
AUTOMATIC TV LOGO DETECTION AND CLASSIFICATION

by

Nedret ÖZAY

B.S., Computer Engineering, Dokuz Eylul University, 2005

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2009

iii

ACKNOWLEDGEMENTS

I would like to express my gratitude to my thesis supervisor Prof. Bülent Sankur

for his guidance, patience, and support throughout the thesis. I would like to thank

Prof. Fikret Gürgen, Prof. Lale Akarun, Prof. Ethem Alpaydın, and Assist. Prof.

Burak Acar for participating in my jury, and their useful comments and feedbacks.

I would like to thank my family for their support and encouragement throughout

my education career. And my sincere gratitudes to my wife for her endless love.

I would like to express my gratitude to TÜBİTAK for their support with BIDEB

2210-National Scholarship Programme for MSc Students.

iv

ABSTRACT

AUTOMATIC TV LOGO DETECTION AND

CLASSIFICATION

Television (TV) logos are the only semantic objects that appear commonly in

all TV broadcast videos. And they can be utilized in the development of many useful

applications such as TV commercial detection, and audience measurement. In this

study, we have developed an automatic TV logo identification system. The proposed

TV logo identification system consists of two parts, namely, TV logo detection and

TV logo classification. In the TV logo detection part, we utilized from the idea that

‘the broadcast video content is changing over time except the TV logos’ and we used

time averaged edges method to obtain static regions (TV logos) in broadcast videos. In

the TV logo classification part, we have used Support Vector Machine(SVM) as classi-

fier. We have compared some well known subspace analysis methods such as Principle

Component Analysis (PCA), Non-negative Matrix Factorization (NMF), Independent

Component Analysis (ICA), and Discrete Cosine Transform (DCT) to find best feature

to describe TV logos. Before applying the subspace analysis methods, all logo images

are converted into a fixed size representation by using Grid Descriptor(GD) method.

For classification experiments, a TV logo DB of 3040 images is constructed from 152

different TV channels. The best classification performance is obtained by ICA2 with

an accuracy rate of 99.21%. For the logo detection and identification experiments,

we have collected 240 videos from the 12 most popular TV channels of Turkey. The

proposed system achieves to 99.17% logo detection rate and 96.03% average accuracy

rate for logo identification. Results of the experiments show that the proposed TV logo

identification system works with high accuracy rates and can be utilized in an audience

measurement process.

v

ÖZET

OTOMATİK TV LOGO TESPİTİ VE

SINIFLANDIRILMASI

Televizyon (TV) kanallarına ait logolar televizyon yayınlarındaki anlam taşıyan

yegâne nesnelerdir. Bu logolardan yararlanılarak TV reklam tespiti ve ya izleyici oran-

larının ölçümü gibi pekçok faydalı uygulama geliştirilebilir. Bu çalışmada otomatik

bir TV logo tanılama sistemi geliştirilmiştir. Bu sistem iki kısımdan oluşmaktadır:

TV logo tespiti ve TV logo sınıflandırması. TV logo tespiti kısmında, şu fikirden

yola çıktık: ‘bir televizyon yayınında tüm içerik zamanla değişir, değişmeyen tek

şey TV logolarıdır’. Videodaki değişmeyen bu sabit alanları(TV logolarını) bula-

bilmek için zamana göre ortalaması alınmış ayrıtlardan yararlanılmıştır. TV logo

sınıflandırması kısmında ise sınıflandırıcı olarak Karar Destek Makinesi (SVM) kul-

lanılmıştır. TV logolarını en iyi temsil edebilecek öznitelikleri belirleyebilmek için

yaygın kullanılan bazı altuzay analiz yöntemlerinden Temel Bileşenler Analizi (PCA),

Negatif Olmayan Matrislerde Çarpanlara Ayırma (NMF), Bağımsız Bileşenler Anal-

izi(ICA) ve Ayrık Kosinüs Dönüşümü (DCT) yöntemleri karşılaştırılmıştır. Bu altuzay

analiz yöntemlerini uygulayabilmek için tüm logo imgeleri Izgara Öznitelikleri (GD)

kullanılarak sabit boyutlu gösterime dönüştürülmüştür. Sınıflandırma deneyleri için

152 farklı kanaldan toplanmış 3040 imgeden oluşan bir logo veritabanı oluşturulmuştur.

En iyi sonucu %99.21 ile ICA2 vermiştir. Logo tespit ve tanılama deneyleri için

ise Türkiye’de en çok izlenen 12 TV kanalından kayıtlar yapılmış ve 240 kayıttan

oluşan bir veritabanı oluşturulmuştur. Önerilen sistem ile logo tespiti için %99.17,

logo tanılama için ise %96.03 gibi başarım oranlarına ulaşılmıştır. Yapılan deneyler

sonucunda önerilen TV logo tanılama sisteminin yüksek başarım oranlarıyla çalıştığı

ve izleyici oranlarını ölçme sürecinde kullanılabileceği gösterilmiştir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . xii

LIST OF SYMBOLS/ABBREVIATIONS . xiii

1. INTRODUCTION . 1

1.1. Literature Review . 4

1.2. Our Approach and Contributions . 8

1.3. Outline of the Thesis . 9

2. TV LOGO DETECTION . 10

2.1. Terminology . 13

2.2. Obtaining Corner Regions . 14

2.3. Edge Detection . 15

2.4. Time Averaged Edges . 16

2.5. Thresholding . 17

2.5.1. Simple Thresholding . 17

2.5.2. Hysteresis Thresholding . 18

2.6. Morphological Operations . 18

2.6.1. Closing . 19

2.6.2. Hole Filling . 19

2.6.3. Opening . 20

2.6.4. Adaptive Structuring Element Method 20

2.7. Shape Constraints . 21

2.8. Logo Mask Stability . 22

2.9. Logo Tracking . 25

3. TV LOGO CLASSIFICATION . 26

3.1. Feature Selection . 26

3.1.1. Grid Descriptors (GD) . 26

vii

3.1.2. Principle Component Analysis (PCA) 28

3.1.3. Non-Negative Matrix Factorization (NMF) 31

3.1.4. Independent Component Analysis (ICA) 34

3.1.4.1. ICA Architecture 1 (ICA1) 35

3.1.4.2. ICA Architecture 2 (ICA2) 39

3.1.5. Discrete Cosine Transform (DCT) 41

3.2. Classification with Support Vector Machines (SVMs) 44

3.2.1. Linear SVM . 44

3.2.1.1. Separable Case . 44

3.2.1.2. Non-Separable Case 47

3.2.2. Non-Linear SVM . 49

3.2.3. Multiclass SVM . 50

3.2.3.1. One-versus-All . 51

3.2.3.2. One-versus-One . 51

4. TV LOGO IDENTIFICATION SYSTEM 53

4.1. Decision System . 54

5. EXPERIMENTS AND RESULTS . 57

5.1. TV Logo Classification Experiments 57

5.1.1. Data Set . 57

5.1.2. Experiments . 59

5.2. TV Logo Detection and Identification Experiments 62

5.2.1. Data Set . 63

5.2.2. Experiments . 66

5.2.2.1. Experiment-1 . 66

5.2.2.2. Experiment-2 . 68

5.2.2.3. Experiment-3 . 70

5.2.2.4. Experiment-4 . 70

5.2.2.5. Experiment-5 . 77

6. CONCLUSIONS . 85

6.1. Future Work . 86

APPENDIX A: LIST OF TV CHANNEL LOGOS 87

REFERENCES . 92

viii

LIST OF FIGURES

Figure 1.1. TV logo detection . 3

Figure 1.2. Logo type examples . 4

Figure 2.1. Logo detection flowchart . 11

Figure 2.2. Logo detection example . 12

Figure 2.3. Important concepts in logo detection 14

Figure 2.4. 3:5:3 Frame division according to GSR 15

Figure 2.5. An example of side effect caused by border edges 16

Figure 2.6. Hysteresis thresholding . 18

Figure 2.7. Disk structuring element used in closing 19

Figure 2.8. Effect of hole filling . 20

Figure 2.9. Rectangular structuring element used in opening 20

Figure 2.10. Check Shape Constraints Algorithm 23

Figure 2.11. Logo mask stability parameters 24

Figure 2.12. Example images for eq. 2.3 . 25

Figure 3.1. A grid example . 26

ix

Figure 3.2. Block diagram of the logo classification system 28

Figure 3.3. PCA basis images . 29

Figure 3.4. PCA Pseudocode . 30

Figure 3.5. Matrix representation of R = PT
mX̃ 31

Figure 3.6. NMF basis images . 32

Figure 3.7. Matrix representation of X ≈WH 33

Figure 3.8. NMF Pseudocode . 34

Figure 3.9. ICA1 basis images . 36

Figure 3.10. ICA1 Pseudocode . 37

Figure 3.11. Matrix representation of X̂ = BU 38

Figure 3.12. ICA2 basis images . 39

Figure 3.13. ICA2 Pseudocode . 39

Figure 3.14. Matrix representation of RT
m = W−1U 40

Figure 3.15. DCT basis images for 8x8 blocks 42

Figure 3.16. DCT Pseudocode . 43

Figure 3.17. Zig-zag scan . 43

x

Figure 3.18. A linear SVM classifier (separable case) 46

Figure 3.19. A linear SVM classifier with noisy data (non-separable case) . . . 48

Figure 3.20. One-versus-all method . 51

Figure 3.21. One-versus-one method . 52

Figure 4.1. A logo identification system . 53

Figure 4.2. Flowchart of logo identification system 55

Figure 4.3. Time windowing . 56

Figure 5.1. Some logo samples in logo DB . 58

Figure 5.2. All logos in logo DB . 58

Figure 5.3. A snapshot of logo classification application GUI 60

Figure 5.4. PCA energy graph for 32x32 gray-scale images 61

Figure 5.5. Matrix representation of PCA projection in training. 62

Figure 5.6. A snapshot of logo identification application GUI 63

Figure 5.7. Challenging video DB examples 65

Figure 5.8. Logo detection results of experiment-1 67

Figure 5.9. Problem of simple thresholding method 68

xi

Figure 5.10. Logo detection results of experiment-2 71

Figure 5.11. Overclosing problem . 71

Figure 5.12. Similar TRT logos . 74

Figure 5.13. Logo detection results of experiment-4 75

Figure 5.14. Comparison of logo detection results 77

Figure 5.15. Comparison of logo identification results 79

Figure 5.16. Cumulative SVM probability histograms for each TV channel . . . 80

Figure 5.17. Cumulative SVM probability histograms for all TV channels . . . 81

Figure 5.18. Avg. accuracy rates for different cumulative SVM prob. thresholds 82

Figure 5.19. Results of experiment-5. Before and after cumulative SVM prob.

thresholding . 82

Figure 5.20. Some examples that our algorithm fails 84

xii

LIST OF TABLES

Table 5.1. Classification test results . 61

Table 5.2. Sizes of feature vectors . 61

Table 5.3. Identification results of experiment-1 69

Table 5.4. Identification results of experiment-2 72

Table 5.5. Identification results of experiment-3 73

Table 5.6. Identification results of experiment-4 76

Table 5.7. Identification results of experiment-5 78

Table 5.8. Identification results of experiment-5 after cumulative SVM proba-

bility thresholding . 83

Table A.1. TV channel logos in logo DB . 87

xiii

LIST OF SYMBOLS/ABBREVIATIONS

Ei Edge Image of frame i

Li Logo Mask of frame i

Si Time Averaged Edge Image of i frames

Sth Thresholded Time Averaged Edge Image

W Number of frames in time window

ANN Artificial Neural Network

CRT Cathode Ray Tube

TV Television

GSR Golden Section Rule

CIF Common Intermediate Format

GD Grid Descriptors

PCA Principle Component Analysis

NMF Non-Negative Matrix Factorization

ICA Independent Component Analysis

ICA1 ICA Architecture 1

ICA2 ICA Architecture 2

1

1. INTRODUCTION

In Television(TV) broadcasting industry, every TV channel has a logo to identify

the channel. Similar to the functionality of identity cards of people, logos can be

thought as identity cards of TV channels. And TV logos are used to declare content

ownership of broadcast videos.

Two decades ago, there was only one or two TV channels in most countries (in-

cluding Turkey). With the advances in TV broadcasting industry, consumer electronics

and video technologies many new TV channels has started to broadcast. Today, hun-

dreds of TV channels broadcast in each country. And the digitized content of videos

becomes larger and larger, which is hard to manage. Using classical keyword-based

annotation to manage the extremely large video content is not an efficient and effective

way, due to the problems in manual annotation phase (time consumption, subjectiv-

ity,... etc.). There is a need of semantic objects which are automatically extracted from

content of video to make Content Based Indexing and Retrieval possible. TV logos are

the most important semantic objects in broadcast videos that will help us to overcome

content management problem.

TV Logos can be utilized in many applications, such as:

• TV Commercial Detection: TV logos partly or fully disappear while commercials

are active. With using that cue we will be able to detect commercials and we

can classify parts of broadcast videos as commercial or non-commercial(normal

program).

• TV Commercial Removal: This application can be used on stored broadcast

videos. Typically, a user can save a broadcast video by using a recorder, for

example using a Personal Video Recorder(PVR). And then, the commercial blocks

can be cut by finding the frames of commercial blocks and removing them from

video. Thus, in the playback phase user will be able to watch the recorded video

without commercials.

2

• TV Logo Removal: Sometimes a video content owned by a TV channel is rebroad-

cast by another TV channel and two different TV logos appear on the screen

which leads to a viewing displeasure. To overcome this viewing displeasure a logo

removal application can be used before rebroadcasting.

• Audience Measurement (Rating Measurement): Nowadays, most of the channels

determine their schedules according to results of rating measurement process.

Even quality of the programs is effected by that measurement process. Therefore

audience measurement is a crucial process that has to be performed with high

accuracy rates. TV logo identification can be used in the process of audience

measurement. In our thesis, we have developed a TV logo identification system

that can be used as an audience measurement application.

• Video Archive Classification and Search: Everyday broadcast video records are

added to video archives. For classification of records and search in those video

archives TV logos can be used.

