the given partition. Do not consider the elements of
other classes yét.

3. TFor other classes in the class list, search for the class Cy that is best placed into one of
the partitions. Best placing is the placing when Cy is assigned into the child where the
impurity is minimum.

4. Put Cyinto its best partition and continue adding classes one by one using steps 2 to 4

until no more classes are left.

This algorithm is sensitive to the initial class partition due to its depth-first nature.

So a heuristic technique to select the initial partition is used instead of selecting randomly.

32

The Euclidean distance of the means of two classes (for all classes) is calculated, and the

two furthest classes are taken as the initial two classes.

Algorithm traces steps 2 to 4 ¢-2 times. So the complexity of this algorithm is O(c)

where ¢ is the number of thé class available at node ¢.

4.3. Class Separation by Exchange Method

The second method in class separation is the exchange method (Guo and Gelfond,

1992). This is a local search with backtracking. Let ¢ be a decision node and cC={Cy, ...,

C.} be the set of ¢ classes at node 1.

1.
2.

Select an initial partition of all in classes into two subsets, C;, and Ck.

Train the network to separate Cr and Cr. Compute the entropy E, with the selected
entropy formulae.) .

For each of the classes k € {Cy, ..., C;} form the partitions Crk) 'and Cr(k) by
changing the assignment of the class Cj in the partitions Cr, and Cg. Train the neural
network with the partitions Cz(k) and Cg(k). Compute the entropy Ej and the decrease
in the entropy AEy=E;-Eo.

Let AE+ be the maximum of the impurity decreases for all classes. If this impurity

 decrease is less than 0 then exit else set C;= C(k) and Cr= Cr(k), and do the steps 2 to

4 again.

We use a heuristic technique to start, instead of starting randomly.

The two classes C; and C; with the maximum distance are found and placed into C;, and

- Cr

For each of the classes k € {Ci, ..., Cc} find the one with the minimum distance to C;,
or Cg and then put it into that group. Repeat this second step until no more classes are

left.

33

5. THE STATISTICAL MODEL FOR TREE CONSTRUCTION

In this section we will discuss how to use a statistical approach to determine the set
of coefficients in a linear decision node. So when we want to find a new split in a node of

the tree, we use a statistical criterion to determine the coefficients of the features.

The statistical approach is named as Fisher’s Linear Discriminant Analysis (LDA)
(Duda and Hart, 1973). This approach aims to find a linear combination of the variables
that separates the two classes as much as possible, which is what we want to do. The
criterion proposed by Fisher is the ratio of between-class to within-class variances, which

we want to maximize. Formally we must find a direction w to maximize

‘WT (mp, —mR)‘z

Jp = 7 (5.1
lw Swwl
where m; and mp, are the two left and right groups means
1 1
mj; =— Zx,mR=—— Zx (5.2)
D xeC, R xeCp
and S,, is within-class covariance matrix, which is bias corrected as
1
(I’ZLEL +I’ZRER) (53)
ny +ng -

where 3z and Zg are the covariance matrices of class groups C and Cr respectively.

34

£, = Y x-m)x-my)’ Ty = Y &-mp)x-mg)" (5.4)

xeCy xeCp

There are n;, samples in the left class group and g samples in the right class group. The
solution for w that maximizes Jr can be obtained by differentiating Jr with respect to w
and equating it to zero. So we define w, namely the set of coefficients of the linear

combination as:
w=S (my -mp) (5.5)

But the coefficients of the features is only for the direction, we must also specify a

threshold wy, which is defined as:

1 - n A
wo == (my +mp)T Sy (my ~mg)~logC”) (5.6)
L

Note however that though the direction given in Equation 5.3 has been derived
without any assumptions of normality, normal assumptions are used in Equation 5.4 to set

the threshold for discrimination.

So in our case, we first divide classes into two groups as C;, and Cg by an appropriate
class selection procedufe (as defined in Sections 4.2 or 4.3).‘ But this time the inner
optimization procedure will be carried out by LDA as we will find the linear split with the
Equations 5.3 and 5.4. There will be no training but only simple calculations with

matrices. So we expect less training time in LDA, than a neural network.

35

In implementing the idea, we see that if there is a linear dependency between two or
more features then some of the rows or columns of the covariance matrix S,, are the same

or a multiple of the other and it becomes singular. But in this case the determinant will be

zero and we can not find SW'I .

A possible answer to the problem is PCA, which is principal component analysis
(Rencher, 1995). In this analysis we first find the eigenvectors and eigenvalues of the
matrix S,,. As the multiplication of the eigenvalues of a matrix is equal to the determinant,
we sort the eigenvalues of the matrix and get rid of the eigenvectors with small
eigenvalues. Let us say that the eigenvalues of the matrix S,, are A1, A2 ... Ay which are

sorted in decreasing order. We will find the new number of features k such that;

/11 +...+/1k
> &
M+t g+t Af

(5.7)

where ¢ is the proportion of variance explained. k is the number of eigenvectors that are
linearly independent. After finding &, we will find the corresponding‘k eigenvectors and
store them. For each instance with f features, we will multiply it with the k eigenvectors to
have a new instance with the number of features k. So our instance space is mapped from f
dimensions into & dimensions. After this we will do LDA now with the mapped instances
and find a new S,, and means and calculate the split. Now S,, can have an inverse so there

is no problem.

In order to test the tree we will convert first the test instances into a space of &
dimensions and then we will multiply the new test instance with the linear split found with
LDA. If the result is greater then -w, this instance is assigned to the left subtree of the
node else to the right subtree of the node.

6. RESULTS

36

For testing the algorithms discussed in this thesis, 20 data sets from the UCI

Repository (Merz and Murphy, 1998) are used. The properties of these data sets are shown

in Table 3.1 (See Appendix A for more details). The number of instances of these sets

varies from 100 to 8000, the number of attributes varies from five to 65 and the number of

classes varies from two to ten.

There are also three different types of attributes:

Continuous, discrete and mixed. Seven of these data sets have also missing values.

TABLE 6.1 Data sets properties

Data set name Instances Attributes Classes Missing Type of Attributes

Breast 699 9 2 Y Continuous
Bupa 345 6 2 N Continuous
Car 1728 21 4 N Discrete
Cylinder 541 69 2 Y Mixed
Dermatology 366 34 6 Y Continuous
Ecoli 336 7 8 N Continuous
Flare 323 23 3 N Mixed
Glass 214 9 7 N Continuous
Hepatitis 155 19 2 Y Continuous
Horse 368 97 2 Y Mixed
Iris . 150 4 3 N Continuous
Ironosphere 351 34 2 N Continuous
Monks 432 6 2 N Continuous
Mushroom 8124 66 2 Y Discrete
Ocrdigits 3823 64 10 N Continuous
Pendigits 7494 16 10 N Continuous
Segment 2310 18 7 N Continuous
Vote 435 32 2 Y Discrete
Wine 178 13 3 N Continuous
200 101 16 7 N Continuous

37

For each method, we performed ten runs on each data set. The results of ten runs
are then averaged and we report the mean and standard deviation of each method
classification rate for each data set. For comparing performance of the methods we have

used the combined 5x2 cv F Test (Alpaydin, 1999).

In our results, > denotes a confidence level between %90 and %95, >> denotes a

confidence level between %95 and %99, >>> denotes a confidence level of over %99.

6.1. Results for Identification Trees

For the rest of these results, the definitions in Table 6.1.1 apply:

TABLE 6.1.1 Definition of methods

Name of the Method Uni/Multi Impurity Measure Pruning Multiple Splits

D3 Uni Information Gain Pre-pruning - No
ID3Gini Uni Gini Index Pre-pruning No
ID3Root Uni Weak Theory L. Pre-pruning No
1ID3P Uni Information Gain Post-pruning No
ID3-2 Uni Information Gain Pre-pruning ~ Yes Degree 2
ID3-3 Uni Information Gain Post-pruning ~ Yes Degree 3

6.1.1. Comparison of Different Kinds of Learning Measures

In this part, the three impurity learning measures are compared: Information Gain,
Gini Index and Weak Theory Learning Measure. For pruning purposes, pre-pruning is
applied. This section compares these three measures in terms of accuracy, node size and

learning computation time. Accuracy results for impurity measures are shown in Table

38

6.1.1.1 and Figure 6.1.1.1. Node results are shown in Table 6.1.1.2 and Figure 6.1.1.2.

Learning time results are shown in Table 6.1.1.3 and Figure 6.1.1.3.

For three impurity measures there is no significant difference in accuracy (except in

one data set).

For larger data sets, which have more than 1000 samples, in three of five cases,
ID3Root is better then ID3 and ID3 is better then ID3Gini in node size significantly. In

other cases no significant increase or decrease is found.

For mixed data sets, where continuous and discrete attributes are together, it is seen
that the discrete attribute with larger arity is firstly selected as a split attribute. This is due

to the fragmentation problem.

As the node size increases, learning time increases accordingly and this result

becomes significant while the data set size growing.

In terms of learning time, in seven of 20 data sets, ID3 is better then ID3Gini

significantly.

TABLE 6.1.1.1 Accuracy results for three different types of impurity measures

39

Data set name ID3 ID3Gini ID3Root Significance
Breast 94.11+1.24 94.13+1.57 94.34+1.53
Bupa 62.26+5.33 60.46+3.85 61.39+4.38
Car 80.97+1.26 80.49+1.32 ~ 80.90+1.24
Cylinder 68.50+2.22 67.39+2.91 70.063.66
Dermatology 92.8442.37 93.33+2.36 92.5142.32
Ecoli 78.10+3.57 78.2142.50 77.92+4.18
Flare 85.26+2.03 84.89+2.00 85.07+2.14
Glass 60.65+5.97 59.35+6.14 63.36+6.27
Hepatitis 78.4443.71 74.3310.36 75.4745.53
Horse 87.55+1.98 87.50+1.93 87.83+1.94
Iris 93.8742.75 93.8742.75 93.4742.47
Ironosphere 87.63%3.15 84.96+2.83 87.00+2.37
* Monks 02.27+10.15 92.22+1020 92.22+10.20
Mushroom 99.70+0.06 99.68+0.08 99.62+0.15
Ocrdigits 78.40+1.47 77.33+1.74 76.74+1.32
Pendigits 85.73+1.01 86.59+0.85 85.37+1.16 -
Segment 91.08+1.16 90.49+2.02 89.08+1.06 1>>3
Vote 94.94+1.06 95.63+1.83 94.94+0.94
Wine 88.654372 89.5543.97 90.113.78
Zoo 92.06+4.80 92.26+4.75 92.45+4.79

TABLE 6.1.1.2 Node results for three different types of impurity measures

40

Data set name D3 ID3Gini ID3Root Significance
Breast 17.00£2.11 18.80+2.90 18.60+4.30
Bupa 53.40+5.48 54.20+6.20 58.00+6.75
Car 25.4040.70 25.10£0.74 25.60£0.52
Cylinder 54.10£5.90 59.40+7.75 56.60+6.70 2>>1
Dermatology 20.40+2.67 19.8042.15 19.204+2.39
Ecoli 33.80+2.70 35.00£2.67 34.60+6.52
Flare 37.90+4.51 39.30+4.30 37.50+3.87
Glass 38.20+5.90 38.80+4.16 40.20+5.27
Hepatitis 19.60+3.78 20.6042.95 21.20£2.90
Horse 55.80+£5.92 56.60+6.64 55.80+£5.92
Iris 8.40+1.35 8.40£1.35 8.40+1.35
Ironosphere 19.20£3.05 21.60+4.53 19.60+3.41
Monks 25.404+13.53 25.20+£13.21 25.20+13.21
Mushroom 23.00+0.00 24.40+1.71 22.40+1.26
Ocrdigits 74.401+4.01 97.80+7.50 61.40+3.63 2>>1>>>3
Pendigits 81.80+5.51 99.20+7.27 67.80+3.79 © 2>>>1>>>3
Segment 41.80£3.79 47.80+5.43 34.4013.66 2>>3
Vote 18.20£3.16 18.00£3.02 19.40+3.86
Wine 10.40£1.35 10.20+2.15 9.20£1.75
Zoo 15.00+1.89 14.60£1.58 14.60+1.58

41

TABLE 6.1.1.3 Learning time results for different types of impurity measures (in sec.)

