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ABSTRACT

STATISTICAL COMPARISON OF CLASSIFIERS USING

RECEIVER OPERATING CHARACTERISTICS

INFORMATION

Statistical tests in the literature mainly use error rate for comparison and assume

equal loss for false positives and negatives. Receiver Operating Characteristics (ROC)

curves and/or the Area Under the ROC Curve (AUC) can also be used for comparing

classifier performances under a spectrum of loss values. A ROC curve and hence an

AUC value is typically calculated from one training/test pair and to average over

randomness in folds, we propose to use k-fold cross-validation to generate a set of

ROC curves and AUC values to which we can fit a distribution and test hypotheses

on. Experiment results on 15 datasets using 5 different classification algorithms show

that our proposed test using AUC values is to be preferred over the usual paired t test

on error rate because it can detect equivalences and differences which the error test

cannot.

The approach we use for ROC curves can also be applied to Precision-Recall

curves, used mostly in information retrieval by applying k-fold cross-validated test on

the area under the Precision-Recall curve.

When multiple classifiers are to be compared over one dataset or multiple datasets,

we can use Analysis of Variance (ANOVA). When we use more than one performance

metric, we use the multivariate ANOVA, that is, MANOVA. Performance metrics of

ANOVA is error or AUC. Performance metrics of MANOVA are true positive, false

positive, true negative and false negative rates. We also perform the nonparametric

version of ANOVA which is called Friedman test. We apply Sign test when we compare

multiple classifiers over multiple datasets. We observe that using more than one per-
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formance metric includes their correlation in the statistical test and therefore produces

more accurate results.
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ÖZET

SINIFLANDIRICILARIN ROC BİLGİSİ KULLANARAK

İSTATİSTİKSEL KARŞILAŞTIRILMASI

Literatürdeki istatistiksel testler genelde hata oranını kullanırlar ve yanlış pozitif

and yanlış negatiflerin maliyetlerinin aynı olduğunu varsayarlar. ROC eğrileri ve/veya

ROC Eğrilerinin Altındaki Alan (AUC), çeşitli maliyet değerlerine göre sınıflandırıcıların

performanslarını karşılaştırmak için kullanılabilir. Bir ROC eğrisi ve bir ROC eğrisinin

altındaki alan genellikle bir öğrenme/sınama çiftinden hesaplanır ve verideki rastsallığın

ortalamasını almak için ve dağılım oturtabileceğimiz ve üzerinde hipotez testi yapa-

bileceğimiz bir ROC eğrileri kümesi ve AUC değerleri oluşturmayı öneriyoruz. 15

veri kümesi üzerinde 5 farklı sınıflandırma algoritması kullanılarak bulduğumuz deney-

sel sonuçlar gösteriyor ki bizim önerdiğimiz AUC testi hata oranını kullanan eşli t

testine göre daha üstündür çünkü AUC testi hata testinin fark edemeyeceği eşitlik

ve farklılıkları fark edebiliyor. ROC eğrileri için kullandığımız yaklaşım, Doğruluk-

Anımsama eğrilerinin altında kalan alana k-kat çapraz-geçerleme uygulayarak da kul-

lanılabilir.

Birden çok sınıflandırıcıyı bir veri kümesi veya birden çok veri kümesi üzerinde

karşılaştırımak için Varyans Analizi (ANOVA) kullanabiliriz. Birden çok performans

metriği üzerinden karşılaştırma yapmak için, çok değişkenli ANOVA, MANOVA, kul-

lanırız. ANOVA’nın performans metrikleri hata veya AUC olabilir. MANOVA’nın

performans metrikleri doğru pozitif, yanlış pozitif, doğru negatif ve yanlış negatif

değerleridir. ANOVA’nın parametrik olmayan versiyonu olan Friedman testini de

yapıyoruz. Çoklu sınıflandırıcıları çoklu veri kümeleri üzerinden karşılaştırırken İşaret

testi uyguluyoruz. Birden çok performans metriği kullanmanın onların korelasyonlarını

içerdiğini ve bu yüzden daha güvenilir sonuçlar ürettiğini gözlemliyoruz.
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1. INTRODUCTION

Comparing the performances of classifiers is a critical problem in machine learn-

ing. In the literature, to compare the generalization error of learning algorithms, sta-

tistical tests have been proposed [1], [2]. In choosing between two learning algorithms,

one can use a pairwise test to compare their generalization error and select the one

that has lower error. Typically, cross-validation is used to generate a set of training,

validation folds and one compare the expected error on the validation folds after train-

ing on the training folds. Examples of such tests are parametric tests, such as k-fold

paired t test, 5 × 2 cv t test [1], 5 × 2 cv F test [3], nonparametric tests, such as the

sign test and Friedman’s test, or range tests, such as Wilcoxon signed rank test [2].

If we define the class labels of the two-class classification problem as positive and

negative, the confusion matrix shown in Table 1.1 contains the following items:

• True positive (TP ): If both the class label and the predicted class are positive.

• False negative (FN): If the class label is positive and the predicted class is

negative.

• False positive (FP ): If the class label is negative and the predicted class is

positive.

• True negative (TN): If both the class label and the predicted class are negative.

Different metrics calculated from these values are used in the literature are:
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Table 1.1. Confusion matrix

Predicted Class

True Class Positive Negative Total

Positive TP FN P

Negative FP TN N

hit rate =
TP

TP + FN
(1.1)

false alarm rate =
FP

TN + FP
(1.2)

error rate =
FP + FN

TP + TN + FP + FN
(1.3)

precision =
TP

TP + FP
(1.4)

accuracy =
TP + TN

P + N
(1.5)

recall =
TP

P
(1.6)

where P is the total number of positives and N is the total number of negatives.

Generally, error rate (or accuracy) is the most frequently used performance met-

ric for classifiers. However, it is a poor performance metric since it assumes equal

misclassification cost all classes. In real world problems, different misclassifications

have different costs and generally, the most critical classes have fewer instances. For

example, a false positive and false negative in a patient classification in case of a termi-

nal illness should not be assumed to have equal cost. In signal detection, people have

been using Receiver Operating Characteristic (ROC) curves to observe the relationship

between the hit rate and the false alarm rate [4]. ROC curves do not make any as-

sumption on class priors or misclassification costs and this makes them interesting in

the field of machine learning [5].
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Although ROC curves are very useful for visualizing error rates for different mis-

classification costs, one may need to summarize the ROC curve for comparing perfor-

mance of classifiers by a single number and for this Area Under the ROC curve (AUC)

is used. ROC curve is constructed for a single test set and the trapezoidal area under

the ROC curve is calculated. AUC has been related to the Wilcoxon statistic and it

has been defined as an estimate of the ‘true’ area under the ROC curve, that is, the

area constructed from an infinite sample [6]. However, ROC and AUC use a single

training and testing pair [7], [8], [9] and this makes the AUC dependent on the test

test that it is used. In this thesis, we extend this idea and use k-fold cross-validation

to generate k ROC curves hence k AUC values. Then we fit a distribution to the set

of AUC values and test our hypothesis on these distributions. Fitting distribution to

AUC values is also used by Bravo et al [10]. However, they do not compare it with

error metric, they just use it to evaluate their results. Confidence intervals for AUC

are also proposed [11], [12]. The effect of class distribution on error and AUC is also

experimented in [13].

Similar to ROC curves, Precision-Recall curves are also used [14], mostly in

Information Retrieval [15], and they are preferred to ROC curves when there is a large

skew of class distribution [16], [17], [18], [19]. Precision is the y-axis and recall is the

x-axis. We also calculate the area under the Precision-Recall curve like the area under

the ROC curve, using the trapezoidal area method. The area under Precision-Recall

curve will be called as AUC-PR.

When more than two classifiers are to be compared, the paired t test is not

applicable. Analysis of Variance (ANOVA) is the appropriate method for this problem

[20]. ANOVA is a parametric test that has many assumptions; Friedman test is the

nonparametric version of ANOVA that can be used when the assumptions of ANOVA

are not met [2]. We also want to compare classifiers using the values of true positives,

false positives,true negatives and false negatives. Since the data is four dimensional

instead one, we propose to apply Multivariate ANOVA (MANOVA) [21]. If the number

of wins, losses and ties of classifier pairs are known, Binomial Sign test can be used

to test whether there is a significant difference between their performances or not [2],
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[27].

This thesis is organized as follows: ROC curves and Precision-Recall curves are

introduced in Chapter 2. Our proposed paired t test on AUC values and on AUC-PR

values, experiments and results are given in Chapter 3. We introduce the methods

for the comparison of multiple classifiers in Chapter 4. We give experimental setup

and report results for comparison of multiple classifiers over one dataset in Chapter 5,

for comparison of univariate comparison of multiple classifiers over multiple datasets

in Chapter 6, for comparison of multivariate comparison of multiple classifiers over

multiple datasets for different threshold points in Chapter 7. We conclude and discuss

future work in Chapter 8.
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2. THE ROC AND PRECISION RECALL CURVES AND

THE AREA UNDER THEM

2.1. RECEIVER OPERATING CHARACTERISTICS

The hit rate or true positive rate (TPR) defines the y axis and the false alarm

rate or the false positive rate (FPR) defines the x axis in a ROC space. The point (0,

0) in the ROC space corresponds to a classifier that labels all instances as negative.

The point (1, 1) means the opposite, that is, the classifier that labels all instances

as positive. The point (0, 1) means 100 percent classification accuracy, whereas (1,

0) points means 0 percent classification accuracy. Being in the lower-left region in

the ROC space means being ‘conservative’, that is, the classifier has less tendency for

assigning the positive class label. This corresponds to a classifier that has low false

alarm rate and low hit rate. Conversely, being in the upper-right region means being

‘liberal’, that is, the classifier has much more tendency for assigning the positive class

label. This is a classifier with high false alarm rate and high hit rate.

The ROC curve is used in signal processing to plot the trade-off between the

hit rate and the false alarm rate. It allows visualization of performance for a set of

conditions instead of just the misclassification error. A classifier is good if it has a

high hit rate and a low false alarm rate, that is, if the curve is closer to the upper left

corner. Two examples for the ROC curves are shown in Figure 2.1. The diagonal line

indicates the curve for random prediction.

In a two-class problem, if the posterior probability of the positive class is greater

than the posterior probability of the negative class, the classifier predicts the class label

of a test instance as positive, otherwise it predicts the class label as negative. This is

equivalent to checking if the posterior probability of the positive class is greater than

the threshold value of θ = 0.5. For a given test set, a ROC curve is constructed in ROC

space by plotting the hit rates on y axis and the false alarm rates in x axis for different

threshold values. The ROC curve construction algorithm is given in Figure 2.2 [4]. In
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Figure 2.1. Example ROC curve

Line 4, the test set is sorted in decreasing order of posterior probabilities of the positive

class. In Line 5, FP and TP are initialized to zero. In Line 6, the list of ROC points

R is set to empty list. In Line 9, the loop that traverses all the instances in the test set

starts. At each iteration, the posterior probability of the instance is taken as a threshold

point. Therefore, the ‘if’ statement in Line 10 checks the condition of equal posterior

probabilities to prevent taking equal posterior probabilities as threshold points. If the

posterior probability of the instance is not equal to the posterior probability of the

previous instance in the list, then in Line 11, the TP and FP points are added to the

list R and in Line 12, the current posterior probability f(i) is assigned to fprev. In

Line 14, the ‘if’ statement checks whether the class of the current instance is positive

or not. If the class of the instance is positive, then TP is incremented in Line 15 since

the posterior probabilities of the positive instances in the beginning part of the list is

greater than the current threshold point and they are correctly classified. If the class

of the instance is negative, then the FP is incremented in Line 17 since the posterior

probabilities of the negative instances in the beginning part of the list is greater than

the current threshold point and they are classified incorrectly. Hence, for a given test

set, the algorithm takes the posterior probabilities of the test set as different threshold
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1: Input: L, the set of test examples; f(i), the posterior probability that example i

is positive; P and N , the number of positive and negative examples.