• Protection Of Non-CRT Displays [6]: With the advances in consumer electronics,

traditional CRT (Cathode Ray Tube) displays are replaced with new thin panels

(i.e. LCD - Liquid Crystal Display, and Plasma Display). And a ghost effect

problem arises with the new non-CRT displays. When a static region stays on

the screen for a long time, that static region becomes blur, and it may cause to

deformation on the panel. Since logos are static regions, TV logo detection can

help to localize the static region, and run some panel protection algorithms.

In the logo identification point of view, the problem mainly consists of three

subproblems, which are:

1. TV Logo Detection: Detection of TV logos means locating the logo in a video

frame. Typical input to a TV logo detection system is a broadcast video, and

output is a boolean to imply logo presence (i.e. logo exist or logo does not exist).

If the answer is positive then position of logo is also provided to locate the logo

in the video frame. Typical output of a logo detection process is shown in Figure

1.1, detected logo is surrounded with a red rectangle. Much of the work in the

literature is concentrated on this part of the problem, those works will be given

3

Figure 1.1. TV logo detection

in section 1.1 Literature Review.

2. TV Logo Tracking: After detecting logo in a frame, tracking process is started.

Tracking is conducted to detect logo disappearance. Typically a TV logo disap-

pears because of two main reasons, first one is a commercial break, second one is a

channel change. In a commercial break a logo is partly or fully disappeared. In a

channel change operation, current logo is disappeared and a new logo is appeared

on the video frame. TV logo tracking can be though as a part of continuous logo

detection process. Therefore, we explain the whole process together in Chapter

2 TV Logo Detection.

3. TV Logo Classification: In this phase, detected logo is classified according to a

preconstructed TV logo database(DB). Typical input to a TV logo classification

system is the detected logo candidate, which is the output of the logo detection

system, and the output of the system is prediction of the TV channel name.

There are many types of TV logos, but mainly we can categorize logo types

according to two main features: motion, and transparency. Combination of two features

will yield us four different categories:

• Static-Opaque, or simply Opaque

• Static-Transparent, or simply Transparent

• Animated-Opaque, or simply Animated

• Animated-Transparent

4

Figure 1.2.

Logo type examples. Rows: static-transparent, static-opaque, animated-opaque

Most of the TV logos are static-opaque (we can simply say opaque, due to dom-

inant feature of opaqueness), some of them are static-transparent(we can simply say

transparent) with an increasing popularity, few of them are animated-opaque(we can

simply say animated). And until now we have not seen any animated-transparent logo.

In Appendix A, list of TV logos and their types are given. Some logo type examples

are shown in Figure 1.2. Generally, detection of opaque logos are easier than detection

of transparent and animated logos, due to the static content of logo region.

1.1. Literature Review

There are many works on TV logo detection area in the literature. Since logo

detection is the first step of logo related applications, most of the works are on logo

detection. There is only one work [4] including classification step. We can simply

group TV logo detection methods according to used features in detection process as

following:

• Using Temporal and Spatial Features

– Pixel-wise Difference

– Time Averaged Gradients

• Using Only Spatial Features

The methods of the first group use both temporal and spatial features. Generally

methods start with a temporal segmentation step using a sequence of frames, and

5

continue with a refinement phase using spatial features of a frame. The key idea

behind using temporal segmentation is detecting static regions of video. Since video

content is changing over time except the TV logo, those static regions are probably

TV logos. To extract static regions from video with temporal segmentation, there is

a need of motion. If all scene is static then it is not possible to detect logo region,

and should be waited for motion. Since motion is one of the main characteristics of

broadcast videos, temporal segmentation has a big attraction in logo detection area.

One of the successful methods in the literature is proposed by Albiol et al. [1].

They introduce Time Averaged Gradients. In their work TV logo detection algorithm

is used in a TV commercial detection application which aims to classify TV shots either

as commercial or program shots. A Hidden Markov Model (HMM) is trained with two

observations: logo presence, and shot duration. In commercial shots logo does not

present and shot duration is shorter. Viterbi decoder is used for shot labeling. Logo

presence is decided by detecting stable contours over time. If stable contours exist

it can probably be a logo. The algorithm to find stable contours starts with a shot

detection to extract one frame per shot. Gradients are calculated for each frame, then

gradients are averaged over time to find stable contours as shown in Eq. 1.1.

Si =
i− 1

i
Si−1 +

Gi

i
(1.1)

where i is the number of shots processed, Gi is the gradient of ith frame, and Si is

the averaged gradient of i frames. Averaged gradients higher than a threshold yield us

stable contours. Afterwards, a refinement procedure is started including morphological

operations(closing, opening) in order to connect neighboring pixel groups and remove

small regions. As the output of the process, a binary logo mask is obtained. If the

obtained logo mask remains stable for a period of time it concludes to presence of

TV logo. After detection of TV logo, tracking procedure is started to detect logo

disappearance. In our work, we have also inspired very much from Albiol’s method for

6

the logo detection due to its successful detection of opaque and transparent logos.

Another work that can be considered in Time Averaged Gradient group is pro-

posed by Wang et al. [8]. They introduce Generalized Gradient method. The method

is similar to Albiol’s method but with a difference in gradient calculation phase. They

use color frames instead of gray-scale frames for calculation of gradients.

Some of the works in the literature [2], [3], [5] uses Pixel-wise Difference method

for logo detection. In [2], a two step logo detection algorithm is proposed for an au-

tomatic logo detection and removal application. In the first step, pixel-wise frame

differencing is performed to detect stable pixels. In the second step, a Bayesian ap-

proach is used with two information, a prediction from a pre-trained Artificial Neural

Network (ANN), and position information. They introduce the term logo-let. A logo-

let is a fragment of a logo with a size of 12x12 pixel. A raster scan is performed with

12x12 pixel-sized windows in spatial domain. Main purpose is to classify each 12x12

pixel-sized regions as logo-let or non-logo-let, and then combine logo-lets together to

construct a logo. Each 12x12 pixel-sized region is queried to ANN to get a probability

value of being a logo-let. ANN is trained with positive and negative logo-let examples.

RGB values of each 12x12 region are used as feature vectors. Since TV logos are mostly

located in one of the four corners, position of 12x12 region also effects probability of

being a logo-let. With the combination of those two information, a 12x12 region R is

classified as logo-let or non-logo-let by classifier C according to Eq. 1.2.

C : rR =

 1 P (rR = 1 | FR, lR) > 0.5

0 otherwise
(1.2)

where FR is RGB feature vector of a 12x12 pixel-sized region R, lR is the location

of R, rR = 1 implies region R is a logo-let, and rR = 0 implies R is a non-logo-let. After

obtaining logo-lets they are combined to construct logos. And lastly in refinement

7

step the best logo mask is selected between all logo mask. The logo mask that has

minimum edge length is the best logo mask. Minimum edge length is used as a clue

of a clear background. Another method in the group of Pixel-wise Difference methods

is proposed by Meisinger et al. [3]. TV logo detection method is used in a TV logo

removal application. Algorithm consists of two steps. In the first step, a difference

image D is obtained with pixel-wise difference of sequential frames. In the second step,

they use contour relaxation method to refine the rough logo mask obtained in the first

step.

Cozar et al. [5] propose a logo detection method for a video cataloging appli-

cation. The method is composed of temporal segmentation, and spatial segmentation

parts. In temporal segmentation part, minimum luminance variance regions (MLVR)

are obtained with pixel-wise frame differencing method. In spatial segmentation part,

many controls are performed to reduce noise and obtain a good logo mask. Connected

components are found to check area, bounding box, and aspect ratio of MLVRs.

Another work that uses both temporal and spatial features is proposed by Santos

et al. [4]. They aims to construct a TV audience measurement application. The

method they use in TV logo detection part is similar to Albiol’s method but there is

a difference in averaging order. They first obtain an averaged frame, then gradient

of the averaged frame is calculated. After logo detection part they continue with a

classification part. They construct a logo database of 10 TV logos and perform logo

classification by logo template matching method. Template matching is performed on

edge images.

There are some works in the literature [6], [7] that use only spatial features for

logo detection. Ekin et al. [6] propose a TV logo detection algorithm for non-CRT

display protection application. They first divide a frame into nine regions according to

Golden Section Rule (partitioning screen in 3:5:3 scale horizontally and vertically) and

extract corner regions. Then they calculate scene models (Color histograms in YPbPr

color space) for each corner. The outlier pixels are found by using those scene models,

and the outlier pixels are assumed to be pixels of TV Logos. After finding outlier pixels,

8

a refinement process is started according to type of the logo (i.e.texture or picture based

logo). Refinement process includes morphological operations and thresholding.

Duffner et al. [7] propose the other method that uses only spatial features. Their

main aim is detecting transparent TV logos. They construct an Artificial Neural Net-

work (ANN) with positive and negative examples of a specific transparent TV channel

logo. They use an image pyramid to feed pixels to ANN in different scales. Location

of logo is determined according to results of the ANN. Gunsel et al. [10] utilizes from

TV logos to develop a Content-Based TV News Program Management System. They

classify each shot either as Commercial or News according to logo presence. They use

frame templates and perform template matching to decide logo presence.

If we put all these methods together we can say that, Pixel-wise Differencing

methods are used widely but due to changing content of transparent logos they are not

good as Time-Averaged Gradients for transparent logos. Time-Averaged Gradients

are good at both opaque and transparent logos. And utilizing temporal features beside

spatial features is a better choice than using only spatial features.

1.2. Our Approach and Contributions

In this thesis, we have developed an automatic TV logo identification system. So

far most of the works in the literature concentrated on the logo detection part and does

not cover the classification part. We try to fill this gap by putting TV logo classification

on top of the TV logo detection process. We have constructed a TV logo DB consisting

of almost all logos of Turkish TV channels and some of European TV channels (totally

152 TV channels) for the classification step. We have compared results of many features

such as PCA, NMF, ICA, and DCT to find best feature to describe TV logos. We have

used Support Vector Machines (SVM) in classification step. SVM is a robust method

and used in many pattern recognition problems resulting with high accuracies.

In the TV logo detection part, we have utilized from some works in the literature

especially from [1]. We have used Time-Averaged Edges method to detect TV logos

9

in broadcast videos. In order to increase logo detection rate we introduce the adap-

tive structuring element method. And for more robust thresholding we use hysteresis

thresholding.

Finally, we construct the TV logo identification system by combining detection

and classification parts. In order to achieve a robust identification system, a decision

system has been designed. The decision system is used to eliminate inconsistent SVM

predictions.

1.3. Outline of the Thesis

The organization of the thesis is as following, in Chapter 2 we describe the method

that we used for logo detection in broadcast videos. Since logo tracking is a part of

our continuous logo detection system, it is also presented in the same chapter. Then

classification part is explained in Chapter 3, starting with explanation of well known

features used in many pattern recognition problems such as, PCA, ICA, NMF, DCT,

and going on with description of the SVM classifier. The complete logo identifica-

tion system which is obtained by combining the logo detection and logo classification

systems is described in Chapter 4. The experiments conducted on classification and

identification systems are given in Chapter 5. Finally, conclusions drawn in Chapter 6.

10

2. TV LOGO DETECTION

In the first part of the TV logo identification problem, we try to detect the region

TV logos. Detection of a TV logo means locating the region of interest(ROI) of the

TV logo on a frame. In our logo detection method, no manual interaction is needed,

all processes are performed in a fully automatic manner. We were inspired very much

by Albiol’s method [1] and have used time averaged edges to detect logos. Albiol’s

method mainly covers opaque and transparent logos but also works for some animated

logos. Since there are very few animated TV logos, we have focused on developing a

robust TV logo detection system that works with opaque and transparent logos.

For the detection of TV logos, we used the stationarity property of TV logos.

Since motion is one of the common features of all TV broadcast videos, the only static

region over time is the logo region. Therefore, by detecting the static regions over time

we hope to be able to detect TV logos. However, there are some TV programs such

as talk shows, etc. that have very little or almost no motion, and it is hard to detect

TV logos in such sequences due to absence of motion. Fortunately, in such programs

there are multiple cameras and the video content is changing when switching among

active cameras, which give us a mean to extract the static regions that are common to

all camera outputs.

We have two figures to describe our logo detection method. In Figure 2.1, the

flowchart of our logo detection method is given. To illustrate the proposed method, logo

detection process is shown on a broadcast video example in Figure 2.2. We use both

spatial and temporal features to locate TV logos. The algorithm starts with getting

one frame per second from a broadcast video to process. Since logos can appear only

in one of the corners, four corner regions are obtained. Then for each corner image,

edge detection is performed. Edges are averaged over time, and thresholded to obtain

stable contours. Those stable contours are converted to binary logo masks by utilizing

morphological operations (i.e. closing, opening). After the morphological operations,

each logo mask is checked according to some shape constraints (i.e. Area, aspect ratio,

11

Figure 2.1. Logo detection flowchart

12

Figure 2.2. Logo detection example

13

etc.) to make sure that it corresponds to a logo candidate. The logo masks that satisfy

the constraints are promoted as logo candidates.

The output of the detection process yields regions that are static in broadcast

videos. Notice, however, that there can be many such regions that are both static

and containing text on the frame. These objects can represent textual information for

the watched program, or indicate some special event, announcement etc. In general,

separating TV channel logos from program logos or program name texts is not an

easy task. Some shape features (Area, Aspect Ratio, etc.) of TV logos are used as

constraints to eliminate static regions which can not possibly be a TV logo. But some

program logos or program texts can satisfy the shape constraints and can not be easily

eliminated at the output of detection process. An example of such a program text can

be seen in Figure 2.2. Program name text at the lower right corner is also detected as a

logo candidate. Those remaining static regions will be eliminated in the identification

step, as explained later in Section 4.

The changes related to TV logos in broadcast videos occur due to two reasons,

the first one is channel switching which is performed by the viewer, the second one is a

commercial block which is activated by the broadcast station. In the channel switching

case, the logo of the current TV channel disappears and the logo of the new TV channel

is appears not necessarily in the same corner. In the case of commercial, that is, when a

commercial break starts, the TV logo partly or fully disappears on the frame. TV logos

come back when the commercial break ends, and normal program is resumed. Thus,

TV logo tracking algorithm should cover these two cases by continuously monitoring

the presence of logo.

2.1. Terminology

In this section, we try to introduce some concepts that are mentioned frequently

throughout the thesis.

Edge Image: We obtain edge images as the output of edge detection process.

14

Edges are shown as white pixels on a black background. An example edge image is

shown in Figure 2.3a.