Data set name ID3 ID3Gini ID3Root Significance

Breast 210 3+1 240 2>>1

Bupa 3+1 4+0 5+1 2>>1

Car 510 540 510

Cylinder 10+2 11+1 1041 2>1

Dermatology 340 340 3+0

Ecoli 3+0 4+] 4+1 3>1

Flare 220 210 2+1

Glass 3+0 410 4x1 2>>1

Hepatitis 1+0 240 110

Horse 4+0 4+1 410

Iris 00 0+0 0+0

Irénosphere 3947 48+7 3947

Monks 2+1 2+1 2+1

Mushroom 113433 84i33 92166 3>2,1>>3
* Ocrdigits 20749 25440 170124 2>>1>>>3

Pendigits 476122 516+107 415190 3>>1>>>2

Segment 345410 493433 342456 2>>>1>>3

Vote 110 1+0 1+1

Wine 110 240 210

Zoo 1+0 110 1£0

42

somseaw Ajunduir Jo sad£} 91y 10§ S}NSAI A0BINOOY 1'1°1°9 HINDIL

yesejeq

00Z Nith . LOA:

&35 Nad W00 SNW NOA OM Wl HOH d3H V19 vid 093 ¥3a Ao dvo dna 3ud

1

T § | Eum_mo_.,u,

waea s

£q a

00°0g

0003

- 00°0Z

0008 .

0008

00001

ﬁhmm:"@'

43

somsesw Ajundu o sadK) 9313 103 S)NSAI SPON T'1°1°9 TANOLL

wmm@wwa.
007 MM IOA 935 N3d W00 SNA NOW Oul Wl HOH dIH VIO v14 003 ¥3a-

_E,
Lo

Los
o9
Loa

o

[Iooyeqim - MIOEQID _ __€eqe

‘azIgBPON:

44

(s19s ejep [[EWS) SaINSBAW AJINdUIl 991 10 S}NSAI U} Sururea € 1°1°9 TIANDIA

yasmeq

d3H ¥

el

o

grpry— s .._EOWD_D s caim

: aw!l?fi‘u!uma]

45

(s19s eyep 931e]) somseawt AjLnduwr 9oIY) 10J s}NSAT AU Sutureo ¢°1°1°9 LANDIL

Jaseieg

dao

joodeqI |

udEqID S caim:

a'wg -Bujuiea

46

6.1.2. Comparison of Pruning Techniques

As mentioned, two different types of pruning techniques have been used: pre-pruning
and post-pruning. For simplicity, Information Gain is used as the impurity measure. In
this section, we would like to find which pruning technique is better than the other.
Accuracy results for these two pruning techniques are given in Table 6.1.2.1 and Figure
6.1.2.1. Node results are shown in Table 6.1.2.2 and Figure 6.1.2.2. Learning time results
are shown in Table 6.1.2.3 and Figure 6.1.2.3.

TABLE 6.1.2.1 Accuracy results for pre-pruning and post-pruning techniques

Data set name ID3 ID3P Significance
Breast 04.11+124 94.68+1.84

Bupa 62.26£533 62.84+3.39

Car 80.97+1.26 79.93+7.90

Cylinder 68.504222 67.6245.11

Dermatology 92.841237 92.5142.42

Ecoli 78.10£3.57 78.27+4.00

Flare 85.26:2.03 88.35+2.55

Glass 60.65£5.97 60.19+5.35

Hepatitis 7844371 78.95+4.48

Horse 87.55¢1.98 88.8043.02

Iris 93.8742.75 92.93+3.33

Ironosphere 87.63£3.15 86.15+3.72

Monks 92.27+10.15 89.81+7.82

Mushroom 99.70£0.06 99.87+0.11

Ocrdigits 78.40+1.47 84.34+1.48 2>>1
Pendigits 8573+1.01 92.54:0.61 2>>>]
Segment 91.08£1.16 91.99£0.95

Vote 94.94+1.06 95.63+0.66

Wine 88.6543.72 86.63%1.94

Zoo 02.06£4.80 82.97+7.36

48

TABLE 6.1.2.2 Node results for pre-pruning and post-pruning techniques

Data set name D3 D3P Significance
Breast 17.00+2.11 13.00+4.99

Bupa 53.40+5.48 17.40+12.54 1>>>2
Car 25.40+0.70 60.78+45.00

Cylinder 54.1045.90 20.40:+8.47 1>>>2
Dermatology 20.40+2.67 12.40+1.35 1>>2
Ecoli 33.80+2.70 14.20:+4.64 1>>>2
Flare 37.90+4.51 6.10+6.62 1>>2
Glass 38.20+5.90 14.40+4.01 1>>>2
Hepatitis 19.60+3.78 2.8032.39 1>>2
Horse 55.80+5.92 45.60+3.92 1>>2
Tris 8.40+1.35 5.40+0.84

Ironosphere 19.20+3.05 7.60+2.67 1>>2
Monks 25.40+13.53 25.40+9.28

Mushroom 23.00:0.00 26.80-+1.99 2>1.
Ocrdigits 74.40+4.01 104.40+12.44 2>1
Pendigits 81.80+5.51 134.80+13.48 2>>1
Segment 41.80+3.79 43.00+6.93

Vote 18.20+3.16 4.00+2.16 2>>>1
Wine 10.40+1.35 6.8042.57

Zoo 15.00+1.89 9.20+2.39 1>>>2

There is no significant difference in accuracy between pre-pruning and post-pruning
techniques. But due to the horizon effect, two data sets have significant accuracy

" improvement by using post-pruning.

Post-pruning technique lends to less nodes then pre-pruning technique. (In 11 out of
20 data sets)

49

When horizon effect applies, the node size also increases. So in those two data sets,

the node size is significantly larger then in pre-pruning technique.

In discrete data sets, where the arity is greater then five, like in Car and Mushroom

data sets, post-pruning technique can not prune the tree well. So it has large number of

nodes.

In some data sets, where the number of instances for one class is very high compared
to the other classes, if post-pruning is applied, then the number of nodes goes to one. So

the whole tree is pruned back into only one node.

Post-pruning technique takes significantly large amount of time to learn. It is
because of the fact that post-pruning technique prunes the tree after its construction. In
some cases, pre-pruning takes less amount of time. This is because pruning set is taken

from the training set, so in post-pruning the instances in the training set is less.

50

TABLE 6.1.2.3 Learning time results for pre-pruning and post-pruning techniques (in sec.)

Data set name D3 D3P Significance
Breast 240 3+1
Bupa 3+1 40
Car | 540 403 2>>1
Cylinder 10+2 1041 1>>2
Dermatology 310 340
Ecoli 340 3+0
Flare 240 2+1
Glass 3+0 240
Hepatitis 1+0 1+0
Horse . 440 440
Iris 0+0 0+0
Ironosphere 39+7 21+4 1>>>2
Monks 2+1 31
Mushroom 113433 84129
Ocrdigits 20719 497+109 2>>>1
Pendigits 476122 9314255 >
Segment 345+10 26218 1>>>2
Vote 1+0 2+0 2>>1
Wine | 10 10

Zoo 1+0 0+0

51

sonbruoa} Surunid-jsod pue gurunud-oxd How synsax AoeInody 1°7°1°9 FINDIA

Em.&mn

A 1OA: 938 N34 H00 5NN NOW odl dOH d3H Y19 Y14 003 uda A0 uvo dnd 3u8

F00'09

o002

Fooos

— ; : e N S . — _ L

“faeinaay

52

moswmqsoo“ Surunid om3 10 $3NS31 SPON 77 1°9 TINDIA

00z MM 10A 935 N3d M0 SN NOW oM

18s.ejeq

HOH d3H VI

093 ©I@ A0 u¥0 dnd g

deqim

eqa

82§ apoN"

33

(s10s eEp [[EWS) sonbruyos) Surunid 0m) 0] S)NSIT S} Surures m.m..ﬁ.o TINDIA

jas eleq

Zl

sawiy:Buluea)

54

(s19s eyep a31ey) senbruyoa} Surunid om) 10J S)NSAIL Sy SurIes] 47 1°9 TINOIL

jes eyeq

SN

odl

o

- 001
- 00
006

- ooy

- G0

o
a0
.Mw.uo,m
- 0004

=00t

deqlo

caia

0ozl

@ Buuiear

55

6.1.3. Comparison of Multiple Splits

In this section we want to find out if it is better to use multiple splits instead of
binary splits. To check this, we have made experiments-on the data set with three-way and
four-way splits and compared it with two-way splits. The results are shown in Table
6.1.3.1 and Figure 6.1.3.1. Node results are shown in Table 6.1.3.2 and Figure 6.1.3.2.
Learning time results are shown in Table 6.1.3.3, Figure 6.1.3.3 and Figure 6.1.3.4.

