
MODEL CHECKING OF AMBIENT CALCULUS SPECIFICATIONS AGAINST

AMBIENT LOGIC FORMULAS

by

OZAN AKAR

BSc, in Computer Engineering, İstanbul Technical University, 2006

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2009

iii

ACKNOWLEDGEMENTS

First of all, I thank my advisor Prof. Mehmet Ufuk Çağlayan for his support and

guidance during my studies. He supported me from the beginning and gave me a big

amount of his time for this thesis.

I would like to thank Prof. Emin Anarım and Assist. Prof. Fatih Alagöz for

being a part of the committee.

I thank Devrim Ünal for discussions we had and for his feedback during my

study. Many critical ideas about my thesis were sprouted during these discussions. His

recommendations and criticisms made my arguments much more solid and richer.

I thank Gökhan Kabukcu for his support during my time at Boğaziçi University.

He shared his time and knowledge with me and has always been there when I needed.

I thank Mete Geleş, Şerif Bahtiyar and Salih Bayar for thier supports and com-

ments on this thesis. What I captured from those comments were very helpful for me.

I have taken great pleasure from their company as well as I have learned a lot.

I thank the members of NETLAB for their discussions and feedbacks during my

studies. I enjoyed being a member of their productive and joyful environment. I seized

an opportunity to get acquainted with great people there.

I thank Murat Turan, Tolga Çadırcıoğlu, A. Turgay Yiğit and Murat Akzeybek

for their great friendship and support while I were studying on this thesis.

Most important of all, I would like to express my deepest gratitude to my family,

especially to my mother, for their endless love, patience and encouragement.

iv

ABSTRACT

MODEL CHECKING OF AMBIENT CALCULUS

SPECIFICATIONS AGAINST AMBIENT LOGIC

FORMULAS

Formal methods are mathematical techniques applied in specification and ver-

ification of concurrent interactive systems. Model checking is a widely used formal

method for formal verification of systems. In model checking, an exhaustive search is

applied on a finite state model of the target system.

While there are model checkers to verify the only temporal behaviors of systems,

two new notions of model checking analysis recently come into prominence, mobility

and locations. Although there are various model checker proposals for modeling and

verifying concurrent interactive systems with respect to mobility and locations, there

are a few model checker tools able to perform such verifications. In this thesis, a new

model checking methodology is proposed which is able to verify temporal and spatial

properties of systems together. The proposed model checking methodology is able to

perform more detailed verifications than existing tools.

In this thesis, ambient logic and ambient calculus are used as formal languages

to express models and the properties of the systems. Ambient calculus is a process

calculus derived from π-calculus. It is able to theorize about concurrent systems with

respect to mobility and locations. Ambient logic is a modal logic able to express

temporal and spatial properties of models. It is strictly based on ambient calculus.

Proposed model checking methodology accepts models expressed with a fragment of

ambient calculus and properties expressed with a fragment of ambient logic as inputs.

It returns a success message or the states of the model which are violating properties.

In the scope of this thesis, an implementation of proposed methodology is provided

v

which is the only tool using both ambient calculus and ambient logic.

In this thesis, performance of the proposed model checking methodology is shown

over case studies. Security policies defined for multi-domain networks need to be for-

mally checked against security breaches and ensured that they are consistent in a given

network configuration. In case studies, a set of ambient calculus specifications mod-

eling such networks are verified against ambient logic formulas with proposed model

checking methodology.

vi

ÖZET

ÇEVREL CEBİR TANIMLAMALARININ ÇEVREL

MANTIK FORMÜLLERİ İLE MODEL DENETLEMESİ

Biçimsel metotlar koşut zamanlı sistemlerin tanımlanmasında ve doğrulanmasında

yararlanılan matematiksel tekniklerdir. Biçimsel metotların sıkça kullanılan bir örneği

de model denetlemedir. Model denetleme yönteminde hedef sistemin soyutlama ile

oluşturulurmuş sonlu durumlu bir modeli üzerinde tüm durumların doğrulandığı kap-

samlı bir inceleme yürütülür.

Sistemlerin zamana bağlı davranışlarını inceleyen model denetleyiciler mevcuttur.

Yakın zamanda iki yeni kavram, konumlar ve konum değiştirme, model denetlemede

önem kazanmıştır. Konum ve konum değiştirme kavramlarını kapsayan çeşitli model

denetleme yöntemleri üzerine algoritmalar önerilmişse de, bu tarz bir denetleme ya-

pabilen çok az model denetleme uygulaması gerçeklenmiştir. Bu tezde koşut zamanlı

sistemlerin zamansal ve uzaysal davranışlarını inceleyebilen yeni bir model denetleme

metodolojisi önerilmektedir. Önerilen bu model denetleme metodolojisi ile sistemlerin

uzaysal davranışları var olan model denetleme uygulamalarından daha kapsamlı bir

şekilde incelenebilmektedir.

Çevrel cebir ve çevrel mantık bu tez kapsamında modellerin ve sistem özelliklerinin

ifade edilmesinde kullanılacak biçimsel dillerdir. Çevrel cebir π-cebrinden türetilmiş

bir işlev cebridir. Çevrel cebir ile koşut zamanlı sistemler, konumlar ve konumsal

değişiklikler üzerinden modellenebilir. Çevrel mantık koşut zamanlı sistem model-

lerinin zamansal ve uzaysal özeliklerinin belirtilebildiği bir kipler mantığıdır. Çevrel

mantık çevrel cebir üzerine bina edilmiştir. Önerilen model denetleme metodolojisi

girdi olarak bir koşut zamanlı sistemin çevrel cebrin bir alt kümesi ile ifade edilmiş

bir modelini ve çevrel mantığın bir alt kümesi ile belirtilmiş sistem özelliklerini alır.

vii

Model denetleyici çıktı olarak ya başarı mesajı döner ya da verilen sistem özelliklerinin

sağlanmadığı durumları döner. Önerilen model denetleme metodolojisi çevrel cebir ve

çevrel mantık kullanan ve hali hazırda gerçeklenmiş olan tek araçtır.

Bu tezin kapsamında, gerçeklenmiş olan araç için performans sonuçlarının du-

rum çalışmaları üzerinden gösterilmesi de bulunmaktadır. Çok etki alanlı ağlar için

tanımlanmış güvenlik politikalarının güvenlik açıklıkları bulundurmadıkları ve belirli

bir ağ yapılandırmasında tutarlı oldukları biçimsel yöntemlerle doğrulanmalıdır. Bu

tezdeki durum çalışmalarında çevrel cebir ile modellenmiş çok etki alanlı ağlar, çevrel

mantık ile belirtilmiş özelliklere karşı, önerilen model denetleyici ile doğrulanmaktadır.

viii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . vi

LIST OF FIGURES . x

LIST OF TABLES . xii

LIST OF SYMBOLS/ABBREVIATIONS . xiv

1. INTRODUCTION . 1

1.1. Motivation . 3

2. PRELIMINARIES . 5

2.1. State Transition Systems . 5

2.2. Computation Tree Logic . 6

2.2.1. Operators . 6

2.3. Ambient Calculus . 7

2.3.1. Ambient . 10

2.3.2. Name . 10

2.3.3. Name Restriction . 12

2.3.4. Inactivity . 12

2.3.5. Parallel Composition . 12

2.3.6. Replication . 13

2.3.7. Capabilities . 13

2.3.8. Communication . 13

2.3.9. Variables . 13

2.4. Ambient Logic . 14

2.4.1. Excluded Connectives . 20

2.4.2. Derived Connectives . 20

3. PROPOSED MODEL CHECKING METHODOLOGY 23

3.1. Approach to the Problem . 25

3.2. Internal Representation of Specifications and Formulas 27

3.3. Reduction Of Ambient Logic Formulas . 29

ix

3.3.1. Nesting Problem of Temporal Operators 31

3.4. State Transition System Generation . 33

3.5. Checking Spatial Modalities of Ambient Logic 37

3.5.1. Auxiliary Functions . 38

3.5.1.1. Wildcard Search . 38

3.5.1.2. Guessing Expected Ambients 39

3.5.1.3. Searching Sublocation . 40

3.5.2. Matching Processes of Ambient Logic Connectives 43

3.5.2.1. Locations . 43

3.5.2.2. Negation . 43

3.5.2.3. Disjunction . 44

3.5.2.4. Somewhere . 44

3.5.2.5. Parallel Composition . 44

3.6. Kripke Structure Generation . 47

3.7. NuSMV Code Generation . 48

4. COMPLEXITY ANALYSIS . 52

4.1. Time Complexity . 52

4.1.1. Time Cost of The Match Process at Parallel Composition Con-

nective . 53

4.1.2. Time Cost of The Match Process at Somewhere Connective . . . 54

4.2. Space Complexity . 55

5. CASE STUDIES . 56

6. RELATED WORK . 60

7. CONCLUSION . 63

APPENDIX A: Ambient calculus specifications used at case studies 65

APPENDIX B: Ambient logic formulas used at case studies 67

REFERENCES . 68

x

LIST OF FIGURES

Figure 2.1. (a) is a Kripke Structure. (b) is computation tree of the Kripke

Structure at (a) . 6

Figure 2.2. Semantics of temporal operators of CTL. Light gray area shows the

states where p is satisfied. Dark gray area shows the states where

q is satisfied. 7

Figure 2.3. CTL Syntax. φ ranges over a set of atomic propositions 8

Figure 2.4. Mobility and communication primitives 11

Figure 2.5. Syntax of ambient logic . 17

Figure 3.1. Model checking tasks. 24

Figure 3.2. Block diagram of the proposed model checking process 26

Figure 3.3. Internal representation of state information. Graph at (a) is ambi-

ent topology of state where graph at (b) is capability tree. 28

Figure 3.4. Internal representation of F = ♢ { ◇ { m[l[j[]] ∣ T] ∣ T }} ∨ ◻ { ◇ {

k[{r[] ∣ T } ∨ 0] ∣ T}} as a graph. 30

Figure 3.5. The CTL formula after decomposition of graph at Figure 3.4 into

temporal and spatial subgraphs. 31

Figure 3.6. The spatial formulas after decomposition of graph at Figure 3.4

into temporal and spatial subgraphs. 32

xi

Figure 3.7. State transition system after all states are generated for P = { m[in

k. open l.n[] ∣ k[out m.in j.r[]]] ∣ l[in m. in k. j[]] } . Labels on the

edges shows the capability causes the transition. 35

Figure 3.8. Details of states at Figure 3.7. 36

Figure 3.9. The evaluation of wildcard and guessExpectedAmbients functions for

F ∶∶= n1[n2[]] ∣ n3[] ∨ n5[T] ∨ ◇n[10] ∣ ◇{n16[] ∣ {n11[] ∣ n12[]} ⇒
n14[]}. Nodes having wildcard property are filled with grey. The

set of the expected ambient compositions is shown in the boxes

with dashed border line at the top of the related node. 41

Figure 3.10. A match example for process P = n1[] ∣ n3[] ∣ n4[] ∣ n7[n5[] ∣
n6[]] ∣ n8[] and formula F = n1[] ∣ {n2[] ∨ {n3[] ∣ n4[]}} ∣ ◇
{n5[] ∣ n6[]} ∣ ¬n8[]. Graphs consisting of rectangle nodes are am-

bient topologies assigned to spatial formula graph nodes. Graphs

consisting of circle nodes is spatial formula graph. 46

Figure 3.11. Kripke Structure obtained by checking spatial modalities of states

of state transition system at Figure 3.7 with respect to spatial for-

mulas at Figure 3.6. 47

xii

LIST OF TABLES

Table 2.1. Structural congruence . 15

Table 2.2. Reductions . 16

Table 2.3. The fragment of ambient calculus used in this thesis 16

Table 2.4. Derived connectives . 21

Table 2.5. The fragment of ambient logic used in this thesis 22

Table 3.1. State transition system generation algorithm 37

Table 3.2. Algorithm of wildcard . 39

Table 3.3. Algorithm of guessExpectedAmbients 40

Table 3.4. Algorithm of findSublocation . 42

Table 3.5. Variable declaration example for NuSMV 48

Table 3.6. An example of assignments of state variables at NuSMV 49

Table 3.7. A generated NuSMV code example 51

Table 5.1. Properties of specifications . 56

Table 5.2. State transition system generation cost. 57

Table 5.3. Properties of formulas . 57

xiii

Table 5.4. Performance results with 1 GB heapsize 57

Table 5.5. Performance results with 8 MB heap size 58

Table 5.6. Performance results of NuSMV with generated code 58

xiv

LIST OF SYMBOLS/ABBREVIATIONS

GAT Ambient Topology Graph

NAT Set of Ambient Topology Nodes

AAT Set of Ambient Topology Arcs

GCT Capability Tree

NCT Set of Capability Tree Nodes

ACT Set of Capability Tree Arcs

GF Formula Graph

NF Set of Formula Graph Nodes

AF Set of Formula Graph Arcs

NL Set of Location Nodes

NBinary Set of Binary Connective Nodes

NUnary Set of Unary Connective Nodes

NPC Set of Parallel Composition Nodes

APC Set of Parallel Composition Arcs

ABinary Set of Binary Connective Arcs

AUnary Set of Unary Connective Arcs

l Number of Location Nodes

dw Number of Disjunctions with Wildcard Property

d Number of Disjunctions with Wildcard Property

not Number of Negations

sww Number of Somewhere Connectives with Wildcard Property

sww Number of Somewhere Connectives with Wildcard Property

ae Number of Expected Ambients

ane Number of Unexpected Ambients

Π The set of Processes

Φ The set of Formulas

ϑ The set of Variables

Λ The set of Names

xv

φ The set of Atomic Propositions

LTL Linear-time Temporal Logic

CTL Computation Tree Logic

1

1. INTRODUCTION

In computer science, formal methods are mathematical languages, techniques and

tools which can be used at specification and verification of various systems. They are

applied in specification and verification of broad range of systems when high integrity

systems like hardware, software, security protocols and biological systems are subjects.