Logo Mask: Logo mask is a binary image where objects (in our case logos) are

shown as white pixels on a black background. Logo mask is obtained from edge image

by using morphological operations, and used to locate logos. Logos are assumed to be

located under the bounding box of the logo mask. A logo mask example is shown in

Figure 2.3b.

Logo Candidate: Logo candidate is a gray-scale or coloured image, and obtained

by finding the image region that resides under bounding box of logo mask. An example

logo candidate is shown in Figure 2.3c. Logo candidates are the output of logo detection

process, and given as input to logo classification process.

(a) (b) (c)

Figure 2.3. a) An edge image b) A logo mask c) A logo candidate

2.2. Obtaining Corner Regions

TV logos can appear only in one of the four corners of a frame. Therefore, in

detection process we do not need to use the whole frame, instead we just consider

the corner regions where a logo can be present. Thus, we narrow our search area and

reduce required amount of processing. We have used a modified version of Golden

Section Rule (GSR)[11] technique which is also used in [6].

We divide a frame into nine regions in 3:5:3 scale, horizontally and vertically, as

shown in Figure 2.4 and extract the four corner regions. We had many experiments on

different channel videos, and we have seen some exceptions where the 3:5:3 subdivision

was not adequate for some TV channels. Therefore, we have added a margin parameter

to enlarge corner regions and to ensure that logo always resides in one of the corner

regions. For videos in CIF resolution (i.e. 352x288) we have used a margin of 10 pixels.

15

Figure 2.4. 3:5:3 Frame division according to GSR

And, the sizes of corner regions are 106x89.

2.3. Edge Detection

One of the crucial steps of our logo detection method is edge detection. We know

that, since TV logos have different appearance than video content, we can obtain TV

logo edges in the output of edge detection process, even if the TV logo is a transparent

logo.

We have selected Canny edge detection method [12] for edge detection, due to its

popularity between edge detection methods. The Canny method finds edges by looking

for local maximum of the gradient of image. At the first step, the image is blurred using

a Gaussian filter to reduce noise. Then the gradient of the image is calculated with

orientation information. Afterwards a non-maximum suppression step is conducted to

obtain thin lines. Finally a two step thresholding is applied. Two thresholds are used

to detect strong and weak edges, and the weak edges are included in the output only

if they are connected to strong edges. This method is therefore less likely than the

others to be affected by noise, and more likely to detect true weak edges.

There is one thing that need to be mentioned in the edge detection method.

Since TV logos generally are found near the center of corner regions, they can not be

connected to frame borders. Therefore, any edge found in the 3 lines (horizontally and

vertically) in the neighborhood of frame borders are removed. Removal of those border

edges reduces the side effects caused by morphological operations. An example of such

16

(a) (b) (c)

Figure 2.5. An example of side effect caused by border edges a) After edge detection

b) After closing c) After hole filling

a side effect is shown in Figure 2.5. The vertical edge at right side of the left most

image creates an undesired hole, that is filled out and leads to a deformation on the

logo mask. By removing edges in first and last 3 lines, we overcome those side effects.

2.4. Time Averaged Edges

As we explained before, the key point in our logo detection algorithm is finding

static regions in a sequence of frames. We utilize the concept of stable contours to

determine static regions. In a sequence of frames, we can obtain stable contours by

averaging edges of each frame in the sequence. We previously mentioned Albiol’s

method for finding time averaged gradients in Eq. 1.1. We have slightly modified the

equation and have the following Eq. 2.1 to find time averaged edges,

Si = α ∗ Si−1 + (1− α) ∗ Ei :

 α = i−1
i
, if i ≤ nrefresh

α =
nrefresh−1

nrefresh
, otherwise

(2.1)

where i is index of processed frame, Ei is edges of ith frame, Si is time averaged

edges. The difference between Eq. 2.1 and Eq. 1.1 is the maximum limit of weight

of Si−1, or in other words, minimum limit of weight of current frame (Ei). We added

nrefresh parameter to obtain such a limitation. If nrefresh is too big then we can not

make quick response to logo changes and can not update logo mask in a reasonable

time. We have used nrefresh = 20 in our experiments with 1 minute duration videos(i.e.

60 usable frames out of 1500 one). We guarantee thus weight of the current frame would

17

be 0.05 at least, which implies that after 20 frames logo mask will be totally updated.

With this lower bound on the weight, we assure that the contribution of the current

frame does not vanish, and that the system can react to changes in a reasonable time.

For example, think about a channel switching operation. If the new channel logo

appears in the same corner as the previous channel logo, then new logo mask can not

be obtained quickly due to overlapping regions with previous logo. To obtain correct

logo mask, we need to rapidly refresh time averaged edges. The setting of nrefresh

enables us to adequately refresh the edge field and to recover the correct logo mask

quickly.

2.5. Thresholding

After calculation of time averaged edges, we perform a thresholding operation in

order to highlight the stable contours. We use two different thresholding mechanisms,

first one is simple thresholding which uses one threshold value, second one is hysteresis

thresholding which uses two threshold values (i.e. high and low thresholds).

2.5.1. Simple Thresholding

For each pixel (x, y) in time averaged edges image, Si, a threshold Th is applied

as shown in Eq. 2.2.

Sth(x, y) =

 1, if Si(x, y) > Th

0, otherwise
(2.2)

where Sth is a binary image, and the output of the thresholding operation. White

pixels (i.e. pixels with value 1) in Sth shows the stable contours.

18

(a) (b) (c)

Figure 2.6. Hysteresis thresholding a) Output of high threshold b) Output of low

threshold c) Final output.

2.5.2. Hysteresis Thresholding

Hysteresis thresholding method is a two level thresholding method which is also

used in Canny edge detector method [12]. There are two thresholds in this method,

namely high threshold and low threshold. In the first step of the method high threshold

is applied to image and strong edges are obtained. In the second step low threshold is

applied and weak edges are obtained. And finally weak edges are promoted as strong

edges only if they are connected to strong edges. Note that, since logos are located

in the center of corner regions we do not consider the weak edges which are close

to borders. Thus we avoid side effects of noisy weak edges located near to borders.

Illustration of hysteresis thresholding is given in Figure 2.6.

2.6. Morphological Operations

We utilized morphological operations to obtain a logo mask from an edge image.

Morphological operations that we used in our algorithm are:

• Closing: In order to strengthen edges, and connect neighbouring pixel groups

together.

• Hole Filling: In order to protect some parts of logo masks from being removed in

the opening phase.

• Opening: In order to remove small isolated pixel groups (i.e. noise).

19

Figure 2.7. Disk structuring element used in closing

2.6.1. Closing

Morphological closing operation is used to connect small pixel groups together

which are close enough to each other. Closing operation is completed by applying two

basic morphological operations sequentially, dilation, and erosion.

An example to the closing operation can be seen in Figure 2.2. Edge images are

converted to logo mask by applying morphological closing operation.

Morphological operations use a structuring element. Size of structuring element

affects the impact of operation. The structuring element must be judiciously chosen; if

the structuring element is too big, then isolated background pixel groups may appear

as part of the logo mask and can distort the original logo mask. In our experiments,

we used a disk structuring element with a radius r = 5 for CIF size videos. The pixel

mask of the disk structuring element is shown in Figure 2.7.

2.6.2. Hole Filling

Since gradients are used to extract edges, no edge can be found inside body of TV

logo if body is composed of a uniform color or texture. Often big holes appear in the

body of TV logo. Furthermore thin borders of a TV logo may become too weak edges

and be removed in the opening phase. In order to avoid loss of such thin borders, we

need to fill the holes in the TV logo body. An example of effects of hole filling is shown

in Figure 2.8. In Figure 2.8a no hole filling is applied and opening operation damages

the logo mask, and finally logo mask disappears after shape constraint controls. In

Figure 2.8b the same case is shown where logo mask is preserved thanks to hole filling.

20

(a)

(b)

Figure 2.8. Effect of hole filling. a) No hole filling applied b) Hole filling applied

(Images left to right: edge image, after closing, after opening, after shape constraints

applied).

2.6.3. Opening

Morphological opening operation is used to remove small isolated pixel groups.

Opening operation is completed by applying two basic morphological operations se-

quentially, erosion and dilation.

In morphological opening operations, a bigger structuring elements would yield to

a smaller logo mask, but at the same time clear all background noise components. An

optimum structuring element should remove all noises in the image without distorting

the logo mask itself. In our experiments, we used a rectangular structuring element

with a size of 3x5 for CIF size videos, which is determined experimentally. The pixel

mask of rectangular structuring element is shown in Figure 2.9.

Figure 2.9. Rectangular structuring element used in opening

2.6.4. Adaptive Structuring Element Method

This method applies morphological operations by using two different structuring

element groups, namely big structuring element group and small structuring element

21

group. In the first iteration, big structuring elements are used in closing and opening,

and if no logo mask is obtained in a corner, then small structuring elements take place

in morphological operation. The objective of the method is to increase the chance of

extracting the logo mask by selecting structuring elements adaptively. The adaptive

selection of structuring elements reduces the logo mask deformation problems caused

by closing operation.

2.7. Shape Constraints

Morphological operations yield logo mask candidates which may or may not cor-

respond to a genuine TV logo in the sequence of frames. TV logos have shape char-

acteristics, and the extracted logo mask should satisfy those characteristics to qualify

as a logo candidate. In this section, we try to verify that the obtained logo mask has

features that are common to all TV logos. The shape constraints can be listed as,

• Area: Area of the logo mask should be in a certain range. Such as,

Areamin < Area < Areamax

• Aspect Ratio: Aspect ratio (i.e. width/height) of the logo mask should be in a

certain range. Such as,

ARmin < AR < ARmax

• Border Connectedness: Logo mask should not be too close to borders. Such as,

dist(logo, border) > distmin

In our experiments, for CIF size videos we used Areamin = 280 (3% of corner

region area), and Areamax = 3773 (40% of corner region area) as area constraint,

22

ARmin = 0.3, and ARmax = 5 as aspect ratio constraint, and distmin = 10 as border

connectedness constraint.

By using shape constraints, we are able to remove some static regions which are

not TV logos. An example of such a removal can be seen in Figure 2.2. After opening

step, one of the three logo masks (the one located in the upper right corner of frame)

is removed, because the logo mask can not satisfy the aspect ratio constraint (i.e.

AR > ARmax).

We use Connected Components method to find all isolated objects in a corner

region. Then for each object, we find shape features, and we remove objects which

can not satisfy shape constraints to be a logo candidate. Area is calculated by simply

counting number of pixels in object. For aspect ratio calculation, bounding box of

object is found. Then by using width and height of bounding box, aspect ratio is

calculated. Bounding box of object is also used in calculating the distance to border.

The algorithm used for checking shape constraints can be seen in Figure 2.10.

2.8. Logo Mask Stability

After finding a logo mask from a frame, it is expected the logo mask to be stable

over time to make sure it is a TV logo. This stage is the last part of the logo detection

process before starting the classification process. If the logo mask is verified as stable

then classification process will be started. To check stability of a logo mask throughout

a sequence of frames, some shape features of logo mask is used. To say a logo mask is

stable the following conditions should be satisfied by using shape parameters of current

and previous logo masks which are shown in Figure 2.11,

• Area should not change too much. Such as,

|Area1− Area2| < ∆Area

23

Require: Four binary images B1, B2, B3, B4 (Outputs of morphological operations)

1: //for each of four corner regions

2: for i = 1 to 4 do

3: Objects← ConnectedComponents(Bi) //find connected components

4: for all Obj in Objects do

5: area ← CalculateArea(Obj)

6: bbox ← FindBoundingBox(Obj)

7: ar ← CalculateAspectRatio(Obj)

8: //Check shape constraints: area, asp.ratio, and border connection

9: if (AreaIsOutOfRange(area) OR AspectRatioIsOutOfRange(ar) OR Con-

nectedToBorders(bbox)) then

10: remove Obj

11: end if

12: end for

13: if numberOf(Objects) ≥ 1 then

14: logoMask(i)← GetObjectNearestToCenter(Objects)

15: end if

16: end for

17: return logoMask

Figure 2.10. Check Shape Constraints Algorithm

24

Figure 2.11. Logo mask stability parameters

• Horizontal start position of bounding box should not change too much:

|x1− x2| < ∆Pos

• Vertical start position of bounding box should not change too much:

|y1− y2| < ∆Pos

• Height of bounding box should not change too much:

|h1− h2| < ∆height

• Width of bounding box should not change too much:

|w1− w2| < ∆width

In our experiments, for CIF size videos, we have used 400 for ∆Area, and 20 for

∆Pos,∆height,∆width parameters which are determined experimentally.

To make a decision of stability, the conditions given above should be satisfied

sequentially for nstability consecutive frames. If stability continues for nstability times

without a break, then we can say that logo mask is stable. In our experiments, we

used as nstability = 5.

25

(a) (b) (c)

Figure 2.12. a) Edge image of current frame, E, b) Logo mask, L, c) Thresholded

time averaged edge image, Sth

2.9. Logo Tracking

As we explained before, TV logos can disappear due to two reasons, channel

change or commercial block. We should continuously perform a tracking operation to

detect logo disappearance. In the flowchart of logo detection (in Figure 2.1) tracking

is placed after edge detection process with a diamond shape that has the text “Is Logo

Present?”. To answer this query, logo existence is checked by the following equation

LogoExist =

 true, if Area(AND(E,L))/Area(AND(Sth, L)) > Th

false, otherwise
(2.3)

where E is the edge image of current frame, L is the logo mask which is obtained

in previous frames, Sth is the thresholded time averaged edge image. An example of

those three images are shown in Figure 2.12. For current frame, if there are enough

edges (i.e. E) in the logo mask region (i.e. L) then we can say logo survives. We

compare the edge pixel count of the current frame with the edge pixel count of the

thresholded time averaged edge image, both measured within the logo mask region.

Typical Th value that we use in our experiments is 0.70.

26

3. TV LOGO CLASSIFICATION

3.1. Feature Selection

To reach a successful TV logo classifier, we have worked on some popular fea-

tures that have been used commonly in many pattern recognition problems. We have

compared the classification results of those features and tried to select the feature that

gives the best result for our TV logo classification problem.