" TABLE 6.1.3.1 Accuracy results for splits with degrees two,three and four

Data set name ID3 ID3-2 D3-3 Significance
Breast 04111124 94.08:138 93.65+0.87 1>3
Bupa 62.2615.33 59.41+4.61 59.70+£2.78 1>>>2
Cylinder 68.50+2.22 63.62+4.08 65.44+5.66

Dermatology 92.84+2.37 92.46+1.80 . 91.37+2.51

Ecoli 78.104£3.57 76.61£3.97 75.24+4.61

Flare 85.26+2.03 . 85.26+2.03 85.26+2.03

Glass 60.65+5.97 56.92+5.82 54.21+4.89

Hepatitis 78.44%3.71 73.38+8.65 71.07+8.41

Horse 87.55£1.98 87.12+£2.22 86.90+2.37

Iris 03.87+2.75 92.67+3.28 92.93+2.27

Ironosphere 87.63%3.15 87.63+1.39 N/A

Monks 92.27+10.15 91.53+7.29 80.28+8.26 1>>2,1>>3
Ocrdigits 78.40+1.47 67.25+2.24 63.411£1.72 1>>>2>>>3
Pendigits 85.73£1.01 82.19+1.47 N/A 1>>2
Segment 91.08+1.16 N/A N/A -

Wine 88.65+3.72 86.63+5.28 83.03+4.90

Zoo 92.06+4.80 87.10+4.96 88.69+5.35 1>>2

56

TABLE 6.1.3.2 Node results for splits with degrees two,three and four

Data set name D3 ID3-2 1D3-3 Significance
Breast 17.00£2.11 17.9043.90 18.8043.36
Bupa 53.40+5.48 50.70+3.53 54.40+5.58 3>>2
Cylinder 54.10+5.90 52.40+5.21 54.80+4.85
Dermatology 20.40+2.67 20304356 27.00+3.89 3>>1
Ecoli 33.802.70 34.40+3.17 36.90+3.87
Flare 37.90+4.51 37.2043.99 37.8043.55
Glass 38.20+5.90 38.70+4.60 37.30£5.93
Hepatitis 19.6043.78 20.60:+3.81 21.4043.95
Horse 55.80+5.92 57.5046.59 58.20+6.92
Iris 8.40+1.35 8.00£2.26 8.10+1.97
Tronosphere 19204305 20.60+3.24 N/A
Monks 25.40+13.53 33.90+6.76 38.50+5.04 2>>1,3>>>1
Ocrdigits 74.40+4.01 63.50+4.03 67.90+5.61
Pendigits 81.8045.51 73.60£5.40 N/A
Segment 41.8043.79 N/A N/A
Wine 10.40+1.35 12.90+1.91 15.00+2.36 3>1
Zoo 15.00+1.89 16.20+1.99 16.5042.17 2>1

For multiple splits the accuracy decreases while the degree of the split is increased

from two to four; this difference is significant in six out of 20 data sets. This may be due

to the fragmentation problem.

The number of nodes also increases when the degree of the split increases. Only in

some small data sets there is a drop in node size from going degree two to three.

. Learning time of hi.gher degree splits is significantly greater then lower degree splits.

57

The accuracy, number of nodes and learning time does not change in data sets where

all attributes are discrete (as can be expected).

TABLE 6.1.3.3 Learning time results for splits with degrees twd,three and four

Data set name ' ID3 D32 ID3-3 Significance
Breast 2+0 4+0 11+1 I>>>2>>>1
Bupa 3+1 15+2 168163 3>>>2>>>1
Cylinder 1042 70£10 1013+246 3>>2>>>1
Dermatology 340 7+1 3621 2>>1
Ecoli 340 23+1 419453 3>>>2>>>1
Flare 240 210 240

Glass 310 29+4 556ii05 3>>>2>>>1
Hepatitis 110 5+1 41+8 3I>>>2>>>1
Horse 410 1442 158180 3>2>>>1
Iris 0+0 1+0 13+2 3>>>2>>1
Tronosphere 39+7 60480 N/A 2>>>1
Monks 241 240 3:1 2>>1.3>>>1
Ocrdigits 20719 596198 23841352 3>>>2>>?1
Pendigits 47622 927242356 N/A 2>>>1
Segment 345+10 N/A N/A

Wine 110 18+3 26660 3I>>>0>>>1
Z00 140 120 140 '

58

*IN0J pue S9I) ‘OM] SI9IFOP M sypds 10§ synsa1 £ovINOOY 1°¢'1°9 HINDIL

19s Bleq

- 0o'0aL

faeinaoy

59

.00z NI

o3s Nad

IO NOW

IN0J PUE 991y} ‘0M} 20150 UM S)IdS 10J S}NSAL APON T'€'1"9 HANDIA

135 ejeq
Wl HOH 3

003 d3a

sasspoN

‘.mh...mo_l

zeqio gas

60

(s10S Bjep [[BWS) INOJ PUB S3I} ‘om} saa139p syfds 10J owny Furured ¢ ¢ 1°9 HANOII

aeseeq
d3H

-0b

. ! "
ou)

)

T
(e}

awy) fueay

o .
=

09

c-caim

ZEqiE ~ eqim-

- 05

61

NiA

(505 eyep o31e[) INOJ PUE 521} “0M] SIAITIP THIM ST O S I e T SRH

Jas eleq

o

L 000c.

T 000E
ooy
.w - 0009
oon
L ooog

Eedim

.zEdio

L ‘ooool

| Bueary

aun

62

6.2. Results for Classification and Regression Trees

For the rest of these results, the definition given in Table 6.2.1 applies.

TABLE 6.2.1 Definition of tree-based methods

Name of the Method Uni/Multi Impurity Measure Pruning Feature Selection
ID3 Uni Information Gain Pre-pruning No

CART Multi Information Gain Pre-pruning No

FSCART Multi Information Gain Pre-pruning Yes

In this section, the multivariate method CART and the univariate method ID3 are
compared. Also feature selection is applied to CART to see if there will be a difference in
accuracy or node size. The results of this comparison are shown in Table 6.2.2 and in
Figure 6.2.1. Node results are shown .in Table 6.2.3 and Figure 6.2.2. Learning time results
are shown in Table 6.2.3, Figure 6.2.3 and Figure 6.2.4. '

ID3 is statistically significantly better than CART in six out 20 data sets. ID3 is
better then FSCART in two cases with 95% and FSCART is better then ID3 in one case
with 99% confidence. So we can say that no one of the three methods is clearly the best.

Concerning the tree size, generally multivariate techniques FSCART and CART
perform better than ID3 and this is significant in six data sets. Note that a CART node

internally is more complex then an ID3 node.

The learning times of univariate technique ID3 is significantly better than
multivariate techniques CART and FSCART.

63

Feature selection improves accuracy and node size generally but increases learning

time significantly.

TABLE 6.2.2 Accuracy results for ID3 and CART

Data set name D3 CART FSCART Significance
Breast 94.11+1.24 94.85+1.44 94.65+1.23
Bupa 62261533 61.74+3.38 61.5042.48
Car 80.97+1.26 83.84:+2.03 78.3417.40 1>3,2>>3
Cylinder 68.50+2.22 59.52+4.05 N/A 1>2
Dermatology ~ 92.84+2.37 80.87+4.56 83.72£7.66 1>>2
Ecoli 78.10+£3.57 74.74+3.80 76.90+3.89 1>>3
Flare 85.26+2.03 81.55+3.60 85.75+3.89
Glass 60.65+5.97 53.93+4.20 58.13+6.58
Hepatitis 78444371 78.96+4.04 78.58+3.72
Horse 87.55+1.98 76.96+3.02 N/A 1>>2
Iris 93.8742.75 89.33+4.44 90.40+4.48 |
Ironosphere 87.6313.15 86.84:4.03 84.78+2.78 1>3
Monks 92.27+10.15 91.20+6.89 82.87+8.09
Mushroom 99.70+0.06 93.45+1.75 N/A 1>>2
Ocrdigits 78.40+1.47 81.35+2.08 N/A
Pendigits 85.73+1.01 87.10+2.91 91.47+0.86 3>>>1
Segment 01.08+1.16 88.07+1.69 92.46+1.71 3>2
Vote 94.94+1.06 90.30+3.17 90.44+3.88 1>>2
Wine 88.65+3.72 87.30+4.40 93.0313.62
Zoo 92.06+4.80 69.92+9.69 69.3348.93 1>>2,1>>3

TABLE 6.2.3 Node results for ID3 and CART

64

Data set name D3 CART FSCART Significance
Breast 17.00+2.11 11.60+2.67 10.80+2.39 1>2,1>3
Bupa 53.40+5.48 43.20+3.82 40.60+4.20 1>2,1>>3
Car 25.40£0.70 29.00+3.40 30.00+4.14

Cylinder 54.10+5.90 45.00+4.90 | N/A

Dermatology 20.40+2.67 28.00+4.74 20.80+3.46 3>>1
Ecoli 33.80+2.70 34.0045.01 31.4043.24

Flare 37.90+4.51 33.80+6.20 25.8049.48 1>>2
Glass 38.2045.90 42.40+4.12 38.20+4.34

Hepatitis 19.60+3.78 14.0043.43 11.60+1.90 1>>3
Horse 55.80+5.92 28.00+5.19 N/A 1>>2
Tris 8.40+1.35 10.2042.35 8.20+1.40

Ironosphere 19.20+3.05 16.40+3.78 16.00+3.68

Monks 25.40+13.53 17.80+10.16 11.40+2.27 1>2,1>>>3
Mushroom 23.000.00 43.00+6.53 N/A L 2>>>1
~ Ocrdigits 74.40+4.01 70.80+3.98 N/A 1>>2
Pendigits 81.80+5.51 77.80£10.08 71.00£5.16

Segment 41.8043.79 45.20+8.97 36.8044.57

Vote 18.20+3.16 17.2045.29 18.2045.75

Wine 10.40+1.35 9.40+2.27 9.00+1.33

Zoo 15.00+1.89 25.20+4.94 16.4042.32 2>>1,2>>>3

TABLE 6.2.4 Learning time results for ID3 and CART

Data set name ID3 CART FSCART Significance
Breast 240 107+17 482+122 3>>>2>>>1
Bupa 3+1 252423 829+119 3>>>2>>>1
Car 510 1178148 130561661 3>>>2>>>1
Cylinder 1012 45804343 N/A 25551
Dermatology 310 858+170 10553+1748 3>>>2>>>1
Ecoli 340 221425 859476 3>>>2>>>1
Flare 2+0 10324203 8892+3203 3>>2>>>1
Glass 310 320425 1481+154 3>>>2>>>1
Hepatitis 10 209447 17094265 3>>>2>>>1
Horse 4+0 3481+1101 N/A 2>>1
Iris 0+0 3111 69+17 3>2>>1
Ironosphere 39+7 544194 8664+1662 3>>>2>>>1
Monks 2+1 12661 273455 3>>>2>>1
Mushroom 113133 3361312942 N/A S 2>>>1
Ocrdigits 207+9 9148+713 N/A 2>>>1
Pendigits 476122 3311+350 24544+1374 I>>>2>>>]
Segment 34510 1212+170 9173£905 3>>>2>>>1
Vote 110 805167 13058+3920 I>>>2>>>1
Wine 110 84:26 566+147 3>>>2>>>1
Zoo 10 453+61 20881375 3>>>2>>>1

66

LV PUe £ 10 SHASa1 £0vIN90Y 1°7'9 HNOLA

18s ejeq

NOA OHl i MOW dIH ¥19 V14 003 H30 A0 HvO dng-

- 0008

- 0006

LHVISHE

.,.._Lm{o_u” — s ,...M,m.o_u

00’001

faeinady

67

007 MM 1OA 935 ‘Nad €30 SNW

IMVD pue €] 10J sHNSAI 3pON T°C'9 HANDIA

Jas ejeq
NOW Odi i HOH d3H W19 vId 003 ¥3Q 40 ¥vd. dng: - 3dd

Ao

06

68

(s19s eyep [IRWS) 1YV Pue ¢(] 10J s)nsax owr} SururesT €79 INDIA

“Jas meq

e e e .E(o! ,.

69

(s10s eyep a31e]) 1Y VD pue (I 10F s)nsal o&u Surureo 79 TANOIA

Jas ejeq
SN oYl

v

+-000s€:

1¥vossm

Fm_.d\.o,,!; T

- 0000

awir) Buruiear)

70

6.3. Results for Neural Network Methods

For the rest of these results, the definition given in Table 6.3.1 applies.