The use of formal methods at describing the system and its properties is called formal

specification. When they are used as specification instruments they are expected to

provide designs which is unambiguous, more reliable and more robust. Formal meth-

ods also can be applied to the work of verification of systems, which is called formal

verification. Formal verification is supposed to provide building proofs or disproofs

of desired properties that system must hold. It can be used also for finding anoma-

lies at behaviors of the system. Some principal techniques of formal verification are

simulation, testing, automated theorem proving and model checking.

One of the main stream approaches at formal verification is model checking which

can be defined as building a finite model of system and performing an exhaustive search.

The main idea in model checking is defining an automatic mechanism which explores

all of the possible states that the system can be found in and test these states if a

set of desired properties is hold in or not. Model checking must be fully automatic

that it should not need user interaction when the formal specifications of system and

properties are provided. It is clear that the set of the possible states of system must

be finite to perform such an exploration and check over the system. Because of the

set of states are finite, the search over these states can be reduced to a graph search.

Various types of systems can be subjects of model checking. An important application

area of the model checking is the analysis of security protocols.

The concept of the analysis that model checkers do, can be diverse. Most of

current model checkers are based on temporal analysis of the behaviors of the systems.

There exits well developed model checking tools for formal languages where analyzed

modalities are generally temporal. But recently another notion of analysis comes into

2

prominence beside the temporal behaviors, the mobility. There are model checkers

which include a limited representation of mobility. They are limited because of lacking

a key notion for mobility, locations. The location notion is important because the sep-

aration of the environments, that mobility is performed through, must be distinguished

by some construct. For example when modeling the movements of user between do-

mains in a multi-domain network, a construct is needed to represent the domains of

network in the model as the environment that mobility happens in. While there are

proposals for modeling concurrent interactive systems with respect to mobility and lo-

cations, there exists a few model checker for analyzing models build by these proposals.

In this thesis a new model checking methodology is proposed, which is able to check a

formal language specification including mobility aspects against a logic that is capable

of representing both temporal and spatial (with notion of location) modalities.

Process algebras are mathematical tools used for modeling real world systems

for decades. All process algebras have special modeling aspects like modeling commu-

nication between interactive systems. Ambient calculus is a process algebra which is

focused on modeling mobile computation and mobile processes. Ambient calculus is a

useful tool to model complex systems because of its facilities in expressing hierarchies

of locations and their mobility [14, 15]. It provides various constructs for represent-

ing spatiality and mobility. This thesis uses ambient calculus as formal language for

specifying system models.

Like other examples of process calculi, ambient calculus it not capable of specify-

ing properties of system models. In computer science such properties can be specified

formally by a modal logic. A modal logic is a formalism that attempts to deal with

modalities which are represented by modal operators. The most known modal logics

are temporal logics. But for the system and calculus in which main aspect is mobility

and spatiality, some extra modalities is needed for dealing with mobility and spatial

properties. Ambient logic is a modal logic to express properties of mobile computations

for temporal and spatial modalities [2]. Ambient logic is strictly based on ambient cal-

culus. It can describe the structural and behavioral properties of constructs of ambient

calculus. This thesis uses ambient logic for specifying properties of the system models.

3

This thesis proposes a new methodology for model checking where model checking

problem is formalized as: given a desired property, expressed as an Ambient Logic

Formula A , and a model specification, expressed as a Ambient Calculus specification

P , decide if P ⊧ A i.e. A is hold in model P. This thesis offers a complete definition of a

model checking tasks with algorithms and implementation details. To minimize the size

of model checking problem, reduced fragments of ambient logic and ambient calculus are

used. In the proposed methodology an existing model checker is benefited for temporal

modalities. Despite of reduced fragments of the logic and the calculus, the proposed

methodology is sufficient to verify concurrent systems with respect temporal and spatial

modalities. A set of case studies at networking is presented at this thesis to show

the sufficiency of implementation of proposed methodology for verifying concurrent

systems.

The thesis is organized as follows: In Chapter 2, transition systems, computa-

tional tree logic, ambient calculus and ambient logic will be introduced. In Chapter 3,

the proposed methodology is presented with its abilities and limitations. In Chapter

4, complexity of the the proposed solution is discussed. In Chapter 5, case studies are

shown. In Chapter 6 other existing methods and comparisons with these methods are

discussed. Chapter 7 concludes the work.

1.1. Motivation

As the network grows, use of dividing the network into multiple domains simplifies

administration of network. Multi domain networks can be used in several scenarios

including military and enterprize networks. In such networks users are allowed to use

network connectivity of multiple domains. But each domain might be under different

administrations which regulates the activities of the users with respect to their domain

configurations. Multiple domain networks are especially fitting to organizations that

span multiple locations, information classifications, or business functions.

When dealing with multi-domain a new concept comes into consideration, roam-

ing. Roaming can be identified as traversing among domains. Roaming users present

4

challenges for authorization and access control mechanisms in environments with multi-

ple domains. Authorization and access control mechanisms determine the access rights

for roaming users are more complicated than single domain.

A security policy determines security mechanisms at administrative domains as

actions that users capable of over the resources of these domains. As being defined for

a single administrative domain, security policies also can be defined for a collection of

administrative domains, multiple administrative domains. In their ongoing work Ünal

and Çağlayan propose a framework for specification and verification of security policies

of multiple domain mobile networks [1]. In their framework security policies also model

the mobility of roaming users and the resources. This framework makes use of ambient

calculus to formally define the mobile processes and ambient logic to formally define

the restriction and the conditions about these processes. In their framework security

policies need to be formally checked against security breaches. Also security policies

must be ensured by using a formal method that they are consistent in a given network

configuration.

Although there are implementations of various model checkers and algorithms for

model checking of ambient calculus against ambient logic, there is not any implemen-

tation of an ambient calculus model checker which using ambient logic. One of the

main outputs of the this thesis is an implementation of a model checking tool can be

used at formal verification of the security policies in the framework of [1].

5

2. PRELIMINARIES

2.1. State Transition Systems

A state transition system is an abstract machine used in the study of computa-

tion. A transition system model a system by means of states and transitions between

states. In a state transition system the set of states and the set of transitions are not

necessarily finite, or even countable. The main difference of state transition system

from automate is that states are labeled instead of transitions in state transition sys-

tems. State transition systems can be represented as digraphs. Formally, an unlabeled

state transition system is a tuple (S, R) where

� S is a set of states

� R ⊂ S × S is a binary relation over S.

A Kripke Structure is a kind of state transition system where states are labeled.

Labels of a state is a set of atomic propositions which hold in that state. Atomic

propositions can be considered as the marking of systems properties.

Definiton 2.1.1 (Kripke Structure) Let AP be a non-empty set of atomic proposi-

tions. A Kripke Structure is a four-tuple; M = (S, S0, R, L) where

� S is a finite set of states.

� S0 ⊆ S, is the set of initial states.

� R ⊆ S× S, is a transition relation

� L: S → 2AP is a function that labels each state with the set of atomic propositions

true in this state.

A computation tree of a state transition system is a tree visualizing all possible

computation paths.

6

a

a, b b

a

a, b b

a

a, b b

a a

a

a, b b

a a

(a) (b)

Figure 2.1. (a) is a Kripke Structure. (b) is computation tree of the Kripke Structure

at (a)

2.2. Computation Tree Logic

Temporal logic is a formalism for representing, and reasoning about, propositions

qualified in terms of time. Computation tree logic (CTL) is a type of temporal modal

logic. Temporal logics may differ according to how they handle branching in the under-

lying computation tree. CTL’s model of time is a tree-like structure in which formulas

reason about many executions at once. CTL formulas are interpreted over transitions

systems like Kripke Structures, linearized as trees. CTL is used in formal verification

of software or hardware systems by model checkers like SPIN and NuSMV.

2.2.1. Operators

CTL is given by the standard boolean logic enhanced with temporal operators.

In CTL, temporal operators are separated in two group, path quantifiers and linear-

time operators. All linear-time operators must always be quantified by path quantifier

operator.

7

� Logical operators

The logical operators are : ¬,∨,∧,⇒ and ⇔. Along with these operators CTL

formulas can also make use of the boolean constants true and false.

� Temporal operators

– Quantifiers over paths

* A - for every path

* E - for some path

– Path-specific quantifiers

* X - holds at next state

* G - holds at the entire subsequent path.

* F - holds eventually somewhere on the path

* U - holds until.

a

a, b b

a

a, b b

a

a, b b

a a

a

a, b b

a a

(a) (b)

Figure 2.2. Semantics of temporal operators of CTL. Light gray area shows the states

where p is satisfied. Dark gray area shows the states where q is satisfied.

2.3. Ambient Calculus

The process calculi (or process algebras) are diverse family of related approaches

for modeling interactive concurrent systems formally. The process calculi focus on

8

F , G ::=

T

F

φ

¬F

F ∨ G

F ∧ G

F ⇒ G

F ⇔ G

AXF

EXF

AFF

EFF

AGF

EGF

A[FUG]
E[FUG]

Figure 2.3. CTL Syntax. φ ranges over a set of atomic propositions

9

expressing concurrency, synchronization, and communication. They also provide alge-

braic laws that allow process descriptions to be manipulated and analyzed. By these

algebraic laws, details of internal computations of system is abstracted in the model.

There exits various types of process calculi where each of them focusing different as-

pect of computation. Their common properties can be listed as parallel composition

of processes, sequencing of interactions, hiding of information and recursion or process

replication. Ambient calculus, proposed by Cardelli and Gordon, is a process calculus

which is able to theorize about concurrent systems that include mobility and locations

[4]. Ambient calculus based on notion ambient which represents a bounded place (lo-

cation) in which computation can occur or a resource can be nested in. It is asserted

that ambient calculus is a very expressive process calculus to specify spatial and tem-

poral behaviors of concurrent systems [14, 15]. This thesis uses ambient calculus for

specifying system models. Although there are typed versions of ambient calculus in

the proposed thesis untyped monadic version of ambient calculus is used.

Like all process algebras, ambient calculus relies on the notion of process. Pro-

cesses are the exact counterparts of real world system elements at model. Properties of

processes at Ambient Calculus can be analyzed in two separate views, spatial properties

and temporal properties.

The notion of ambient is the basic element of the spatiality at processes. Ambients

are bounded places identified by a name where processes reside in or out. Ambients

can be nested in other ambients. This provides hierarchical organization of locations.