3.1.1. Grid Descriptors (GD)

The first feature that we analyzed is Grid Descriptors (GD). A TV logo is pro-

jected onto a fixed size of grid (e.g. 10x10 grid cells). Value of each grid cell is the

average pixel value of corresponding part of TV logo. A grid example is shown in

Figure 3.1.

Figure 3.1. A grid example

If we have an image I of R ∗ C, and superimpose a grid of y ∗ x, each cell will

measure by r = R/y, and c = C/x. Note that r and c should be integers, and number

of pixels in each cell should be equal. If the grid can not divide the logo image into

equal cells, then an interpolation operation is applied. For example if the image size is

92x142 and grid size is 10x10 then image will be interpolated to have a size of 100x150.

After obtaining size of a grid cell (i.e. r, c), we can calculate average pixel value for

cell(k, l) as,

27

µkl =
1

r ∗ c
∑

(i,j)∈Cellkl

I(i, j) (3.1)

After the calculation of values of each cell by traversing the grid from upper left

corner to the bottom right corner, we obtain the GD feature vector as shown below

(for gray scale images)

x = [µ11, µ12, . . . , µyx]
T (3.2)

For the colour images (e.g. RGB images) we calculate average value of each plane

separately. Then GD feature vector becomes to

x = [µR11, . . . , µRyx, µG11, . . . , µGyx, µB11, . . . , µByx]
T (3.3)

There is one more important issue that need to be mentioned here. By calculating

the GD we obtain a macro-pixel representation of TV logo images of a given size. This

step is also essential for other subspace feature extraction methods, such as PCA,

NMF, ICA etc. In other words, since TV logo images have different sizes, we utilize

GD method as a preprocessing step to convert the logo images to a given desired

size. By using a fixed grid, we obtain fixed size macro-pixel representation of TV logo

images. Recall that subspace methods demand input feature vectors of equal size. This

preprocessing step can be seen in Figure 3.2. The output of GD block can be input to

both dimension reduction and classifier blocks.

28

Figure 3.2. Block diagram of the logo classification system

In the sequel, we will denote the MxN data matrix X as,

X = [x1,x2, . . . ,xN] (3.4)

where N is the number of logo images, and xi is Mx1 macropixel representation

of a logo image in the data set.

3.1.2. Principle Component Analysis (PCA)

Principal component analysis (PCA) which was invented in 1901 by Karl Pearson

[14], is a vector space transform often used to reduce multidimensional data sets to lower

dimensions for analysis. PCA can be used for dimensionality reduction in a data set

by retaining those characteristics of the data set that contribute most to its variance,

by keeping lower-order principal components and ignoring higher-order ones. Such

low-order components often contain the ‘most important’ aspects of the data.

Often, its operation can be thought of as revealing the internal structure of the

data in a way which best explains the variance in the data. If a multivariate dataset is

visualized as a set of coordinates in a high-dimensional data space (1 axis per variable),

PCA supplies the user with a lower-dimensional picture, a ‘shadow’ of this object when

viewed from its (in some sense) most informative viewpoint.

29

Figure 3.3. PCA basis images

Principle components of a data matrix can be calculated by the calculation of

the eigenvalue decomposition of the covariance matrix or singular value decomposition

of the data matrix, usually after mean centering the data for each attribute. After the

calculation of all principle components, first m components would be enough to contain

most of the energy of data (e.g. 95%). And finally new reduced representation of data

is obtained by projection of data onto those m principle components. An example to

those principle components (i.e. basis images) for gray scale logo images can be seen

in Figure 3.3. Pseudocode of PCA is shown below in Figure 3.4.

u =
1

N

N∑
i=1

xi (3.5)

Cx =
1

N − 1
X̃X̃

T
(3.6)

30

Require: X = MxN matrix (Each column is a logo image),

energy (e.g. 0.95)

1: u ← CalculateMeanImage(X) // Mx1 vector. See Eq. 3.5

2: X̃ ← SubtractMeanImage(X, u) //subtract mean img from each column of X

3: Cx ← CalculateCovarianceMatrix(X̃)// See Eq. 3.6

4: [PC, V] ← CalculateEigenvectorsAndEigenvalues(Cx) //PC: eigenvectors,

V:eigenvalues

5: v ← GetDiagonal(V)

6: Sort(PC, v) //Sort eigenvalues and corresponding eigenvectors in descreasing

order

7: Pm ← GetFirstmEigenvectors(energy, PC, v) //calculate according to cumula-

tive energy content in eigenvalues. See Eq. 3.7

8: R ← ProjectDataOnToPrincipleAxes(X̃, Pm) // See Eq. 3.8

Figure 3.4. PCA Pseudocode

energym =
m∑
i=1

v(i)/
M∑
i=1

v(i) for 1 ≤ m ≤M (3.7)

R = PT
mX̃ (3.8)

The matrix representation of Eq. 3.8 can be seen in Figure 3.5. X̃ is mean

centered data matrix where columns are given by x̃ = xi−u, Pm is the matrix of first m

eigenvectors where each column is an eigenvector, and R is the reduced representation

of logo images, and v(i), i = 1, . . . ,M denotes the eigenvalues. The sizes of matrices

are R = mxN, PT
m = mxM, and X̃ = MxN.

In the Training phase, the classifier is trained with reduced representation of

31


r1 r2 rN

· · ·

 =


e1

e2

· · ·

em

 ∗

logo1 logo2 logoN

· · ·


Figure 3.5. Matrix representation of R = PT

mX̃

logo images (i.e. R). In the Test phase, the reduced representation of query image is

obtained by two sequential steps. First, mean image is subtracted from query image

as shown in Eq. 3.9. Then mean centered image is projected on to principle axes as

shown in Eq. 3.10.

x̃test = xtest − u (3.9)

rtest = PT
mx̃test (3.10)

3.1.3. Non-Negative Matrix Factorization (NMF)

Non-Negative Matrix Factorization (NMF) is an unsupervised data reduction

method that is used in decomposing multivariate data into parts-based representation.

The pioneer work by Lee and Seung [17] shows that NMF can be used in learning

parts of faces and semantic of text. Both PCA and NMF are matrix factorization

techniques, but there is a difference between NMF and PCA, that is, NMF is additive

(i.e. parts-based, see Figure 3.6), PCA is both additive and subtractive (i.e. holistic,

see Figure 3.3). NMF has the non-negativity constraint (PCA has an orthogonality

32

Figure 3.6. NMF basis images

constraint) which yield to a parts-based representation because it only allows additive

combinations. For a better understanding of parts-based representation, we can think

about a face image example, a face is composed of nose, eyes, mouth, and so on. And

we can represent a face by combining those parts in an additive manner.

Given an initial data set represented by an MxN matrix X, where each col-

umn is a M-dimensional non-negative vector (i.e. a logo image in our case) from N

observations, the decomposition yields to two non-negative matrices W and H such

that,

X ≈WH (3.11)

where W is a Mxr basis matrix, and H is a rxN coefficient matrix. Each column

of W is a basis vector (i.e. a part of the whole), and each column of H is the reduced

representation of the corresponding column in X. NMF basis images (i.e. columns

of W) for gray-scale logo images are given in Figure 3.6, due to the non-negativity

constraint of NMF each basis image corresponds to a part of logo images. Usually r is

33


logo1 logo2 logoN

· · ·

 ≈

w1 w2 wr

· · ·

 ∗

h1 h2 hN

· · ·


Figure 3.7. Matrix representation of X ≈WH

chosen such that, r < MN/(M + N). Matrix representation of Eq. 3.11 is shown in

Figure 3.7.

The NMF method starts with an initialization of W and H matrices with ran-

dom values. The initialized matrices are iteratively updated to minimize a divergence

objective function. The square of the Euclidean distance (Eq. 3.12) can be used as

an objective function. By updating values of W and H we try to minimize the er-

ror between original data (X) and its approximation(WH). The pseudocode of NMF

algorithm is shown below in Figure 3.8.

||X−WH||2 (3.12)

Haµ ← Haµ

(WTX)aµ

(WTWH)aµ
(3.13)

Wia ←Wia
(XHT)ia

(WHHT)ia
(3.14)

34

Require: X = MxN matrix (Each column is a logo image),

maxIteration, r (reduced dimension).

1: InitializeRandomly (W,H)

2: i← 0

3: while (not Converged and i < maxIteration) do

4: H ← Update(H) //See Eq. 3.13

5: W ← Update(W) //See Eq. 3.14

6: i← i + 1

7: checkConvergence(X, WH)//See Eq. 3.12

8: end while

9: return W, H

Figure 3.8. NMF Pseudocode

For the Training of classifier, we use reduced representation of training logo

images(i.e. hi, i = 1, . . . , N). For the Test phase, when a new query image (xtest)

arrives, it is projected onto the pseudo-inverse of basis vectors (W) by the following

Eq. 3.15 to obtain NMF representation of query image.

htest = (WTW)−1WTxtest (3.15)

3.1.4. Independent Component Analysis (ICA)

Independent Component Analysis (ICA) is a computational method for separat-

ing a multivariate signal into additive subcomponents assuming the mutual statistical

independence of the non-Gaussian source signals. It is a special case of blind source

separation. A simple application of ICA is the ‘cocktail party problem’, where the un-

derlying speech signals are separated from a sample data consisting of people talking

simultaneously in a room. All voice records in a room(X) is generated by mixing all

independent microphone records(S) with some weights(A), as shown in Eq. 3.16,

35

X = AS (3.16)

where X is the data matrix, A is the mixing matrix, and S is the matrix of

independent sources.

Typical algorithms for ICA use centering, whitening (usually with the eigen-

value decomposition), and dimensionality reduction as preprocessing steps in order to

simplify and reduce the complexity of the problem for the actual iterative algorithm.

Whitening and dimension reduction can be achieved with principal component analy-

sis or singular value decomposition. Whitening ensures that all dimensions are treated

equally a priori before the algorithm is run. Algorithms for ICA include infomax, Fas-

tICA, and JADE, but there are many others also. We preferred to use FastICA[20]

algorithm in our work.

There are two different architectures that are proposed by Bartlett et al. [21].

In the first architecture, ICA1, statistically independent basis vectors are obtained. In

this architecture basis images are spatially local and sparse. In the second architecture,

ICA2, statistically independent coefficients are obtained, where basis images have a

global appearance. Details of each architecture is explained in subsequent sections.

3.1.4.1. ICA Architecture 1 (ICA1). The ICA1 architecture and that of PCA have

analogous structures, as they are both based on the statistical properties of the basis

images. In ICA1, one tries to find statistically independent basis images, whereas in

PCA one extracts uncorrelated basis images [23]. ICA1 basis images of gray-scale logo

images are shown in Figure 3.9, which are spatially local and sparse.

We can organize our logo images into a data matrix, where each row vector is a

different image. In this approach, images are random variables and pixels are trials.

36

Figure 3.9. ICA1 basis images

In this approach, it makes sense to talk about independence of images or functions of

images. Two images i and j are independent if when moving across pixels, it is not

possible to predict the value taken by the pixel on image j based on the value taken

by the same pixel on image i [22].

The pseudocode of ICA1 is given in Figure 3.10. ICA1 method is started with a

PCA on the data matrix X (each row of X is a logo image) as shown in Eq. 3.17. Note

that ICA is not a dimension reduction technique, thus dimension reduction is achieved

by applying PCA in the first step. As the output of PCA first m eigenvectors, Pm, are

obtained according to given energy level. ICA is performed on the transpose of Pm

as shown in Eq. 3.18. Here W is the inverse of A, and is called as unmixing matrix,

and is a square matrix(i.e. invertible). U is the approximation of independent source

matrix, S, and contains basis images in its rows.

Rm = XPm (3.17)

37

Require: X = NxM matrix (Each row is a logo image), energy (for PCA dimension

reduction)

1: //Apply PCA for dimension reduction.

2: [Rm, Pm] ← PCA(energy, X) //See Eq. 3.17.

3: //Apply ICA on the transpose of first m eigenvectors.

4: [W, U] ← ICA(P T
m) //See Eq. 3.18. U: Basis Images

5: //Calculate ICA coefficients by using reconstruction of X formula.

6: B ← CalculateICACoefficients() //See Eqs. 3.19 - 3.21.

7:

8: return B, U //Return ICA Coefficients, and Basis Images.

Figure 3.10. ICA1 Pseudocode

PT
m = W−1U (W−1 = A, and U ≈ S) (3.18)

For reconstruction of X, we can write Eq. 3.19,

X̂ = RmPT
m (3.19)

and by substituting Eq. 3.18 into Eq. 3.19 we have

X̂ = RmW−1U (3.20)

finally ICA1 coefficients, B, are obtained by Eq. 3.21.

38


logo1

logo2

· · ·

logoN

 =


b1

b2

· · ·

bN

 ∗

u1

u2

· · ·

um


Figure 3.11. Matrix representation of X̂ = BU

B = RmW−1 (3.21)

The matrix representation of X̂, B, and U are shown in Figure 3.11. X̂ has logo

images in its rows, and corresponding ICA1 representation of logo images are located

in each row of B. Basis images can be seen in the rows of U. The sizes of matrices are

X̂ = NxM , B = Nxm, and U = mxM .

For the Training of classifier, we use ICA1 representation of the training logo

images(i.e. B). For the Test phase, when a new query image (xtest) arrives, it is

projected onto the principle components (Pm) by the Eq. 3.22 (assuming xtest is a zero-

mean image, to obtain a zero-mean image see Eq. 3.9), and then ICA1 representation

is obtained by Eq. 3.23.

rtest = xtestPm (3.22)

btest = rtestW
−1 (3.23)

39

Figure 3.12. ICA2 basis images

3.1.4.2. ICA Architecture 2 (ICA2). The ICA2 architecture aims to obtain statisti-

cally independent ICA coefficients rather than statistically independent basis images.

This time logo images are located in the columns of the data matrix. In this approach,

pixels are random variables and images are trials. Here, it makes sense to talk about

independence of pixels or functions of pixels. For example, pixel i and j would be

independent if when moving across the entire set of images it is not possible to predict

the value taken by pixel i based on the corresponding value taken by pixel j on the

same image.

Require: X = NxM matrix (Each row is a logo image), energy (for PCA dimension

reduction)

1: //Apply PCA for dimension reduction.

2: [Rm, Pm] ← PCA(energy, X) //See Eq. 3.17.

3: //Apply ICA on the transpose of PCA representation of X.