TABLE 6.3.1 Definition of neural-network based methods

Name Class Separation Impurity Measure Pruning Linearity
ID-LPS Selection Information Gain ~ Pre-pruning Linear

ID-LPE Exchange Information Gain ~ Pre-pruning Linear
ID-MLPE Exchange Information Gain ~ Pre-pruning Nonlinear
H)-Hybrid—F Exchange Information Gain Pre;pruning Both with F-test
ID-Hybrid-t Exchange Information Gain ~ Pre-pruning Both with t-test

6.3.1. Comparison of Class Separation Techniques

The aim of this section is to find which class separation technique (selection or
exchange) is better than the other. For simplicity, other variables such as impurity measure
or pruning technique are fixed. If there are only two classes available in a data set, it is
not included in the results because there will be no class separation. The results are shown
in Table 6.3.1.1 and Figure 6.3.1.1. Node results are shown in Table 6.3.1.2 and Figure
6.3.1.2. Learning time results are shown in Table 6.3.1.3, Figure 6.3.1.4 and Figure 6.3.1.5.

In none of the data sets, the selection method is more accurate than the exchange
method in accuracy. But the exchange method is more accurate than selection method in
three data sets. Two of these data sets Ocrdigits and Pendigits have 10 classes. The other
data set Ecoli has eight classes. So we can conclude that, the more classes you have, the

better is the exchange method compared to the selection method, due to the large number

of division candidates.

71

If the node size results are compared, it is also seen that in two data sets, Pendigits

and Glass (which has eight classes), out of 11, the exchange method is better than the

selection method while the selection is never better.

As we have explained, the exchange method has larger time complexity. So in all
data sets except one, the selection method is better than the exchange method in terms of

learning time. This significance also increases with the size of the data set and the number

of classes.

TABLE 6.3.1.1 Accuracy results for ID-LPS and ID-LPE

Data set name ID-LPS ID-LPE Significance
Car 87.50+3.07 89.48+4.01
Dermatology 69.51122.01 85.74£7.06
Ecoli 68.51+5.39 82.621+4.06 2>1
Flare 88.17+2.21 88.36+2.37
Glass 55.53+6.16 54.95+7.83
Iris 81.73+14.40 77.60£15.70
Ocrdigits 54.14+6.25 93.87+0.92 2>>>1
Pendigits 67.46+5.44 91.94+4.16 2>>>1
Segment 70.55+6.68 79.76+11.58
Wine 85.06+14.00 87.75+12.62
Zoo 78.01+7.67 79.38+8.10

TABLE 6.3.1.2 Node results for ID-LPS and ID-LPE

Data set name ID-LPS ID-LPE Significance
Car 11.40+6.10 7.40+0.84
Dermatology 7.4043.10 8.80+1.48
Ecoli 15004533 10.80+2.90
Flare 2.80+1.99 3.20i2.20
Glass 20.80+3.46 10.20+4.64 1>>2
Iris 5.60+3.13 4.00£1.05
Ocrdigits 45.20+4.76 34.80+4.94
Pendigits 58.40+9.52 30.40+6.40 1>>>2
Segment 28.6046.31 16.60+6.65
Wine 4.20£1.03 4.40£0.97
Zoo 11.40+2.07 8.80+1.75

TABLE 6.3.1.3 Learning time results for ID-LPS and ID-LPE

Data set name ID-LPS ID-LPE Significance
Car 79+17 152+16 2>>>1
Dermatology 22+4 4249 2>>1
Ecoli 2244 57+15 2>>1
Flare 5+2 9+4 2>>1
Glass 131 339 2>>>1
Iris 240 3+0 2>1
Ocrdigits 27641384 8035+757 2>>>1
Pendigits 41641246 1834043319 2>>>]
Segment 407+63 937i103 2>>>1
Wine 240 4+1

Zoo 5+1 10£2 2>>1

72

73

ddT-d1 PUe Sd'T-(f0J s)nsa1 AorInody 1'1°¢"9 HINDOIL

jeseeq’

(=}
P~

03

06

211

a7

‘Sefl-aim

o

“Aaginaoy

74

AdT-AI Pue SdT-CI 10F SHNSaI9pON 7'1°¢"9 HINDIL

‘jas ejeq

+ 000

ooz

B &

az|gapoN

- 0007
ooe

Looon

J|AEAIE

QAT A

0002

75

(s1os wIep [[ews) HJT-CT PUe S4T-I 10 Synsox ourr) SunuesT €'7°¢'9 TINOL

Jas eleq

NIA 1l ¥3a

1B jusea’.

aul

‘SdT-a|m

76

(s19s eyep o31e]) FAdT-CI Pue SIT-CI 10F synsaz swy Surred] ' 1°¢9 TINDIA

jesejeq
NId:

0008

- 0000k

- Gote)

- pOop L
- 0009Y
- 0008t

--00002

- 00eE

Jgrain , o ‘SeT-alE

]

ifnuiea

B

L

awy

77

6.3.2. Comparison of Hybrid Tests in Decision Nodes for Neural Networks

The aim of this section is to find which test measure (F-test or t-test) is best in
comparing the performance of hybrid trees. In big data sets as Mushroom, Ocrdigits,
Pendigits and Segment, training is done with 10 epochs instead of 50 epochs. This is due
to the large amount of computation to train the networks with t-test. For example training

with t-test of Ocrdigits data set takes approximately 4 days, where we have 160 runs like
that.

TABLE 6.3.2.1 Accuracy results for hybrid network models

Data set name ID-Hybrid-F ID-Hybrid-t Significance
Breast 96.62+0.55 96.62+0.63
Bupa 63.4242.57 63.71£3.24
Car 94.51+1.15 92.19+1.37 1>2
Cylinder 71.31+1.74 71.24+1.89
Dermatology 94.54+4.67 85.74+11.97
Ecoli 83.10+4.19 81.43+3.75
Flare 88.11+2.43 87.98+2.28
Glass 55.0549.72 60.37+6.60
Hepatitis 83.74+3.41 83.48+3.38
Horse 82.66+2.58 82.01+3.28
Iris 92.67+3.28 92.80+3.34
Ironosphere 87.80%2.15 87.35+£1.79
Monks 66.39+1.85 66.30+1.77
Mushroom 99.96+0.03 99.95+0.03
Ocrdigits 92.7942.20 N/A
Pendigits 90.82:+9.62 N/A
Segment 81.77+£12.97 85.13+6.33
Vote 94.71£1.13 94.80+1.06
Wine 96.07+2.07 95.96+2.32
Zoo 86.93+5.39

86.74+4.15

78

TABLE 6.3.2.2 Node results for hybrid network models

Data set name ID-Hybrid-F ID-Hybrid-t Significance
Breast 3.00+0.00 3.00+0.00
Bupa 4.40+1.90 4.40+1.65
Car 7.60+0.97 7.20+1.48
Cylinder 8.801.75 9.00£2.11
Dermatology 11.20+1.14 11.00+0.00
Ecoli 10.60+2.27 10.80+2.57
Flare 3.00+1.33 2.4010.97
Glass 11.00+5.50 11.80+2.70
Hepatitis 3.00+0.00 3.00£0.00
Horse 5.60+2.84 5.20+1.75
Iris 5.00+0.00 5.00+0.00
Ironosphere 4.00£1.05 3.80+1.03
Monks 3.00+0.00 3.00+0.00
Mushroom 3.00+0.00 3.00+0.00
Ocrdigits 25.40+3.75 N/A
Pendigits 23.40+5.80 N/A
Segment 14.40+2.84 14.60+3.10
Vote 4.20£1.93 4.40+1.90
Wine 5.00+0.00 5.20+0.63
Zoo 12.40+1.90 12.60+1.26

79

The results are shown in Table 6.3.2;1 and Figure 6.3.2.1. Node results are shown in
Table 6.3.2.2 and Figure 6.3.2.2. Learning time results are shown in Table 6.3.2.3, Figure

6.3.2.4 and Figure 6.3.2.5.

There is no significant difference in terms of accuracy and node size between the two

test selection measures (Only in Car in terms of accuracy).

80

But the difference is in learning time. In all data sets, t-test is slower than F-test with
over than %99 level. Because t-test runs with 30 fold cross validation with the whole

training set while F-test runs only 10 fold cross validation with half of the training set.

TABLE 6.3.2.3 Learning time results for hybrid network models

Data set name ID-Hybrid-F ID-Hybrid-t Significance
Breast 30+1 175+4 2>>>1
Bupa 1543 91:+17 2>>>1
Car 911151 6422:+656 25>>1
Cylinder 366145 2455+346 2>>>1
Dermatology 399125 3428+899 2>>>1
Ecoli 219+38 1697+338 25>>1
Flare 67426 4201134 2>>1
Glass 137428 1275+281 2>>>1
Hepatitis 10+0 66+1 2>>>1
Horse 327489 2089+392 2>>>1
Iris 14+1 95+11 2>>>1
Ironosphere 5349 30059 2>>>1
-Monks 160 97+1 2>>>1
Mushroom’ 5529+414 8546934 2>>>1
Ocrdigits” 1479143204 N/A 25>>1
Pendigits" 9942:+1566 N/A 2>>>1
Segment” 4756453 62174529 2>>1
Vote 53+11 376184 _ 2>>>1
Wine 192 125126 2>>>1]
Zoo 6610 422480 2>>>1

81

S[opouI J10M3IaU PLIGAY 10 Snsa1 A0rINdIY 17 ¢'9 TINDOIA

jaseieq
HOH daH’

- 0005

- 0009

L o8

0006

0000k

:zﬁejllaav

%

82

S[opowW JI0MIAU PLIGAY I0J S}NS3I SPON 7T €9 HINOIA

eseed

ok
5
[1S
ST

:;az!S"é.PQNE

I;‘
o

.

¥l

13puaiH-aIa

83

(5105 BIEP [[EWIS) S[OPOUX JI0OMISU PHIGAY I0J SHNSAI sl Jurures | €7 €9 HINOIL

Jeseivd

1o

3ug

1

‘G

t

008

,,,,, - B L ggg

1apugiH-ale:

L

awy

84

(5108 ®JEp 9ZIS WNIPIW) S[OPOUI NI0M]OU PHAAY I0F SHNSAI durl) SUTwIes 7€' HANOLA

105 BlRg”
003

[13pughAH-alo | | JFPUQAH-QI R

85

(5105 EjEp 281E[) S[OPOUI SIOMIAU PHAAY 10F SHASIT ST} BUIWIEST $°Z'€"9 HYNOIL

185 BIRQ

‘zﬁ'u!ujeaq;:_

CLIR

86

6.3.3. Comparison of the Network Structures in Decision Nodes

We must also determine the type of the neural network to train in a decision tree. So
we must find out which type of neural network performs the best. In order to accomplish
this task, we have three different types of networks: Linear perceptron, multilayer
perceptron and a hybrid of them (with F-test). Multilayer perceptron is a nonlinear
method. These three networks are compared according to accuracy, node size and learning
time. Accuracy results are shown in Table 6.3.3.1 and Figure 6.3.3.1. Node results are

shown in Table 6.3.3.2 and Figure 6.3.3.2. Learning time results are shown in Table
6.3.3.3, Figures 6.3.3.3, 6.3.3.4 and 6.3.3.5.