All process algebras have constructs which resembles the changes of the real world

systems over time, called temporal constructs. Most of the calculi provide temporal

construct as communication primitives. This approach is adequate to represent the

interaction between parallel processes. Because the main aspect of ambient calculus

is modeling mobility of the systems more inherently then existing calculi, ambient

calculus provide temporal constructs other than communication primitives. Temporal

constructs, named actions and capabilities interchangeably, are introduced in ambient

calculus for rearrangement of ambient hierarchy as movement of processes or dissolving

10

locations. There are three main capabilities in ambient calculus as entrance, exit and

dissolution which are expressed as in n, out n, open n respectively. Capabilities can

be ordered as a sequence to represent sequential execution as well as they can exist

as parallel. Their effect on ambients is regulated by the name references they contain.

Capabilities ordered as sequences are called path. They must be attached to an ambient

or inactivity (0). While the ability of change of ambient hierarchy represents the

mobility, they can be used to represent every kind computation [4]. There is also

communication primitives at ambient calculus which enable processes within the same

ambient may exchange messages.

Syntax of ambient calculus is showed at the Figure 2.4. In this thesis a fragment

of the ambient calculus is used. This fragment is described while introducing ambient

calculus constructs. Main trade off at defining the fragment is between expressivity of

the fragment and the implementation complexity of the model checker. The fragment

described here is capable of expressing systems defined at [1].

2.3.1. Ambient

As mentioned before ambients are core construct of the ambient calculus. They

represent a bounded place for computation. Ambients strictly define what is inside

and what is outside. All interactions among processes are regulated by the ambients

and their topology. Each ambient must define its boundaries with square brackets and

must be identified by a name.

2.3.2. Name

Names are not used for identifying ambients. They are used as access keys for

ambients to be used by capabilities i.e. capabilities can effect or use ambients with

name known by them. Two distinct ambients can have the same name. For example

in statement n[P] ∣ n[Q] there are two distinct ambients which are surrounding two

distinct processes.

11

P,Q ::= processes

(νn)P restriction

0 inactivity

P ∣Q composition

!P replication

M[P] ambient

M.P capability

(x).P input

⟨M⟩ async output

M ::= capabilities

x variable

n name

in M can enter into M

out M can exit out of M

open M can open M

ε null

M.M path

Figure 2.4. Mobility and communication primitives

12

But in the fragment of ambient calculus used in this thesis names are restricted to

be unique. So they become an identifier in scope of this thesis. This restriction reduces

the implementation complexity by eliminating renaming and bookkeeping tasks for

ambients, which are not core model checking tasks.

2.3.3. Name Restriction

As mentioned before names are not unique identifiers for ambients in full fragment

of ambient calculus. So the ambients which have same name can be accessed or used

by the same set of capabilities. In ambient calculus name restriction is used for distin-

guishing the ambients with same names when necessary. For example in the statement

open n.0 ∣ n[P] ∣ n[Q] there is an capability, open n, which can dissolve ambients with

the name n. So by consuming this capability, statement can evolve into two different

future statements, P ∣ n[Q] and n[P] ∣ Q. But with name restriction it is possible to

hide an ambient from this capability. In the statement openn.0 ∣ n[P] ∣ (vn)n[Q], the

name n is identify as a private name in the scope of n[Q] and distinguished other uses

at the same statement. So the capability open n is not applicable to second ambient

at the statement anymore. This operator is used for name hiding to provide hidden

locations and resources. Because names are unique identifiers in the fragment of ambi-

ent calculus of this thesis it is not sound to support name restriction operator. Name

restriction is excluded in fragment of ambient calculus of this thesis.

2.3.4. Inactivity

The inactive process, 0, is a common operator that we encounter most of process

calculi. It specifies the empty process which does nothing. It is not reducible.

2.3.5. Parallel Composition

Parallel execution of the processes is represented by this operator. It is a com-

mutative and associative operator. It is also another common operator of the process

calculi.

13

2.3.6. Replication

Replication operator denotes infinite and parallel executed copies of its operand.

It is used for representing iteration and recursion. Fragments of ambient calculus with

this construct make model checking problem undecidable [5]. Replication is excluded

in fragment of ambient calculus of this thesis.

2.3.7. Capabilities

A capability path is a sequence of capabilities which contains one or more capabil-

ities. A path must be attached to an ambient or inactivity process. A path is executed

sequentially from starting the first capability of the sequence. There are three kinds

of capabilities: one for entering an ambient, one for exiting from an ambient and one

for opening up an ambient. Capabilities contain references to their objects as names.

Given a name n, the capability in n reduces as an entrance into ambient named n,

the capability out n reduces as exit from ambient named n and the capability open n

reduces as dissolution of ambient named n. Operational semantics of the capabilities

are shown at Table 2.3.

2.3.8. Communication

In ambient calculus communication constructs are asynchronous and local to an

ambient. Ambient calculus does not support channel names for communication where

some other process calculi do. While communication is used to exchange both names

and capabilities in the full fragment, communication of the capabilities is excluded in

fragment of ambient calculus of this thesis. Operational semantics of the communica-

tion primitives are shown at Table 2.3.

2.3.9. Variables

Variables are place holders for names at the ambient calculus processes where an

input operation is included at capability path. When an output operation provides a

14

name to an input operation every instance of variable in the scope of input capability

is replaced with incoming name.

The semantics of ambient calculus is based on structural congruence relation.

structural congruence identifies processes up to elementary spatial rearrangements [4].

The dynamic properties of ambient calculus originate from capabilities and com-

munication primitives. This set of construct of ambient calculus is called temporal

constructs. The semantics of these construct are identified by reduction relations.

Table 2.3 shows the reduction rules for temporal constructs.

EC ∶∶= World[Domain[Server[key[⟨message⟩ ∣ out Server.in Client.0]] ∣
Client[open key.(x).x[in folder.0] ∣ folder[]]]]

→ World[Domain[Server[]] ∣ key[⟨message⟩ ∣ in Client.0] ∣
Client[open key.(x).x[in folder.0] ∣ folder[]]]

→ World[Domain[Server[]] ∣ Client[key[⟨message⟩] ∣
open key.(x).x[in folder.0] ∣ folder[]]]

→ World[Domain[Server[]] ∣ Client[⟨message⟩ ∣ (x).x[infolder.0] ∣
folder[]]]

→ World[Domain[Server[]] ∣ Client[message[infolder.0] ∣ folder[]]]
→ World[Domain[Server[]] ∣ Client[folder[message[]]]]

At above an ambient calculus process example is shown with its evolution resulted

from reduction of capabilities. Process EC models an encrypted messaging from Server

to Client. Encryption of message is encoded by ambient named key.

2.4. Ambient Logic

As mentioned before modal logics are used for expressing properties of models

which cannot be expressed by the constructs of calculi. Ambient logic of Cardelli and

15

Table 2.1. Structural congruence

P ≡ P (Struct Refl)

P ≡ Q⇒ Q ≡ P (Struct Symm)

P ≡ Q,Q ≡ R⇒ P ≡ R (Struct Trans)

P ≡ Q⇒ (νn)P ≡ (νn)Q (Struct Res)

P ≡ Q⇒ P ∣R ≡ Q∣R (Struct Par)

P ≡ Q⇒!P ≡!Q (Struct Repl)

P ≡ Q⇒ n[P] ≡ n[somewhereQ] (Struct Amb)

P ≡ Q⇒M.P ≡M.Q (Struct Capability)

P ∣Q ≡ Q∣P (Struct Par Comm)

(P ∣Q)∣R ≡ P ∣(Q∣R) (Struct Par Assoc)

!P ≡ P ∣!P (Struct Repl Par)

(νn)(νm)P ≡ (νm)(νn)P (Struct Res Res)

(νn)(P ∣Q) ≡ P ∣(νn)Qifn ∉ fn(P) (Struct Res Par)

(νn)(m[P]) ≡m[(νn)P]ifn ≠m (Struct Res Amb)

P ∣0 ≡ P (Struct Zero Par)

(νn)0 ≡ 0 (Struct Zero Res)

!0 ≡ 0 (Struct Zero Repl)

P ≡ Q⇒ (x).P ≡ (x).Q (Struct Input)

ε.P ≡ P (Struct ε)

(M.M ′).P ≡M.M ′.P (Struct .)

16

Table 2.2. Reductions

n[inm.P ∣Q]∣m[R] →m[n[P ∣Q]∣R] (Red In)

m[n[outm.P ∣Q]∣R] → n[P ∣Q]∣m[R] (Red Out)

openn.P ∣n[Q] → P ∣Q (Red Open)

P → Q⇒ (νn)P → (νn)Q (Red Res)

P → Q⇒ n[P] → n[Q] (Red Amb)

P → Q⇒ P ∣R → Q∣R (Red Par)

P ≡ P,P → Q,Q ≡ Q⇒ P → Q (Red ≡)

(x).P ∣⟨n⟩ → P{x← n} (Red Comm)

→∗ reflexive and transitive closure of →

Table 2.3. The fragment of ambient calculus used in this thesis

Construct Expression Status

Name n,m restricted to be unique

Name restriction ν excluded

Variable x included

Parallel composition ∣ included

Capabilities in included

out

open

Inactivity 0 included

Replication ! excluded

Prefixing . included

Ambient [] included

Input () included

Output ⟨⟩ restricted to only names can

be communicated

17

Gordon is very expressive modal logic for expressing spatial and temporal properties of

ambient calculus [2]. Ambient logic is strictly based on ambient calculus i.e. all spatial

and temporal constructs are reflected in the logic. The main differences of ambient

logic from latter logics are more expressive space modalities and simpler temporal

connectives [14, 15]. With full fragment of ambient logic it is possible to derive formulas

expressing capabilities of processes for movement and for communication, as well as

the persistence of processes, and free occurrences of names in processes. In this thesis

a fragment of ambient logic is used.

η, µ a name n or a variable x

A ,B,C ::=

T true

¬A negation

A ∨B disjunction

0 void

A ∣B composition

A ▷B guarantee

n[A] location

A @η placement

η®A revelation

A ⊘ η hiding

♢A sometime modality

◇A somewhere modality

∀x.A universal quantification

Figure 2.5. Syntax of ambient logic

Ambient logic has temporal and spatial modalities in addition to propositional

logic elements. At the Figure 2.5 primitive connectives of full fragment of the ambient

logic are shown. Other connectives can be derived from these primitive connectives.

Semantics of the connectives of the ambient logic will be given through satisfaction

18

relations. The definition of satisfaction is based heavily on the structural congruence

relation [2]. The semantics of the connectives included in the fragment of ambient logic

used in this thesis are introduced at definitions below. These definitions are taken from

[2]. The satisfaction relation is denoted by ⊧ symbol. To express the process P satisfies

the formula A , P ⊧ A is used. The symbol Π denotes the set of processes, Φ denotes

the set of formulas, ϑ denotes the set of variables, and Λ denotes the set of names.

Names are used in logic in the same manner they used in ambient calculus. Al-

though names are restricted to be unique at ambient calculus, they do not have to

be unique at ambient logic formulas. Variables are used only at name quantification

operator. The fragment of ambient logic does not include variables and name quantifi-

cation.

Definiton 2.4.1 The atomic formula T of ambient logic is satisfied by all processes of

ambient calculus.

∀P ∈ Π.P ⊧ T

Definiton 2.4.2 Negation of a formula is satisfied by any process which does not sat-

isfy original formula.

∀P ∈ Π,A ∈ Φ.P ⊧ ¬A
△= ¬P ⊧ A

Definiton 2.4.3 A process satisfies the formula A ∨B if it satisfies either A or B.

∀P ∈ Π,A ,B ∈ Φ.P ⊧ A ∨B
△= P ⊧ A ∨ P ⊧B

Definiton 2.4.4 The formula 0 is satisfied by only processes structurally congruent to

inactivity process.

∀P ∈ Π.P ⊧ 0
△= P ≡ 0

19

Definiton 2.4.5 The formula n[A] is satisfied by processes which are structurally

congruent to n[P ′] for any P’ where A is satisfied by P ′.

∀P ∈ Π, n ∈ Λ,A ∈ Φ.P ⊧ n[A] △= ∃P ′ ∈ Π. P ′ ⊧ A ∧ P ≡ n[P ′]

Definiton 2.4.6 The formula A ∣B is satisfied by any process that can be decomposable

into two processes as P ′∣P ′′ where P ′ satisfies A and P ′′ satisfies B.