2: Output: R, a list of ROC points in increasing order of fp rate.

3: Require: P > 0 and N > 0.

4: Lsorted ← L sort in decreasing order of f values

5: FP ← TP ← 0

6: R ← 〈〉
7: fprev ← −∞
8: i ← 1

9: while i ≤ |Lsorted| do

10: if f(i) 6= fprev then

11: push
(

FP
N

, TP
P

)
onto R

12: fprev ← f(i)

13: end if

14: if Lsorted [i] is a positive example then

15: TP ← TP+1

16: else

17: FP ← FP+1

18: end if

19: i = i + 1

20: end while

21: push
(

FP
N

, TP
P

)
onto R

Figure 2.2. ROC Curve construction [4]

points rather than sweeping the same threshold points for all test sets. It also pre-

vents traversing threshold points needlessly. The time complexity of the algorithm is

O(n log n) for a test set with size n [4].

Let us define the positive class as class C1 and the negative class as C2. For a

test instance x, given the loss matrix in Table 2.1, the risk of choosing C1 is:
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Table 2.1. Loss matrix

C1 C2

C1 0 λ

C2 1 0

R(C1|x) = λ11P (C1|x) + λ12P (C2|x) (2.1)

= λP (C2|x) (2.2)

and the risk of choosing C2 is:

R(C2|x) = P (C1|x) (2.3)

Then we choose C1 if

R(C1|x) < R(C2|x) (2.4)

λP (C2|x) < P (C1|x) (2.5)

that is, if

P (C1|x)

P (C2|x)
> λ (2.6)

Since P (C1|x) + P (C2|x) = 1, this gives

P (C1|x)

1− P (C1|x)
> λ (2.7)

P (C1|x) >
λ

1 + λ
(2.8)
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We see that the threshold of 0.5 which we use to calculate misclassification error cor-

responds to λ = 1, where a false positive and a false negative has equal loss. We get a

variety of thresholds when we vary λ:

θ =
λ

1 + λ
(2.9)

λ = 0.5 → θ = 1/3 (2.10)

λ = 1 → θ = 1/2 (2.11)

λ = 2 → θ = 2/3 (2.12)

That is, the threshold points on the ROC curve indicate the λ values in the risk

calculation. This is the reason why using the ROC curve (or the AUC value, as we

will see) is better than using the misclassification error because the latter gives equal

emphasis and makes no distinction between false positives and false negatives and thus

may not be the best measure for many applications; the ROC curve (and the AUC)

takes a set of possible loss proportions into account and this makes them a more robust

measure.

If the ROC curve of the first classifier is always over the ROC curve of the second

classifier, we can easily say that the first classifier is better than the second classifier.

But this case does not always happen. In some cases, the ROC curve of the first

classifier may be over the ROC curve of the second classifier in one part, whereas the

second classifier’s curve is over the ROC curve of the first one in some other part; this

implies that the two classifiers are to be preferred under different loss conditions.

2.2. AREA UNDER THE ROC CURVE

ROC is a curve; one may reduce it to a single value using the Area Under ROC

Curve (AUC). If a ROC curve is closer to the upper left corner, its AUC value gets closer

to 1. The AUC value of a classifier is equivalent to the probability that the classifier

will rank a randomly chosen positive and negative instance correctly. A classifier with

a greater AUC is said to be better than a classifier with a smaller AUC.
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1: Input: L, the set of test examples; f(i), the posterior probability that example i

is positive; P and N , the number of positive and negative examples.

2: Output: A, the area under the ROC curve .

3: Require: P > 0 and N > 0.

4: Lsorted ← L sort in decreasing order of f values

5: FP ← TP ← 0

6: FPprev ← TPprev ← 0

7: A ← 0

8: fprev ← −∞
9: i ← 1

10: while i ≤ |Lsorted| do

11: if f(i) 6= fprev then

12: A ← A + AREA(FP, FPprev, TP, TPprev)

13: fprev ← f(i)

14: FPprev ← FP

15: TPprev ← TP

16: end if

17: if Lsorted [i] is a positive example then

18: TP ← TP+1

19: else

20: FP ← FP+1

21: end if

22: i = i + 1

23: end while

24: A ← A + AREA(N,FPprev, N, TPprev)

25: A ← A/(P ×N)

26: FUNCTION AREA(X1, X2, Y 1, Y 2)

27: Base ← |X1−X2|
28: Heightavg ← (Y 1 + Y 2) /2

29: RETURN Base×Heightavg

Figure 2.3. AUC calculation [4]
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The Wilcoxon statistic is calculated to be the estimate of the ‘true’ area under

the ROC curve for the infinite sample. Let N1 be the number of examples that belong

to the positive class C1 and N2 be the number of examples that belong to the negative

class C2. Then Wilcoxon statistic is defined as [6]

W =
1

N1N2

N1∑
i=1

N2∑
j=1

S(P (C1|xi), P (C2|xj) (2.13)

where

S(P (C1|xi), P (C2|xj)) =





1 if P (C1|xi) > P (C2|xj)

1/2 if P (C1|xi) = P (C2|xj)

0 if P (C1|xi) < P (C2|xj)

(2.14)

The area under the ROC curve can be estimated by summing the tropezoidal areas

formed by successive points on the ROC curve. The AUC calculation algorithm is given

in Figure 2.3 [4]. It is very similar to the algorithm in Figure 2.2. Now, the previous

TP and FP points are stored for calculating the trapezoidal area. Therefore, TP , FP ,

the previous TP and FP points are initialized to zero in Line 5 and Line 6. In Line 7,

the area under the ROC curve is initialized to zero since it is calculated cumulatively

at each iteration. If the condition in Line 11 is met, the area of the current trapezoid

is calculated in Line 12 by calling the AREA function that takes parameters of TP ,

FP , the previous TP and FP points and is added to the area A. In Line 14 and Line

15, current FP and TP points are assigned to the FPprev and TPprev, respectively. In

Line 25, A is normalized to obtain an AUC value between 0 and 1.

2.3. THE PRECISION-RECALL CURVE

An alternative to the ROC curve for making a comparison for different threshold

values is the Precision-Recall curve. It is mostly used in Information Retrieval [19]. The

precision and the recall in each threshold point are calculated and the Precision-Recall

curve is constructed by joining these values. Nonparametric estimate of Precision-

Recall curves are also another issue that is worked on [18]. They are compared and



12

preferred to ROC curves in case of large skew in class distribution [16]. An example

Precision-Recall curve is given in Figure 2.4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 2.4. Example Precision-Recall curve

For summarizing the ROC curve, the area under the Precision-Recall curve (AUC-

PR) is used. It is estimated by the same trepozoidal area calculation method described

for AUC in Section 2.2.

2.4. DIFFERENCE BETWEEN THE ROC CURVE AND THE

PRECISION-RECALL CURVE

There are three main differences between ROC and Precision-Recall curves [16].

First, their visiualization is different. In ROC curves, TPR is the y-axis and FPR is the

x axis. In Precision-Recall curves, Precision is the y-axis and Recall is the x axis. In

ROC space, the curve that is upper left of the ROC space is better. In Precision-Recall

space, the curve that is upper right of the Precision-Recall space is better.

Second, Precision Recall curves are very sensitive to the class skewness. However,

ROC curves are not sensitive to the class skewness. Therefore, Precision Recall curves

are preferred when the dataset has a high class skew. It can be understood by looking

at confusion matrix in Table 1.1. Since the class skew is the proportion of P to N ,
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when the class skew changes, the proportion of the first row to second row of Table 1.1

changes. The metrics that use the values of the elements from both rows are effected

by the increased class skewness, others are not effected. Since Precision uses values

from both rows it changes, however TPR and FPR do not change since they use values

from only one row [4].

Third, the AUC and AUC-PR give different comparison results. A classifier that

is better in terms of AUC does not have to be better in terms of AUC-PR; a classifier

that is better in terms of AUC-PR does not have to be better in terms of AUC.

A one-to-one correspondence between a ROC curve and a PR curve have been

proven. It also have been proven that one ROC curve dominates the other ROC curve

if and only if the corresponding Precision Recall curve domites the other [16]. Despite

the dominance relationship between ROC and PR curves, Davis and Goadrich [16] state

that if AUC of one curve is greater than the second one, AUC-PR of the first curve

can be less than the second one, therefore optimizing AUC does not mean optimizing

also AUC-PR. It is intuitive, we believe that comparison of area under the curves can

give different results for ROC and PR curves according to the problem. Corresponding

points in curves can dominate each other in paralel in ROC and PR curves, however the

magnitude of these differences determines the area differences. Consequently, since the

metrics are different, the area between the curves are different. They also argue that

the convex hull in ROC space can be converted to achievable PR curve and AUC-PR

can be calculated.
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3. COMPARISON OF TWO CLASSIFIERS

3.1. PROPOSED AUC TEST

A classifier is first trained using a training set, then, using a test set, one con-

structs the ROC curve and calculates the AUC value only once. To average over

randomness in the training and testing split, one can use more than one training and

testing pair, which results in multiple ROC curves and AUC values. The main idea

of this part of the thesis is to fit a distribution to these values and test hypotheses on

such distributions.

We use k-fold cross-validation to generate k training sets and train k classifiers

whose ROC curves and AUC values we calculate over a single test set. At the end,

for each classification algorithm we have k AUC values. When we compare multiple

algorithms, to have a paired test, we should use the same training and test sets for all

algorithms. Afterwards, for example, two classification algorithms can be compared by

applying the paired t test with the null hypothesis that two classifiers have the same

AUC mean versus the alternative hypothesis that the two AUC means are different.

The k-fold cross-validated paired t test on AUC values will be called as AUC

test in the rest of this thesis. Each classification algorithm is trained on the training

set Ti, i = 1, . . . , k and the posterior probabilities are calculated on the test set Di ,

i = 1, . . . , k. Using these posterior probabilities, the AUC of each classifier is calculated

as A1
i and A2

i . The AUC difference is calculated in each fold as Ai = A1
i − A2

i for

i = 1, . . . , k. The distribution of differences is normal since the A1
i and A2

i distributions

are approximately normal (we extend the normality assumption for errors to AUC

values). Then, if the mean of this distribution can be said to be equal to zero, we can

say that classifiers have equal AUC’s:

H0 : µ = 0 (3.1)

H1 : µ 6= 0 (3.2)
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Then m =
∑k

i=1
Ai

k
, S2 =

∑k
i=1

(Ai−m)2

k−1
. The test statistic is calculated as

√
k.m
S

which

is t distributed with (k − 1) degrees of freedom. The null hypothesis is accepted at

significance level α, if the test statistic is in the interval (−tα/2,k−1, tα/2,k−1).

3.2. EXPERIMENTAL SETUP

3.2.1. DATASETS

We use a total of 15 datasets where 11 (aibocolor, chess, connect-4, mushroom,

nursery, pageblock, report, shuttle, spambase, thyroid, wave) are from UCI and 4 (ada,

caravan, gina, sylva) are from IJCNN 2007 [22]. The datasets with the number of

instances greater than 3000 or approximately 3000 are selected to decrease the depen-

dency between the folds of 30-fold cross validation. Since two-class classification is

applied, the datasets with more than two classes are converted to two-class datasets

by selecting the two classes that are most confused by looking at the confusion matrix

(We first use 1-nearest neighbor over all classes to choose these two).

3.2.2. LEARNING ALGORITHMS

We use five learning algorithms from ISELL Machine Learning Software [23]:

• C4.5: C4.5 decision tree algorithm [24].

• LP: Linear perceptron with softmax outputs trained by gradient-descent to min-

imize cross-entropy.

• k-NN: k-nearest neighbor. For the optimization of k, values of 1, 3, 5, 7, 11, 21

are tried and the one with minimum validation error is selected.

• NB: Naive Bayes which is a parametric discriminator assuming independent in-

puts.