Linear neural network methods results can be divided into two groups. Data sets
having two classes and data sets having more than two classes. If the data set has two
classes and if the classes are not linearly separable, the accuracy results can be very low.
But if they are linearly separable, the results can be very good as in Breast data set. For
nonlinear network models, results are higher in such data sets. More generally in three
data sets out of 20, the nonlinear model outperforms the linear model and in two data sets,
the hybrid model outperforms the linear model. In four data sets; Ocrdigits, Dermatology,
Zoo and Segment, the nonlinear model has good results but does not converge all the time.

So these data sets have larger variance.

If we look at the node results, the nonlinear model is better than linear model in two
data sets and it is better than the hybrid model in two data sets. Any data set having ¢
classes must have at least 2c-I nodes so that each class can be in one leaf. The nonlinear
model converges to the optimum solution in the number of nodes. There is an order
between the node size of the models as Linear > Hybrid > Nonlinear model. In some data
sets we see that the hybrid model performs worse than the other two in terms of node size.
This mainly depends on the deviation of the results. The nonlinear model outperforms the

hybrid model in four data sets and the linear model in two data sets. The hybrid and linear

models outperform each other in only one data set.

87

In terms of the time consumed for learning, linear model performs the best as we
have expected. If we compare times we see an ordering as Hybrid > Nonlinear > Linear.
But sometimes, the linear model has larger training time than the nonlinear model, which is

due to the large number of nodes in the tree with the linear model and the large number of

instances of that data set.

TABLE 6.3.3.1 Accuracy results for different network models

Data set name ID-LPE ID-MLPE ID-Hybrid-F Significance
Breast 96.60:£0.61 96.77+0.91 96.6240.55
Bupa 63.5342.76 63.24+4.31 63.4242.57
Car 89.48+4.01 96.86+2.30 94.51+1.15
Cylinder 70214448 70.3549.56 71.31%1.74
Dermatology 85.74+7.06 87.81+13.59 94.54+4.67
Ecoli 82.62+4.06 80.12+5.12 83.10+4.19
Flare 88.36+2.37 87.67+2.56 88.11+2.43
Glass 54.95+7.83 58.04+13.30 55.05%9.72
Hepatitis 84.13+2.86 83.74+2.43 83.7413.41
Horse 82.07+3.48 84.67+2.64 82.6612.58
Iris 77.60£15.70 92.67+3.57 92.67+3.28 2>1,3>1
Ironosphere 87.80+2.18 87.52+2.11 87.80+2.15
Monks 66.34+1.87 66.99+2.17 66.39+1.85
Mushroom 99.95:0.03 99.99+0.02 99.96:+0.03 2>1
Ocrdigits 93.87+0.92 83.90+10.22 92.7942.20
Pendigits 91.94+4.16 91.3546.55 90.82:9.62
Segment 79.76£11.58 80.35+12.36 81.77+12.97
Vote 94.71+1.05 95.58+1.72 94.71+1.13
Wine 8775+12.62 95.96+2.13 96.07+2.07 2>1,3>1
Zoo 79.38+8.10 85.33x11.86 86.93+5.39

TABLE 6.3.3.2 Node results for different network models

Data set name ID-LPE ID-MLPE ID-HybridEf Significance
Breast 3.00-£0.00 3.0020.00 3.00:£0.00

Bupa 4.60+1.84 3.80+1.03 4.40+1.90

Car 7.400.84 6.60£1.26 = 7.60+0.97

Cylinder 8.40£1.90 6.40+1.65 8.80+1.75 3>>2
Dermatology 8.80+1.48 9.60+2.32 11.20+1.14 3>1
Ecoli 10.80+2.90 8.8042.20 10.6042.27

Flare 3.20+2.20 2.20+1.03 3.00+1.33

Glass 10.20+4.64 7.2043.71 11.0045.50

Hepatitis 3.00+0.00 3.00:0.00 3.000.00

Horse 5.00+1.63 4.00+1.41 5.60+2.84

Iris 4.00+1.05 5.00+0.00 5.00::0.00 2>>1,3>>1
Ironosphere 3.80+1.03 3.80+1.03 4.00x£1.05

Monks 3.000.00 3.000.00 3.000.00

Mushroom 3.00+0.00 3.00+0.00 3.00+0.00 .
Ocrdigits 34.80:+4.94 18.4043.53 25.40+3.75 C1>3>>2
Pendigits 30.40:+6.40 17.60+1.35 23.40+5.80 1>>>2,3>>2
Segment 16.60+6.65 11.6042.12 14.4042.84

Vote 4.201.93 3.000.00 4.20+1.93

Wine 4.400.97 5.000.00 5.00+0.00

Zoo 8.80+1.75 10.60+2.80 12.40+1.90 3>1

TABLE 6.3.3.3 Learning time results for different network models

89

Data set name

ID-LPE ID-MLPE ID-HybridEf Significance
Breast 5+0 7+0 301 3>>>1,3>>>2
Bupa 3+1 3+1 1543 3>>>2>>>1
Car 152+16 216+18 911£151 3>>>2>>>1
Cylinder 1942 102+15 366145 3>>>2>>>]
Dermatology 4219 12219 399425 3>>>2>>>1
Ecoli 57+15 50+13 219£38 3>>>1,3>>>2
Flare 9+4 18+7 67+26 3>>2>>1
Glass 3319 27+8 137428 3>>>1,3>>>2
Hepatitis 110 3+0 100 3>>>1,3>>>2
Horse 14+2 97+20 327489 3>2>>>1
Iris 310 3+0 141 3>>>1,3>>>2
Ironosphere 4+1 1442 5349 3>>>2>>>1
Monks 340 340 16:0 3>>>1,3>>>2
Mushroom 628204 18584270 5520+414 3>>>2>>>1
Ocrdigits” 8035+757 109931402 1479113204 3>>>2>1
Pendigits’ 18340+3319 8473+1742 994211566 3>>>1>>2
Segment 937+103 927+126 4756+453 3>>>1,3>>>2
Vote 6+1 1312 53+11 - 3>>2>>]
Wine 4+1 4x1 1942 3>>>1,3>>>2
Zoo 10+2 18+4 6610 3>>>2>>>1

90

S[OPOW YI0M)IU JOJ SINSAI AoBINOOY 1°€°€9 TINDOIA

jas eyeq.
[00Z NIMA. 1OA. 935 N3d MO0 SAW NOW OHl Rl HOM dIH V19 VY14 003 ¥3IQ TAD HWO

dng 3y
o 0009

L 0009

[+ ooz
| oo'os

- 00°06

0000k

[JFpuaiy-aim

adwi-aig

=Rl |

ﬁamnna?

91

STOPOW YI0M]aU 10J S)NSI SPON €9 ANOIA

‘007 N IOA 935 N3d HOO. SO NOW oul

jeseeq.

Ml MOH d3H V19 V14 003 HIQ A0 dw0. dnd 3u8

-0

-0l

‘8215 8poN

e

or

JN-alE

adraim 1

92

(539 ©1ep [[eWS) S[OPOI JI0MIOU JOJ S}NSal U} SUIILd] £°€'¢"9 TINOII

19s BjRQ

dnd

349

T
&
o~

e
o
Ryl

L
s)
~

5,
[¥
Lo:

boz

IdIN-aIe ,, - 3gras

Lng

T
‘0

,‘.aux!lfﬁu!yjea]

93

HOH

(s39s BIRp 9ZIS WNIPSUL) S[OPOW I0MIQU JOJ S)NSAT dwn} Suruied '€ €9 ANDOILL

1es ejeq
003 ¥a A0

HYO.

 jSpugiH-qim

IdIN-0ID . B Idam

: aw»u_:ﬁu!ujeaf]

94

(S10s BRp 93I1R]) S[OpPOW JI0MISU 10J SYNSaI W) SUIUIRd T G €°¢€'9 THNOIA

yas pje(q

 3dINdio

[weikge

| Bujutea’

auwl

95

6.4. Results for LDA

For the rest of these results, the definition given in Table 6.4.1 applies.

TABLE 6.4.1 Definition of neural-network based methods

Name Class Separation Pruning PCA PCA percentage
ID-LDA Exchange Pre-pruning Always %90
ID-LDA-R Exchange Pre-pruning If Required %90
ID-LDA-R99 Exchange Pre-pruning If Required %99 .

6.4.1. Effects of PCA on the Results

Previously we saw that PCA must be used to solve the singular covariance matrix
problem in Chapter 5. But there are also data sets where we do not need PCA in some
nodes because the covariance matrix is invertible in those nodes. Hence, we took those
data sets performances two times, one time we used always PCA and the other time we
used PCA when it is required. In this section we will compare these two results and want to
find out if PCA decrements the performance because of the %10 loss in variance. The
results are shown in Table 6.4.1.1 and Figure 6.4.1.1 for accuracy, in Table 6.4.1.2 and
Figure 6.4.1.2 for tree sizes and in Table 6.4.1.3 and Figure 6.4.1.3 for learning time.
Some of the data sets are shown with an asterisk near them. In those data sets, PCA is

never required.

If we look at the accuracy results we see that PCA causes a decrease in performance.
In three data sets out of five, accuracy is significantly dropped when PCA is applied. In

these data sets, PCA is never required. In other data sets where PCA is applied, accuracy

does not change significantly.

TABLE 6.4.1.1 Accuracy results for ID-LDA and ID-LDA-R

Data set name ID-LDA ID-LDA-R Significance
Breast* 96.65+0.66 95.85+0.72
Bupa* 57.28+3.23 67.42+2.97 2>>>]1
Ecoli 83.1042.50 83.69+3.58
Glass 57.85+3.67 55.51+4.43
Tris* 82.67+5.52 97.20+1.47 2>>>]
Monks* 66.34+1.93 74.3142.26 2>>]
Wine* 94.0443.18 96.07+2.66
Zoo 80.79+6.97 82.56+5.62

TABLE 6.4.1.2 Node results for ID-LDA and ID-LDA-R

Data set name ID-LDA ID-LDA-R Significance
Breast* 8.00+1.05 7.20£0.63
Bupa* 6.40::4.90 8.20+1.93
Ecoli 20.20+4.34 17.60+4.81
Glass 20.60+5.64 25.60£3.78
Iris* 8.00+2.16 5.40£0.84 1>>>2
Monks* 3.00+0.00 7.20+2.39 2>1
Wine* 7.40+1.84 5.40+0.84
Zoo 12.60+2.07 12.60+£2.07

96

For the node results, ID-LDA-R is better than ID-LDA in one data set, whereas ID-
LDA is better than ID-LDA-R in one data set. ID-LDA is better than ID-LDA-R in Monks
data set, where it can not find a split after one split. So it has lower node size. These
results also effect learning time. On the Iris data set where the tree size is significantly

smaller with ID-LDA-R, learning time is also significantly less.

97

When PCA is applied, the number of reduced dimensions is usually decreased from
the root node to a leaf node. For example, while in the root node we need 14 eigenvectors

to define the data on Ecoli data set, we only need 5 eigenvectors to define data in a leaf
node.