4: [W, U] ← ICA(RT
m) //See Eq. 3.24.

5: A = W−1

6: return U, A //Return ICA Coefficients, and Basis Images.

Figure 3.13. ICA2 Pseudocode

At the beginning of the method, PCA is applied to reduce dimension as in ICA1

(Eq. 3.17). Then ICA is performed on the transpose of PCA representation of X

40

(i.e. RT
m) as shown in Eq. 3.24 where each column of RT

m is PCA representation of

a logo image. Each column of A = W−1 is a basis image, and each column of U is

the coefficients. ICA2 basis images of gray-scale logo images are given in Figure 3.12,

where each basis images have a global appearance. The pseudocode of ICA2 is given

in Figure 3.13.

RT
m = W−1U (3.24)

The matrix representation of Eq. 3.24 is shown in Figure 3.14. The sizes of

matrices are RT
m = mxN , W−1 = mxm, and U = mxN .


r1 r2 rN

· · ·

 =


a1 a2 am

· · ·

 ∗

u1 u2 uN

· · ·


Figure 3.14. Matrix representation of RT

m = W−1U

For the Training of classifier, we use ICA2 representation of the training logo

images(i.e. U). For the Test phase, when a new query image (xtest) arrives, it is first

projected onto the principle components (Pm) as shown in the Eq. 3.22 (assuming

xtest is a zero-mean image, to obtain a zero-mean image see Eq. 3.9), and then ICA2

representation, utest, is obtained by Eq. 3.25.

utest = WrTtest (3.25)

41

3.1.5. Discrete Cosine Transform (DCT)

Discrete cosine transform (DCT) expresses a sequence of finitely many data points

in terms of a sum of cosine functions oscillating at different frequencies. DCT is often

used in signal and image processing, especially for lossy data compression, because

it has a strong ‘energy compaction’ property, that is, most of the signal information

tends to be concentrated in a few low-frequency components of the DCT (where small

high-frequency components can be discarded).

The 2D DCT can be applied by the following Eq. 3.26

C(u, v) = α(u)α(v)
N−1∑
x=0

N−1∑
y=0

f(x, y) cos

[
π(2x+ 1)u

2N

]
cos

[
π(2y + 1)v

2N

]
(3.26)

where f denotes the 2D form of xi (macropixel representation of each logo image),

u, v = 0, . . . , N − 1. α(u), and α(v) are defined as follows

α(u) =


√

1
N
, for u = 0√

2
N
, for u 6= 0

(3.27)

The image in Figure 3.15 shows combination of horizontal and vertical frequencies

for an 8x8 (N = 8) two-dimensional DCT. Each step from left to right and top to bottom

is an increase in frequency by 1/2 cycle. For example, moving right one from the top-

left square yields a half-cycle increase in the horizontal frequency (goes from white to

black). Another move to the right yields two half-cycles (white to black to white). A

move down yields two half-cycles horizontally and a half-cycle vertically. The source

data (8x8) is transformed to a linear combination of these 64 frequency squares (basis

42

Figure 3.15. DCT basis images for 8x8 blocks

images).

The algorithm for applying DCT on images is shown in Figure 3.16. For each

NxN block in the image, DCT of the block is obtained. We have again a NxN matrix

but all low-frequency components are located in the upper left corner, and the top-

left element is the DC (zero-frequency) component. The low-frequency components

contain most of the energy of the NxN block. Thus we just consider the low-frequency

components and omit the small high-frequency components. Then the DCT coefficients

are sorted into a 1D array by a zig-zag scan as shown in Figure 3.17. As the result of

zig-zag scan, we obtain a 1xN2 array, and the low-frequency components are located

at the beginning of the array. We can select the first nlow coefficients as shown in Eq.

3.28, thus dimension reduction is achieved.

Blow(i)← Bzz(i) i = 0, . . . , nlow − 1. (3.28)

43

Require: I = MxM image, N (block size),

nlow (number of low freq. coeff.)

1: numBlocks ← (M/N) ∗ (M/N)

2: for i = 1 to numBlocks do

3: B ← getNxNBlock(I, i)

4: BDCT ← DCT(B) //See Eq. 3.26

5: Bzz ← ZigZagScan (BDCT)

6: Blow ← GetLowFrequencyCoefficients (Bzz, nlow)//See Eq. 3.28.

7: IDCT (i) ← Blow

8: end for

9: return IDCT //Return DCT Coefficients of I.

Figure 3.16. DCT Pseudocode

Figure 3.17. Zig-zag scan

44

3.2. Classification with Support Vector Machines (SVMs)

Support vector machines (SVMs) are a set of related supervised learning methods

used for classification and regression. Viewing input data as two sets of vectors in an

n-dimensional space, an SVM will construct a separating hyperplane in that space, one

which maximizes the margin between the two data sets. To calculate the margin, two

parallel hyperplanes are constructed, one on each side of the separating hyperplane,

which are ‘pushed up against’ the two data sets. Intuitively, a good separation is

achieved by the hyperplane that has the largest distance to the neighboring data points

of both classes, since in general the larger the margin the better the generalization error

of the classifier.

Suppose some given data points each belong to one of two classes, and the goal is

to decide which class a new data point will be in. In the case of SVMs, a data point is

viewed as a p-dimensional vector, and we want to know whether we can separate such

points with a p− 1-dimensional hyperplane. This is called a linear classifier. There are

many hyperplanes that might classify the data. However, we are additionally interested

in finding out if we can achieve maximum separation (margin) between the two classes.

By this we mean that we pick the hyperplane so that the distance from the hyperplane

to the nearest data point is maximized. That is to say that the nearest distance between

a point in one separated hyperplane and a point in the other separated hyperplane is

maximized. Now, if such a hyperplane exists, it is clearly of interest and is known as

the maximum-margin hyperplane and such a linear classifier is known as a maximum

margin classifier.

3.2.1. Linear SVM

3.2.1.1. Separable Case. We are given a set of training data, in the form of

{xi, yi} = xi ∈ Rd, yi ∈ {−1, 1} , for i = 1, . . . , l. (3.29)

45

where the yi is either 1 or -1, indicating the class to which the point xi belongs.

We want to find the maximum-margin hyperplane which divides the points having yi

= 1 (i.e. positive examples) from those having yi = -1 (i.e. negative examples). The

points x which lie on the hyperplane satisfy

w · x + b = 0 (3.30)

where w is normal to hyperplane, and the perpendicular distance from hyperplane

to origin is |b|/||w|| (||w|| is the Euclidean norm of w). Let d+ (d−) be the shortest

distance from the separating hyperplane to the closest positive (negative) example.

Define the margin of a separating hyperplane to be d+ +d−. For the linearly separable

case, the support vector algorithm simply looks for the separating hyperplane with

largest margin. This can be formulated as follows: suppose that all the training data

satisfy the following constraints:

xi ·w + b ≥ +1, for yi = +1 (3.31)

xi ·w + b ≤ −1, for yi = −1 (3.32)

Now consider the points for which the equality in Eq. 3.31 holds. These points lie

on the hyperplane H1 : xi ·w + b = 1 with normal w and perpendicular distance from

the origin |1 − b|/||w||. Similarly, the points for which the equality in Eq. 3.32 holds

lie on the hyperplane H2 : xi ·w + b = −1, with normal again w, and perpendicular

46

Figure 3.18. A linear SVM classifier (separable case)

distance from the origin | − 1− b|/||w||. Hence d+ = d− = |1|/||w|| and the margin is

simply |2|/||w||. Note that H1 and H2 are parallel (they have the same normal) and

that no training points fall between them. Our aim is finding H1, H2 hyperplanes that

have the following two properties

• Classify negative and positive examples correctly (by satisfying Eq. 3.31 and Eq.

3.32)

• Have a maximum margin (by minimizing 1
2
||w||2)

It becomes an optimization problem with the given two items above. The opti-

mization problem can be rewritten by combining the Eq. 3.31 and Eq. 3.32 together

minimize
1

2
||w||2, subject to yi(xi ·w + b)− 1 ≥ 0 ∀i (3.33)

And the optimization problem can be solved by quadratic programming tech-

niques and programs.

The illustration of the classifier on a typical two dimensional case is shown in Fig-

47

ure 3.18. The training samples located on the hyperplanes are called support vectors,

which are shown differently from other samples.

Writing the classification rule in its unconstrained dual form reveals that the

maximum margin hyperplane and therefore the classification task is only a function of

the support vectors, the training data that lie on the margin. The dual of the SVM

can be shown to be:

max
l∑
i

αi −
1

2

l∑
i

l∑
j

αiαjyiyjxi · xj, subject to αi ≥ 0, and
l∑
i

αiyi = 0 (3.34)

and w can be defined as

w =
l∑
i

αiyixi (3.35)

Support vector training (for the separable, linear case) therefore amounts to max-

imizing Eq. 3.34 with respect to the αi, subject to the given constraints, with solution

given by Eq. 3.35. In the solution, those points for which αi > 0 are called ‘support

vectors’, and lie on one of the hyperplanes H1, H2. All other training points have

αi = 0.

3.2.1.2. Non-Separable Case. What we have stated so far is for the separable case of

data (noise-free data). How can we find hyperplanes for a training data that includes

noisy samples as shown in Figure 3.19. In 1995, Cortes and Vapnik suggested a modified

maximum margin idea that allows for mislabeled examples [30]. If there exists no

hyperplane that can split the yes and no examples, the Soft Margin method will choose

48

Figure 3.19. A linear SVM classifier with noisy data (non-separable case)

a hyperplane that splits the examples as cleanly as possible, while still maximizing the

distance to the nearest cleanly split examples. The method introduces slack variables,

ξi, which measure the degree of misclassification of the datum xi

xi ·w + b ≥ +1− ξi, for yi = +1 (3.36)

xi ·w + b ≤ −1 + ξi, for yi = −1 (3.37)

The objective function is then increased by a function which penalizes non-zero

ξi, and the optimization becomes a trade off between a large margin, and a small error

penalty. The new objective function is defined as

49

minimize
1

2
||w||2 + C

∑
i

ξi (3.38)

where C is a parameter to be chosen by the user, a larger C corresponding

to assigning a higher penalty to errors. And the only difference from the optimal

hyperplane case is that the αi now have an upper bound of C (i.e. 0 ≤ αi ≤ C), and

we can rewrite Eq. 3.34 as following

max
l∑
i

αi −
1

2

l∑
i

l∑
j

αiαjyiyjxi · xj, subject to 0 ≤ αi ≤ C, and
l∑
i

αiyi = 0

(3.39)

The solution is the same as given in Eq. 3.35.

3.2.2. Non-Linear SVM

In the previous section, the original optimal hyperplane algorithm was given for

the data that can be separated by a linear function of data. How can we classify a non-

linear data that can not be classified by a linear function? In 1992, Boser, Guyon and

Vapnik suggested a way to create non-linear classifiers by applying the kernel trick to

maximum-margin hyperplanes [31]. The resulting algorithm is formally similar, except

that every dot product is replaced by a non-linear kernel function. This allows the

algorithm to fit the maximum-margin hyperplane in the transformed feature space.

The transformation may be non-linear and the transformed space high dimensional;

thus though the classifier is a hyperplane in the high-dimensional feature space, it may

be non-linear in the original input space. We can map the data to some other Euclidean

space H as shown below:

50

Φ : Rd → H (3.40)

Then the training algorithm would only depend on the data through dot products

in H, i.e. on functions of the form Φ(xi) · Φ(xj). Now if there were a kernel function

K such that K(xi,xj) = Φ(xi) · Φ(xj), we would only need to use K in the training

algorithm. Some common kernels include:

• Polynomial (degree p)

K(x,y) = (x · y + 1)p

• Gaussian Radial Basis Function (RBF)

K(x,y) = exp

(
−||x− y||2

2σ2

)

• Sigmoid Function

K(x,y) = tanh(κx · y− δ)

3.2.3. Multiclass SVM

Support Vector Machines (SVMs) were originally designed for binary classifica-

tion. However multiclass classification problems can be solved by using multiple binary

classifiers. We can write the training data from k different classes in the form of

{xi, yi} = xi ∈ Rd, yi ∈ {1, · · · , k} , for i = 1, . . . , l (3.41)

51

(a) SVM1 (b) SVM2 (c) SVM3
Figure 3.20. One-versus-all method

where yi is the class of xi.

There are two common methods to build binary classifiers to solve multiclass

classification problems:

• One-versus-All

• One-versus-One

which are described in the following subsections.

3.2.3.1. One-versus-All. The earliest method used for multiclass SVM classification is

probably one-versus-all. For a data of k classes it constructs k SVMs. The ith SVM is

trained with all the data of ith class as positive examples, and the rest of the data as

negative examples. Thus we can say that, ith SVM gives the score for the query data

to be in ith class. The class with the highest score wins the competition(i.e. query data

belongs to that class). This is called winner takes-all strategy. A simple example of

one-versus-all method is shown in Figure 3.20. There are 3 classes, and 3 SVMs. Each

class is trained against the rest of the classes in each SVM.

3.2.3.2. One-versus-One. In the one-versus-one method, one SVM is trained for each

pair of classes. Thus each class constructs an SVM with each of the other classes.

Totally for k classes, k(k − 1)/2 SVMs are trained, where each SVM is trained with

data of two classes only. To decide winner class, a voting mechanism is used. For each

52

(a) SVM1 (b) SVM2 (c) SVM3
Figure 3.21. One-versus-one method

SVM the winner class takes one additional vote. And the final winner is found by

adding up all votes coming from all SVMs. The class that has the maximum number

of votes is the winner(i.e. query data belongs to that class). This is called max-wins

voting strategy. A simple example of one-versus-one method is shown in Figure 3.21.

For each pair of classes one SVM is trained.

A comparison of the results of the two methods is given in [33]. For the imple-

mentation, we have used the LIBSVM [35] software library, which works robustly, and

have been used commonly for many classification problems. LIBSVM uses one-vs-one

method for multiclass classification.

53

4. TV LOGO IDENTIFICATION SYSTEM

In the previous two chapters we have explained TV logo detection and classi-

fication methods. Now we try to combine those two parts together to obtain a TV

logo identification system. A simple block diagram of a typical TV logo identification

system can be seen in Figure 4.1. A broadcast video is given as input to the system,

and the name of the channel in the given video is expected as the output.