• Ripper: Rule learning algorithm with two optimization steps [25].
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3.2.3. DIVISION OF TRAINING, VALIDATION AND TEST SETS

Our methodology is as follows: A data set is first divided into two parts, with 1/3

as the test set, test, and 2/3 as the training set, train-all. The training set, train-all,

is then resampled using 30 times cross-validation to generate trai, i = 1, . . . , 30, which

are used to train the classifiers and the tests are run on the test set.

3.3. EXPERIMENTAL RESULTS

We compare 5 algorithms in a pairwise manner on 15 datasets using k-fold cv

paired t test on errors (error test) and k-fold cv paired t test on AUC values (AUC

test) at the significance level of 0.05, which makes a total of 150 comparisons. The null

hypothesis of both the error test and the AUC test are that the two populations have

the same mean. There are four possible cases:

• Both the error test and the AUC test accept the null hypothesis. This case

occured only 1 time.

• The error test accepts and the AUC test rejects the null hypothesis. This case

occured 10 times.

• The error test rejects and the AUC test accepts the null hypothesis. This case

occured 9 times.

• Both the error test and the AUC test reject the null hypothesis. This case occured

130 times.

We now discuss some examples of these cases: In Figure 3.1, we show the results

on chess dataset for C4.5 and Ripper algorithms for the case where both the error test

and the AUC test accept the null hypothesis that the two populations have the same

mean. We show in (a) the error distributions of two algorithms with white and black

histograms. It can be seen that the error distribution of the two algorithms overlap and

this supports the decision of error test. We show in (b) the AUC distribution of the two

algorithms with white and black histograms. It can be seen that the AUC distribution

of the two algorithms also overlap and this supports the decision of AUC test. ROC
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curves that can be seen in (c) as white and black curves supports the agreement. Since

the ROC curves of the algorithms overlap, it is consistent with the result of the AUC

test. The 0.5 threshold points are marked on the ROC curves (by circle and triangle

for the two algorithms). The marked points also overlap which is consistent with the

result of the error test.
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(c) ROC curves

Figure 3.1. An example for case 1 where both the error test and the AUC test accept

the null hypothesis
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Figure 3.2. An example for case 2 where the error test accepts and the AUC test

reject the null hypothesis

Figure 3.2 shows the second case where the error test accepts and our AUC test

rejects the null hypothesis. In Figure 3.2(a), it can be seen that the error distributions

of the k-NN (white) and Ripper (black) on the report dataset overlap and this supports

the decision of the error test. In Figure 3.2(b), it can be seen that the AUC distributions

are significantly separated which is consistent with the result of the AUC test. In Figure
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3.2(c), we see why; the ROC curves of k-NN (white) are above the ROC curves of the

Ripper (black); although the marked threshold points overlap, if we look overall, we

see that the algorithms have indeed different behavior over all possible thresholds. We

see that the AUC test is able to detect differences that the error test cannot and that

is why, we can say that the AUC test has higher power.

In Figure 3.3, we show the third case where the error test rejects and our AUC test

accepts the null hypothesis that the algorithms have equal expected performance. If we

look at Figure 3.3(a), we see that there is a significant difference in error distributions

of k-NN (white) and NB (black) on the shuttle dataset. Looking at Figure 3.3(b), it can

be seen that there is not a significant difference in the AUC distributions. In Figure

3.3(c), the ROC curves intersect; to the left of the intersection, NB (black) is better

and to the right, k-NN (white) is better. Though, the error test says that they are

different, if we average over all possible losses (as AUC does), we see that there is no

significant difference. The AUC test does not reject such cases and can therefore be

said to have lower type I error.
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Figure 3.3. An example for case 3 where the error test rejects and the AUC test

accept the null hypothesis

Figure 3.4 is an example of the fourth case where both the error test and our

AUC test reject the null hypothesis. In Figure 3.4(a) and 3.4(b), the error and area

distributions of C4.5 (white) and LP (black) on nursery dataset are well-separated.
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Figure 3.4. An example for case 4 where both the error test and the AUC test reject

the null hypothesis

Figure 3.4(c) also supports this claim, the ROC curves of LP (black) are over the ROC

curves of C4.5 (white) and the threshold marks are also quite well-separated.

3.4. RELATED WORK

Hanley and McNeil [6] stated that Wilcoxon statistic is an estimate of ‘true’ area

under the ROC curve, the area constructed from an infinite sample. They have also

given a standard error formula which takes five parameters: the probability that two

randomly chosen abnormal images will both be ranked higher than a randomly cho-

sen normal image, the probability that one randomly chosen positive example will be

ranked higher than two randomly chosen negative examples, the number of positive ex-

amples, the number of negative examples and the estimated area under the ROC curve.

However, for calculating the standard error of the estimated AUC, the distributions

of the positive and negative examples should also be known. Using the probabilities

defined in the calculation of standard error, they have also given a formula that finds

the required number of positive and negative examples for detecting the difference of

two AUC’s depending on the specified type I and type II error rates (It also requires

specific distributions for the values of positive and negative samples).

Hanley and McNeil [26] have argued that comparing different ROC curves with
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a single dataset limits their usefulness. They state that there is a correlation between

AUC’s calculated from the same dataset, where correlation is included in the calculation

of the standard error of difference in AUC’s. They have noticed that a paired test

can be used for comparing two algorithms and therefore included the correlation in

the statistical test for applying the behaviour of paired t test. A z test statistic is

constructed using this standard error and the null hypothesis that ‘true’ AUC’s are

equal. They state that they make a correction for pairing like t test. However, we

directly use the paired t test, by applying cross-validation to dataset. Therefore, their

motivation supports our work.

Paired t test is applied to AUC results, but it is not compared with an error test.

It is only used for evaluating the results[10].

Cortes and Mohri [11] have also proposed to calculate confidence intervals for

AUC. A confidence interval for AUC has been derived from the confidence interval of

error. First, they define expectation and variance of AUC in terms of the expected

error, the number of negative instances and the number of positive instances by using

the Wilcoxon-Mann-Whitney statistic. Using these values, the confidence intervals are

constructed without any assumption on the distribution for AUC. For large values of

the sample size, they make a normal distribution assumption for error.

We argue that there are two weaknesses in their work. First, using error for

deriving a confidence interval for AUC is not a good idea, because as we show below,

in some cases, AUC intervals can be significantly different although the error intervals

are not significantly different. However, their confidence interval formulations give

the same AUC interval for the same error value. For comparing our results with their

results, we trained and tested the classification algorithms without cross-validation and

substituted the error results in their formulations since they use one error value. In

Figure 3.5 (a), the error distributions of the classifiers Ripper and LP on dataset ada

are shown, they overlap indicating the equality of their means and the error test can

not reject the null hypothesis that the means of these error distributions are equal.

However, in Figure 3.5(b), it can be seen that the corresponding AUC distributions
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Figure 3.5. Confidence intervals for error and AUC for the case where the error test

accepts and the AUC test rejects the null hypothesis
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Figure 3.6. Confidence intervals for error and AUC for the case where the both error

test and the AUC test reject the null hypothesis
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are separated despite the overlapping of error distributions and our AUC test rejects

the null hypothesis that the means of these AUC distributions are equal. The dashed-

dotted lines above the distributions in Figure 3.5(b) are the AUC confidence intervals

found by the method of Cortes and Mohri [11]. Their confidence intervals do not

show a good fit to the empirical AUC distributions since AUC confidence intervals can

be significantly different although error confidence intervals are not. Their confidence

intervals also fail when the error results are different. In Figure 3.6(a), the error

distributions of the classifiers k-NN and LP on dataset ada are shown, they do not

overlap and the error test can not reject the null hypothesis that the means of these

AUC distributions are equal. In Figure 3.6(b), the AUC distributions do not overlap

and our AUC test can not reject the null hypothesis that the means of these AUC

distributions are equal. The confidence intervals of Cortes and Mohri do not fit to the

distributions. Another point to note is that, as seen in Figures 3.5(b) and 3.6(b), their

confidence intervals are too large because their approach is nonparametric. However,

they are inefficient when the sufficient conditions for the distribution assumptions are

met.

Another approach for finding the confidence intervals for AUC has been proposed

in [12]. Agarwal et al. give a large deviation bound for the distribution independent

case. In Figures 3.5(b) and 3.6(b), their confidence intervals are shown with dotted

lines above the AUC distributions. The figures support their claim that confidence

intervals are too large since no distribution assumption is made. They state that

the AUC value follows an asymptotically normal distribution and for large N , the

normal approximation can be used to obtain a tighter bound (as we do for deriving

the parametric t test). They also state that one can estimate the actual variance

of AUC directly from data for obtaining tighter intervals, for example, one can use

resampling methods to approximate it that they can be useful in practice despite

being approximate. This is similar to what we have done in our proposed test. They

also criticize the AUC definition of Cortes and Mohri because of the same reason that

we have stated above. They argue that AUC and error are different metrics, therefore

different analyses should be done for them.
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AUC values have been used to compare classifiers over multiple datasets [2].

However, in our work, we try to gain an insight to the difference in the behavior of the

error and AUC tests. J. Demsar compares two classifiers with paired t test over multiple

datasets. They state that this test makes normality assumption on the difference of

random variables and for this, the dataset size should be approximately 30. They also

use the Wilcoxon signed-ranks test since it is nonparametric compared to the paired t

test. They calculate AUC values by applying 5-fold internal cross validation and take

the average of them, thus they do not apply test on these values like us. They compare

AUC of different C4.5 algorithms over 14 datasets. They state that commensurability

of differences over datasets can be assumed and no distribution assumption is done in

this nonparametric test compared to the paired t test. They compare AUC’s of C4.5

algorithms with 5-fold internal cross validation over 14 datasets using the Friedman

test which is a nonparametric version of ANOVA.

The ROC curves are preferred when there is class skewness and different misclas-

sification costs. The effect of class distribution on error and AUC is also experimented

in [13]. We experiment the effect of imbalanced cost in error and AUC.

Precision Recall curves are mostly used in Information Retrieval. For instance, it

is used in [15] for identifying the user profiles, 10-fold cross validation is applied to the

dataset and the Precision and Recall metrics used commonly in Information Retrieval

and accuracy used in Machine Learning are calculated and the average of each metric is

calculated and the values of each metric for each classifier-problem pair are compared.

However, the variance information is lost when the average is taken.

AUC-PR is compared with performance metrics of AUC, F-Measure which is

derived from the Precision Recall Curve and Kolmogorov-Smirnov (KS) statistic by

Folleco et al [14]. They apply different sampling methods to the datasets with imbal-

anced classes. They use cross-validation on data and in each fold, in testing step, they

calculate the value of each performance metric for a classifier. They take the average

of each metric and compare the average values of these four metrics for each sampling

and classifier. They claim that they do not only take average of the values of the met-
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rics that they calculate in each fold, but also use statistical tests and also they claim

that statistical tests support their results, however they do not give the names of the

statistical tests and their results.

Trepozoidal area under the Precision Recall Curve is used to compare classifiers

by applying a three-way ANOVA with factors of thresholds, priors, classification models

[17].

3.5. PROPOSED AUC-PR TEST

For making a comparison that takes into account the different threshold values,

that is, different cost values, we also use AUC-PR values. The k-fold cross-validated

paired t test on AUC values of PR curves will be called the AUC-PR test in the rest

of this thesis. The test procedure is the same as the procedure in Section 3.1. The

experimental setup is the same as the setup in Section 3.2, except that AUC-PR values

are calculated instead of AUC values.

3.6. EXPERIMENTAL RESULTS OF AUC-PR TEST

There are four possible cases:

• Both the error test and the AUC-PR test accept the null hypothesis. This case

occured only 1 time.

• The error test accepts and the AUC-PR test rejects the null hypothesis. This

case occured 10 times.

• The error test rejects and the AUC-PR test accepts the null hypothesis. This

case occured 10 times.

• Both the error test and the AUC-PR test reject the null hypothesis. This case

occured 129 times.