∀P ∈ Π,A ,B ∈ Φ.P ⊧ A ∣B △= ∃P ′, P ′′ ∈ Π. P ≡ P ′∣P ′′ ∧ P ′ ⊧ A ∧ P ′′ ⊧B

Definiton 2.4.7 The nesting relation, denoted by ↓, is defined over two processes as

P ↓ Q and indicates that Q is nested one level down in any ambient which exists at the

top of the topology of P.

P ↓ P ′ iff ∃ n,P ′′.P ≡ n[P ′]∣P ′′

Definiton 2.4.8 Relation ↓∗ is reflexive transitive closure of ↓. P ↓∗ Q indicates that

P contains Q in somewhere of its topology.

↓∗ is the reflexive and transitive closure of ↓

Definiton 2.4.9 Somewhere connective, ◇, is used for specifying nesting properties of

processes on the basis provided by Definition 2.4.8. The formula ◇A is satisfied by

processes which satisfies A in some inner location.

∀P ∈ Π,A ∈ Φ.P ⊧ ◇A △= ∃P ′ ∈ Π. P ′ ⊧ A ∧ P ↓∗ P ′

Definiton 2.4.10 Sometime connective, ♢, is used for specifying temporal behavior of

the processes on the basis provided by reduction relations (→) defined at section 2.3.

20

The relation →∗ is reflexive transitive closure of reduction relation. ♢A is satisfied by

processes which can evolve into a future process holding A .

∀P ∈ Π,A ∈ Φ.P ⊧ ♢A
△= ∃P ′ ∈ Π. P ′ ⊧ A ∧ P →∗ P ′

2.4.1. Excluded Connectives

The formula A @n, placement, is satisfied by processes which can satisfy A when

they placed into an ambient named n. Location adjunct connective is not included in

the fragment of ambient logic used in thesis.

A reading of P ⊧ A ▷B is that P (together with its context) manages to satisfy

B under any possible attack by an opponent that is bound to satisfy A [2]. This

connective is not included in the fragment of ambient logic used in thesis because it

makes model checking process undecidable [5].

The connectives revelation, ⊘, and hiding, ®, operate on restricted names and

their scopes. Because name restriction is not included at calculus these connectives are

not included in the fragment of ambient logic used in thesis.

Name quantification ranges over names. It maps all possible names to a formula

with respect to a variable. This connective is not included in the fragment of ambient

logic used in thesis.

2.4.2. Derived Connectives

Some of the connectives of the ambient logic are derivable from the primitive

connectives. Because of this, these connectives are not included in the fragment of logic

directly. Formulas including these connectives must be rewritten with connectives of

the primitive set. In table 2.4 these derived connectives are shown. In table 2.5 the

fragment of ambient logic used at this thesis is summarized.

21

Table 2.4. Derived connectives

Expression Derivation Connective

F ¬T False

A ∧B ¬(¬A ∨ ¬B) Conjunction

A ⇒B ¬A ∨ B Implication

A ⇔B (A ⇒B) ∧ (B⇒ A) Logical Equivalence

A ∥B ¬(¬A ∣ ¬B) Decomposition

A ∀ A ∥ T Every component satisfies A

A ∃ A ∣ F Some component satisfies A

◻A ¬♢¬A Everytime modality

◽A ¬ ◇ ¬A Everywhere modality

A ∣ ⇒B ¬(A ∣ ¬B) Fusion adjunct

n[⇒ A] ¬n[(¬A] If there is an n, its contents satisfies A

22

Table 2.5. The fragment of ambient logic used in this thesis

Construct Expression Status

name n,m Included

variable x Not included

void 0 Included

Parallel composition ∣ Included

Negation ¬ Included

Disjunction ∨ Included

Guarantee ▷ Not included because of decidability issues

Location [] Included

Location Adjunct @ Not Included

Revelation ® Not included because name restriction is

not supported at the fragment

Hiding ⊘ Not included because name restriction is

not supported at the fragment

Sometime ♢ Included

Somewhere ◇ Included

Name quantification ∀ Not included

23

3. PROPOSED MODEL CHECKING METHODOLOGY

One of the main stream approaches at formal verification is model checking.

Model checking is a model-oriented, automatic process of checking the validity of P in

M, where M is a finite-state model of a system and P is a property.

Model checking can be divided into three processes as modeling, specification and

verification. In model checking the core element is model of system. Models are ab-

stract system descriptions of the original system [12]. Modeling can be seen as process

of converting the system into a formalism i.e. a high level representation of system.

Generally full specifications of systems hold more information than the interested prop-

erties. This brings a lot of unnecessary states to explore. An abstract representation

can be obtained by removing unwanted details from the system description in such a

way that properties of interest are preserved. The abstracted system description can

be used to generate a smaller state space which can effectively be used in a verification

process. The specification part of model checking consists of describing the model and

the properties by a formal language. The specification of model and properties are the

inputs of verification process. Verification process of model checking can be defined

as exploring all states in a model and checking whether a certain set of properties is

valid for these states. A basic algorithm can be given as converting specification of

model into a data structure, like Kripke Structure, by starting from an initial state,

generating successive system states by evaluating the possible inputs, checking if the

given properties are hold in these states. The check process at here is an exhaustive

search, where all reachable states must be visited.

Although the model checking process is guaranteed to terminate due to finite

state space, the process of generating all state space will have an exponential com-

plexity and visiting all states will be quite hard, even impossible for current hardware

technology. The size of the state space for such a model depends on the number of

concurrent processes, the number and range of the internal variables, the type of the

exchanged messages, and the nature of the communication [13]. Several methods have

24

been developed for dealing with state explosion problem. In our thesis, coping with

state explosion problem is not one of the main concerns.

Model Checker

Concurent

System

Specification of

System

Properties

Model Checking

Algorithm

Internal

Representation

Internal

Representation

True

 or

Flase with counter

example

In terms of a formal

language

In terms of a formal

language

Fully Automated

Feedback

Abstraction

Figure 3.1. Model checking tasks.

In this thesis a model checking methodology is proposed for model checking of

systems modeled as ambient calculus specifications against properties specified as am-

bient logic formulas. Model Checking is very large problem, especially when complex

calculi and logics are the subjects. To minimize to effort for design and implementation,

fragments of the calculus and the logic is taken.

The ambient logic model checking can be decomposed into two major search

problems. First is searching future evolutions of a given model. Evolution of the

model means the reorganizations of the spatial configuration of the model in course

of time. Capabilities of ambient calculus cause changes at spatial configuration of

the state which yields another (future) state. A logic formula can include constructs

quantify rest of formula over future states. So when evaluating truth of a formula

against an ambient calculus specification, analysis of reachable future states is needed.

Second major search problem of the model checking problem is the search of spa-

tial congruence of model and the logic formula. Both of ambient calculus specification

and ambient logic formulas have spatial patterns. This spatial pattern can be seen as

a forest of the ambients. Logic formulas also contain extra constructs which does not

denote spatiality directly but regulates semantics of spatial constructs. So the model

25

checker must match these patterns in the calculus specifications in order to evaluate

the satisfaction.

3.1. Approach to the Problem

Modal checkers based on temporal logic is exits for more than 15 years. In rest of

this paper term ”temporal model checker” refers this kind of model checkers. Reusing

one of these well developed and researched methodologies reduces the scale of our

problem. To benefit from one of these existing methodologies we divide our problem

into two sub problems as temporal modal checking and spatial model checking. The

proposed algorithm based on this approach derived from the work of Mardare et al [6].

Benefiting from a temporal model checker inside the proposed model checking

methodology will reduce the effort needed for implementation. Temporal model checker

is used for carrying out satisfaction process for the sometime and everytime connectives

of ambient logic. Nevertheless the proposed model checking methodology still has to

generate all possible future states and build a state transition system from these states.

This state transition system will be processed into a Kripke Structure which will be

given to temporal model checker as input.

This thesis proposes model checking algorithms for spatial modalities while tem-

poral modalities are handled by an existing temporal modal checker as black box.

In this thesis NuSMV is used as temporal model checker. Outline of the proposed

algorithm for the model checking problem is shown as below.

� Define atomic propositions with respect to spatial properties of ambient logic

formula and register the (atomic proposition-spatial modality) couples.

� Reduce ambient logic formula to temporal logic formula (CTL) by replacing spa-

tial modalities with atomic propositions.

� Generate state transition system of the ambient calculus specification with respect

to reduction relations.

– Create initial state from given ambient calculus specification

26

– Generate new states by applying available capabilities with respect to re-

duction relations defined at [4].

– Add new states to state transition system with transition relation.

� Generate Kripke Structure from state transition system

– Assign the values of the atomic propositions for each state of state transi-

tion system(labeling) by applying model checking for spatial modalities on

ambient topology of the related state.

– Add a new state with its label (values of atomic propositions) to Kripke

Structure

� Generate NuSMV code from Kripke Structure and CTL Formula.

Ambient Calculus

Parser

Ambient Logic

Parser

Ambient

Calculus

Specification

Ambient

Logic

Formula

State

Generator

Atomic

Propostions with

Spatial Formulas

State Transition

System

Spatial

Model

Checker

Kripke

Structure Temporal

Model

Checker

Positive Results

or

Negative Results

with Counter

Examples

CTL

Formula

CTL

Formula

Proposed Model Checking Methodology

Figure 3.2. Block diagram of the proposed model checking process

This thesis takes the algorithm for generation state transition system of Mardare

as base and offers a new data structure and algorithm which enhances calculation time

of state transition system.

In the work [5, 10] exhaustive search is offered for searching possible decomposi-

tions of processes and searching sub locations when checking spatial modalities. This

thesis takes the brute force search as näıve algorithm for searching possible decomposi-

27

tions of processes and searching sub locations and offers heuristics to reduce the search

space.

3.2. Internal Representation of Specifications and Formulas

Internal representation of the information of the calculus and logic is an important

decision which influences the search operations. In [6] state information is represented

in terms of sets. In [5] calculus information and the logic information is represented

as strings and algorithms are based on string operations. In this thesis all kind of

information like ambient topology of calculus or the structure of the logic formulas are

represented as graphs.

State information of an ambient calculus process consists of static properties and

dynamic properties. Static properties of state are the ambients and their hierarchical

organization, i.e. ambient topology. The dynamic properties of the state, the potential

of process to evolve, are the capabilities and their dependencies to each other. Static

and dynamic properties of an ambient calculus specification are kept in separate data

structures.

Definiton 3.2.1 Ambient Topology, GAT = (NAT ,AAT), is acyclic digraph where nodes

denoting ambients of specification and arcs denoting parent-child relation among am-

bients.

� NAT is a set of the nodes

� nodes are labeled with elements of Λ

� AAT is a set of arcs

� an arc a = {x, y ∣ x, y ∈ NAT}

� indegree of nodes are 1

� outdegree of nodes can be any positive integer

Definiton 3.2.2 Capability Tree, GCT = (NCT ,ACT), is a acyclic digraph where nodes

28

denoting capabilities and arcs denoting priority relation among capabilities. Nodes con-

tain the information about which ambient the capability is attached and which ambient

the capability effects.

� NCT is the set of the nodes

� ACT is a set of arcs

� an arc a = {x, y ∣ x, y ∈ NCT}

� indegree of nodes are 1

� outdegree of nodes can be any positive integer

m

j

l

r

kn

n | in k

n | open l j | in k

r | out m

r | in j

j | in m

(a) (b)

Figure 3.3. Internal representation of state information. Graph at (a) is ambient

topology of state where graph at (b) is capability tree.

Graphs representing formulas are more complex than the others. They are acyclic

digraph where node denotes connectives and locations and arcs denote the operator

operand relation. There are multiple types of nodes and arcs at formula graphs because

of the different structure of the ambient logic connectives.

Definiton 3.2.3 Formula, GF = (NF ,AF), is acyclic digraph where

� NF = (NL ∪ NBinary ∪ NUnary ∪ NPC).

29

� NL is the set of nodes representing ambients

� elements of NL are labeled with elements of Λ.

� NUnary is the set of nodes representing unary connectives (¬, ◇, ♢) at formulas.

� NBinary is the set of nodes representing binary connectives, (∨) at formulas.

� NPC is the set of nodes representing parallel compositions at formulas.

� AF = (APC ∪ ABinary ∪ AUnary)

� an arc a ∈ APC = x, y∣x ∈ NPC , y ∈ (NL ∪ NBinary ∪ NUnary). Elements of

APC represents parallel compositions of connectives at ambient logic formulas.