TABLE 6.4.1.3 Learning time results for ID-LDA and ID-LDA-R

Data set name ID-LDA ID-LDA-R Significance
Breast* 3+1 240

Bupa* 1+1 110

Ecoli 62 6£2

Glass 5+1 T£1

Iris* 1+1 020 1>>2
Monks* 1+1 1+0

Wine* 140 110

Zoo 240 240

98

A-VAT-A PUe VAT-A] 10 SHnsax £oemody [°1'4'9 TANOIT

135 ejeq

CNIAA T

05

09

0z

-8

- 08

- 001

= W_LQDJ-Q_' - ———

Foemaay:

99

NIM

Y-VAT-AI PUe VAT-AT 10F SHASSI 3PON ' 1°"9 TANDI

18s geg

093

ayg-

,Ln'
-

azisapoN

Qlm

-“‘.DN\.,.

L Gz

100

VAT A pue VA'T-CI 10§ s)nsa1 swy Jurures| €'1'%°9 TINOLA

NIAA:

“jas ejeq

093

EE:T

yvaran

o o

‘auiy Bujusear]

101

6.4.2. Effects of PCA Percentage on the Results

As Section 6.4.1 shows, LDA performance is decreased when PCA is applied
because of the 10% loss (g = 0.90). We have also made experiments with another
percentage levels; with.%99 (g = 0.99), and compared the results of two. The results are
shown in Table 6.4.2.1 and Figure 6.4.2.1 for accuracy, in Table 6.4.2.2 and Figure 6.4.2.2

for tree size and in Table 6.4.2.3, Figure 6.4.2.3 and Figure 6.4.2.4 for learning time.

TABLE 6.4.2.1 Accuracy results for ID-LDA-R and ID-LDA-R99

Data set name IDA-LDA-R ID-LDA-R99 Significance
Car 70.02+1.75 92.09+1.07 2>>>1
Cylinder 67394239 69.8043.01

Dermatology 94.75+£1.91 96.17+£1.59

Ecoli 83.69+3.58 83.75+2.53

Flare 88.05+2.39- 88.17+2.83

Glass 55.51+4.43 57.29+4.16

Hepatitis 83.61+2.12 82.06£5.60

Horse 72.39+2.62 81.09+1.64 2>>1
Ironosphere 86.38+2.68 91.11£2.22

Mushroom 94.15+0.83 98.25+0.57 2>>>1
Ocrdigits 89.19+0.92 94.59+0.49 2>>>]
Pendigits 91.99+0.94 95.52:+0.44 2>>>1
Segment 82.19+2.35 90.31+1.20 2>>>1
Vote . 90.85+2.35 94.85+2.17 2>1
Zoo 82.5615.62 81.41£7.25 -

TABLE 6.4.2.2 Node results for ID-LDA-R and ID-LDA-R99

Data set name

IDA-LDA-R ID-LDA-R99 Significance
Car 1.00+0.00 12.00+2.54 2>>>1
Cylinder 10.80+3.33 16.40+8.95
Dermatology 17.00+2.11 12.80+1.48
Ecoli ' 17.6044.81 20.00+2.71
Flare 5.2043.71 5.6043.13
Glass 25.60+3.78 26.20+4.44
Hepatitis 4.6043.10 8.6043.10
Horse 10.20+3.29 16.80+4.05
Ironosphere 5.40+1.84 11.60+£2.67
Mushroom 17.40+3.63 19.20+4.85
Ocrdigits 87.40+8.37 59.4042.07 1>>2
Pendigits 80.80+3.71 89.00+6.25
Segment 40.40£5.66 39.80+11.08
Vote 9.2043.05 9.8042.53
Z0o 12.6042.07 11.80+1.93

102

When we look at the accuracy results, we see that there is a dramatic increase in
accuracy while going from ID-LDA-R to ID-LDA-R99. In seven data sets out of 20, there

is a significant increase in accuracy that is especially noticeable on large data sets.

On the Car data set, for which ID-LDA-R can not find any split, ID-LDA-R99 gives
a performance of 92 percent. Therefore its node size in ID-LDA-R99 is significantly more
than in ID-LDA-R. On Ocrdigits the effect is the opposite, that is, while going from ID-
LDA-R to ID-LDA-R99, the accuracy increases and the node size decreases significantly.

These results have also an effect on learning time. ID-LDA-R has significantly lower

learning time on Car because of no split.

103

TABLE 6.4.2.3 Learning time results for ID-LDA-R and ID-LDA-R99

Data set name IDA-LDA-R ID-LDA-R99 Significance
Car 612 2846 51
Cylinder 34+14 74157

Dermatology 18+2 “16x1

Ecoli 612 6+1

Flare 3+2 443

Glass 7+1 7+1

Hepatitis 1+1 2+1

Horse 38+16 94+40

Ironosphere 3+1 11+4

Mushroom 1846+776 2533£1533

Ocrdigits 3189+270 2288+108 1>>2
Pendigits 996186 1211491 2>1
Segment 154+15 148440

Vote 84 9+3

Zoo 240 2+0

104

664-VAT-AI PUe J-VA'T-d] 10 Snsa1 Ao0rInody [°7'4'9 SANDIA

)as ejeq

TAQ

Hvd

- 00°05

tooog

| ooos

Sakengells) - __ uvarae

00°001

foemady

105

664-VA'T-AI PUe ¥-VA'T-AI 10J SYNS31 9pON T°CH'9 HINDOI

N3d H20

185 ejeq

SN odl HOH daH

...,.2, .
- DN
- 0E
BLLE
=05
ghch
- D\u

--06:

eE4Ya1-aId

Hvalaim

- 004

azIS:apoN

106

(s10s ®1Ep [[OWS) 66¥-VAT-CI PUE Y-V AT-CII 0] SHnsa1 swm Surwies T ¢°7'4'9 FINOIA

. 1as ejeq
oui MOH d3H. v19' v 093 y3aq+ g%

U0

- 05
- 02
- 08
08
- 001
] 1
vl

- 2L

mmmw{ﬂr_.a_ - e w_.(o._-a_l :

)

'-al\uu/ﬁuweaﬂ

107

(s39s e3ep 9818]) 66Y-VAT-AI PUe Y-VA'T-CI 10] SHNSaI owy Suruies] 4°7'4'9 TINOIT

, 188 BJERQ
N3d 400 SN

e) varo

fuiea’]

-aun bu

108

6.4.3. Comparison of Different Linear Multivariate Techniques

In this section we compare three types of linear decision tree construction methods.
These are CART (Classification and regression trees), . ID-LP (Multivariate decision tree
with neural perceptron) and ID-LDA (Multivariate decision tree with linear discriminant
ID-LDA-R99). The results are shown in Table 6.4.3.1, Table 6.4.3.2 and Figure 6.4.3.1 for
accuracy results, in Table 6.4.3.3, Table 6.4.3.4 and Figure 6.4.3.2 for node results and in
Table 6.4.3.5, Table 6.4.3.6, Figure 6.4.3.3, Figure 6.4.3.4 and Figure 6.4.3.5 for learning
- time results. The exchange method is used for simplicity for ID-LP and ID-LDA.

109

TABLE 6.4.3.1 Accuracy results for linear decision tree methods

—

Data set name CART ID-LP ID-LDA Significance
Breast 94.85t1.44 96.60+0.61 95.85+0.72 |

Bupa 61.744338 63.5312.76 67.42+2.97

Car 83.8412.03 89.48+4.01 92.09+1.07 3>>>1
Cylinder 59.52+4.05 70214448 69.80:3.01 2>>1,3>>>1
Dermatology 80.87+4.56 85.74+7.06 96.17+1.59 3>>1
Ecoli 74.74+3.80 82.62+4.06 83.75+2.53 2>>1,3>1
Flare 81.5543.60 88.36+2.37 88.17+2.83

Glass 53.93+420 54.95+7.83 57.29+4.16

Hepatitis 78.9614.04 84.13+2.86 82.06+5.60 2>>1
Horse 76.96+3.02 82.07+3.48 81.09+1.64 2>>1
Iris 89.33+4.44 77.60£15.70 97.20+1.47 3>>1>>2
Ironosphere 86.84+4.03 87.80£2.18 91.1142.22 |

Monks 91.20+6.89 66.34+1.87 74.31+2.26 1>>3>>>2
Mushroom 93.45:1.75 99.95+0.03 98.25+0.57 2>>3>>]
Ocrdigits 81.35£2.08 93.87+0.92 94.59+0.49 3>>>1,2>>>1
Pendigits 87.10:2.91 91.94+4.16 95.52+0.44 3>>1
Segment 88.07¢1.69 79.76+11.58 90.31+1.20

Vote 90.30+£3.17 94.71+1.05 94.85:2.17 2>1,3>>1
Wine 87.30+4.40 87.75+12.62 96.07+2.66 3>1
Zoo 69.9249.69 79.38+8.10 81.41+7.25

TABLE 6.4.3.2 Accuracy comparisons

CART ID-LP ID-LDA

Method

CART 2 1

ID-LP 7 1
10 2

ID-LDA

110

TABLE 6.4.3.3 Node results for linear decision tree methods

Data set name CART ID-LP ID-LDA Significance
Breast 11.60:+2.67 3.00+0.00 7.20£0.63 3>>>2,1>>2
Bupa 43.20+3.82 4.60+1.84 8.20+1.93 1>>>3>>2
Car 29.0043.40 7.40:0.84 12.00:2.54 1>>>2,1>>>3
Cylinder 45.00+4.90 840+1.90 16.40+8.95 1>>3,1>>>2
Dermatology 28.00+4.74 8.80+1.48 12.80+1.48 1>>3>2
Ecoli 34.00+5.01 10.80+2.90 20.00+2.71 1>3>>>2
Flare 33.80:6.20 3.20£2.20 5.60+3.13 1>>>3,1>>>2
Glass 42.40+4.12 10.20+4.64 26.20+4.44 1>>>3>>>2
Hepatitis 14.00+3.43 3.00:0.00 8.60+3.10 1>>>2
Horse 28.00+5.19 5.00+1.63 16.80+4.05 1>>>3>>>2
Iris 10.20+2.35 4.00+1.05 5.40+0.84 1>>3,1>>2
Ironosphere 16.40+3.78 3.80+1.03 11.60+2.67 1>>2,3>>>2
Monks 17.80+10.16 3.00+0.00 7.20+2.39 1>>>2
Mushroom 43.00+6.53 3.00:0.00 19.20+4.85 1>>3>>2
Ocrdigits 70.80+3.98 34.80+4.94 59.40+2.07 1>3>>>2
Pendigits 77.80+10.08 30.40+6.40 89.00£6.25 - 3>>>2,1>>>2
Segment 45.20+8.97 16.60+6.65 39.80+11.08 1>>2
Vote 17.2045.29 4.20+1.93 9.80+2.53 1>>>7
Wine 9.40+2.27 4.40+0.97 5.40+0.84 1>2
Zoo 25.20+4.94 8.80+1.75 11.80£1.93 1>>>3,1>>>2