The distributions of error values and AUC-PR values and Precision-Recall curves

of examples for the four cases are drawn. In Figure 3.7, we show the results on chess
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dataset for C4.5 and Ripper algorithms for the case where both the error test and the

AUC-PR test accept the null hypothesis that the two populations have the same mean.

Figure 3.8 shows the second case where the error test accepts and our AUC-PR test

rejects the null hypothesis for the results on ada dataset for Ripper and LP algorithms.

In Figure 3.9, we show the results on gina dataset for k-NN and Ripper algorithms for

the case where the error test rejects the null hypothesis and the AUC-PR test accepts

the null hypothesis. In Figure 3.10, we show the results on chess dataset for C4.5 and

LP algorithms for the case where both the error test rejects the null hypothesis and the

AUC-PR test rejects the null hypothesis. As seen in these figures, the statistical tests

that use error metric result in local decisions by assuming equal costs and the statistical

tests that use AUC metric results in global decisions by sweeping over different cost

conditions.

The results are slightly different from the AUC test. The different decisions

occured in the third and fourth cases. There are 11 different decisions among all the

comparisons. We show the examples of four cases of decisions of AUC and AUC-PR: In

Figure 3.11, the case that both AUC test and AUC-PR test accept the null hypothesis

that two algorithms have equal perfomance is given. In Figure 3.11 (a) Precision-

Recall curves of the algorithms C4.5 white and Ripper black on the dataset chess

overlap. In Figure 3.11 (c), the distributions of AUC-PR of the algorithms also close

to eachother. In Figure 3.11 (b) ROC curves of the algorithms overlap. In Figure 3.11

(d), the distributions of AUC of the algorithms also close to eachother. In Figure 3.15,

the distributions of errors of the algorithms are close to each other, therefore the error

test accepts the null hypothesis.

In Figure 3.12, the case that AUC test rejects the null hypothesis and AUC-PR

test accepts the null hypothesis is given. In Figure 3.12 (a) Precision-Recall curves

of the algorithms LP white and NB black on the dataset chess overlap. In Figure

3.12 (c), the distributions of AUC-PR of the algorithms are also close to eachother. In

Figure 3.12 (b) ROC curves of the algorithms seems overlapping but do not completely

overlap. In Figure 3.12 (d), the distributions of AUC of the algorithms are significantly

different. In Figure 3.16, the distributions of errors of the algorithms are not close to
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Figure 3.7. An example for case 1 where both the error test and the AUC-PR test

accept the null hypothesis
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Figure 3.8. An example for case 2 where the error test accepts and the AUC-PR test

reject the null hypothesis
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Figure 3.9. An example for case 3 where the error test rejects and the AUC-PR test

accept the null hypothesis
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Figure 3.10. An example for case 4 where both the error test and the AUC-PR test

reject the null hypothesis
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eachother, therefore the error test rejects the null hypothesis.

In Figure 3.13, the case that AUC test accepts the null hypothesis and AUC-PR

test rejects the null hypothesis is given. In Figure 3.13 (a) Precision-Recall curves of

the algorithms C4.5 white and Ripper black on the dataset gina do not overlap; the

Precision-Recall curves of Ripper dominates the Precision-Recall curves of C4.5 . In

Figure 3.13 (c), the distribution of Ripper is on the right hand side of the distribution of

AUC-PR of C4.5 . In Figure 3.13 (b) ROC curves of the algorithms do not completely

overlap, but in half of the curves, the ROC curves of Ripper dominates the ROC curves

of C4.5 and in the other half, the ROC curves of C4.5 dominates the ROC curves

of Ripper , therefore it results in an insignificant difference.. In Figure 3.13 (d), the

distributions of AUC of the algorithms are not significantly different. In Figure 3.17,

the distributions of errors of the algorithms are not close to eachother, therefore the

error test rejects the null hypothesis.

In Figure 3.14, the case that AUC test rejects the null hypothesis and AUC-PR

test rejects the null hypothesis is given. In Figure 3.14 (a) the Precision-Recall curves

of C4.5 white dominate the Precision-Recall curves of LP black on the dataset chess.

In Figure 3.14 (c), the distribution of AUC-PR of C4.5 is on the right hand side of the

distribution of AUC-PR of LP . In Figure 3.14 (b) ROC curves of the algorithms the

ROC curves of C4.5 white dominate the ROC curves of LP black on the dataset. In

Figure 3.14 (d), the distributions of AUC of the algorithms are significantly different.

In Figure 3.18, the distributions of errors of the algorithms are not close to eachother,

therefore the error test rejects the null hypothesis.
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Figure 3.11. The graphics for C4.5 and Ripper on the dataset chess
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Figure 3.12. The graphics for LP and NB on the dataset chess
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Figure 3.13. The graphics for C4.5 and Ripper on the dataset gina
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Figure 3.14. The graphics for C4.5 and LP on the dataset chess



33

Error

C
o
u
n
ts

Figure 3.15. The error distribution for C4.5 and Ripper on the dataset chess

Error

C
o
u
n
ts

Figure 3.16. The error distribution for LP and NB on the dataset chess
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Figure 3.18. The error distribution for C4.5 and LP on the dataset chess
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4. COMPARISON OF MULTIPLE CLASSIFIERS

4.1. ANALYSIS OF VARIANCE

We have applied k-fold cross-validated paired t test to error and AUC results for

comparing two classifiers. However, in the case of multiple classifiers, the paired t test

is not applicable and the analysis of variance (ANOVA) can be used. ANOVA provides

statistical comparison of the means of more than two groups. It is a parametric test that

makes normality assumption on each group like the t test. The following theoretical

background of ANOVA is taken from [20].

The data that will be used in ANOVA is shown in Table 4.1. There are a treat-

ments (groups) and n observations (replications) for each treatment. In our case,

treatments correspond to classification algorithms and observations correspond to per-

formance values in folds. The notation is as follows: i in observation yij is the treatment

index and j is the observation index. yi. is the sum of the observations that belong to

treatment i, ȳi. is the average of the observations that belong to treatment i, y.. is the

grand sum of all the the observations in the data and ȳ.. is the grand average of all the

observations in the data:

yi. =
n∑

j=1

yij and ȳi. = yi./n, i = 1, 2, . . . , a (4.1)

y.. =
a∑

i=1

n∑
j=1

yij and ȳ.. = y../N where N = an (4.2)

Each observation yij is modeled as:

yij = µi + εij





i = 1, 2, . . . , a

j = 1, 2, . . . , n
(4.3)

where µi is the mean of treatment i and εij is the random error. This model is called
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Table 4.1. ANOVA data

Treatments Observations Totals Averages

1 y11 y12 ... y1n y1. ȳ1.

2 y21 y22 ... y2n y2. ȳ2.

3 y31 y32 ... y3n y3. ȳ3.

. . . ... . . .

. . . ... . . .

. . . ... . . .

a ya1 ya2 ... yan ya. ȳa.

the means model. Another model is the effects model that is defined as:

yij = µ + τi + εij





i = 1, 2, . . . , a

j = 1, 2, . . . , n
(4.4)

where µ is the overall mean that is the mean of all treatments and τi is the ith

treatment effect. Both models are linear statistical models since the response variable

is linearly dependent on the independent variables. The effects model is more intuitive

for interpreting the effect of treatments. This ANOVA model investigates one factor

which represents the treatments. Therefore, it is called as one-way or single-factor

analysis of variance model.

Additionally, the model requires a completely randomized design where the ob-

servations are obtained in a random order to make the experiment conditions effects

approximately uniform. Random errors are assumed to be NID(0, σ2), that is, the

observations yij are assumed to be N(µ + τi, σ
2) and mutually independent. Since we

want to test whether the means of the treatments are equal or not, the hypothesis test

is constructed as

H0 : µ1 = µ2 = · · · = µa (4.5)

H1 : µi 6= µj for at least one pair (i, j) (4.6)
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which tests the equality of treatment means. Using the effects model, the hypothesis

test can be written as:

H0 : τ1 = τ2 = · · · = τa = 0 (4.7)

H1 : τi 6= 0 for at least one i (4.8)

which tests the equality of treatment effects. Partitioning of total variability is the

basis of ANOVA. The total sum of squares is

SST =
a∑

i=1

n∑
j=1

(yij − ȳ..)
2 (4.9)

It can also be written as

a∑
i=1

n∑
j=1

(yij − ȳ..)
2 =

a∑
i=1

n∑
j=1

[(ȳi. − ȳ..) + (yij − ȳi.)]
2 (4.10)

then,

a∑
i=1

n∑
j=1

(yij − ȳ..)
2 = n

a∑
i=1

(ȳi. − ȳ..)
2 +

a∑
i=1

n∑
j=1

(yij − ȳi.)
2 (4.11)

+ 2
a∑

i=1

n∑
j=1

(ȳi. − ȳ..)(yij − ȳi.) (4.12)

The last term is zero, since

n∑
j=1

(yij − ȳi.) = yi. − nȳi. = yi. − n(yi./n) = 0 (4.13)

Then, the total sum of squares can be partitioned as

a∑
i=1

n∑
j=1

(yij − ȳ..)
2 = n

a∑
i=1

(ȳi. − ȳ..)
2 +

a∑
i=1

n∑
j=1

(yij − ȳi.)
2 (4.14)

The two terms in equation 4.14 can be interpreted as between and within sum of squares.
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The between sum of squares measures the difference between the treatment average

and grand average that indicates the difference between treatment means. The within

sum of squares measures the difference between the observation and treatment average

that indicates the random error. Equation 4.14 can be written as

SST = SSTreatments + SSE (4.15)

where SST has N − 1 degrees of freedom, SSTreatments has a − 1 degrees of freedom

and SSE has N − a degrees of freedom. Then, MSTreatments and MSE are defined as :

MSTreatments =
SSTreatments

a− 1
(4.16)

MSE =
SSE

N − a
(4.17)

The expected value of MSE is equal to the total variability σ2:

E [MSE] = E

[
SSE

N − a

]
=

1

N − a
E

[
a∑

i=1

n∑
j=1

(yij − ȳi.)
2

]
(4.18)

=
1

N − a
E

[
a∑

i=1

n∑
j=1

(y2
ij − 2yij ȳi. + ȳ2

i.)

]
(4.19)

=
1

N − a
E

[
a∑

i=1

n∑
j=1

y2
ij − 2n

a∑
i=1

ȳ2
i. + n

a∑
i=1

ȳ2
i.

]
(4.20)

=
1

N − a
E

[
a∑

i=1

n∑
j=1

y2
ij −

1

n

a∑
i=1

y2
i.

]
(4.21)

It can also be written by substituting the means model:

E [MSE] =
1

N − a
E




a∑
i=1

n∑
j=1

(µ + τi + εij)
2 − 1

n

a∑
i=1

(
n∑

j=1

(µ + τi + εij

)2

 (4.22)

Since E [εij] = 0, it equals to:

E [MSE] =
1

N − a
E

[
Nµ2 + n

a∑
i=1

τ 2
i + Nσ2 −Nµ2 − n

a∑
i=1

τ 2
i − aσ2

]
(4.23)
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E [MSE] = σ2 (4.24)

It can also be shown that

E [MSTreatments] = σ2 +
n

∑a
i=1 τ 2

i

a− 1
(4.25)

Therefore, if there is no difference between the treatment means, MSTreatments estimates

σ2. If there is any difference in treatment means, E [MSTreatments] is greater than σ2.

MSTreatments is chi-square distributed with a − 1 degrees of freedom and MSE is chi-

square distributed with N −a degrees of freedom. Thus, using Cochran’s theorem, the

test statistic for the equality of means of treatments can be tested by looking at the

ratio of MSTreatments to MSE:

F0 =
MSTreatments

MSE

(4.26)

where F0 is F distributed with a−1 and N−a degrees of freedom. The null hypothesis

should be rejected if

F0 > Fα,a−1,N−a (4.27)

If the null hypothesis of the ANOVA test is rejected, then pairwise post-hoc tests are

applied for making pairwise comparisons. Tukey’s test is one of them which has the

null hypothesis and alternative hypothesis:

H0 : µi = µj (4.28)

H1 : µi 6= µj (4.29)

for all i 6= j. For equal sample sizes, the overall significance level is α. For each pairwise

comparison of two samples, the null hypothesis that their means are equal is rejected

at significance level α if the absolute value of the difference of their sample mean is
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greater than

Tα = qα(a, f)

√
MSE

n
(4.30)

where a is the number of treatments and f is the degrees of freedom related to MSE.