� an arc a ∈ AUnary = (x, y ∣ x ∈ (NL ∪ NUnary), y ∈ NPC)
� an arc a ∈ ABinary = (x, y∣x ∈ NBinary, y ∈ NPC)
� indegree of nodes of NF is one.

� outdegree of nodes of NPC can be any positive integer

� outdegree of nodes of NUnary and NL are is one

� outdegree of nodes of NBinary is two.

� Elements of NPC can have a special attribute to represent the T construct of the

logic.

� If T attribute of a NPC node is set to true this means the parallel composition of

process that the NPC node stands for, includes T constant.

Graphs representing ambient calculus processes denote parallel composition re-

lation implicitly. The ambients placed under same node are considered as parallel

constructs. So the parallel composition operator is not needed represented at graphs

explicitly. But in graphs representing ambient logic formulas parallel composition must

be represented explicitly because of binary connectives. To distinguish two distinct sub

formulas connected by a binary operator, parallel composition connective of ambient

logic must be denoted explicitly at graphs of ambient logic formulas.

3.3. Reduction Of Ambient Logic Formulas

To be able to use an existing temporal model checker, the ambient logic formulas

have to be reduced to temporal logic formulas. Temporal operators of ambient logic

30

V

◊ □

j

km

l

r

V

T

Parallel

Comrositions

Parallel

Comrositions

Parallel

Comrositions

Parallel

Comrositions

Parallel

Comrositions

Parallel

Comrositions

Parallel

Comrositions

Parallel

Comrositions

Parallel

Comrositions

Parallel

Comrositions

Parallel

Comrositions

Parallel

Comrositions

Parallel

Comrositions

Parallel

Comrositions T

T

T

Figure 3.4. Internal representation of F = ♢ { ◇ { m[l[j[]] ∣ T] ∣ T }} ∨ ◻ { ◇ { k[{r[] ∣
T } ∨ 0] ∣ T}} as a graph.

31

are sometime (♢) and everytime (◻) connectives. These operators are equivalent to EF

and AG operators of CTL respectively. Only thing to reduce ambient logic formulas

into a CTL equivalent form is replacing spatial modalities of the ambient logic formulas

by atomic propositions.

j

km

l

r

V

T

Parallel

Composition
Parallel

Composition

Parallel

Composition

Parallel

Composition

Parallel

Composition

Parallel

Composition

Parallel

Composition

Parallel

Composition

Parallel

Composition T

T

T

V

◊ □

Parallel

Composition

Parallel

Composition

Parallel

Composition

Parallel

Composition

Parallel

Composition

AP1 AP2

AP1 AP2

Figure 3.5. The CTL formula after decomposition of graph at Figure 3.4 into

temporal and spatial subgraphs.

3.3.1. Nesting Problem of Temporal Operators

Using an existing tool for temporal model checking will reduce our work but it

also has a drawback. While using a temporal model checker, some of the ambient logic

formulas should be restricted.

� n[♢A]
� n[◻A]
� ♢A ∣♢B

� ◻A ∣ ◻B

� ◽ ◻A

32

j

km

l

r

V

T

Parallel

Composition
Parallel

Composition

Parallel

Composition

Parallel

Composition

Parallel

Composition

Parallel

Composition

Parallel

Composition

Parallel

Composition

Parallel

Composition T

T

T

V

◊ □

Parallel

Composition

Parallel

Composition

Parallel

Composition

Parallel

Composition

Parallel

Composition

AP1 AP2

AP1 AP2

Figure 3.6. The spatial formulas after decomposition of graph at Figure 3.4 into

temporal and spatial subgraphs.

33

� ◽♢A

� ◇ ◻A

� ◇♢A

At list above, some valid ambient logic formulas are listed. These formulas are

not reducible to CTL formulas. They are not reducible because they have temporal

operators at the sub-formulas which are operands of spatial operators. For example

a formula like ♢ A ∣ ♢ B can’t be converted to a CTL formula because temporal

modalities are one nesting down from spatial modality ”∣”. These formulas also don’t

have semantically equivalent derivatives which can be converted into CTL formula. In

proposed methodology ambient logic formulas must be restricted as having temporal

operators at only higher levels of spatial operators i.e. temporal operators can’t exist in

sub formulas connected by spatial operators. The restriction also brings an advantage.

This restriction of ambient logic formulas provides the use of other CTL operators like

AF or EG in a more straightforward way.

3.4. State Transition System Generation

In proposed model checking methodology the state transition system is generated

from the initial model specification. State transition system is used at generation

of Kripke Structure. The succeeding states are generated by executing the dynamic

properties, capabilities. Because replication is not included in the proposed fragment,

states are incapable of generation states which are equivalent to themselves or their

former states as future states. As a result of this, state transition system can be

represented by an acyclic digraph where nodes denote states and the edges denote

attainability by one capability execution. Because there may be parallel capabilities

that either of them can be executed first, the transitions at the state transition system

are branching, not linear. The alternative execution orders of capabilities produce

branching state transitions. Generating reachable states are researched in [5, 7, 17, 18].

Proposed thesis takes approach of [7] as starting point and offers a data structure which

reduces calculation time.

34

When deciding the next capability to execute, there are some condition checks

must be carried out. These conditions are the presence of the object ambient at right

place and the availability of subject ambient. If the object ambient of the capability

is not present at right place or it prefixed by a capability path, the capability cannot

be executed. If the parent ambient of the subject ambient is prefixed by a capability

path, the capability cannot be executed. In proposed thesis the presence of the object

ambient at right place and the existence of prefixes are checked at every time the

capability to be executed.

In proposed thesis a novel method (capability trees) to represent temporal be-

haviors of stated is offered which eliminates the time to check if the subject ambient is

available. Capability paths are organized as an acyclic digraphs with respect to their

interdependencies resulted by prefixing of parents (see Figure 3.3). This graph is built

at parsing stage so no extra preprocessing is needed. Choosing the next capability to

execute is started from the root of this graph. This method guarantees that the capa-

bilities of the parent processes are executed before the capabilities of child processes.

As a result this, no check for availability of the subject ambient is needed.

The proposed state transition system generation process is a recursive procedure

that takes a capability graph and a state as inputs. In fact the capability graph is

a part of the state information but in procedure it is explicitly mentioned to provide

more evident sight of algorithm. Initial state information from the parser is passed the

first call of the procedure. The proposed state transition system generator procedure

calculates the child states of the given state and invokes itself with appropriate param-

eters for each child state to let them calculate their own child states. A state transition

system will be resulted the end of this process. All states at this state transition system

will be checked against spatial formulas when Kripke Structure generated.

35

S0

S1 S6

r | out m j | in m

S2 S10

S4

S5

S11

S12

S3 S7

n | in k j | in kj | in m r | out m

n | in k r | out m

n | in kn | open l

S8

S9

n | open l

n | in k

 P: { m[in k. open l.n[] | k[out m.in j.r[]]] | l[in m. in k. j[]] }

Figure 3.7. State transition system after all states are generated for P = { m[in k.

open l.n[] ∣ k[out m.in j.r[]]] ∣ l[in m. in k. j[]] } . Labels on the edges shows the

capability causes the transition.

36

m

j

l

r

k

n

n | in k

n | open l j | in k

r | in j j | in m

S1

S3, S7

S5, S9

S10

m

j

l r

k

n

n | in k

n | open l

j | in kr | in j

m

j

r

k

n

m

j

lr

kn

S12

m

j

lr

k

n

m j

l

r

k

n

S2

S4, S8

S6

n | open l

j | in k

r | in j j | in m

m

j

l

r

k

n

n | open l j | in kr | in j

m

j

l

r

kn

n | in k

n | open l

r | out m

S11

m

j

lr

k

n

m

j

l

r

kn

n | in k

n | open l j | in k

r | out m

r | in j

j | in m

S0

j | in kr | in j

j | in k

r | in j r | in jn | open l

n | in k r | out m

n | in k

n | open l

r | in j r | in jn | open l

Figure 3.8. Details of states at Figure 3.7.

37

Table 3.1. State transition system generation algorithm

PROCEDURE stateSpaceGenerator

BEGIN

input : GRAPH is capability tree, PARENT is state

output : none

CURRENT as capability node

CHILD as state

REPEAT

CURRENT ← next top most node of GRAPH

CHILD ← execute CURRENT over PARENT

add CHILD to PARENT as successor state

stateSpaceGenerator(PARENT - CURRENT, CHILD)

UNTIL GRAPH is not empty OR all topmost nodes of GRAPH is explored

END

3.5. Checking Spatial Modalities of Ambient Logic

The basic needs for building a model checker for ambient calculus and ambient

logic, are defined at [2] and section 2.4 as satisfaction rules. In the proposed method-

ology all the states generated must be checked against the spatial formulas. Ambient

logic formulas are decomposed into a CTL formula and a set of spatial formulas by the

formula reduction. Spatial formulas consist of spatial connectives of ambient logic and

classical propositional connectives listed below.

� true

� void

� Parallel composition

� Negation

� Disjunction

� Location

� Somewhere

38

The data structures that spatial model checking takes as inputs are the ambient topol-

ogy and the spatial formula graphs. The spatial model checking is used while Kripke

Structures are being generated.

Matching of an ambient topology and a spatial formula is a recursive procedure in

which ambient topology nodes are assigned to formula nodes. Matching process starts

with assigning root of the ambient topology to the root of the spatial formula. Spatial

formula nodes can forward the assigned ambient topology node to its children partially

or completely in a recursive manner. Match process is successful when all nodes at

ambient topology is matched a spatial formula node. Match processes at different type

of spatial formula nodes are different. These different match process are introduced

after auxiliary functions.

3.5.1. Auxiliary Functions

Auxiliary functions defined this section are the heuristics used at matching paral-

lel composition and somewhere connectives. Former works try to match every alterna-

tive while searching a match for these connectives. In proposed algorithm the number

of these trials are reduced by the help of auxiliary functions.

3.5.1.1. Wildcard Search. Some connectives at ambient logic match every kind of am-

bient topology. These connectives are used for matching ambients of ambient topology

which are not expressed at formulas. The constant T of the logic matches any ambient

topology assigned to it. Negation connective of the logic can be seen another kind of

wildcard connective. Negations matches any ambient topology unless the sub formula

of the negation matches this ambient topology. Another source of wildcard property

is somewhere connectives. At definitions 2.4.8, 2.4.7 and 2.4.9 the parallel process of

the parent ambient are neglected when searching sublocations. So if the sublocation

search is obtained by applying ↓ one or more times somewhere connective gets wildcard

property. Function wildcard is a recursive function used for determining if a node of

formula graphs has wildcard property or not.

39

Table 3.2. Algorithm of wildcard

PROCEDURE wildcard

BEGIN

input: NODE is a formula graph node

output: boolean constant

IF NODE is a location

return false

IF NODE is a disjunction

return wildcard(node.first child) ∨ wildcard(node.second child)

IF NODE is a somewhere

return true

IF NODE is a negation

return true

IF NODE is a parallel composition

BEGIN

IF NODE has a T property

return true

FOR EACH child of NODE

BEGIN

IF wildcard(child) = true

return true

END

END

return false

END

3.5.1.2. Guessing Expected Ambients. It is not obvious to see which ambients are ex-

pected at sub formulas of disjunction and somewhere connectives. guessExpectedAm-

40

bients function is a recursive function, returns a set of expected ambient combinations

for a formula graph node. The returned set includes all possible ambient combinations

expected by children of that node. The returned value is a set instead of a single

ambient combination.

Table 3.3. Algorithm of guessExpectedAmbients

PROCEDURE guessExpectedAmbients

BEGIN

input : NODE is spatial formula node

output: set of set of string

IF NODE is a location

return NODE.name

IF NODE is a disjunction

return guessExpectedAmbients(node.first child)

∪ guessExpectedAmbients(node.second child)

IF NODE is a somewhere

return guessExpectedAmbients(node.child)

IF NODE is a negation

return

IF NODE is a parallel composition

return cartesian products of the elements of

returned values of guessExpectedAmbients for each child

END

3.5.1.3. Searching Sublocation. Function findSublocation is a recursive function used

to find parent of an ambient at an ambient topology.