Figure 4.1. A logo identification system

Details of the logo identification system can be seen as a flowchart in Figure

4.2. The system starts with logo detection by processing one frame per second from

a given broadcast video. The output of the logo detection process is a binary logo

mask, Li, which contains the information of position of logo candidate on the video

frame. By using that logo mask we obtain the logo candidate and it (i.e. an rgb

logo image) is given as input to the SVM classifier, which is trained previously on our

logo DB (Note that, feature extraction is performed before making query to SVM,

this process is embedded in SVM block in the diagram for simplicity). We get best

three predictions from SVM with their probabilities (e.g. 1-CNN, probability:0.15; 2-

CNBC-E, probability:0.07; 3-TRT1, probability:0.04) after filtering inconsistent SVM

predictions by a corner verification operation. Since expected corner is known for each

channel (ground truth) we can easily check consistency of the SVM predictions with

the corner information. For example, TRT1 logos always appear in the upper left

corner, if SVM makes a TRT1 prediction for a logo candidate in one of the other three

corners, that TRT1 prediction will not be taken into consideration. Then we check

the probability values if they are high enough to be sure we have a good logo mask.

If probability values are not high enough we obtain new logo masks from current logo

mask and make new SVM queries with the logo candidates resides under them. We

54

obtain 18 new logo masks from current logo mask by shifting ∆k pixels (up, down,

left, and right), enlarging ∆k pixels (up, down, left, right, horizontally, vertically, and

both directions) and shrinking ∆k pixels (up, down, left, right, horizontally, vertically,

and both directions) bounding box of the logo mask.

On the other hand, we make another query to SVM with using best logo mask,

Lbest which is saved in each iteration of logo detection according to best answers of

SVM (i.e. the logo mask that gets highest probability from SVM is the best logo

mask). This best logo mask supplies a protection from unexpected faulty results due

to the instantaneous changes in current logo mask. We compare the results of Li

and Lbest to decide which is better, and use the results of the winner to make final

decision. In the last step of the logo identification system we have a decision system.

The decision system collects the SVM predictions, then give the final decision of the

system if the predictions are consistent for a period of time. The consistency checks

makes the system more robust. The details of decision system will be given in next

section.

4.1. Decision System

After the first experiments on our logo identification system, we have observed

that small changes in the logo masks may lead to different SVM results (i.e. inconsistent

predictions of the system). Then we decided to construct a robust decision mechanism

which can not be affected by instantaneous changes in SVM results. The main logic of

such a decision mechanism is waiting for a period of time to be sure system produces

consistent results before making a prediction. For this purpose we decided to use a

‘Time Windowing’ mechanism, which is illustrated in Figure 4.3. We select a sliding

time window, W , in a sequence of frames. For each frame, we get three predictions

with highest probabilities from SVM. Then all results in the time window is combined

and cumulative results are found. The winner is the channel, which gets the maximum

cumulative result. For example in Figure 4.3, according to the given SVM results

for three frames CNN has the maximum cumulative result. So we can say winner is

CNN. Note that in the second frame CNN does not get the highest probability but

55

Figure 4.2. Flowchart of logo identification system

56

final decision is not changed due to high probabilities coming from other frames. Thus

robustness is achieved.

Figure 4.3. Time windowing

There is one more step after the time windowing mechanism to make the system

more robust. That is, we expect the results of the time windowing system are consistent

for n times consecutively. For example, while processing the frame i, we calculate the

cumulative SVM probabilities of last W frames(i.e. frames i, i− 1, . . . , i−W − 1) and

predict the channel name, say CNN, as having the maximum cumulative probability.

We record this as the first win of CNN, and then starts to process frame (i + 1). We

put forward W one step, and calculate the cumulative probabilities of last W frames

(i.e. frames i + 1, i, . . . , i −W). If CNN has maximum cumulative probability again,

it reaches to two consecutive wins. And if it repeats the wins for n consecutive times

without any break, the system is said to be ready to make a prediction. And this will

be the system output which is shown in the last step of Figure 4.2.

The final step of the decision system is cumulative SVM probability thresholding.

That is, if the cumulative SVM probability value of predicted channel is lower than a

threshold, system does not make a prediction. This thresholding mechanism is used

to avoid predictions of logo candidates which are not TV logos (e.g. Program name

texts, program logos, or other stable contours on the frame).

57

5. EXPERIMENTS AND RESULTS

We can categorize our experiments into two different categories. The first experi-

ments are on the TV logo classification. We worked on captured frames, and compared

classification results of different features such as GD, ICA, PCA, NMF, and DCT on

SVM to obtain the best classifier. The second set of experiments are on the complete

TV logo identification system (combining TV logo detection and TV logo classification

together), and we worked on broadcast videos to test the system. The details of each

experiments will be given in subsequent sections.

5.1. TV Logo Classification Experiments

5.1.1. Data Set

For the TV logo classification experiments, we first constructed a logo DB that

consists of logos of almost all Turkish channels and some European channels. We

collected 20 sample for each TV logo, each sample has different background as in

Figure 5.1. The whole database (DB) consisted of 152 channels x 20 instances = 3040

logo images. One instance for each logo in the DB is shown in Figure 5.2.

For the construction of logo DB, we utilized a TV card on a PC and a digital

satellite receiver. The captured frames are in PAL BG (i.e. 720x576) format. All logos

are manually cropped from the captured frames. While collecting the logo samples

we tried to select samples that have different backgrounds. The different backgrounds

of the same logo helps to construct a classifier which is robust against background

variations. The samples with different backgrounds was given in Figure 5.1.

In this logo DB, since all samples are cropped manually and have therefore differ-

ent sizes they are affected by geometric noise. The logo samples are extracted manually

based on their bounding boxes, but due to the manual operation the logo sizes are not

identical. The geometric noise is apparent in logo samples in Figure 5.1 in the form of

58

Figure 5.1. Some logo samples in logo DB. Each row illustrates six different instances

of a logo with different background.

Figure 5.2. All logos in logo DB

59

slightly changing scale or displacement of the center. Since automatic extraction of logo

ROI will also be noisy, we have not post-processed these images for exact alignment or

scaling so that the classifier can be robust against these perturbations.

For each channel, out of 20 samples we used 15 images for the training phase, and

5 images for testing. We have worked on both gray-scale and rgb images, to observe

the contribution of colour in logo classification.

5.1.2. Experiments

To select best feature for the logo classification problem, we perform experiments

by using the features GD, PCA, NMF, ICA1, ICA2, and DCT. A snapshot from Graph-

ical User Interface(GUI) of our application, which is written in MATLAB, can be seen

in Figure 5.3. Since PCA, ICA, NMF and DCT are subspace analysis methods and

takes fixed size inputs, we first normalize the size of the ROI by applying GD, which

converts all logo images into fixed-size macro-pixel representation. Then subspace anal-

ysis methods can be applied. The simple illustration of this process was given in Figure

3.2 in the TV Logo Classification section. For any grid size, there is a corresponding

resolution level on number of native pixels covered by the macropixel window. We

select three different grid sizes such as 8x8, 16x16, and 32x32, which is shown in the

left most column of Table 5.1. The native sizes of logo images that cropped manually

from PAL BG frames (i.e. 720x576) change in a range of 20 pixel to 120 pixel for each

dimension. For example, one of the TRT1 samples has a size of 40x102.

We perform experiments on both gray-scale and rgb images of logos. We have

used multi-class SVM as the classifier. W used LibSVM [35] software package, where

one-vs-one method is used for the multi-class classification. We have trained SVM in

linear mode. Totally 2280 logo images are used for training (15 samples from each

logo).

In the test phase, total 760 logo images are used for testing (5 samples from each

logo). For each test image in the test set, one result is recorded as true classification or

60

Figure 5.3. A snapshot of logo classification application GUI

false classification according to the result of SVM. True classification rate is calculated

by the following formula

true classifications

test samples

where # test samples = 760 in our experiment. When we look at the test results

in Table 5.1, we can see that ICA2 outperforms other features with 99.21% (6 misses

in 760 test samples) accuracy rate on colour logo images. According to that results, it is

obvious that using a bigger grid gives better results. And we can say that 32x32 would

be a good choice for grid size. The other factor that effects the result of experiment is

the colour factor. We perform experiments on both gray-scale and colour images and

we see that colour logo images gives better results than gray-scale logo images. For

ICA2, there is nearly 2% percent difference between results of gray-scale images, and

colour images for a grid size of 32x32.

61

Table 5.1. Classification test results for gray-scale (first 3 rows) and colour images

(last 3 rows)

Image Size GD PCA NMF DCT ICA1 ICA2

8x8 95.39 93.68 86.71 91.45 91.45 95.26

16x16 97.24 96.71 91.58 96.84 94,34 97.37

32x32 97.76 97.63 94.74 97.24 96.05 97.37

8x8 96.32 95.13 92.37 95.66 95.66 97.50

16x16 98.03 97.50 97.50 97.37 96.97 98.68

32x32 98.29 98.29 97.63 97.50 97.63 99.21

Table 5.2. Sizes of feature vectors for gray-scale (first 3 rows) and colour images (last

3 rows)

Image Size GD PCA, NMF, ICA1, and ICA2 DCT

8x8 64 27 64

16x16 256 61 128

32x32 1024 100 128

8x8 192 43 192

16x16 768 82 384

32x32 3072 121 384

Figure 5.4. PCA energy graph for 32x32 gray-scale images

62


r1 r2 r2280

· · ·

 =


e1

e2

· · ·

e121

 ∗

logo1 logo2 logo2280

· · ·


Figure 5.5. Matrix representation of PCA projection (R = PT

mX̃) for 32x32 colour

images in the training phase. (R = 121x2280, PT
m = 121x3072, X̃ = 3072x2280).

The sizes of feature vectors are given in Table 5.2. For GD, size of feature vector

is the same as size of images. For PCA we select the first m eigenvectors that include

95% energy. Cumulative energy distribution of principle components for 32x32 gray-

scale images is given in Figure 5.4. The matrices used for the PCA projection in the

training are illustrated in Figure 5.5, where N = 2280 (number of logo images), M

= 3072 (number of macropixels), and m = 121 (number of eigenvectors corresponds

to 95% of the energy). Thus, a dimension reduction from 3072 to 121 is achieved by

using PCA projection. We assume size of PCA feature vectors as reference, and use

the same size for ICA and NMF. Since PCA is used as a preprocessing step in ICA

for dimension reduction, the ICA feature vectors are constructed in the same size as

the PCA case. For the calculation NMF feature vectors we need to determine two

parameters. The first parameter, ‘size of feature vector’ is used as the same as size of

PCA feature vectors, and the second parameter is ‘number of iterations = 100’. For

calculation of DCT feature vectors, we used N = 8 (block size) and applied DCT to

each 8x8 subblocks. And then, DCT feature vectors are formed by concatenating the

first nlow low-frequency coefficients of each subblock. nlow is selected according to the

image size, for example nlow = 8 for 32x32 images, and nlow = 32 for 16x16 images.

5.2. TV Logo Detection and Identification Experiments

As explained in the Logo Identification System section, we combine TV logo de-

tection and TV logo classification sub systems in order to construct a TV identification

system. A snapshot of our TV logo identification application GUI is shown in Figure

63

5.6. An ‘avi’ file is given as input to the system. In the lower left corner of the GUI,

currently processed frame is shown. The processed corner images are shown from left

to right for each step of the algorithm. The resulting ROI logo candidates are shown

in upper right corner, and the prediction of the system with the cumulative SVM

probability value is shown in red bold letters.

Figure 5.6. A snapshot of logo identification application GUI

5.2.1. Data Set

In order to test our logo identification system we have collected sample video

sequences from 12 most popular TV channels of Turkey. We have recorded 20 sample

sequences for each TV channel and created a video DB of 240 video sequences. Duration

of each video is approximately 60 seconds, hence the total DB amounts to 4 hours of

video. Logo identification problem becomes a more challenging problem with this short

duration of sequences. Many of the works in literature perform experiments in long

duration video records (e.g. 30 minutes or longer) with few number of samples. We have

64

kept duration of videos short enough to increase number of sample sequences to 240.

Therefore we are able to apply our logo identification algorithm to a variety of video

records that have different characteristics (e.g. No motion in the scene, overlapping

TV logos, text and program logos in other corners, and so on).

Some of the challenging video examples are shown in Figure 5.7. Figure 5.7a

shows a video scene which has almost no motion; Figure 5.7b shows a video scene which

has no motion and has some static contours (i.e. texts, logos) in each corner; Figure 5.7c

shows a video scene which has horizontal and vertical text lines almost connected to

the TV logo; Figure 5.7d shows a video scene which has text lines connected to the TV

logo; Figure 5.7e shows a video scene where both the TV logo colour and background

colour are the same; Figure 5.7f shows a video scene that has a transparent TV logo

on a complex background (i.e. having many edges in background); Figure 5.7g shows a

video scene in which the original TV logo is overlapping with another TV logo; Figure

5.7h shows a video scene which is similar to Figure 5.7e where TV logo and background

have the same colour; Figure 5.7i shows a video scene in which TV logo is connected

to a text line.

We have utilized a TV card on a PC and a digital satellite receiver to record

these broadcast videos. The recorded videos are in CIF format (i.e. 352x288). Some

of the important properties of the videos:

• Container: AVI

• Codec: Intel Indeo (R) Video R5.10

• Frame Sampling Rate: 25 fps

• Frame Size: 352x288

• Duration: 60 seconds

• Size On Disk: 30-40 MB

In order to read recorded ‘avi’ files and convert to frames we have used dxAvi

library [36].

65

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 5.7. Some of the challenging videos in video DB

66

5.2.2. Experiments

The performance evaluation of TV logo detection and TV logo identification

systems in the literature is not always consistent. Some of the works [1, 8] in the

literature give TV logo tracking results, some of the works do not give performance

evaluation methods, and some of them do not even give information about the dataset.

In this work, we try to fill these gaps in the literature. Since the time spent for the

logo detection is very important we have used one minute duration videos for realistic

experiments. A successful logo detection system should detect TV logos within this

period of time in order to be useful for real time broadcast videos.

We evaluate both TV logo detection and TV logo identification algorithms in our

experiments. We have conducted five different types of experiments. Each experiment

is conducted to show contribution of each proposed method, finally the best system is

achieved by adding all methods.