Then, 100(1− α) confidence intervals for each sample pair i 6= j can be written as

ȳi. − ȳj. − qα(a, f)

√
MSE

n
≤ µi − µj ≤ ȳi. − ȳj. + qα(a, f)

√
MSE

n
(4.31)

The distribution of Studentized range statistic is

q =
ȳmax − ȳmin√

MSE/n
(4.32)

where ȳmax is the maximum sample mean and ȳmin is the minimum sample mean.

4.2. ANALYSIS OF VARIANCE WITH BLOCKING

The effect of variability caused by the nuisance factor on the results can be elimi-

nated by including this factor in the model if it is known and controlable; this is called

blocking. The experimental setup is now called as randomized complete block design.

Randomization is applied to each block, the order of treatments is random in each

block and this is called as restriction in randomization. Complete means that there is

a complete set of treatments in each block. The effects model can now be written as

yij = µ + τi + βj + εij





i = 1, 2, . . . , a

j = 1, 2, . . . , n
(4.33)
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where βj is the block effect. It is assumed that

a∑
i=1

τi = 0 (4.34)

a∑
i=1

βi = 0 (4.35)

The hypothesis test is

H0 : µ1 = µ2 = · · · = µa (4.36)

H1 : µi 6= µj for at least one (i, j) pair (4.37)

Since µi = (1/n)
∑n

j=1(µ + τi + βj) = µ + τi for treatment i, the hypothesis test can

also be written as

H0 : τ1 = τ2 = · · · = τa (4.38)

H1 : τi = 0 for at least one i (4.39)

The partitioning procedure can be rearranged according to the blocking effect. The

sum of squares are

yi. =
n∑

j=1

yij i = 1, 2, . . . , a (4.40)

y.j =
a∑

i=1

yij j = 1, 2, . . . , n (4.41)

y.. =
a∑

i=1

n∑
j=1

yij =
a∑

i=1

yi. =
n∑

j=1

y.j (4.42)

The averages are

ȳi. = yi./n ȳ.j = y.j/a ȳ.. = y../N (4.43)
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where N = an. The total sum of squares can be written as

a∑
i=1

n∑
j=1

(yij − ȳ..)
2 =

a∑
i=1

n∑
j=1

[(ȳi. − ȳ..) + (ȳ.j − ȳ..) + (ȳij − ȳi. − ȳ.j + ȳ..)]
2 (4.44)

It can be rearranged as

a∑
i=1

n∑
j=1

(yij − ȳ..)
2 = n

a∑
i=1

(ȳi. − ȳ..)
2 + a

n∑
j=1

(ȳ.j − ȳ..)
2 (4.45)

+
a∑

i=1

n∑
j=1

(yij − ȳi. − ȳ.j + ȳ..)
2 + 2

a∑
i=1

n∑
j=1

(ȳi. − ȳ..)(ȳ.j − ȳ..)(4.46)

+ 2
a∑

i=1

n∑
j=1

(ȳ.j − ȳ..)(yij − ȳi. − ȳ.j + ȳ..) (4.47)

+ 2
a∑

i=1

n∑
j=1

(ȳi. − ȳ..)(yij − ȳi. − ȳ.j + ȳ..) (4.48)

The equality of three cross products to zero can be shown, and then

a∑
i=1

n∑
j=1

(yij − ȳ..)
2 = n

a∑
i=1

(ȳi. − ȳ..)
2 + a

n∑
j=1

(ȳ.j − ȳ..)
2 (4.49)

+
a∑

i=1

n∑
j=1

(yij − ȳ.j − ȳi. + ȳ..)
2 (4.50)

The first term on the right hand side is the sum of squares of differences between the

treatment averages and the grand average, the second term is the difference between

the block averages and the grand average and the last term is the sum of squares of

error:

SST = SSTreatments + SSBlocks + SSE (4.51)

where SST has N − 1 degrees of freedom, SSTreatments has a − 1 degrees of freedom,

SSBlocks has b−1 degrees of freedom. SSE has N−1− (a−1)− (b−1) = (a−1)(b−1)

degrees of freedom. The mean squares can be obtained by dividing the sum of squares
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by their degrees of freedom. The expected values of the mean squares are:

E [MSTreatments] = σ2 + n

∑a
i=1 τ 2

i

a− 1
(4.52)

E [MSBlocks] = σ2 + a

∑n
j=1 β2

j

n− 1
(4.53)

E [MSE] = σ2 (4.54)

The test statistic is F distributed with a− 1 and (a− 1)(b− 1) degrees of freedom and

it can be calculated by dividing mean squares of treatment by mean squares of error:

F0 =
MSTreatments

MSE

(4.55)

The null hypothesis that the means of all treatments are equal can be rejected if

F0 > Fα,a−1,(a−1)(b−1).

4.3. FRIEDMAN TEST

Friedman test is a nonparametric version of ANOVA which is a parametric statis-

tical test. Instead of fitting a normal distribution like ANOVA, it ranks the classifiers

on each dataset according to their performances. Following formulations are taken

from [2]. Let ri
j be the rank of classifier i on the dataset j and average rank of the

classifier i over L datasets be

Ri =
1

L

∑
j

ri
j (4.56)

Instead of comparing means of performance metrics like ANOVA, Friedman test com-

pares average ranks of the classifiers. Thus, the hypothesis test can be contructed

as:

H0 : R1 = R2 = · · · = Ra (4.57)

H1 : Ri 6= Rj for at least one pair (i, j) (4.58)
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The Friedman statistic is defined as

χ2
F =

12L

a(a + 1)

[∑
i

R2
i −

a(a + 1)2

4

]
(4.59)

is distributed as chi-square distribution with a − 1 degrees of freedom. A better test

statistic which is distributed as F distribution with a − 1 and (a − 1)(L − 1) degrees

of freedom is proposed since it is too conservative:

F 2
F =

(L− 1)χ2
F

L(a− 1)− χ2
F

(4.60)

The post-hoc test performed when Friedman test rejects the null hypothesis is Nemenyi

test. Two classifiers have significantly different performances at significance level α if

the difference of their average ranks is greater than or equal to the critical difference

CD = qα

√
a(a + 1)

6L
(4.61)

4.4. MULTIVARIATE ANALYSIS OF VARIANCE

Multivariate analysis of variance (MANOVA) is the multivariate case of univariate

analysis of variance. The following theoretical background is taken from [21]. Let us

represent the replication i of treatment j as xij and since it is p dimensional, it is a

(p× 1) vector. The effect model can be written as

xij = µ + τ j + εij (4.62)

where εij is distribued as NID(0,Σ), µ is the overall mean and τ j is the effect of

treatment j where the mean of treatment j is written as

µj = µ + τ j (4.63)
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The equality of means is tested by

H0 : µ1 = µ2 · · · = µa (4.64)

H1 : µi 6= µj for at least one (i,j) (4.65)

The sum of squares in the univariate case is now in matrix form. There are three SSP

(squares and products) matrices total SSP matrix, within-samples SSP matrix and

between-samples SSP matrix : T,W,B:

W =
a∑

j=1

n∑
i=1

(xij − xj)(xij − xj)
T (4.66)

B =
a∑

j=1

n(xj − x)(xj − x)T (4.67)

T =
a∑

j=1

n∑
i=1

(xij − x)(xij − x)T (4.68)

The null hypothesis is tested using the likelihood test, also known as the Wilks Λ test :

Λ = |W|/|T| (4.69)

Λ = |W|/|W + B| (4.70)

where |W | is the determinant of matrix W . The null hypothesis is rejected for small

values of Λ which can also be written as

Λ =

p∏
j=1

(1 + λj)
−1 (4.71)

where λ1, . . . λp are the eigenvalues of W−1B. Then instead of using only Wilks lambda,

the test of dimensionality is applied to obtain the actual dimensionality of data if the

null hypothesis is rejected. If the null hypothesis is true, the actual dimensionality is

0. If the null hypothesis is rejected, the dimensionality problem is to find the actual

dimension r where r = 0, 1, . . . , t, and r ≤ min(p, a− 1) = t. Then, the hypothesis test
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is constructed as

H0 : µ lie in an r dimensional hyperplane (4.72)

H1 : µi are unrestricted for i = 1, . . . , a (4.73)

This test is a LR (likelihood ratio) test with known variance. Then, because x̄i ∼
Np(µi,Σ/n), the log likelihood function can be expressed as

l(µ1, . . . , µa) = c− 1

2

a∑
i=1

n(xi − µi)
T Σ−1(xi − µi) (4.74)

where c is a constant. Under the alternative hypothesis, µi = x̄i and

max
H1

l(µ̄1, . . . , µ̄a) = c (4.75)

Under the null hypothesis, the maximum of function l above can be found by using

the theorem:

max
H0

l(µ̄1, . . . , µ̄a) = c− 1

2
(γr+1 + · · ·+ γp) (4.76)

where γ1 ≥ γ2 ≥ · · · ≥ γp are the eigenvalues of |B−γΣ| = 0. Then, λ is the difference

between Equations 4.76 and 4.75:

−2 log λ = γr+1 + · · ·+ γp (4.77)

If the values of Equation 4.77 are large, then the null hypothesis is rejected. Equation

4.77 is distributed as chi-square with f degrees of freedom for large values of n. Thus,

γr+1 + · · ·+ γp ∼ χ2
f f = pa− p(r + 1)− (a− r − 1)r = (p− r)(a− r − 1)(4.78)

The alternative test is the LR (likelihood ratio) test with unknown variance, estimated

by an unbiased estimate W/(n − a) and the LR test with known variance is applied
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with this unbiased estimate. Then, Equation 4.78 becomes

(n− a)(λr+1 + · · ·+ λp) ∼ χ2
f where f = (p− r)(a− r − 1) (4.79)

and λr+1 . . . λp are the roots of

|B− λW| = 0 (4.80)

Equation 4.79 is improved with another statistic:

D2
r = (n− 1− 1

2
(p + a))

p∑
j=r+1

log(1 + λj) ∼ χ2
f (4.81)

Then, the dimensionality is tested for r = 0, 1, . . . , t. First, H0 : r = 0 is tested. If

D2
0 is significant, we continue with other values for r. When we continue, if the test

statistic is significant until r but not significant for r, the dimensionality is taken as

r. r = 0 means that we have a point and we can not reject the hypothesis that the

group means are equal. r = 1 means that the dimensionality is 1 and we can reject

the hypothesis that group means are equal and we can not reject the hypothesis that

group means are on a line (plane if r = 2).

The two-sample Hotelling’s T 2 test is applied for paired post-hoc comparisons.

The Mahalanobis distance D between two populations with means µ̄1and µ̄2 using a

common covariance matrix Σ is

D2 = (µ̄1 − µ̄2)
TΣ−1(µ̄1 − µ̄2) (4.82)

The population parameters can be estimated with the unbiased sample parameters.

Two samples with sizes n1 and n2 and total size n1 + n2 = n can be calculated with a

common sample covariance Su = (n1S1 + n2S2)/(n− 2) by

D2 = (x̄1 − x̄2)
T S−1

u (4.83)
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We represent each sample by a data matrix X i (i = 1, 2) where the rows of the matrix

are the instances. The following theorem offers a distribution for this distance.

If X1 and X2 are independent and the rows of X i are i.i.d. and N(µi,Σi) for

i = 1, 2 and µ̄1 = µ̄2 and Σ̄1 = Σ̄2, (n1n2)/n equals to T 2(p, n − 2). This statistic is

called Hotelling’s two-sample T 2 statistic and it can be transformed to an F statistic

by

n1n2(n− p− 1)

n(n− 2)p
D2 ∼ Fp,n−p−1 (4.84)

When multiple pairwise comparisons are performed, Bonferroni correction should

be applied to obtain a target significance level.