41

V1

n3

Parallel

Composition

n1 1

n2 V2

n5

n16 V3

n11

n14

n12

2

n10

n10

n5

n10

n3

n5

n10

n14

ε

n16, n14

n16, ε

n16, n3, n1, ε

n14, n16, n3, n1

n16, n5, n1, ε

n14, n16, n5, n1

n16, n10, n1, ε

n14, n16, n10, n1

n10

n3n2

n1

n16

n11 n12

n14

ε

Parallel

Composition
Parallel

Composition

Parallel

Composition

Parallel

Composition

Parallel

Composition

Parallel

Composition

Parallel

Composition

Parallel

Composition

Parallel

Composition

Parallel

Composition

Parallel

Composition

Parallel

Composition

Parallel

Composition

Parallel

Composition

Parallel

Composition

Parallel

Composition

Parallel

Composition

Parallel

Composition

n10n5

n5 n10

n5

n10n3
n16,n14

n16, ε

ε

T

n14

Figure 3.9. The evaluation of wildcard and guessExpectedAmbients functions for

F ∶∶= n1[n2[]] ∣ n3[] ∨ n5[T] ∨ ◇n[10] ∣ ◇ {n16[] ∣ {n11[] ∣ n12[]} ⇒ n14[]}.

Nodes having wildcard property are filled with grey. The set of the expected ambient

compositions is shown in the boxes with dashed border line at the top of the related

node.

42

Table 3.4. Algorithm of findSublocation

PROCEDURE findSublocation

BEGIN

input : WANTED is string, ROOT is ambient topology node

output: RESPONSE is ambient topology node

FOREACH child of ROOT

BEGIN

IF child.name = WANTED

return ROOT

END

FOREACH child of ROOT

BEGIN

RESPONSE ← findSublocation(WANTED,child)

IF RESPONSE ≠ null

return RESPONSE

END

return null

END

43

3.5.2. Matching Processes of Ambient Logic Connectives

In a match between an ambient topology and spatial formula graph, all nodes of

ambient topology must be matched with a node of spatial formula graph. Some nodes

of spatial formula graphs can forward the ambient topology nodes assigned to them

to their children while others match assigned ambient topology nodes directly. The

proposed spatial model check algorithm tries alternative assignments of given ambient

topology nodes over given spatial formula graph with respect to definitions in section

2.4. The proposed spatial model checking algorithm is recursive where matching process

starts from roots of graphs and continues level by level. If a suitable matching found

at upper level then matching process continues to find matches for lower levels. The

match process is regulated by the semantics of spatial formula graph node. The match

process for each kind of spatial formula graph node is introduced below.

3.5.2.1. Locations. Matching process at nodes representing locations is defined ac-

cording to definition 2.4.5. These nodes can be assign only one ambient topology node.

If the ambient topology node has not the same name with the location node, match

process for the location node fails. If the ambient topology node has the same name

with the location node, location node assigns the children of ambient topology node

to its parallel composition child. The result of the match is successful if the parallel

composition child of location node succeeds to find a match between its children and

the children of the assigned ambient topology node.

3.5.2.2. Negation. Matching process at the nodes representing negation connective is

defined according to definition 2.4.2. These nodes can be assigned a collection of am-

bient topology nodes. Negation assigns the whole set of the assigned ambient topology

nodes directly to its child parallel composition node. If the parallel composition child

of the negation node succeeds to find a match, match process for negation node fails.

If no match between ambient topology nodes and children of the parallel composition

is found, match process for negation node is successful.

44

3.5.2.3. Disjunction. Matching process at the nodes representing disjunction connec-

tive is defined according to definition 2.4.3. These nodes can be assigned a collection

of ambient topology nodes. As stated in section 3.2, nodes of type disjunction have

two parallel composition children. Disjunction assigns the whole set of the ambient

topology nodes directly to its child parallel composition nodes. If at least one of the

parallel composition nodes succeeds to find to a match, match process for disjunction

node is successful.

3.5.2.4. Somewhere. Matching process at the nodes representing somewhere connec-

tive is defined according to definition 2.4.9. These nodes can be assigned a collection of

ambient topology nodes. Somewhere node can start matching its parallel composition

node from any level of assigned ambient topology node collection. Match process at

somewhere nodes has to try all possible levels of the ambient topology nodes until it

find a successful match. This thesis proposes a heuristic to fasten the matching of

somewhere node. Searching a single node in the ambient topology is cheaper than

trying a full match in every level. By giving name of a location node child of parallel

composition child of somewhere node and the collection of ambient topology nodes

assigned to somewhere node, findSublocation finds level of ambient topology which

somewhere must start its match process. This technique eliminates the searches of the

levels which have not any possibility to match.

3.5.2.5. Parallel Composition. Matching process at the nodes representing parallel

composition connective is defined according to definition 2.4.6. These nodes can be

assigned a collection of ambient nodes. Match process at parallel composition decom-

poses assigned ambient topology node collection into subsets which will be forwarded

to children of the parallel composition node. While there are exponentially many al-

ternative decompositions, in this thesis the number of these alternatives is tried to be

reduced by the help of guessExpectedAmbients and wildcard functions.

These decompositions are made in two phase. In first phase the expected ambi-

ent topology nodes are assigned to child nodes of parallel composition node. By the

45

help of guessExpectedAmbients function the set of expected ambient topology nodes,

called guess set, are found for each child of parallel composition node. Then the ev-

ery expected ambient topology node, in the collection assigned to parallel composition

node, is forwarded to a child of parallel composition with a guess set including name

of the expected ambient topology node. At the end of first phase all expected ambient

topology nodes of the the assigned collection is assigned the related child of the parallel

composition node. But there will be still unassigned ambient topology nodes at the

collection.

Because there are ambient topology nodes which are not expected from any child

node, these nodes must be assigned to one of children of parallel composition with wild-

card property or neglected if the parallel composition node has T property. In second

phase children of the parallel composition is checked if they have wildcard property

or not by the help of wildcard function. After determining the set of children with

wildcard property, unexpected nodes of the ambient topology collection are assigned

to suitable elements of this set. If the parallel composition node does not have T

property or a child with wildcard property to assign unexpected nodes, match process

terminates unsuccessfully for this parallel composition node.

After assigning all ambient topology nodes at the assigned collection to children

of the parallel composition new matching processes are started for every child of the

parallel composition node. If one of the children fails, the match process for the parallel

composition node tries to find another decomposition of the assigned collection of

ambient topology nodes. Match process succeeds if match processes of all children

succeeds for a decomposition of the assigned collection of ambient topology nodes. In

Figure 3.10 matching of an ambient topology and a spatial graph for a successful match

is shown.

46

V1

Parallel

Composition

n1

n1, n3, n4, n5, n6,ε

n1,n2 ,n5, n6,ε

n1

n2

n8

ε

Parallel

Composition

Parallel

Composition

n2

Parallel

Composition

Parallel

Composition

Parallel

Composition

Parallel

Composition

n3 n4

Parallel

Composition

Parallel

Composition

Parallel

Composition

n5 n6

Parallel

Composition

Parallel

Composition

n3 n4

n2 n3, n4

n3, n4

n2 n5, n6

n1 n3 n4 n7 n8

n5 n6

n3 n4
n7

n5 n6

n8n1

n3 n4n3 n4

n3 n4

n5, n6

n5 n6

n5 n6

n5 n6 n8

n8

Figure 3.10. A match example for process P = n1[] ∣ n3[] ∣ n4[] ∣ n7[n5[] ∣ n6[]] ∣ n8[]

and formula F = n1[] ∣ {n2[] ∨ {n3[] ∣ n4[]}} ∣ ◇ {n5[] ∣ n6[]} ∣ ¬n8[]. Graphs

consisting of rectangle nodes are ambient topologies assigned to spatial formula graph

nodes. Graphs consisting of circle nodes is spatial formula graph.

47

3.6. Kripke Structure Generation

The data structure built at state transition system generation is used to obtain

Kripke Structure. This state transition data structure provides sets S, S0 and relation

R of a Kripke Structure. The elements of set of atmoic propositions come from formula

reduction. In formula reduction spatial formulas are replaced with atomic propositions.

The function L is generated by applying spatial model checking for each state in state

transition data structure against each spatial formula. Kripke Structure is obtained

by attaching the values, coming from spatial model checking, into the state transition

system graph.

 F: ◊(AP1) V □(AP2)
AP1: (m [l [j[]] | T] | T)
AP2: (k[p[] | T] | T)

 P: { m[in k. open l.n[] | k[out m.in j.p[]]] | l[in m. İn k. J[]] }

 F: ◊((m [l [j[]]] | T)) V □((k[p[] | T] | T))

 F’: (◊(m []) | (k[p[]])
is not decomposable

S0
 AP1=0 , AP2=1

S1
AP1=0 , AP2=1

S10
 AP1=0 , AP2=1

S11
 AP1=0 , AP2=1

S12
AP1=0 , AP2=1

S6
AP1=1 , AP2=1

S7
 AP1=1 , AP2=1

S9
AP1=0 , AP2=1

S8
 AP1=1 , AP2=1

S3
 AP1=1 , AP2=1

S5
AP1=0 , AP2=1

S4
 AP1=1 , AP2=1

S2
AP1=0 , AP2=1

Figure 3.11. Kripke Structure obtained by checking spatial modalities of states of

state transition system at Figure 3.7 with respect to spatial formulas at Figure 3.6.

48

3.7. NuSMV Code Generation

NuSMV is a symbolic model checker originated from the CMU SMV, the orig-

inal BDD-based model checker developed at CMU. The NuSMV project aims at the

development of a state-of-the-art symbolic model checker. It has a well structured and

flexible architecture which reduces the effort needed to modify and extend NuSMV. It

is open to use and modify due to it’s an OpenSource license1. NuSMV is very robust,

portable, efficient, and easy to understand by people other than the developers [16].

NuSMV allows for the representation of synchronous and asynchronous finite state

systems, and for the analysis of specifications expressed in Computation Tree Logic

(CTL) and Linear Temporal Logic (LTL), using BDD-based and SAT-based model

checking techniques [16]. Heuristics are available for achieving efficiency and partially

controlling the state explosion. Proposed model checking mechanism uses NuSMV as

temporal model checker. Former processes of model checking mechanism provide CTL

formula and a Kripke Structure. Rest of the work is generating a NuSMV code which

semantically equivalent to the Kripke Structure and Formula.

In NuSMV states are defined over states variables. In proposed thesis two kind of

NuSMV variables are used. A variable which is type of symbolic constant enumeration,

is used for specifying states. Its name is state. The possible values of this variable are

the identifiers of the states in Kripke Structure. The other kind of the state variables

used in NuSMV code generation is boolean variables for representing atomic proposi-

tions. For each atomic proposition produced at formula reduction, a variable exists in

NuSMV code which is type of boolean.

Table 3.5. Variable declaration example for NuSMV

VAR

AP1 : boolean;

AP2 : boolean;

state : {S0,S1,S2};

NuSMV codes have an assignment section for determining the values of the vari-

49

ables. There are three types of assignments, assigning initial values, assigning relative

values and assigning next values of variables. The label of the states of Kripke Struc-

ture is encoded at this section as relative assignment. Values of the atomic proposition

variables are assigned according to value of variable state. The only initial assignment

is done for variable state which determines the start of the state search. Transitions at

the Kripke Structure are defined over assignments of the next values of variable state.

At Table 3.6 assignments for NuSMV is illustrated.

Table 3.6. An example of assignments of state variables at NuSMV

ASSIGN

init(state) := S0;

AP1 :=

case

state = S0 : 0;

state = S1 : 0;

state = S2 : 0;

esac;

AP2 :=

case

state = S0 : 1;

state = S1 : 1;

state = S2 : 1;

esac;

next(state) :=

case

state = S0 : S1, S2;

1: state;

esac;

CTL formulas provided by formula reduction must be converted into input Lan-

guage of NuSMV. This conversion is straightforward. A string is generated according

to CTL formula graph provided by formula reduction where sometime connective is

50

represented as EF and everytime connective is represented as AG. The atomic proposi-

tions are reflected into the string with their names. At Table 3.7 the generated NuSMV

code for Kripke Structure at Figure 3.11 and formula at Figure 3.4 is represented.