In order to measure logo detection process, we check if any logo mask is obtained

in the correct corner. Detection is considered as successful if logo detection system

obtains a logo mask in the expected corner of the frame, and the logo mask passes the

constraints (e.g. stability constraint, shape constraints, etc.). To measure performance

of the logo identification system on each video sample we used the following formula

True Matches

Total Predictions
(5.1)

5.2.2.1. Experiment-1. The first experiments are conducted with simple thresholding

by using Th = 0.5 value. We have used a disk structuring element with radius r=5

for morphological closing, and a rectangle structuring element with width=5, height=3

for morphological opening. Transition mask method is not used in this experiment.

Logo detection results for Experiment-1 are given in Figure 5.8, where Figure 5.8a

67

(a)

(b)

Figure 5.8. Logo detection results of experiment-1. a) Logo detection histogram, b)

Cumulative logo detection histogram.

68

Figure 5.9. Problem of simple thresholding method. Images left to right: Time avg.

edges, after thresholding, after closing, after opening, obtained logo candidate.

shows histogram of logo detection, and Figure 5.8b shows cumulative histogram of

logo detection according to time. The first detection epochs of TV logos are use for

logo detection histogram. Once can see that in 70% percent of videos logos are detected

within ten seconds, and 90% percent of them within 20 seconds. And if we use all of

the time allowed, i.e. 60 seconds, the detection rate for this experiment reaches to

96.25% (231/240), with nine missed videos.

Identification results of Experiment-1 are shown in Table 5.3. Each cell of the

table includes identification performance of the proposed system on a video record

according to the evaluation criteria given in Eq. 5.1. The average accuracy rate for

Experiment-1 is 85.67%. One of the typical problems of simple thresholding method

is shown in Figure 5.9. Edges of logo image are not obtained correctly in thresholding

step, and broken edges lead to deformation in morphological opening step, thus ideal

logo mask can not be extracted. Note that, if the edges were obtained without any

broken parts, hole filling operation would protect the logo mask from the deformation

in opening step. This example is captured from record 11 of ATV. The same problem

is also seen very frequently in STAR videos.

5.2.2.2. Experiment-2. In order to alleviate the thresholding problems as illustrated

in Figure 5.9, we perform experiments using hysteresis thresholding method. In this

method two levels of thresholds are applied, namely high threshold and low threshold.

We use Thlow = 0.35 and Thhigh = 0.5 for this experiment. We have used the same

structuring elements as the ones we used in Experiment-1 (Closing: disk, r=5; Opening:

rectangle, w=5, h=3). Logo detection results for Experiment-2 are given in Figure 5.10.

Detection results are similar to the results of the previous experiment with a small

T
ab

le
5.

3.
Id

en
ti

fi
ca

ti
on

re
su

lt
s

of
ex

p
er

im
en

t-
1

a
tv

c
in

e
5

c
n
b

c
e

c
n
n
tu

rk
ch

.
d

fo
x

ch
.

7
n
tv

sh
o
w

st
a
r

tr
t1

tv
8

re
c
o
rd

1
0
.8

4
0
.9

2
1

0
.9

6
0
.4

5
0
.6

2
1

1
1

0
1

1

re
c
o
rd

2
1

1
1

1
0
.8

6
0
.3

6
1

1
1

0
.7

4
1

1

re
c
o
rd

3
0
.9

7
1

1
1

1
1

1
1

1
1

0
.2

5
1

re
c
o
rd

4
1

1
1

1
1

0
.4

2
1

0
.1

8
1

0
.7

6
1

1

re
c
o
rd

5
0
.9

5
1

1
0
.7

9
1

1
1

1
1

0
.7

9
1

1

re
c
o
rd

6
0
.9

8
1

1
1

1
0
.9

5
0

0
1

1
0

1

re
c
o
rd

7
1

1
1

0
0

1
1

1
1

1
0
.9

1

re
c
o
rd

8
1

1
1

0
1

1
0
.9

8
1

1
0
.3

1
1

1

re
c
o
rd

9
1

1
1

1
1

1
1

1
1

1
0
.5

1

re
c
o
rd

1
0

1
0
.6

1
0
.6

8
1

1
1

0
0

0
0
.9

2
1

re
c
o
rd

1
1

0
1

0
.8

3
1

1
1

1
1

1
0
.9

8
1

0
.6

3

re
c
o
rd

1
2

1
1

1
0
.0

8
1

1
1

1
1

1
1

1

re
c
o
rd

1
3

1
1

0
.9

4
0
.6

4
1

1
1

0
1

1
1

1

re
c
o
rd

1
4

1
1

1
1

1
1

1
1

1
1

0
.6

1

re
c
o
rd

1
5

1
1

1
1

1
1

1
0

1
1

0
.9

1

re
c
o
rd

1
6

1
1

1
1

1
1

0
.9

4
0

1
0
.4

5
0
.9

5
1

re
c
o
rd

1
7

1
0
.8

5
1

0
0
.9

6
1

1
1

1
0
.2

2
0

1

re
c
o
rd

1
8

0
.9

3
1

1
1

1
1

1
1

1
0
.5

5
0
.8

9
0
.9

3

re
c
o
rd

1
9

1
0
.6

1
1

1
1

1
0

0
.8

8
1

0
.1

4
1

re
c
o
rd

2
0

0
.9

3
0
.3

6
1

0
0
.9

6
0

0
.8

6
0

0
.9

5
1

1
1

A
v
g
:

0
.9

3
0
0

0
.9

1
6
5

0
.9

8
8
5

0
.7

0
7
5

0
.9

1
1
5

0
.8

6
7
5

0
.9

3
9
0

0
.6

0
9
0

0
.9

4
1
5

0
.7

4
0
0

0
.7

5
2
5

0
.9

7
8
0

O
v
e
ra

ll
A

v
g
:

0
.8

5
6
7

70

decrement in maximum detection rate, which is 95.42% (229/240) for this experiment.

Identification results of Experiment-2 are given in Table 5.4. By using hysteresis

thresholding the average accuracy rate is increased from 85.67% to 86.34%. Note that

record 11 of atv is increased from 0 to 0.96. From the results, it is clear that something

goes wrong for NTV videos due to very low accuracy rates. The main problem with

NTV videos is structure the of channel logo. There is a text band under the logo and

most of the time this band leads to deformation of logo mask in the closing step. A

typical example of that overclosing problem is given in Figure 5.11. We will try to

find a solution to that problem in Experiment-4 by introducing adaptive structuring

element method.

5.2.2.3. Experiment-3. In the third experiments, in order to combat small corruptions

in logo masks we considered new logo masks by shifting, enlarging, and shrinking the

original one by 2 pixels in different directions (i.e. Up, Down, Left, Right, etc.).

Consequently, we obtain 18 different logo masks. This method is expected to improve

classification performance. Since the other experiment parameters are the same as

the ones used in Experiment-2 (Thresholding: hysteresis, [0.35 0.50]; Closing: disk,

r=5; Opening: rectangle w=5, h=3) the logo detection result is the same as the one

in Experiment-2. Logo identification results of Experiment-3 are shown in Table 5.5.

However, the average accuracy rate is surprisingly decreased from 86.34% to 83.09%.

The main reason of the decrement is the low accuracy rate of TRT1 which decreases to

34.1% from 81.35%. With the mask perturbation method, most of the SVM predictions

of TRT1 videos becomes to TRTInt. Figure 5.12 shows the TRT logos which are very

similar to each other. They share the SVM probabilities because of the similarity.

With the mask perturbation method, TRTInt always gets higher SVM probability as

compared to TRT1.

5.2.2.4. Experiment-4. In the fourth experiment we use adaptive structuring element

method. In this method there are two different groups of structuring elements for

morphological operations, namely, big and small structuring elements. For each cor-

71

(a)

(b)

Figure 5.10. Logo detection results of experiment-2. a) Logo detection histogram,

b) Cumulative logo detection histogram.

Figure 5.11. NTV overclosing problem. Images left to right: Corner region of frame,

after thresholding, after morphological operations.

T
ab

le
5.

4.
Id

en
ti

fi
ca

ti
on

re
su

lt
s

of
ex

p
er

im
en

t-
2

a
tv

c
in

e
5

c
n
b

c
e

c
n
n
tu

rk
ch

.
d

fo
x

ch
.

7
n
tv

sh
o
w

st
a
r

tr
t1

tv
8

re
c
o
rd

1
1

0
.6

5
1

1
1

1
1

1
1

0
.1

3
1

1

re
c
o
rd

2
1

1
1

1
1

1
1

1
1

0
.6

5
1

1

re
c
o
rd

3
0
.9

4
1

1
1

1
1

1
1

1
1

0
1

re
c
o
rd

4
1

0
.8

8
1

0
.8

1
0
.9

7
1

0
.0

4
1

1
1

1

re
c
o
rd

5
0
.9

5
1

1
1

1
1

1
0

1
0
.7

5
1

1

re
c
o
rd

6
1

1
1

1
1

1
0

0
1

1
0

1

re
c
o
rd

7
1

1
1

0
0

1
1

1
1

1
0
.6

7
1

re
c
o
rd

8
0
.6

1
1

1
0

1
1

1
1

1
0

1
1

re
c
o
rd

9
1

1
1

1
1

1
1

1
1

1
1

0
.8

re
c
o
rd

1
0

1
0
.2

5
0
.9

4
1

1
1

1
0

0
0
.4

8
0
.9

7
1

re
c
o
rd

1
1

0
.9

6
0
.9

8
0
.7

9
0
.9

8
1

1
1

1
1

0
.9

4
1

0

re
c
o
rd

1
2

1
0
.9

1
0
.1

2
1

0
.2

1
1

0
1

1
1

1

re
c
o
rd

1
3

1
0
.8

9
1

0
.8

1
1

1
0
.1

3
1

1
1

1

re
c
o
rd

1
4

1
1

1
1

1
1

1
1

1
1

0
.8

8
1

re
c
o
rd

1
5

1
1

1
1

0
.9

8
1

0
.9

8
0

0
.9

7
1

0
.7

5
1

re
c
o
rd

1
6

1
1

1
1

1
1

0
.9

7
0

1
1

1
1

re
c
o
rd

1
7

0
0
.9

7
1

0
1

1
1

1
1

1
0
.8

8
1

re
c
o
rd

1
8

1
1

1
0
.9

7
1

1
1

1
1

1
0
.8

0
.9

6

re
c
o
rd

1
9

1
0
.9

2
1

0
.9

8
1

1
1

0
0
.6

7
1

0
.9

7
1

re
c
o
rd

2
0

0
.8

4
0
.5

2
1

0
0
.9

8
0

0
.7

8
0

0
.9

2
1

0
.3

5
1

A
v
g
:

0
.9

1
5
0

0
.8

9
8
0

0
.9

8
6
5

0
.7

3
2
5

0
.9

4
8
0

0
.9

0
9
0

0
.9

3
6
5

0
.5

0
8
5

0
.9

2
8
0

0
.8

4
7
5

0
.8

1
3
5

0
.9

3
8
0

O
v
e
ra

ll
A

v
g
:

0
.8

6
3
4

T
ab

le
5.

5.
Id

en
ti

fi
ca

ti
on

re
su

lt
s

of
ex

p
er

im
en

t-
3

a
tv

c
in

e
5

c
n
b

c
e

c
n
n
tu

rk
ch

.
d

fo
x

ch
.

7
n
tv

sh
o
w

st
a
r

tr
t1

tv
8

re
c
o
rd

1
1

1
1

1
1

0
.9

6
1

1
1

0
.1

3
1

1

re
c
o
rd

2
1

1
1

0
.9

7
0
.9

8
1

1
1

1
0
.7

1
1

re
c
o
rd

3
0
.9

5
1

1
1

1
1

1
1

1
1

0
1

re
c
o
rd

4
1

1
1

1
1

1
1

0
.0

5
1

1
0
.8

2
1

re
c
o
rd

5
0
.9

5
1

1
1

1
1

1
0

1
0
.7

4
1

1

re
c
o
rd

6
0
.9

5
0
.9

8
1

1
1

1
0

0
1

1
0

1

re
c
o
rd

7
1

1
1

0
0

1
1

1
1

1
0

1

re
c
o
rd

8
0
.9

1
1

1
0

1
1

0
.9

5
0
.2

4
1

0
0

1

re
c
o
rd

9
1

1
1

0
.9

8
1

1
1

1
1

1
0

1

re
c
o
rd

1
0

1
0

1
1

1
1

1
0

0
0
.7

6
0

1

re
c
o
rd

1
1

1
1

0
.8

2
0
.9

8
1

1
1

1
0
.9

8
0
.9

8
1

0

re
c
o
rd

1
2

1
0
.9

3
1

0
.0

5
1

1
1

0
1

0
.9

1
1

1

re
c
o
rd

1
3

1
0
.8

9
1

0
.9

7
1

1
1

0
1

1
1

1

re
c
o
rd

1
4

1
1

1
1

1
0
.7

6
1

1
1

1
0

1

re
c
o
rd

1
5

1
1

1
1

1
1

0
.9

8
0

0
.9

7
1

0
1

re
c
o
rd

1
6

1
1

1
1

1
1

0
.6

5
0

1
1

0
1

re
c
o
rd

1
7

1
1

1
0

1
1

1
1

1
1

0
1

re
c
o
rd

1
8

1
1

1
0
.9

7
1

1
1

1
1

0
.8

9
0

0
.9

6

re
c
o
rd

1
9

1
1

1
1

1
1

1
0

0
.8

6
0
.9

8
0

1

re
c
o
rd

2
0

0
.8

8
0
.7

4
1

0
0
.9

8
0

0
.6

4
0

0
.6

4
1

0
1

A
v
g
:

0
.9

8
2
0

0
.9

2
7
0

0
.9

9
1
0

0
.7

4
6
0

0
.9

4
8
0

0
.9

3
6
0

0
.9

1
1
0

0
.4

6
4
5

0
.9

2
2
5

0
.8

5
4
5

0
.3

4
1
0

0
.9

4
8
0

O
v
e
ra

ll
A

v
g
:

0
.8

3
0
9

74

Figure 5.12. Similar TRT logos

ner, bigger structuring elements are used in the first iteration, and if no logo mask is

obtained, then smaller structuring elements are applied in the second iteration. With

this method we expect to solve the problems as shown in Figure 5.11. The structuring

elements that we used in the experiment are

• Big Structuring Elements:

– Closing: disk, r=5

– Opening: rectangle, w=5, h=3

• Small Structuring Elements:

– Closing: disk, r=3

– Opening: square, a=3

Logo detection results of Experiment-4 are given in Figure 5.13. With the adap-

tive structuring element we reach to a maximum detection rate of 99.17% (238/240)

with two missed videos. In Figure 5.14 comparision of logo detection results for all

experiments are shown. Note that since Experiment-3 has the same results with

Experiment-2, and Experiment-5 has the same results with Experiment-4 their results

are not included in the graph.