TABLE 6.4.3.4 Node comparisons

CART ID-LP IDIDA

Method

CART 0 0
ID-LP 20 10
ID-LDA 12 0

111

TABLE 6.4.3.5 Learning time results for linear decision tree methods

Data set name

CART ID-LP ID-LDA Significance
Breast 107+17 5+0 240 1>>>2>>>3
Bupa 252+23 3+1 110 1>>>2>>3
Car ’1178i148 152+16 28+6 1>>>2>>>3
Cylinder 4589+343 19+2 74157 1>>>2,1>>>3
Dermatology 858+170 4219 16+1 1>>>2>>3
Ecoli 221425 57+15 6+1 1>>>2>>>3
Flare 10324203 9+4 443 1>>>2,1>>>3
Glass 320425 3349 7+1 1>>>2>>>3
Hepatitis 209+47 1+0 241 1>>>2,1>>>3
Horse 3481+1101 1442 9440 1>>3>>2
Iris 31411 340 0+0 1>>2>>>3
Ironosphere 544+94 4+1 1144 1>>>3>2
Monks 126161 340 10 1>>2>>>3
Mushroom 336132942 6281204 25331533 1>>>2,1>>>3
Ocrdigits 9148+713 8035+757 2288+108 2>>>3,1>>>3
Pendigits 3311£350 183403319 1211491 - 2>>>1>>>3
Segment 12124170 937+103 14840 1>2>>>3,
Vote 805+167 61 943 1>>>2,1>>>3
Wine 84426 4+1 140 1>>>2>>3
Zoo 45361 10+2 2+0 1>>>2>>>3

TABLE 6.4.3.6 Learning time comparisons

Method

CART ID-LP ID-LDA

CART
ID-LP
ID-LDA

1

13

112

If we compare the three linear methods in terms of accuracy, node size and learning
time, we see that:

e Accuracy: ID-LP=ID-LDA>CART.
e Node Size: CART>ID-LDA>ID-LP.
o Learning Time: CART >ID-LP>ID-LDA.

In terms of accuracy, CART outperforms ID-LP in those data sets where ID-LP does

not always converge. On the Monks data set, CART outperforms ID-LP and ID-LDA quite
significantly. ‘

113

SPOYIOW 991} UOISIOSP JBaUl] 0] S}NSI AoeIddY [°€'H'9 TYNOIA

jas.eje(
007 NiM IOA 938 N3d HO0 SNW NOW Odl Ml HOH d3H v19 ‘Vid

_ _

003 H3IG A UVO - dng 38

-t 0005

- 00°09

0002

+00°08.

10006

Jivom

‘Qoaot

foeinooy

114

SPOUjolI 9311 UOISIODP JeAUT] JOJ SINSAI APON 7€' +'9 TINOIA

188 e

00Z NIM 10A 938 Nad HOO SN NOW oM I ¥OH d3H V19 Wi 003 ¥3IQ0 KO AV dng 3ug.

E m : I . y J - 1 i i
o ; i B i
: i 3 . ki H - R

H BE B E B H B B e L .

N .

)

roe.
e
Tov
08
08

le

--06

varam = == , e e .E(on

0ol

azisapoN

115

NIAA

(5195 BIEP [[BWS) SPOYISW UOISIOSP JBIUI[I0J SINSST SUI) SUNLBST €€ %9 TINOIL

jes eeq

NOW: 003 dng

348

- 001

- 051

00z

- 05C

- 008

0%e
0or
oSy

T 008

e ,,. ._.m.qon

Aunuwea?

LAY

aull

116

10A.

(195 BIED SZIS WINIPAUL) SPOY)SUI UOISIOAP JeAUT] JO] S}NnsoI owiy SuruIes ¢ 4’9 TANOII

933

o

jasejeq

d3a

yvo

- 002
- 00v
| 009
oo

| ooow

- 0oyl

val-gim

lHyom

- 00zl

L oogy

awy fupuseat

117

(s105 IR 951E[) SPOYIOW UOISIOP IeaUl] 10 SHNSAI dwif} SUUIRd] §°¢'4'9 TINDIA

188 vIRQ
N3d - . Ho0 SN “HOH A9

- 0005

- 0000}

- 00054

awy) Bupueas

- 0000C
- 000ST

- 0000E

. . . . 000SE

401_-0__! — e : ~ B = : .Eiol | | .. ;

118

7. CONCLUSIONS

In this study, we have detailed and compared univariate, linear and nonlinear
decision tree methods using a set of simulations on.twenty standard data sets. For
univariate decision tree methods, we have used the ID3 algorithm and for multivariate
decision tree methods, we have used the CART algbrithm. For linear and nonlinear
methods, we have used neural networks at each decision node. We also propose to use the

Linear Discriminant Analysis (LDA) algorithm in constructing linear multivariate decision

trees.

The comparison results of these four decision tree methods can be seen in Figures
7.1,7.2,7.3,7.4,7.5,7.6 and 7.7. The first four figures compare the four methods in terms

of accuracy, tree size and learning time. Last three figures compare the four methods in

terms of two of these criteria.

Results for ID3 and CART can be grouped as follows:

o There is not a significant difference between different impurity measures in terms of
accuracy, tree size and learning time.

e Post-pruning is better than pre-pruning in terms of tree size; they are same in terms of
accuracy and learning time. Also post-pruning sometimes finds significantly better
trees than pre-pruning, where pre-pruning stops tree creation process earlier.

e TFeature selection does not always improve performance of CART, but increases

learning time significantly.

Results for neural trees can be grouped as follows:

o There is not a significant difference between the F-test and the t-tests in terms of
accuracy and tree size. But t-test has high learning time because of 30-fold
crossvalidation. |

e Among the class separation heuristics, the exchange method is better than the selection

method in terms of accuracyl and tree size but is worse in terms of learning time.

119

There is low difference in terms of tree size and accuracy between neural trees (Linear,
Nonlinear and Hybrid).

Learning time results of neural trees is in the following order: Hybrid > Nonlinear >
Linear. |

Results for LDA trees can be grouped as follows:

Using PCA with low percentage of explained variance decreases performance in

accuracy and tree size.

Using PCA when it is not required decreases performance in accuracy, tree size and
learning time.

Results for univariate and multivariate methods can be ordered as follows:
Accuracy: ID-LP = ID-LDA > CART ?=ID3.
Tree Size: ID3 > CART > ID-LDA > ID-LP.
Learning Time: CART > ID-LP > ID-LDA > ID3.

We can conclude by the following statements:

If the features are not correlated, we should use univariate decision trees (ID3)
If the features are correlated, we should use multivariate decision trees.
If pre-pruning is to be applied, we should not use nonlinear multivariate decision trees.
If a multivariate method is to be used, do not use CART, instead:

o Iftime is important, use ID-LDA.

o If space is important, use ID-LP.

e ID-LDA has the same accuracy as ID-LP.

120 |

1
i
:
:

0 A O

0iD-LDA-

RO MON MUS OCR PEN SEG VOT WIN Z0O

A A SR T R

IRI

Data set

B CART

FLA GLA HEP HOR

FIGURE 7.1 Comparison of accuracy results of decision tree methods

m D3

BRE BUP CAR CYL DER ECO

100,00
90
80.00 -
70.00
50.00 -

Asemnaay -

121

00Z NIM. 1OA 93S

SPOYIAW 931] UOISIOIP JO SNSAI 9POU JO UosHedwo)) 7'/ TANOLI

T . B
d H:. - H

‘Jes-eieq

SAW NOW oMl Il HOH 45

m 4

T L AT R S

H vi8 ¥id 023 ‘¥3a A3

dvd dng 3ug

-0l

J.DN .

< 0E
-Dv

tos

rog

o8

.06

draim

EQm

Levom

‘0ol

8215 apoy

122

007

NIA

(530S EJEP [[EWIS) SPOYIOW 591} UOISIOAP JO S}nsal swry Surures] Jo uosteduwo) ¢/ THNOLI

10A

NOW

jesejeq

-OHl 1ol

d3H

V19

003

y3a

.dng

348

-

..., goc

- 008

-~ 00F
0o
003 -
ooz
.m =008
oo
- 0004

- oo

varae

d1am

g <= hrse e

eqim -

oozL

awy). Bujutear

123

(s19s e3Bp 9318]) SpOYIoUI 921} UOISIOSP JO SINSaI aw) Suruaesf Jo uostedwo)) 4/ THNOIA

N3d

‘400

SN

18s ejeq

“HOH

vid

IAD

4]

=

L

yal-are

dram

_duvom

cam

aaomm

aw u_ 'E"lylvgu‘mavf]

124

poool

0058

9ZIS 931} pUE AJBINOOE JO SULID) UI SPOYISW 991) UOISIoap Jo uosuedwo)) ¢/ MINOLI

Aaeinoay
0006 00°'s8 0008 00/ 0002 0059 00’09

00'gs

000

0oo

- 0001
ooz
-.00°0€
ooy
0005
| oogg
000z

0008

|va1aix g1ai- 1avos eaie |

0006

az|§ apoN

125

o) JULUIES] pue A9LINOOE JO SULIS) UT SPOYISUI 331} UOISIOAp JO uostedwo)) 9°/ TINOLI

huE:oud.
% D
yuij? 0056 00°06 00's8 ‘0008 00'GL 00°02 00'G9 00°03 0055 00/0s
_ *—f + e s x , = L L _ L
NS R > % i
’ XI.‘ : fl- - - .f *
= [x he L.
X
X . - - . -0l
. - . U3
x o -
* s
B % x :
. « o, " .x o - ool
o & as B B
X , 5
o i v]
% " o - T /0001
X X
B u
o
z . = - DoooE
o]

L 00000k

| va-aix g1-a1- Layd e £ale

Jawpy Busurea?

126

sury SUTWIB| puR 9ZIS 9311 JO SULIS) UT SPOYISW 921} UOISIOap Jo uosuedwio) £/ THNOIA

az|s apoN.
x 0
00/06 0008 0002 0009 0005 00'o¥ 000E 0oz - oool 000
. i) i i i) 1 4 4l 2.
- . , +® Y L
* + % x x _
. * + + * x="
* -
, . x z
+ x e - Fol
§ C 0b
*
* -
i T :
. + N m =001
o H a .
i :
= -
» a B - - 0001
o i %
Bl - A
m
o i - poook
]
L 00000k

| vaT-ai= a1a1- [avos £qi+]

“awi) Bujurear)

127

APPENDIX A

Brief description of data sets used in thesis is given below: (See

http://www.ics.uci.edu/~mlearn/1\/[LRepositorv.html)

Breast: This data set was created by Dr. William H. Wolberg (physician) University of

Wisconsin Hospitals USA. The aim is to detect the type of breast cancer (malignant or
benign) from 9 different attributes.

Bupa: This data set was created by BUPA Medical Research Ltd. Five Attributes of the

data set are blood tests results, by which users want to find out liver disorders induced by

alcohol consumption.

Car: This data set was created by Marko Bohanec. Car Evaluation Database was derived
from a simple hierarchical decision model originally developed for the demonstration of
DEX (M. Bohanec, V. Rajkovic: Expert system for decision making. Sistemica 1(1), pp.
145-157, 1990.)

Cylinder: This data set was created by Bob Evans RR Donnelley & Sons Co. 40 attributes

are used to determine the existence of cylinder bands.

Dermatology: This data set was created by Nilsen ilter from Gazi University and H Altan
Giivenir from Bilkent University. The aim is to determine the type of Eryhemato-

Squamous Disease from clinical and histopathological attributes.