51

Table 3.7. A generated NuSMV code example

MODULE main

VAR

AP1 : boolean;

AP2 : boolean;

state : S0,S1,S2,S3,S4,S5,S6,S7,S8,S9,S10,S11,S12;

ASSIGN

init(state) := S0;

AP1 :=

case

state = S0 : FALSE;

state = S1 : FALSE;

state = S2 : FALSE;

state = S3 : TRUE;

state = S4 : TRUE;

state = S5 : FALSE;

state = S6 : TRUE;

state = S7 : TRUE;

state = S8 : TRUE;

state = S9 : FALSE;

state = S10 : FALSE;

state = S11 : FALSE;

state = S12 : FALSE;

esac;

AP2 :=

case

state = S0 : TRUE;

state = S1 : TRUE;

state = S2 : TRUE;

state = S3 : TRUE;

state = S4 : TRUE;

state = S5 : TRUE;

state = S6 : TRUE;

state = S7 : TRUE;

state = S8 : TRUE;

state = S9 : TRUE;

state = S10 : TRUE;

state = S11 : TRUE;

state = S12 : TRUE;

esac;

next(state) :=

case

state = S0 : S1, S6;

state = S1 : S2, S3;

state = S3 : S4;

state = S4 : S5;

state = S6 : S7, S10;

state = S7 : S8;

state = S8 : S9;

state = S10 : S11;

state = S11 : S12;

1: state;

esac;

SPEC EF(AP1) — AG (AP2)

52

4. COMPLEXITY ANALYSIS

In proposed methodology, model checking process is decomposed into two inde-

pendent processes as generating state transition system and checking spatial modalities

for states. Time and space complexities for these processes are examined separately.

4.1. Time Complexity

Time complexity of generation states transition system is dependent to number of

capabilities. Each capability causes a future state. The functionality of the capabilities

tightly dependent to each other. They can operate on same ambients so execution of

a capability can disable other capabilities operating on the same ambient. For each

different execution order of capabilities operating on same ambient, there are different

number of applicable capabilities and future states. Another dependency between

capabilities are priority relations between them. The organization of the ambients

which capabilities attached on and sequencing of capabilities bring priority relation

between capabilities. A capability can not be executed before the other capabilities

with higher priority.

Because of the dependency facts mentioned above it is very difficult to guess the

number of states in state transition system from the number of capabilities. In the

worst case all capabilities are independent. Independent means all capabilities are at

same priority and all off them operates different ambients. In worst case execution

order of the capabilities does not alter the set of the applicable capabilities. If the

capability number is n, there are n capabilities to execute first, n−1 to execute second,

and so on until the last capability will be executed at nth order. The time cost of

generating state transition system in worst case is

n

∑
k=0

n!

k!
(4.1)

But in general dependent capabilities are more common at ambient calculus specifi-

53

cations. The alternative model checking algorithms have the same complexity with

proposed algorithm for generating future states. There is not any work on algorithms

reducing the number of states at state transition system for ambient calculus.

Time complexity of checking spatial modalities are dependent to the number of

the connectives of the spatial formulas. But it can be seen from definitions at section

2.4 that the match processes for satisfying different types of spatial connectives are not

similar. Satisfaction searches for the connectives location, disjunction, negation and

inactivity are done with two comparison at most while satisfaction search for parallel

compositions and somewhere connection tries arbitrary number of alternatives to find

a match. It can be said that the search for parallel compositions and somewhere

connectives are dominant at time consumption of the spatial model check process.

4.1.1. Time Cost of The Match Process at Parallel Composition Connective

The match process for parallel composition connective consist of two phase. First

one for assigning expected nodes and second one for assigning unexpected nodes. Let

� l is the number of location in the parallel composition,

� dw is the number of disjunctions which have wildcard property in the parallel

composition,

� d is the number of disjunctions which have not wildcard property in the parallel

composition,

� not is the number of negations in the parallel composition,

� sww is the number of somewhere connectives which have wildcard property in the

parallel composition

� sw is the number of somewhere connectives which have not wildcard property in

a parallel composition,

� G is the cost of calculating guessExpectedAmbients function

� W is the cost of calculating wildcard function

� ae is the number of topmost ambients of the ambient topology, are expected in

guess functions,

54

� ane is the number of topmost ambients of the ambient topology, are not expected

in guess functions,

The cost of first phase is dependent to disjunction connectives because each disjunction

causes two different expected node combinations. The number of different assignments

of expected nodes is

2dw+d (4.2)

Unexpected nodes of ambient topology can be assigned only the formula nodes which

has wildcard property. The number of different assignments of unexpected nodes are

a
(sww+not+dw)
ne (4.3)

The overall time cost of the match process is product of 4.2 and 4.3 plus costs of the

auxiliary functions

2dw+d × a(sww+not+dw)
ne +G +W (4.4)

Time cost of brute force search for trying all decomposition alternatives of ambient

topology nodes consisting ae and ane for the parallel composition is

(ane + ae)(sww+sw+l+not+d+dh) (4.5)

Time cost of guessExpectedAmbients and wildcard function are linear with the number

of connectives at spatial formula because they are called for each connective at formula

in a recursive manner.

4.1.2. Time Cost of The Match Process at Somewhere Connective

Time cost of finding a matching for somewhere connective is the sum of cost of

findSublocation and cost of the match process for the parallel composition connective

55

child of the somewhere connective. Let

� PC is the cost of match process of parallel composition child of somewhere con-

nective,

� F the cost of findSublocation function,

� a is the number of the ambients of the ambient topology,

The overall time cost of the match process for somewhere connective is

F + PC (4.6)

Time complexity of brute force search for finding a matching for somewhere connective

is

a × PC (4.7)

Time cost of findSublocation function is linear with a because it only looks for an

ambient with a specific name in an ambient topology. Time complexity of match

process of parallel composition is showed at 4.4.

4.2. Space Complexity

In state transition systems, states are generated due to capability executions.

Proposed algorithm builds state transition system with depth first manner. After

calculation of its successor states, a state can be discarded from memory. The depth

of the state transition system can be the number of capabilities at most. So the space

complexity of the space generation is O(n) where the n is number of capabilities.

Only one copy of the formulas is used at whole process of checking spatial modal-

ities. The space needed for this process is the size of the formula. Size of the formula

is dependent of the connectives at formula. So the space complexity of the formula is

O(n) where n is the number of the connectives at formula.

56

5. CASE STUDIES

In the scope of this thesis the proposed methodology for model checking of am-

bient calculus against ambient logic is implemented with Java. In this section the

implementation is tested with case studies from the [1]. Test are applied on the cluster

at cluster.tam.boun.edu.tr. The node of cluster which test is run on, has 8 x 2.93 GHz

CPUs, 9.76 GB memory.

These case studies include three ambient calculus specifications and two formulas.

Each ambient calculus specification models a multi domain network where domains,

host, user, and files are modeled as ambients. Formulas represent different properties

of these models. In tables at this section unit of the time measurements is second and

unit of the memory measurements is kilobyte.

Table 5.1. Properties of specifications

Specification Ambient Number Capability Number Number of States of

State Transition System

Spec1 16 32 560

Spec2 16 39 33123

Spec3 16 37 628527

Definitions of the specifications are given in Appendix A. All of the specifications

consist of same set of ambients where their starting ambient topology is same. The

main difference between them is the type and the number of the capabilities. Because of

this the future evolvements of the models vary dramatically. These three specifications

are checked against two different formulas. Definitions of the formulas are given in

Appendix B.

To measure the efficiency of the proposed algorithm, a variant of the algorithm

is implemented as näıve algorithm. The näıve algorithm does not make use of auxil-

iary functions instead it checks spatial modalities exhaustively. All specifications are

57

Table 5.2. State transition system generation cost.

Specifications Heap Size Time Memory

(second) (KB)

Spec1 1 GB 1.039 246478

8 MB 1.234 6228

Spec2 1 GB 12.453 350504

8 MB 18.120 7734

Spec3 1 GB 154.897 362384

8 MB 241.592 7911

Table 5.3. Properties of formulas

Formula Branching factor Depth

Formula1 1 4

Formula2 2.6 3

Table 5.4. Performance results with 1 GB heapsize

Formulas

Formula1 Formula2

Specifications Time Memory Time Memory

(second) (KB) (second) (KB)

Spec1 Proposed 1.265 262208 1.520 262208

Näıve 1.634 262208 1.829 262208

Spec2 Proposed 15.474 350872 17.134 351080

Näıve 15.334 350672 18.405 353392

Spec3 Proposed 172.289 362304 199.8151 375352

Näıve 171.812 364696 201.765 375160

58

Table 5.5. Performance results with 8 MB heap size

Formulas

Formula1 Formula2

Specifications Time Memory Time Memory

(second) (KB) (second) (KB)

Spec1 Proposed 1.440 6494 1.584 6427

Näıve 1.786 6565 2.000 7643

Spec2 Proposed 21.446 7808 21.503 7776

Näıve 21.012 7764 21.965 7905

Spec3 Proposed 293.428 7817 297.025 7833

Näıve 285.322 7826 297.518 7897

Table 5.6. Performance results of NuSMV with generated code

Specifications Formulas

Formula1 Formula2

Spec1 0.126 second 0.135 second

Spec2 463.918 seconds 615.361 seconds

Spec3 Segmentation fault Segmentation fault

59

checked against two formulas with both proposed algorithm and the näıve algorithm.

Because memory management of java is complicated due to garbage collector, the

model check process is run with two different heap size. In Table 5.4 and Table 5.5 the

performance results for model check processes are shown. The Time consumption of

NuSMV for processing generated code is shown at Table 5.6.

It can be said that state transition system generation outweighs the spatial model

check for both time and space consumption. Another result from these case studies is

that brute force check is better when formulas with lower branching factors is dealt.

Proposed heuristics are beneficial when formulas with high branching factors is dealt.

Proposed model checker is capable of handling specifications with 628527 state with

memory under 8 MB. Time consumption of NuSMV gets as more significant as the

state number increases. Size of the generated NuSMV code increases linear with state

number. NuSMV cannot process the generated code for the specification with 628527

states; it terminates with segmentation fault. Memory consumption showed at Table

5.4 can not tell the exact relation between capability number and memory consumption

but it can be said memory consumption does not grow exponentially while capability

number grows linearly.

60

6. RELATED WORK

There are model checkers for logics including spatiality aspects based on calculi

other than ambient calculus. One of them is The Spatial Logic Model Checker [22]

of Vieira et al. The Spatial Logic Model Checker is a model checker providing the

automatic verification systems expressed in the finite control fragment of the π-calculus

which supports recursion. π-calculus is a high-level mathematical modeling language

for concurrent systems. Mobility is a basic primitive in π calculus too but it lacks

locations. A spatial logic [23] is used in [22]. Spatial logic of [23] includes composition,

local name restriction, and a primitive fresh name quantifier as spatial operations in

addition to propositional and temporal operators.

Another model checker proposal for spatial modalities without notion of locations

is [21]. Lafuente presents an approach for the verification of spatial properties with Spin

in [21]. SPIN uses Promela to model the concurrent systems formally and linear-time

temporal logic (LTL) to specify system properties. In [21] SPIN is extended in order to

make it able to check spatial properties. They propose a model checking algorithm for

the logic and propose how SPIN can be minimally extended to include the algorithm.

A model checker algorithm based on ambient calculus and ambient logic is pro-

posed in [3] first by Cardelli and Gordon. Their algorithm is devised for replication-free

ambient calculus and guarantee free ambient logic. Name restriction is also removed

from the fragment of ambient calculus that they used. So the operators operate on

restricted names are not available in their fragment of ambient logic. An ambient cal-

culus model checker using ambient logic, depends on searches for reachable states and

sub-locations to check the sometime and somewhere modalities. In [3] the straightfor-

ward definitions of the routines to accomplish these searches are omitted, and brute

force search for calculating process decompositions for matching parallel formulas is

offered.

61

In [10], Charatonik et al introduce a finite-control fragment of the ambient cal-

culus. The replication-free fragment of ambient calculus can express processes able to

make only a finite number of computation steps. Previous work in [3] ambient cal-

culus is restricted to processes lacking infinite executions and name restriction. [10]

proposes a model checking algorithm for ambient calculus which provides recursively-

defined, possibly nonterminating processes first. The only short coming of recursive

defined process is the restriction of the output capability. In the fragment of ambient

calculus of [10] only names can be operands of output operation. In [10], a model

checker algorithm is proposed for the finite control fragment of the ambient calculus

against guarantee free ambient logic. They proved that the model checking problem

based on finite control ambient calculus is decidable and PSPACE-complete. Like [3],

[10] omits the straightforward definitions of the routines to accomplish the reachable

state search and sub-locations search. In [10] brute force search for calculating process

decompositions for matching parallel formulas is offered while stating that this task is

PSPACE-complete.