4.5. MULTIVARIATE ANALYSIS OF VARIANCE WITH BLOCKING

The nuisance factor can also be included in MANOVA. Because the blocking

matrix BL is added now, there are four SSP (squares and products) matrices that

are total SSP matrix, within-samples SSP matrix and between-samples SSP matrix ,

blocking SSP matrix: T,W,B,BL:

T =
a∑

j=1

n∑
i=1

(xij − x)(xij − x)′ (4.85)

B =
a∑

j=1

n(xj − x)(xj − x)′ (4.86)

BL = a

a∑
j=1

n∑
i=1

(xi − x)(xi − x)′ (4.87)

W = T−B−BL (4.88)
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4.6. BINOMIAL SIGN TEST

Following procedure is taken from [27]. Let one classifier be C1 and other be

C2. Let π+ be the proportion that C1 wins C2 in the classifier population. Since the

equality of the performance of two classifiers are tested, null hypothesis states that π+

equals to 0.5:

H0 : π+ = 0.5 (4.89)

H1 : π+ 6= 0.5 (4.90)

Let the number of times that C1 wins C2 is x. Since we have L datasets, the probability

of having a value that is equal to or more extreme than x can be calculated as:

P (≥ x) =
L∑

r−x

(
n

x

)
(π+)x(1− π+)L−x (4.91)

If the probability calculated using Equation 4.91 is equal to or less than significance

level α/2, null hypothesis can be rejected. If proportion of wins are greater than 0.5,

the more extreme value means that the values greater than the value x. Conversely, if

proportion of wins are less than 0.5, the more extreme value means that the values less

than the value x. In case of ties, they are equally seperated among wins and losses.

Odd number of them result in a decrease in N .
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5. COMPARISON OF MULTIPLE CLASSIFIERS OVER

ONE DATASET

5.1. EXPERIMENTAL SETUP

We compare the misclassification error of 5 classifiers for each dataset by applying

ANOVA with blocking effect. We add blocking effect since each instance in the dataset

comes from one fold. Therefore, blocks are the folds and we eliminate the nuisance

factor. If the null hypothesis that the means of errors of 5 classifiers are equal is

rejected, we apply Tukey’s test as a post-hoc test for making pairwise comparisons.

We calculate TP, FP, TN and FN from the posterior probabilities for each classi-

fier and dataset. Then we apply MANOVA with blocking effect. Again, because of the

folds, blocking is included. If the null hypothesis that the means of error of 5 classifiers

are equal is rejected, we apply two-sample Hotelling’s T 2 test as a post-hoc test for

making pairwise comparisons. We use Bonferroni correction in pairwise tests to have

an overall significance α.

5.2. EXPERIMENTAL RESULTS

When we apply post-hoc tests after ANOVA and MANOVA, we obtain cases

where they do not agree. We first examine the test statistics to observe their behavior.

When k-NN and Ripper is compared, ANOVA that uses error metric accepts and

MANOVA that uses TP, FP, TN and FN rejects on report dataset. The means and the

difference of means of TP, FP, TN and FN of k-NN and Ripper are given in Table 5.1

and the unbiased pooled covariance matrix estimate is given in Table 5.2. The means,

differences in means and variances of errors of k-NN and Ripper are given in Table

5.3. When the variance of the error decreases, the lower bound for rejection of the

null hypothesis of Tukey test decreases, so it rejects more easily. One can observe that

the difference of error is not significant but since the error is sum of FP and FN and
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they take plus and minus values, MANOVA results in a significant difference. Another

disagreement is that ANOVA rejects and MANOVA accepts the null hypothesis for

C4.5 and Ripper and on dataset Pageblock. The means and the difference of means of

TP, FP, TN and FN are given in Table 5.4. The unbiased pooled covariance matrix

estimate is given in Table 5.5. Means, difference in means and variances of errors are

given in Table 5.6. FP and FN both have plus signs. Therefore, error is divided to

these metrics a decrease occurs resulting in an insignificant difference in MANOVA and

significant difference in ANOVA.

These two cases give an intuitive difference of the tests. However, we should also

take into account the unbiased pooled covariance matrix estimate in both cases, because

covariance can change the test statistic. Since we want to visualize the correlation and

the difference at the same time, we draw two dimensional data for FP and FN using

the unbiased pooled covariance matrix. The examples for the acceptance case of two-

sample Hotelling’s T 2 test are shown in Figure 5.1. The classifiers are shown with

asterisk and cross markers with the common covariance matrix. They are too close

to each other. The examples for the rejection case of two-sample Hotelling’s T 2 test

are shown in Figure 5.2. Classifiers are too far away to each other which results in a

greater Mahalanobis distance, so a greater F statistic. We conclude that the reason of

this disagreement is that the multivariate version takes into account the false positives

and false negatives separately and also their correlation instead of only error which is

the sum of these values.

Table 5.1. Means of TP, FP, TN and FN for k-NN and ripper

TP FP TN FN

k-NN 78.2768 16.6226 2.7047 2.3959

ripper 77.8237 16.1667 3.1606 2.8490

difference 0.4531 0.4558 -0.4558 -0.4531
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Table 5.2. Unbiased pooled covariance matrix estimate for k-NN and Ripper on report

dataset

TP FP TN FN

TP 0.2062 0.1554 -0.1554 -0.2062

FP 0.1554 0.1388 -0.1388 -0.1554

TN -0.1554 -0.1388 0.1388 0.1554

FN -0.2062 -0.1554 0.1554 0.2062

Table 5.3. Test statistics calculated with Tukey test

k-NN mean 19.0185

ripper mean 19.0158

mean difference 0.0027

k-NN variance 0.0130

ripper variance 0.0554

Table 5.4. Means of TP, FP, TN and FN for C4.5 and Ripper on Pageblock dataset

TP FP TN FN

C4.5 92.8108 0.8047 5.4882 0.8963

Ripper 92.9996 0.7685 5.5244 0.7075

difference -0.1888 0.0362 -0.0362 0.1888

Table 5.5. Unbiased pooled covariance matrix estimate for C4.5 and Ripper on

Pageblock dataset

0.1074 0.0395 -0.0395 -0.1074

0.0395 0.0399 -0.0399 -0.0395

-0.0395 -0.0399 0.0399 0.0395

-0.1074 -0.0395 0.0395 0.1074
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FN

F
P

(a) The covariance graphic of C4.5 and Ripper on dataset spambase

FN

F
P

(b) The covariance graphic of C4.5 and Ripper on dataset thyroid

Figure 5.1. Examples for the acceptance of null hypothesis of MANOVA



54

FN

F
P

(a) The covariance graphic of C4.5 and LP on dataset gina

FN

F
P

(b) The covariance graphic of Ripper and LP on dataset nursery

Figure 5.2. Examples for the rejection of null hypothesis of MANOVA
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Table 5.6. Test statistics calculated with Tukey test

C4.5 mean 1.7010

Ripper mean 1.4759

mean difference 0.2251

C4.5 variance 0.0997

Ripper variance 0.0368
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6. UNIVARIATE COMPARISON OF MULTIPLE

CLASSIFIERS OVER MULTIPLE DATASETS

6.1. EXPERIMENTAL SETUP

In previous chapters, we compare multiple classifiers on a single dataset. We

now compare 5 classifiers over 15 datasets using ANOVA. We use error and AUC

as univariate metrics. For each dataset, we apply ANOVA with two factors that are

classifiers and blocking effect because of cross-validation folds. After ANOVA, we apply

Tukey test as a post-hoc test. In multiple comparisons, we calculate the wins for each

classifier pair. When we use error, if Tukey test rejects the null hypothesis that the

two classifiers are equal, the classifier with smaller error wins. When we use AUC, if

Tukey test rejects the null hypothesis that the two classifiers are equal, the classifier

with greater AUC wins. Thus, we obtain 15 pairwise comparisons of 5 classifiers. We

sum up the number of wins over 15 datasets. We also use k-fold cross validated t

test with Bonferroni correction for comparing the results with the Tukey test. After

obtaining the number of wins of classifier pairs over 15 datasets, we apply Sign test to

the number of wins. For each classifier, we take the union of wins gives us an intuitive

order. ANOVA is a parametric test which is built on some assumptions. For the sake

of completeness, we also apply the nonparametric version of ANOVA test to check if

there are any differences in the results. Nemenyi test is used as the post hoc test.

We calculate the average of error over 30 folds and the average of AUC over 30 folds

and take datasets as a blocking factor. In multiple comparisons, we also calculate the

wins for each classifier pair. In pairwise comparisons, if Nemenyi test rejects the null

hypothesis, the classifier with smaller average rank wins over the other classifier.

6.2. EXPERIMENTAL RESULTS

Table 6.3 shows the number of wins using Tukey test after ANOVA for the per-

formance metric of error. The total number of wins for each classifier is shown in the
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column named as total. Therefore we can a ranking based on this column: k-NN is

better than Ripper and LP, C4.5 and NB which have equal performances. However,

we may want to test the significance of this ranking. Thus, we perform the Sign test

on data given in Table 6.3. The result of the Sign test is shown in Table 6.4 and in

Figure 6.5 where the classifier pairs that do not have a significant difference in ranking

are combined with lines and the average ranks are also shown. As we can predict from

the total wins, there are significant differences between NB and the other classifiers.

Table 6.5 shows the number of wins of classifiers using Tukey test after ANOVA

for the performance metric of AUC. We can obtain the ranking based on total number

of wins: k-NN is better than LP, LP is better than C4.5, C4.5 is better than NB and

NB is better than Ripper. We perform the Sign test on data in Table 6.5. The result of

the Sign test is shown in Table 6.6 and in Figure 6.6. There is a significant difference

between only NB and LP.

We repeat the same procedure for k-fold cross validated t test with Bonferroni

correction. The number of wins calculated using t test performed on error results are

shown in Table 6.7, an order can be found: k-NN has equal performance with LP, they

are better than C4.5, C4.5 is better than Ripper, Ripper is better than NB. Pairwise

comparisons using Sign test is shown in Table 6.8 and in Figure 6.3. The number of

wins calculated using t test performed on AUC results are shown in Table 6.9; an order

can be found: k-NN has equal performance with LP, they are better than C4.5, C4.5

has equal performance with NB, NB is better than Ripper. Pairwise comparisons using

Sign test is shown in Table 6.10 and in Figure 6.4 . It can be seen that results of paired

t test and Tukey test mostly agree.

We also use Friedman test with the post-hoc test of Nemenyi test. The result of

Nemenyi test using error is shown in Table 6.1 and Figure 6.2 . Result of Nemenyi test

using AUC is shown in Table 6.2 and Figure 6.1.

In all the comparisons that use error as a performance metric, there are only

significance differences between NB and all the other classifiers. When AUC is used as
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a performance metric in paired t test and Tukey test, there are no difference between

any classifier pair that do not include NB again, but most of the differences between

NB and all the other classifiers do not exists now. When AUC is used as a performance

metric in Nemenyi test, the pairwise comparison results changes totally. It can be seen

in Figure 6.1 that Nemenyi results in small differences between classifiers, the reason

that Nemenyi test has low power. Binomial Sign test has also a low power since it

requires too much number of wins for detecting a significant difference.

We also use AUC-PR metric. The results of Nemenyi test are given in Table 6.11

and they are different from the results of error and AUC. The number of wins using

ANOVA and post-hoc test of Tukey are shown in Table 6.12 and the results of Sign

test applied to the number of wins are given in Table 6.13. We can see in Table 6.13

that there is no significant difference between any classifier pairs. The number of wins

using ANOVA and post-hoc test of t test are shown in Table 6.14 and the results of

Sign test applied to the number of wins are given in Table 6.15. We can see in Table

6.15 that there is no significant difference between any classifier pairs. It can be seen

that the number of wins are distributed for AUC-PR in a more homogeneous manner

than error and AUC. However, the weakness of Sign test prevents detecting differences

that could be significant using a more powerful test.