Ecoli: This data set waé created by Kenta Nakio from Institue of Molecular and Cellular

Biology in Osaka University. The aim is to localize the site of the protein.

128

Flare: This data set was created by Gary Bradshaw. The database contains 3 potential
classes, one for the number of times a certain type of solar flare occured in a 24 hour

period. Each instance represents captured features for 1 active region on the sun.

Glass: This data set was created by B. German from Central Research Establishment. The
aim is to find out type of the glass.

Hepatitis: The task for this domain is to predict from test results whether a patient will live

or die from hepatitis.

Horse: This data set was created by Mary McLeish and Matt Cecile. The aim of this data

set is to determine whether the lesion is surgical.

Iris: This data set was created by R. A. Fisher. This is perhaps the best known database to
be found in the pattern recognition literature. Fisher's paper is a classic in the field and is

referenced frequently to this day. The aim is to decide the class of the iris plant.

Ironosphere: This data set was created by Vince Sigillito. The aim is to find out the type
of the radar returns. "Good" radar returns are those showing evidence of some type of
structure in the ionosphere. "Bad" returns are those that do not; their signals pass through

the ionosphere.

Monks: This data set was created by Sebastian Thrun from Carnegie Mellon University.
The MONK’s problem were the basis of a first international comparison of learning
algorithms. The result of this comparison is summarised in "The MONK's Problems - A

Performance Comparison of Different Learning algorithms".

129

Mushroom: Mushroom records were drawn from The Audubon Society Field Guide to
North American Mushrooms. This data set includes descriptions of hypothetical samples
corresponding to 23 species of gilled mushrooms in the Agaricus and Lepiota Family (pp.

500-525). Each species is identified as edible or poisonous.

Ocrdigits: This data set was created by E. Alpaydm and C. Kaynak from Bogazigi

University. The aim is to recognize optically of ten different digits.

Pendigits: This data set was created by E. Alpaydm and F. Alimoglu from Bogazigi

University. The aim is to recognize pen written digits.

Segment: This data set was created by Vision Groups from University of Massachusetts.
For this data set the task is to learn to segment an image into seven classes: sky, cement,
window, bridk, grass, foliage and path. The data set was formed from seven images of
buildings from the University of Massachusetts campus that were segmented by hand to

create the class labels.

Vote: This data set was drawn from Congressional Quarterly Almanac. This data set
includes votes for each of the U.S. House of Representatives Congressmen on the 16 key

votes identified by the CQA. The task is to determine the party of the senators voted.

Wine: This data set was formed by Forina, M. et al, PARVUS of Institute of
Pharmaceutical and Food Analysis and Technologies. These data are the results of a
chemical analysis of wines grown in the same region in Italy but derived from three

different cultivars. The analysis determined the-quantitiés of 13 constituents found in each

of the three types of wines.

130

- Zoo: This data set was created by Richard Forsyth. The animal in zoo are divided into

seven groups and the task is to find from 17 different attributes of the animals the type of
the animal.

131

APPENDIX B

Statistical tests we have used in this thesis are the F test and the t test.

Steps for the 5x2 F tests are as follows 0:
1. Split the original data randomly into two equal-sized parts. Call the first one training

set and the other one, the test set.

2. Run the two algorithms on the training set and test on the test set.

3. For each algorithm divide the number of correct classifications to the size of the test
set.

4. Record also other measures such as the number of nodes in the tree and the average
time spent in learning,

5. Exchange train and test sets, do steps 2, 3 and 4 again.

In this test, p,-w is the difference between the error rates of the two methods on fold
j=1,2 of replication i = 1, ..., 5. The average on replication i is p; = (o’ + p{?) / 2 and
the variance is s/ = @,ﬂ) -p) + (- p,~)2. The following statistic is approximately F
distributed with ten and five degrees of freedom:

5 2 .
> D>

_i=lj=1

5
2's
-

S (B.1)

According to the value of f, the hypothesis that they have the same error rate is

rejected or accepted according to a specified confidence level.

Steps for the 30 fold cross-validation t test are 0:

© 132

e Partition the available data into 30 disjoint subsets T}, Ty, ..., Ts3pof equal size.

For each subset T;use it for test set and the remaining data for training set.

Train both algorithms with the training set and test them on the test set. Call the
difference between error rates of the two methods on the test set at iteration 7, &;. Let
& denote the average of J;.

* Find the estimate of the standard deviation. The followiﬁg statistic is approximately t-

distributed with 29 degrees of freedom.

i 1)2(5 -3 e

o According to the value of #, the hypothesis that they have the same error rate is

accepted or rejected according to a specified confidence level.

133

REFERENCES

Alpaydm, E., “Combined 5x2 cv F Test for Comparing Supervised Classification Learning
Algorithms”, Neural Computation, Vol. 11, pp.1975-1982, 1999,

Bishop, C., Neural Networks Jor Pattern Recognition, Oxford University Press, 1996.

Breiman, L., J. H. Friedman, R. A. Olshen and C. J. Stone, Classification and Regression
Trees, Wadsworth: Belmont, CA, 1984. '

Breslow, L. A. and D. W. Aha, Simplifying Decision Trees: A Survey, NCARAI Technical
Report No. AIC-96-014, 1997.

Brodley, C. E. and P. E. Utgoff, “Multivariate Decision Trees”, Machine Learning Vol. 19,
pp. 45-77, 1995.

Dietterich, T., M. Kearns and Y. Mansour, “Applying the weak learning framework to
understand and improve C4.5”, Proceedings of the Thirteenth International Conference on

Machine Learning, Bari, Italy: Morgan Kaufmann, 1996.

Duda, R. O. and P. E. Hart, Pattern Classification and Scene Analysis, Wiley-Interscience
Publication, 1973.

Esposito, F., D. Malerba and G. Semeraro, “Decision tree pruning as a search in the state
space”, Proceedings of the European Conference on Machine Learning, Vienna, Austria:

Springer-Verlag, pp.165-184, 1993.

Fayyad U. M. and K. B. Irani, “The attribute selection problem in decision tree
generation”, In Proceedings of A4AI-92, pp. 104-110, 1992.

134

Guo, H. and S. B. Gelfond, “Classification Trees with Neural Network Feature
Extraction,” IEEE Transactions on Neural Networks, Vol. 3, pp. 923-933, 1992.

Hampson, S. E. and D. J, Volper, “Linear Function neurons: Structure and Training?”,
Biological Cybernetics, Vol. 53, pp. 203-210, 1986.

Holte, R. C., “Very simple classification rules perform well on most commonly used data
sets”, Machine Learning, Vol. 11, pp. 63-91, 1993,

Mathues, C. J. and L. A. Rendell, “Constructive induction on decision trees”, In IJCAI-89,
pp. 645-650, 1989.

Merz, C J. and P. M. Murphy, UCI Repository of Machine Learning Databases, 1998,
http://www.ics.uci. edu/~mlearn/MLRepository.html.

Mingers, J., “An empirical comparison of selection measures for decision tree induction”,
Machine Learning, Vol. 3, pp. 319-342, 1989. '

Mitchell, T., Machine Learning, McGraw-Hill, 1996.

Pagallo G. and D. Haussler, “Boolean feature discovery in empirical learning”, Machine
Learning, pp. 71-99, 1990.

Rencher, A. C., Methods of multivariate analysis, Wiley Series, 1995.
Quinlan, J. R., “Induction of decision trees”, Machine Learning, Vol. 1, pp- 81-106, 1986.

Quinlan, J. R., “Unknown attribute values in induction”, Proceedings of the Sixth
International Workshop on Machine Learning pp. 164-168, 1989.

135

Quinlan, J. R., “C4.5: Programs for machine learning”, San Mateo, CA: Morgan
Kaufmann, 1993,

Utgoff, P. E. and C. E. Brodley. “Linear Machine decision trees”, (COINS Technical

Report 91-10), Amberst, MA: University of Massachuseits, Department of Computer and
Information Science, 1991.

136

REFERENCES NOT CITED

Bennett, K. P. and O. L. Mangasarian, “Robust linear programming discrimination of

two linearly inseparable sets”, Optimization Methods and Software, Vol. 1, pp. 23-24,
1992. ‘

Murthy, K. S., S. Kasif and S. Salzberg, “A system for induction of oblique decision
trees”, Journal of Artificial Intelligence Research, Vol. 2, pp. 1-32, 1994.

Oliver, J. J., “Decision Graphs — An Extension of Decision Trees”, Proceedings of

the Fourth International Workshop on Artificial Intelligence and Statistics, pp. 343-350,
1993.

	Tez705001
	Tez705002
	Tez705003
	Tez705004
	Tez705005
	Tez705006
	Tez705007
	Tez705008
	Tez705009
	Tez705010
	Tez705011
	Tez705012
	Tez705013
	Tez705014
	Tez706001
	Tez706002
	Tez706003
	Tez706004
	Tez706005
	Tez706006
	Tez706007
	Tez706008
	Tez706009
	Tez706010
	Tez706011
	Tez706012
	Tez706013
	Tez706014
	Tez706015
	Tez706016
	Tez706017
	Tez706018
	Tez706019
	Tez706020
	Tez706021
	Tez706022
	Tez706023
	Tez706024
	Tez706025
	Tez706026
	Tez706027
	Tez706028
	Tez706029
	Tez706030
	Tez706031
	Tez706032
	Tez706033
	Tez706034
	Tez706035
	Tez706036
	Tez706037
	Tez706038
	Tez706039
	Tez706040
	Tez706041
	Tez706042
	Tez706043
	Tez706044
	Tez706045
	Tez706046
	Tez706047
	Tez706048
	Tez706049
	Tez706050
	Tez706051
	Tez706052
	Tez706053
	Tez706054
	Tez706055
	Tez706056
	Tez706057
	Tez706058
	Tez706059
	Tez706060
	Tez706061
	Tez706062
	Tez706063
	Tez706064
	Tez706065
	Tez706066
	Tez706067
	Tez706068
	Tez706069
	Tez706070
	Tez706071
	Tez706072
	Tez706073
	Tez706074
	Tez706075
	Tez706076
	Tez706077
	Tez706078
	Tez706079
	Tez706080
	Tez706081
	Tez706082
	Tez706083
	Tez706084
	Tez706085
	Tez706086
	Tez706087
	Tez706088
	Tez706089
	Tez706090
	Tez706091
	Tez706092
	Tez706093
	Tez706094
	Tez706095
	Tez706096
	Tez706097
	Tez706098
	Tez706099
	Tez706100
	Tez706101
	Tez706102
	Tez706103
	Tez706104
	Tez706105
	Tez706106
	Tez706107
	Tez706108
	Tez706109
	Tez706110
	Tez706111
	Tez706112
	Tez706113
	Tez706114
	Tez706115
	Tez706116
	Tez706117
	Tez706118
	Tez706119
	Tez706120
	Tez706121
	Tez706122
	Tez706123
	Tez706124
	Tez706125
	Tez706126
	Tez706127
	Tez706128
	Tez706129
	Tez706130
	Tez706131
	Tez706132
	Tez706133
	Tez706134
	Tez706135
	Tez706136