Charatonik et. al. study the model checking problem for the ambient calculus

with public names against the ambient logic in [5]. Their work settle the complexity

bounds of the model checking problem for the different fragments of the ambient calcu-

lus against the ambient logic. They show that ambient calculus with replication makes

model checking process undecidable due to infinite array of replicas of the processes.

They also show that an ambient logic formula including guarantee operator needs in-

finite quantification over processes which makes model checking problem undecidable

too. They proved that the problem is PSPACE-complete in the decidable case of the

replication-free ambient calculus with public names and the guarantee-free ambient

logic. They also assert that there are no interesting fragments with polynomial-time

model checking algorithms for ambient logic. They present a new model checking

algorithm to avoid the processes grow exponentially during their execution due to

communication by devising a new representation of processes. Like [3] and [10], [5]

omits the straightforward definitions of the routines to accomplish the reachable state

search and sub-locations search.

62

An alternative way of performing model checking for ambient calculus is offered

by Mardare et al [6]. They propose a methodology for model checking for biological

systems which are described by using ambient calculus. They introduce their own logic

to express the properties of processes described by ambient calculus. Their logic is de-

rived from CTL but it supports a spatial operator for spatial modalities. Expressivity

of their logic for spatial modalities is lower than ambient logic. Their model checking

approach can be defined as taking an ambient process definition and a logic formula

as input and build a NuSMV code from these inputs. The methodology offered in this

thesis is strongly influenced by their work. The main difference with the proposed

model checking methodology and [6] is that in the proposed model checking methodol-

ogy ambient logic is used, which is more expressive for mobility and spatiality aspects

than the logic used in [6]. Another difference is that capabilities are stored in a simple

list in [6], while this thesis proposes storing capabilities in a priority tree. Storing ca-

pabilities in a priority tree eliminates extra checks for availability of the next capability

to execute.

63

7. CONCLUSION

In this thesis a methodology for model checking of ambient calculus against am-

bient logic is proposed. The proposed methodology is based on separating analysis of

temporal and spatial properties from each other. While analysis of temporal modal-

ities are handle by the help of an existing tool, new algorithms for analyzing spatial

modalities proposed in this thesis. The approach of separating analysis of temporal

and spatial properties, is used at model checking of biological systems expressed with

ambient calculus at [6]. The proposed thesis differs from [6] on the logic it used and

the way of handling capabilities. While a CTL derived logic with a spatial operator is

used in [6] ambient logic is used at proposed thesis. Because ambient logic is strictly

based on ambient calculus it is more expressive for spatial properties of models.

The proposed separation of temporal and spatial analysis provides use of well

developed temporal model checkers. But to be able to use an existing temporal model

checker, ambient logic formulas have to nest spatial operators under temporal opera-

tors. This makes proposed algorithm less expressive than algorithms at [3, 5, 10].

The algorithms offered at [3, 5, 10] does not include implementation detail and

straightforward definitions of some procedures. A main contribution of this thesis

is providing an implementation of proposed algorithms which can be used at model

checking of security policies defined for multi domain networks with ambient calculus

and ambient logic.

In the scope of this thesis heuristics proposed for reducing time cost of analysis of

spatial properties. The results of performance test showed that proposed heuristics for

checking spatial modalities, fasten the model checking process for only formulas which’s

graphs has bigger branching factors. This improvement on time consumption of the

model checking process is not very significant in compare to total time consumption.

This is caused due to the way auxiliary functions are used. They are invoked at every

separate spatial model check process for each state while only one invoke is enough for

64

all spatial model check processes.

Case studies and complexity analysis show that size of the state transition system

is the most significant element at time and spatial cost of model checking. Number

of states grows exponentially as capability number increase linearly. A partial order

reduction might decrease the number of the states of the state transition system and

reduce time consumption and size of generated NuSMV code. In [20] partial order

reduction techniques are offered for pi-calculus but there is not a similar work for

ambient calculus. Investigating partial order reduction techniques for ambient calculus

is possible direction for future work.

There is no Turing-complete fragment of ambient calculus without recursion and

replication [19]. There are works showing model checking for a fragment of ambient

calculus with recursion is decidable [10]. Adding recursion to the fragment of ambient

calculus, another direction for future work, will extend the class of the accepted models

of the proposed model checking methodology.

65

APPENDIX A: Ambient calculus specifications used at case

studies

Spec1::= World[DomainA[Host1[User1[] ∣File1[data1[out File1.0∣out

Host1.0∣out DomainA.0∣ in DomainB.0∣in DomainC.0∣in Host4.0 ∣ in

Host2.0∣out Host2.0∣in File3.0∣in User2.0∣out User2.0∣in User4.0∣out

User4.0∣in Host3.0]]]]∣DomainB[Host3[File3[]]∣Host2[User2[in

File1.0∣in File2.0∣out File1.0∣out File2.0∣in File3.0∣in File4.0∣out

File3.0∣out File4.0]∣File2[]]]∣DomainC[Host4 [User4[out

DomainC.0∣in DomainB.0∣ in Host3.0∣ in File3.0∣out File3.0∣out

Host3.0∣out DomainB.0∣in DomainC.in Host4. in File4.0]∣File4[]]]]

Spec2::= World[DomainA[Host1[User1[out DomainA.0∣in DomainA.0∣in
DomainB.0∣out DomainB.0∣in File1.0∣out File1.0]∣File1[data1[out

File1.0∣out Host1.0∣out DomainA.0∣ in DomainB.0∣in
DomainC.0∣in Host4.0 ∣ in Host2.0∣out Host2.0∣in File3.0∣in
User1.0∣in User2.0∣out User2.0∣in User4.0∣out User4.0∣in
Host3.0]]]]∣DomainB [Host3[File3[]]∣Host2[User2[in File1.0∣in
File2.0∣out File1.0∣out File2.0∣in File3.0∣in File4.0∣out File3.0∣out

File4.0]∣File2[]]]∣DomainC[Host4 [User4[out DomainC.0∣in
DomainB.0∣ in Host3.0∣ in File3.0∣out File3.0∣out Host3.0∣out

DomainB.0∣in DomainC.in Host4. in File4.0]∣File4[]]]]

66

Spec3::= World[DomainA[Host1[User1[out Host1.0∣out DomainA.0∣in
DomainB.0]∣File1[data1[out File1.0∣out Host1.0∣out DomainA.0∣ in

DomainB.0∣in DomainC.0∣in Host4.0 ∣ in Host2.0∣out Host2.0∣in
File3.0∣in User1.0∣out User1.0∣in User2.0∣out User2.0∣in User4.0∣out

User4.0∣in Host3.0]]]]∣DomainB[Host3[File3[]]∣Host2[User2[in

File1.0∣in File2.0∣out File1.0∣out File2.0∣in File3.0∣in File4.0∣out

File3.0∣out File4.0]∣File2[]]]∣DomainC[Host4 [User4[out

DomainC.0∣in DomainB.0∣ in Host3.0∣ in File3.0∣out File3.0∣out

Host3.0∣out DomainB.0∣in DomainC.in Host4. in File4.0]∣File4[]]]]

67

APPENDIX B: Ambient logic formulas used at case studies

Formula1::= ◻ { ¬ ♢ { ◇ { Host4[◇ { data1[T] ∣ T}] } } }

Formula2::= ◻ World [DomainA [Host1 [T] ∣ T] ∣ DomainB[Host2 [T] ∣ Host3

[T] ∣ T] ∣ DomainC[Host4 [T] ∣ T]] ∨ ♢{◇{Host4[◇{data1[T]}] ∣
T}}

68

REFERENCES

1. Unal, D. and M.U. Caglayan, ”Security Policy Specification and Verification Frame-

work for Multi-Domain Mobile Networks”, to appear

2. Cardelli, L. and A.D. Gordon, ”Ambient Logic”, http://lucacardelli.name/

Papers/AmbientLogic.A4.pdf, 2005

3. L. and A.D. Gordon, ”Anytime, anywhere: Modal logics for mobile ambients”, In

Proceedings POPL’00 pp. 365-377, 2000.

4. Cardelli, L. and A.D. Gordon, ”Mobile Ambients”, Theoretical Computer Science,

vol. 240 pp. 177-213 2000.

5. Charatonik, W., Dal Zilio, S., Gordon, A.D., Mukhopadhyay, S. and J. Talbot,

”Model checking mobile ambients”, Theoretical Computer Science, vol.308, pp.

277-331, November 2000.

6. Mardare, R., Priami, C., Quaglia, P. and O. Vagin, ”Model checking biological

systems described using Ambient Calculus” Computational Methods in Systems

Biology, pp. 85-103, 2005

7. Mardare, R. and C. Priami, ”Computing the accessibility relation for ambient

calculus. Technical report”, http://www.dit.unitn.it, 2003.

8. Mardare, R. and C. Priami, ”A propositional branching temporal logic for the

ambient calculus, Technical Report”, http://www.dit.unitn.it, 2003.

9. Charatonik, W., Dal-Zilio, S., Gordon, A.D., Mukhopadhyay, S. and J. Talbot,

”The Complexity of Model Checking Mobile Ambients”, Proceedings of the 4th

International Conference on Foundations of Software Science and Computation

Structures, pp. 152-167, April 2001

69

10. Charatonik, W., Gordon, A.D. and J. Talbot, ”Finite-Control Mobile Ambients”,

Proceedings of the 11th European Symposium on Programming Languages and Sys-

tems, pp. 295-313, April 2002

11. Charatonik, W. and J. Talbot, ”The Decidability of Model Checking Mobile Ambi-

ents”, Proceedings of the 15th International Workshop on Computer Science Logic,

pp. 339-354, September 2001

12. G.J. Holzmann, ”Software Model Checking”, NATO Summer School, vol. 180, pp.

309-355, August 2000.

13. Onem, E., ”Formal Security Analysis of a Secure On-Demand Routing Protocol for

Ad Hoc Networks Using Model Checking”, M.S. Thesis, Computer Engineering,

Bogazici University, 2007.

14. Hirschkoff, D., Lozes, E. and D. Sangiorgi. ”Separability, Expressiveness, and De-

cidability in the Ambient Logic”, Proceedings of the 17th Annual IEEE Symposium

on Logic in Computer Science, pp .423-432, July 2002

15. Hirschkoff, D., Lozes, E. and D. Sangiorgi. ”On the expressiveness of the Ambient

Logic” Logical Methods in Computer Science vol. 2, 2006.

16. ”NuSMV: A new symbolic model checker”, http://nusmv.irst.itc.it, 2006

17. Hansen, R.R., Jensen, J.G., Nielson, F. and H.R. Nielson, ”Abstract Interpretation

of Mobile Ambients”, In Proc. Static Analysis Symposium SAS’99, vol. 1694 pp.

134-148, 1999.

18. C. Braghin, A. Cortesi, S. Filippone, R. Focardi, F. L. Luccio and C. Piazza. ”A

Tool for Boundary Ambients Nesting ANAlysis”, Electronic Notes in Theoretical

Computer Science, vol. 99, pp. 319-337, August 2004.

19. Maffeis,S., Phillips,I., ”On the computational strength of pure ambient calculi”,

Electronic Notes in Theoretical Computer Science, vol. 96, pp. 29-49, , 2004.

70

20. Affeldt, R. and N. Kobayashi, ”Partial Order Reduction for Verification of Spatial

Properties of Pi-Calculus Processes”, Electronic Notes in Theoretical Computer

Science, vol. 128, pp. 151-168. April 2005

21. A. L. Lafuente, ”Towards Model Checking Spatial Properties with SPIN”, Lecture

Notes in Computer Science, vol. 4595, pp. 223-242. 2007

22. Vieira H. and L. Caires, ”The Spatial Logic Model Checker User’s Manual”, http:

//www-ctp.di.fct.unl.pt/SLMC/manual.ps, 2005.

23. Caires L. and L. Cardelli. ”A Spatial Logic for Concurrency(part I)”, Information

and Computation vol. 186(2), pp. 194-235,2003.