Table 6.1. Results of Nemenyi test using error

k-NN C4.5 Ripper LP NB

k-NN 0 0 0 0 1

C4.5 0 0 0 0 1

Ripper 0 0 0 0 1

LP 0 0 0 0 1

NB 1 1 1 1 0
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Table 6.2. Results of Nemenyi test using AUC

k-NN C4.5 Ripper LP NB

k-NN 0 0 1 0 0

C4.5 0 0 0 1 0

Ripper 1 0 0 1 0

LP 0 1 1 0 0

NB 0 0 0 0 0

Table 6.3. Number of wins obtained from Tukey test after ANOVA with blocking

using error

k-NN C4.5 Ripper LP NB total

k-NN 0 7 5 7 15 15

C4.5 3 0 3 6 14 14

Ripper 3 8 0 6 14 14

LP 7 8 7 0 14 14

NB 0 0 0 0 0 0

Table 6.4. Results of Sign test using Tukey test and error

k-NN C4.5 Ripper LP NB

k-NN 0 0 0 0 1

C4.5 0 0 0 0 1

Ripper 0 0 0 0 1

LP 0 0 0 0 1

NB 1 1 1 1 0
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Table 6.5. Number of wins obtained from of Tukey test after ANOVA with blocking

using AUC

k-NN C4.5 Ripper LP NB total

k-NN 0 12 13 6 9 14

C4.5 2 0 8 3 5 11

Ripper 2 2 0 2 5 7

LP 6 11 12 0 11 13

NB 3 8 9 1 0 10

Table 6.6. Results of Sign test using Tukey test and AUC

k-NN C4.5 Ripper LP NB

k-NN 0 0 0 0 0

C4.5 0 0 0 0 0

Ripper 0 0 0 0 0

LP 0 0 0 0 0

NB 0 0 0 0 0

Table 6.7. Number of wins obtained from paired t test after ANOVA with blocking

using error

k-NN C4.5 Ripper LP NB total

k-NN 0 7 7 7 15 15

C4.5 4 0 4 5 14 14

Ripper 5 6 0 6 13 13

LP 7 9 7 0 15 15

NB 0 0 0 0 0 0
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Table 6.8. Results of Sign test using paired t test and error

k-NN C4.5 Ripper LP NB

k-NN 0 0 0 0 1

C4.5 0 0 0 0 1

Ripper 0 0 0 0 1

LP 0 0 0 0 1

NB 1 1 1 1 0

Table 6.9. Number of wins obtained from paired t test after ANOVA with blocking

using AUC

k-NN C4.5 Ripper LP NB total

k-NN 0 13 13 7 11 14

C4.5 2 0 6 3 5 9

Ripper 2 2 0 2 5 7

LP 7 12 12 0 14 14

NB 3 8 8 1 0 9

Table 6.10. Results of Sign test using paired t test and AUC

k-NN C4.5 Ripper LP NB

k-NN 0 0 0 0 0

C4.5 0 0 0 0 0

Ripper 0 0 0 0 0

LP 0 0 0 0 1

NB 0 0 0 1 0
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Figure 6.1. Pairwise comparisons of Nemenyi test using error

Figure 6.2. Pairwise comparisons of Nemenyi test using AUC
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Figure 6.3. Pairwise comparisons of Sign test using paired t test using error

Figure 6.4. Pairwise comparisons of Sign test using paired t test using AUC

Figure 6.5. Pairwise comparisons of Sign test using Tukey test using error
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Figure 6.6. Pairwise comparisons of Sign test using Tukey test using AUC

Table 6.11. Results of Nemenyi test using AUC-PR

k-NN C4.5 Ripper LP NB

k-NN 0 1 0 0 0

C4.5 1 0 0 1 0

Ripper 0 0 0 0 0

LP 0 1 0 0 0

NB 0 0 0 0 0

Table 6.12. Number of wins obtained from Tukey test after ANOVA with blocking

using AUC-PR

k-NN C4.5 Ripper LP NB total

k-NN 0 11 8 4 7 14

C4.5 2 0 3 3 4 6

Ripper 3 8 0 3 5 13

LP 5 11 10 0 7 13

NB 3 10 6 1 0 12
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Table 6.13. Results of Sign test using Tukey test and AUC-PR

k-NN C4.5 Ripper LP NB

k-NN 0 0 0 0 0

C4.5 0 0 0 0 0

Ripper 0 0 0 0 0

LP 0 0 0 0 0

NB 0 0 0 0 0

Table 6.14. Number of wins obtained from paired t test after ANOVA with blocking

using AUC-PR

k-NN C4.5 Ripper LP NB total

k-NN 0 11 10 5 11 14

C4.5 3 0 2 3 5 6

Ripper 4 5 0 3 7 10

LP 8 11 12 0 12 13

NB 4 8 6 1 0 11

Table 6.15. Results of Sign test using paired t test and AUC-PR

k-NN C4.5 Ripper LP NB

k-NN 0 0 0 0 0

C4.5 0 0 0 0 0

Ripper 0 0 0 0 0

LP 0 0 0 0 0

NB 0 0 0 0 0
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7. MULTIVARIATE COMPARISON OF MULTIPLE

CLASSIFIERS OVER MULTIPLE DATASETS FOR

DIFFERENT THRESHOLD POINTS

7.1. EXPERIMENTAL SETUP

We use 4 dimensional multivariate variable that are TP, FP, TN and FN for

comparing multiple classifiers over multiple datasets. Since the metric is multivariate,

MANOVA is preferred. We include the nuisance factor in the statistical test by taking

cross-validation folds as blocking effects. For establishing a comparison that examines

all the threshold points like a ROC curve, we perform MANOVA using different values

of TP, FP, TN and FN that are calculated from different threshold points. Therefore,

a classifier wins if the total risk of the classifier is less than the other for a threshold

point. We calculate the risk of a classifier by multiplying TP, FP, TN and FN with

their corresponding costs and summing up these multiplied costs. For a dataset, we

repeat this procedure for different thresholds from 0 to 1 and obtain a grid of number

of wins for each threshold value. Then for each dataset, if a classifier wins over the

other for at least one threshold, then we count it as a win.

First, we start with a threshold point of 0.5. We apply MANOVA to each dataset.

Because of the value of the threshold point, the costs of the FP and FN are equal. Then,

the risk can be calculated by summing up FP and FN which is equal to error. If the

post-hoc test rejects the null hypothesis that performances of two classifiers are the

same, one classifier wins if sum of its FP and FN is less than the other.

After the threshold point of 0.5, we traverse 21 threshold points: θ = 0, 0.05, 0.1,

. . . , 1. For each dataset, we sum up the 21 different grids calculated from 21 different

thresholds, then we apply right-tailed Binomial Sign test to the total grid to test if

there is a significant difference over all the threshold points, that is, the ROC curves.

Then for each dataset, we have the grids showing the classifier pairs for wins, then we
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sum up these 15 grids. We apply two-tailed Binomial Sign test to test if these is a

significant difference between the classifiers over 15 datasets.

7.2. EXPERIMENTAL RESULTS

For threshold point of 0.5, dimension results of MANOVA test for each dataset

are shown in Table 7.1. MANOVA test can not reject the null hypothesis for only one

dataset which has dimension result of zero in Table 7.1. The number of wins obtained

using post-hoc test are shown in Figure 7.2. The total performance of each classifier is

calculated by taking union of datasets on each row and is shown in the column with

the name total. The results of two-tailed Binomial Sign test are shown in Table 7.3. It

can be seen that NB is the worst classifier and there are not any signicant differences

between other classifiers.

For 21 different threshold points, total number of wins calculated by summing up

the 15 grid results of right-tailed Binomial test are shown in Table 7.4. The two-tailed

Binomial Sign test is applied to the number of wins and results that show equality with

zeros and inequality with ones are given in Table 7.5. According to Table 7.4, NB seems

worst, however it can be seen in Table 7.5 there are no significant difference between

any classifiers. Therefore, we have obtained differences in results of MANOVA with

threshold point of 0.5 and MANOVA with 21 different threshold points. The reason

behind these differences is that results of comparisons change when one traverse differ-

ent risk points instead of one risk point which is the property of ROC curves.Another

reason is the weakness of sign test.

We also use Precision and Recall metrics for analyzing the Precision and Recall

Operating Characteristics. In Table 7.6 the dimension results of MANOVA are given

for threshold point of 0.5. In Table 7.7, number of wins after post-hoc test is given. It

can be seen that NB is worst. Results of two-tailed Binomial Sign test are shown in

Table 7.3. There are significant differences between NB and others as we expected. The

results of number of wins for 21 threshold points are shown in Table 7.9. However, it can

be seen from the results of two-tailed Binomial Sign test given in Table 7.10 that there
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is only a significant difference between NB and Ripper. Again global decision property

of using different threshold points gives different results than using one threshold point.

Table 7.1. Dimension decision of MANOVA for threshold point of 0.5

dataset 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

dimension 4 2 1 2 2 3 0 3 3 4 3 2 3 3 4

Table 7.2. Number of wins calculated using MANOVA for the threshold point of 0.5

k-NN C4.5 Ripper LP NB total

k-NN 0 8 7 7 14 14

C4.5 5 0 3 6 13 14

Ripper 6 6 0 7 14 14

LP 7 8 7 0 14 14

NB 0 1 0 0 0 1

Table 7.3. Result of two-tailed Binomial Sign test for the threshold point of 0.5

k-NN C4.5 Ripper LP NB

k-NN 0 0 0 0 1

C4.5 0 0 0 0 1

Ripper 0 0 0 0 1

LP 0 0 0 0 1

NB 1 1 1 1 0



69

Table 7.4. Number of wins calculated using MANOVA and Binomial Sign test for 21

threshold points

k-NN C4.5 Ripper LP NB

k-NN 0 0 0 2 3

C4.5 2 0 1 4 6

Ripper 3 1 0 4 5

LP 2 1 0 0 5

NB 0 0 0 0 0

Table 7.5. Result of two-tailed Binomial Sign test for 21 threshold points

k-NN C4.5 Ripper LP NB

k-NN 0 0 0 0 0

C4.5 0 0 0 0 0

Ripper 0 0 0 0 0

LP 0 0 0 0 0

NB 0 0 0 0 0

Table 7.6. Dimension decision of MANOVA using Precision and Recall for threshold

point of 0.5

dataset 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

dimension 2 2 1 2 2 2 1 2 2 2 2 2 2 2 2



70

Table 7.7. Number of wins calculated using MANOVA using Precision and Recall for

the threshold point of 0.5

k-NN C4.5 Ripper LP NB total

k-NN 0 7 9 7 15 15

C4.5 7 0 4 7 14 15

Ripper 5 5 0 7 14 15

LP 7 8 8 0 14 15

NB 0 1 1 1 0 11

Table 7.8. Result of two-tailed Binomial Sign test using Precision and Recall for the

threshold point of 0.5

k-NN C4.5 Ripper LP NB

k-NN 0 0 0 0 1

C4.5 0 0 0 0 1

Ripper 0 0 0 0 1

LP 0 0 0 0 1

NB 1 1 1 1 0

Table 7.9. Number of wins calculated using MANOVA and Binomial Sign test using

Precision and Recall for 21 threshold points

k-NN C4.5 Ripper LP NB

k-NN 0 5 5 5 11

C4.5 3 0 2 6 11

Ripper 5 4 0 6 13

LP 5 5 1 0 11

NB 0 1 0 1 0
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Table 7.10. Result of two-tailed Binomial Sign test using Precision and Recall for 21

threshold points

k-NN C4.5 Ripper LP NB

k-NN 0 0 0 0 0

C4.5 0 0 0 0 0

Ripper 0 0 0 0 1

LP 0 0 0 0 0

NB 0 0 1 0 0
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7.3. SUMMARY

The test procedure can be complicated when different datasets, different threshold

values and different performance metrics are used. Therefore, we give a pseudocode

for our proposed procedures in Figure 7.1. Comparison type is taken as a parameter,

then after making k-fold cross validation on the dataset and trainining and testing our

classifiers, comparison is performed according to the type of the comparison. The type

of comparison is composed of three parts. If different performance metrics are used, the

comparison is a multivariate comparison. Otherwise, the comparison is a univariate

comparison. Two classifiers or multiple classifiers can be compared. The classifiers can

be compared over one dataset or multiple datasets.
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1 Results StatisticalComparison(ComparisonType)

2 Make k-fold cross validation on the dataset.

3 switch ComparisonType

4 case univariate, two classifiers, one dataset

5 Paired t test to the values of error, AUC and AUC-PR.

6 case univariate, multiple classifiers, one dataset

7 ANOVA with blocking factor to the values of error, AUC and AUC-PR.

8 Tukey test for pairwise comparisons.

9 case multivariate, multiple classifiers, one dataset

10 MANOVA with blocking to the TP,FP,TN,FN and Precision, Recall.

11 Two-sample Hotelling’s T 2 test with Bonferroni correction.

12 case univariate, multiple classifiers, multiple datasets

13 ANOVA with blocking factor to the values of error, AUC and AUC-PR.

14 Tukey test for pairwise comparisons.

15 Calculate total risk values, compare and count wins, losses and ties.

16 Binomial Sign test with Bonferroni correction to wins, losses and ties.

17 case multivariate, multiple classifiers, multiple datasets

18 MANOVA with blocking to the TP,FP,TN,FN and Precision, Recall

19 Two-sample Hotelling’s T 2 test with Bonferroni correction.

20 Calculate total risk values, compare and count wins, losses and ties.

21 Binomial Sign test with Bonferroni correction to wins, losses and ties.

22 case multivariate, multiple classifiers, multiple datasets, different thresholds

23 MANOVA with blocking to the TP,FP,TN,FN and Precision, Recall.

24 Two-sample Hotelling’s T 2 test with Bonferroni correction.

25 For each dataset, right tailed Binomial Sign test over all thresholds.

26 Sign test with Bonferroni correction to total grid over all datasets.

Figure 7.1. Pseudocode
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8. CONCLUSION

It has been known that the ROC curve or the AUC value gives more informa-

tion than the misclassification error [4], but still, most of the tests in literature use

misclassification error.

In this work, we propose a novel statistical comparison procedure based on AUC

of the ROC curves. To check for significant difference (unaffected by randomness), for

each classifier, we use k-fold cross validation to construct multiple ROC curves and

calculate an AUC value for each. We then use the paired t test to test hypotheses on

such AUC distributions.

To validate our test, we compare it with the paired t test on misclassification

errors. We see that our AUC test and the one using error give consistent decisions on

a high proportion of cases. When they disagree, we believe that the one using AUC

values are more to be trusted because they compare under a set of possible losses and

not just a single one of equal loss for false positives and false negatives.

Both the error test and our test use the central limit theorem which states that

the sum of a large number of iid random variables (the Bernoulli random variables

corresponding to 0/1 decisions on test instances) is approximately normal. We see in

practice that the distributions for error or AUC are sometimes not normal, probably

due to dependence between folds which share data and the fact that 30 is a relatively

small number for central limit theorem to hold.

For obtaining a comparison for different threshold points, we also use Precision-

Recall curves which are the alternatives to ROC curves. After applying k-fold paired

t test to AUC-PR, we observe that error makes a local decision and AUC-PR makes

a global decision like AUC. However, we see that a classifier can be better according

to AUC and can be worse according to AUC-PR. We argue that although there is a

correspondence between ROC and PR curves, that is, one curve dominates the other
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in ROC space, if and only if it dominates other one in also PR space [16], we can not

guarantee the magnitude of this domination. The reason behind this situation is that

different metrics constitude the ROC and PR curves. It has been argued that one can

not assume the interval between points in PR curve as linear since Precision does not

change linearly as Recall changes and one should take into account the skewness in

interpolation [16]. Including skewness of PR curves in AUC-PR calculation can be a

future work.

Instead of making pairwise comparisons, multiple comparisons of classifiers at

the same time is also another problem. We use ANOVA for multiple comparisons. We

use MANOVA for comparing classifiers by using different performance metrics at the

same time. We observe that the multivariate test results in more reliable results since

it takes into account the correlation of different metrics.

We use AUC and error as univariate performance metrics and compare multiple

datasets over multiple classifiers using ANOVA and Binomial Sign test and compare it

with the results obtained by applying Friedman test and post-hoc test of Nemenyi. We

observe that Nemenyi test and Sign test have low powers and also AUC and error have

different test results. The reason behind this difference is the difference we indicated in

AUC-error metric comparisons. Since AUC makes a global decision and error makes a

local decision they can have different decisions. We also use AUC-PR as an alternative

to AUC, we obtain different results than the results of AUC and error.

We also try to simulate the behavior of the ROC space by applying MANOVA

at different threshold points and compare it with the test results of MANOVA with

the threshold point of 0.5 and obtain differences in their decisions because of risk

conditions. Therefore we use both different metrics and different threshold points

which is a desirable scenario. As we expected, results of MANOVA with the threshold

point of 0.5 and MANOVA with different threshold points are different. We also apply

MANOVA with threshold point of 0.5 and MANOVA at different threshold points to

Precision and Recall metrics to observe the PR curve behaviour.
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We also propose novel methods for comparing multiple classifiers and comparing

multiple classifiers over multiple datasets. Taking into account the correlation of met-

rics and also different threshold points makes the statistical comparison more robust.

We use Sign test for comparing classifiers, however Bonferroni correction and low power

of this statistical test prevents obtaining the statistical differences. It can be replaced

with a more powerful test as a future work.

Since Sign Rank test takes into account the magnitudes of the differences and

Binomial test does not [27], we have also tried Sign Rank test, however it does not

detect the differences again. A special test can be designed for this case.

MANOVA and ANOVA are valid if their assumptions are met. We use nonpara-

metric version of ANOVA which is Friedman test. However, since its post-hoc test is

a weak test like Sign test, it is not preferable. It is known that nonparametric versions

of parametric tests should not be used if the assumptions are met, because parametric

tests performs better than nonparametric ones when assumptions are met [2]. The as-

sumptions of ANOVA and MANOVA should be checked and powerful nonparametric

versions of ANOVA and MANOVA can be applied as a future work.
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APPENDIX A: CLASSIFICATION ALGORITHMS

LP is the linear perceptron includes one perceptron with inputs of features of the

instance and an output which is weighted sum of the features. Then, softmax enables

us using the posterior probabilities that is used in classification.

C4.5 is the decision tree algorithm. At each node, the attribute that provides

the maximum information gain is selected for splitting and childrens are crated. The

decision tree is constructed recursively with the same criteria.

k-NN is k nearest neighbor is the classifier that assigns class of the instance to

the class that is most frequently occured in its k nearest neighbors that have minimum

Euclidean distance.

NB is the naive Bayes that is a case of the discriminant function with normally

distributed class-conditional densities which assumes that variables are independent.

Ripper is an acronym for Repeated Incremental Pruning to Produce Error Re-

duction and it is the decision tree algorithm that optimizes an initial rule set that is

constructed using IREP. For each rule in the initial rule set, the algorithm constructs

two rules that are alternatives to that rule. For each rule, it performs a replacement

after growing an prunning, prunning is done for minimizing error of overall rule set.

Revision is done in greedy manner. MDL heuristic is used to select from three alter-

natives of replacement, revision or original. After this optimization step, IREP is used

again for addition of rules.
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APPENDIX B: DATASETS

Table B.1. Properties of datasets used

Datasets Number of Features Datasize

aibocolor 3 71962

chess 6 6451

connect-4 42 61108

mushroom 22 5234

nursery 8 8310

pageblock 10 5242

report 21 10878

shuttle 9 34240

spambase 57 4601

thyroid 27 2785

wave 21 3353

ada 48 4147

caravan 85 9822

gina 970 3153

sylva 216 13086



79

REFERENCES

1. Dietterich, T. G., “Approximate Statistical Tests for Comparing Supervised Classi-

fication Learning Classifiers”, Neural Computation, Vol. 10, pp. 1895–1923, 1998.

2. Demsar, J., “Statistical Comparisons of Classifiers over Multiple Data Sets”, Journal

of Machine Learning Research, Vol. 7, pp. 1–30, 2006.

3. Alpaydın, E., “Combined 5×2 cv F Test for Comparing Supervised Classification

Learning Classifiers”, Neural Computation, Vol. 11, pp. 1975–1982, 1999.

4. Fawcett, T., “An introduction to ROC analysis”, Pattern Recognition Letters,

Vol. 27, pp. 861–874, 2006.

5. Provost, F. and T. Fawcett, “Robust Classification for Imprecise Environments”,

Machine Learning, Vol. 42, pp. 203–231, 2001.

6. Hanley, J. A. and B. J. McNeil, “The Meaning and Use of the Area under a Receiver

Operating Characteristic (ROC) Curve”, Radiology, Vol. 143, pp. 29–36, 1982.

7. Ling, C. X., J. Huang and H. Zhang, “AUC: a Better Measure than Accuracy in

Comparing Learning Algorithms”, Proceedings of International Joint Conferences

on Artificial Intelligence (2003), Springer, pp. 329–341, 2003.

8. Huang, J., J. Lu and C.X. Ling, “Comparing Naive Bayes, Decision Trees, and SVM

with AUC and Accuracy”, Proceedings of the Third IEEE International Conference

on Data Mining, pp. 553-556, 2003.

9. Bradley, A. P., “The use of the area under the ROC curve in the evaluation of

machine learning algorithms”, Pattern Recognition, Vol. 30, pp. 1145–1159, 1997.

10. Bravo, H. C., G. Wahba, K. E. Lee, B. E. K. Klein, R. Klein and S. K. Iyengar,

“Examining the relative influence of familial, genetic, and environmental covariate



80

information in flexible risk models”, Proceedings of the National Academy of Sciences

of the United States of America (PNAS), Vol. 106, pp. 8128-8133, 2009.

11. Cortes, C. and M. Mohri, “Confidence Intervals for the Area under the ROC

Curve”, Advances in Neural Information Processing Systems 17 ( NIPS 2004),

Vol. 17, pp. 305–312, Vancouver, Canada, 2004.

12. Agarwal, S., T. Graepel, R. Herbrich and D. Roth, “Generalization Bounds for

the Area Under the ROC Curve”, Journal of Machine Learning Research, Vol. 6,

pp. 393–425, 2005.

13. Weiss, G. M. and F. Provost, “Learning when Training Data are Costly: The Effect

of Class Distribution on Tree Induction”, Journal of Artificial Intelligence Research,

Vol. 19, pp. 315–354, 2003.

14. Folleco, A., T. M. Khoshgoftaar and A. Napolitano, “Comparison of Four Per-

formance Metrics for Evaluating Sampling Techniques for Low Quality Class-

Imbalanced Data”, Proceedings of the 2008 Seventh International Conference on

Machine Learning and Applications, Vol. 00, pp. 153-158, 2008.

15. Bloedorn, E., I. Mani and T. R. Macmillan, “Machine Learning of User Profiles:

Representational Issues”, Proceedings of the Thirteenth National Conference on Ar-

tificial Intelligence, AAAI/MIT Press, pp. 433–438, 1996.

16. Davis, J. and M. Goadrich, “The Relationship Between Precision-Recall and ROC

Curves”, Proceedings of the 23rd international conference on Machine learning,

Vol. 148, pp. 233 - 240, 2006.

17. Landgrebe, T. C. W, P. Paclik and R. P. W. Duin, “Precision-recall operating

characteristic (P-ROC) curves in imprecise environments”, Proceedings of the 18th

International Conference on Pattern Recognition, Vol. 04, pp. 123 - 127, 2006.
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