Logo identification results of Experiment-4 are given in Table 5.6. It is clear

that there is a big increase in the NTV results(from 46.45% to 83.65%). The problem

with NTV videos was previously depicted in Figure 5.11. With the use of adaptive

structuring element method this problem is fixed. In the first iteration big structuring

element does not obtain a logo mask for NTV logos but in the second iteration small

structuring element extracts the logo mask. The average accuracy rate for Experiment-

4 is 86.32%.

75

(a)

(b)

Figure 5.13. Logo detection results of experiment-4. a) Logo detection histogram,

b) Cumulative logo detection histogram.

T
ab

le
5.

6.
Id

en
ti

fi
ca

ti
on

re
su

lt
s

of
ex

p
er

im
en

t-
4

a
tv

c
in

e
5

c
n
b

c
e

c
n
n
tu

rk
ch

.
d

fo
x

ch
.

7
n
tv

sh
o
w

st
a
r

tr
t1

tv
8

re
c
o
rd

1
1

0
.9

8
1

1
0
.9

8
0
.8

9
1

1
1

0
.1

7
1

1

re
c
o
rd

2
0
.8

7
1

1
1

1
1

1
1

1
0
.7

0
.9

7
1

re
c
o
rd

3
0
.0

4
1

1
1

1
1

0
1

1
1

0
.2

3
1

re
c
o
rd

4
1

1
1

1
1

1
0
.7

4
0
.1

6
1

1
0
.8

2
1

re
c
o
rd

5
0
.9

1
1

1
1

1
1

1
0
.9

7
1

0
.9

1
1

1

re
c
o
rd

6
1

0
.9

8
1

1
1

1
0

1
1

1
0

1

re
c
o
rd

7
1

1
1

0
1

1
1

1
1

1
0

1

re
c
o
rd

8
1

1
1

1
1

1
0
.9

3
0
.6

8
1

0
.2

9
0

1

re
c
o
rd

9
1

1
1

1
1

1
1

0
.9

2
1

0
.9

8
0

1

re
c
o
rd

1
0

1
0
.6

7
1

1
1

1
1

1
0

0
.9

0
1

re
c
o
rd

1
1

0
.7

6
1

0
.8

2
0
.9

8
1

1
1

1
0
.9

8
1

1
0
.2

2

re
c
o
rd

1
2

1
0
.9

1
0
.9

7
1

1
1

1
0
.9

8
0
.8

9
1

1

re
c
o
rd

1
3

1
0
.9

1
0
.9

6
1

1
1

0
.9

8
0

0
1

1
1

re
c
o
rd

1
4

1
1

1
1

1
0
.5

6
0
.8

6
1

1
1

0
1

re
c
o
rd

1
5

1
1

1
0
.9

8
1

1
1

0
0
.9

7
1

0
1

re
c
o
rd

1
6

1
1

1
1

1
1

0
.6

5
1

1
1

0
1

re
c
o
rd

1
7

1
1

1
0

1
1

1
1

1
1

0
0
.9

5

re
c
o
rd

1
8

1
1

1
0
.9

7
1

1
1

1
1

0
.9

8
0

0
.8

9

re
c
o
rd

1
9

1
0
.9

7
1

1
1

1
1

1
0
.7

8
1

0
1

re
c
o
rd

2
0

0
.9

5
0
.4

3
1

0
0
.9

8
0

0
.7

9
1

0
.4

2
1

0
1

A
v
g
:

0
.9

2
6
5

0
.9

4
2
0

0
.9

8
9
0

0
.8

4
5
0

0
.9

9
8
0

0
.9

2
2
5

0
.8

4
7
5

0
.8

3
6
5

0
.8

5
6
5

0
.8

9
1
0

0
.3

5
1
0

0
.9

5
3
0

O
v
e
ra

ll
A

v
g
:

0
.8

6
3
2

77

Figure 5.14. Comparison of logo detection results

5.2.2.5. Experiment-5. In this experiment a corner verification method is added to the

system in order to decrease false SVM predictions. In this method, prediction of SVM

is checked with corner information for consistency. Since expected corner is known for

each channel (ground truth) we can easily check consistency of the SVM predictions.

For example, TRT1 logos always appear in the upper left corner of frame, if SVM

makes a TRT1 prediction for a logo candidate in one of the other three corners, that

TRT1 prediction will not be taken into consideration.

Since there is no change in logo detection system, logo detection results of Experiment-

5 is the same as Experiment-4. Logo identification results of Experiment-5 are shown

in Table 5.7. Note that as explained before, mask perturbation method leads to an

increment of TRTInt predictions in TRT1 videos. Since the logos are not totally dif-

ferent, we make an assumption that TRTInt predictions are also correct. The average

accuracy rate for Experiment-5 is 94.03%. Logo identification results of all experiments

are shown in Figure 5.15. Notice that the increase in the results of CNNTURK and

NTV videos with the use of adaptive structuring element (Experiment-4). And the

best performance is achieved in the Experiment-5 by the addition of corner verification

to the system.

So far we do not apply any cumulative SVM probability threshold to the identifi-

T
ab

le
5.

7.
Id

en
ti

fi
ca

ti
on

re
su

lt
s

of
ex

p
er

im
en

t-
5

a
tv

c
in

e
5

c
n
b

c
e

c
n
n
tu

rk
ch

.
d

fo
x

ch
.

7
n
tv

sh
o
w

st
a
r

tr
t1

tv
8

re
c
o
rd

1
1

0
.9

8
1

0
.9

5
1

0
.9

7
1

1
1

0
.3

6
1

1

re
c
o
rd

2
0
.8

2
1

1
1

1
1

1
1

1
0
.7

3
1

1

re
c
o
rd

3
1

1
1

1
1

1
0
.9

8
1

1
1

1
1

re
c
o
rd

4
0
.9

5
1

1
1

1
0
.9

1
1

0
.2

9
1

1
1

1

re
c
o
rd

5
0
.9

5
1

1
1

1
1

1
0
.9

7
1

1
1

1

re
c
o
rd

6
1

1
1

0
.9

8
1

1
0

1
1

1
0
.8

6
1

re
c
o
rd

7
1

1
1

0
.0

3
1

1
1

1
1

1
0
.9

3
1

re
c
o
rd

8
0
.9

1
1

1
1

1
1

0
.9

3
1

1
0
.3

6
1

1

re
c
o
rd

9
1

1
1

1
1

1
1

0
.9

6
1

1
1

1

re
c
o
rd

1
0

1
1

1
1

1
1

1
1

0
0
.9

7
1

1

re
c
o
rd

1
1

1
1

0
.6

1
1

1
1

1
1

0
.9

8
1

1
0
.6

4

re
c
o
rd

1
2

1
0
.9

4
1

1
1

1
1

0
.8

6
1

0
.8

1
1

re
c
o
rd

1
3

1
0
.9

5
0
.9

6
1

1
1

1
0
.3

5
1

1
1

1

re
c
o
rd

1
4

1
1

1
1

1
0
.8

9
1

1
1

1
0
.9

1

re
c
o
rd

1
5

1
1

1
1

0
.9

6
1

1
0

0
.9

1
0
.9

5
1

re
c
o
rd

1
6

1
1

1
1

1
1

0
.6

5
1

1
1

1
1

re
c
o
rd

1
7

1
1

1
0

1
1

1
1

1
1

1
0
.9

2

re
c
o
rd

1
8

1
1

1
0
.9

5
1

1
1

1
1

0
.9

8
0
.6

7
0
.8

4

re
c
o
rd

1
9

1
1

1
0
.9

3
1

1
1

1
0
.8

7
1

0
.9

5
1

re
c
o
rd

2
0

1
0
.7

3
1

0
1

0
0
.7

7
1

0
.9

3
1

1
1

A
v
g
:

0
.9

8
1
5

0
.9

8
0
0

0
.9

7
8
5

0
.8

4
2
0

0
.9

9
8
0

0
.9

3
8
5

0
.9

1
6
5

0
.8

7
1
5

0
.9

3
4
0

0
.9

1
0
0

0
.9

6
3
0

0
.9

7
0
0

O
v
e
ra

ll
A

v
g
:

0
.9

4
0
3

79

Figure 5.15. Comparison of logo identification results

cation results. As explained previously in section 4.1 Decision System, SVM probability

values of W frames are added up and a cumulative SVM probability value is obtained.

The one that has the highest cumulative SVM probability value for n consecutive times

declared as the prediction of the system. In order to decrease false predictions we apply

a cumulative SVM probability threshold, that is, logo identification system makes a

prediction only if cumulative SVM probability is higher than a certain threshold value.

This thresholding helps to suppress false predictions that have low cumulative SVM

probability values. The cumulative SVM probability histograms for each TV channel

are given in Figure 5.16. TM stands for True Match, and FM stands for False Match.

In the figure, the low cumulative SVM probability values for TRT1 videos can be recog-

nized easily. The reason of the low cumulative SVM probability values is the existence

of many similar TRT logos in the data set as shown in Figure 5.12. Thus TRT logos

shares SVM probabilities and each one gets a low probability value from SVM. Another

interesting plot belongs to TV8, that is, cumulative SVM probability values for TV8 is

very high, and most of the predictions has cumulative SVM probabilities higher than

0.8 (which is not included in the plot).

Figure 5.17 shows cumulative probability values for TM and FM results of all

TV channels. With a proper cumulative SVM probability threshold value we aim to

increase TM rate by reducing number of false matches. The average accuracy rates for

different cumulative SVM probability threshold values are shown in Figure 5.18. The

80

Figure 5.16. Cumulative SVM probability histograms for each TV channel

highest accuracy value (96.03%) is obtained by using a cumulative SVM probability

value of 0.30. Identification results after cumulative SVM probability thresholding with

the threshold value of 0.30 is shown in Table 5.8. Logo identification results of before

and after cumulative SVM probability thresholding are given in Figure 5.19.

In Figure 5.20, some video examples when our algorithm fails are shown. Figure

5.20a shows a video example that has almost no motion (two scenes in the whole

video) and has very complex background (forest). On the complex background TV

logo edges are not extracted as expected and due to the static behavior of the video,

81

(a)

(b)
Figure 5.17. Cumulative SVM probability histograms for all TV channels

a)Histogram of cumulative SVM probability for TM and FM results, b) Cumulative

histogram of cumulative SVM probability for TM and FM results.

82

Figure 5.18. Avg. accuracy rates for different cumulative SVM prob. thresholds

Figure 5.19. Results of experiment-5. Before and after cumulative SVM prob.

thresholding

T
ab

le
5.

8.
Id

en
ti

fi
ca

ti
on

re
su

lt
s

of
ex

p
er

im
en

t-
5

af
te

r
cu

m
u
la

ti
ve

S
V

M
p
ro

b
ab

il
it

y
th

re
sh

ol
d
in

g

a
tv

c
in

e
5

c
n
b

c
e

c
n

n
tu

rk
ch

.
d

fo
x

ch
.

7
n
tv

sh
o
w

st
a
r

tr
t1

tv
8

re
c
o
rd

1
1

0
.9

8
1

1
1

1
1

1
1

0
.3

7
1

1

re
c
o
rd

2
1

1
1

1
1

1
1

1
1

1
1

1

re
c
o
rd

3
1

1
1

1
1

1
1

1
1

1
1

1

re
c
o
rd

4
0
.9

5
1

1
1

1
1

1
0
.3

6
1

1
1

1

re
c
o
rd

5
1

1
1

1
1

1
1

1
1

1
1

1

re
c
o
rd

6
1

1
1

1
1

1
0

1
1

1
0
.9

4
1

re
c
o
rd

7
1

1
1

0
1

1
1

1
1

1
1

1

re
c
o
rd

8
0
.9

7
1

1
1

1
1

0
.9

3
1

1
1

1
1

re
c
o
rd

9
1

1
1

1
1

1
1

1
1

1
1

1

re
c
o
rd

1
0

1
1

1
1

1
1

1
1

0
0
.9

7
1

1

re
c
o
rd

1
1

1
1

1
1

1
1

1
1

0
.9

8
1

1
1

re
c
o
rd

1
2

1
1

1
1

1
1

1
1

1
0
.8

1
1

re
c
o
rd

1
3

1
1

1
1

1
1

1
1

1
1

1
1

re
c
o
rd

1
4

1
1

1
1

1
1

1
1

1
1

0
.8

7
1

re
c
o
rd

1
5

1
1

1
1

0
.9

6
1

1
0

1
1

1
1

re
c
o
rd

1
6

1
1

1
1

1
1

0
.6

5
1

1
1

1
1

re
c
o
rd

1
7

1
1

1
0

1
1

1
1

1
1

1
1

re
c
o
rd

1
8

1
1

1
1

1
1

1
1

1
0
.9

8
1

0
.8

4

re
c
o
rd

1
9

1
1

1
0
.9

3
1

1
1

1
1

1
1

1

re
c
o
rd

2
0

1
1

1
0

1
0

1
1

1
1

1
1

A
v
g
:

0
.9

9
6
0

0
.9

9
9
0

1
.0

0
0
.8

4
6
5

0
.9

9
8
0

0
.9

5
0
0

0
.9

2
9
0

0
.9

1
8
0

0
.9

4
9
0

0
.9

5
6
0

0
.9

9
0
5

0
.9

9
2
0

O
v
e
ra

ll
A

v
g
:

0
.9

6
0
3

84

(a) Cnnturk17 (b) Fox20 (c) Show10

(d) Details of Cnnturk17

(e) Details of Fox20

(f) Details of Show10

Figure 5.20. Images a) to c) show video examples when our algorithm fails. Images

d) to f) show output of each step in algorithm for each video example(Images left to

right: Corner region of frame, after thresholding, after morphological operations).

time averaged edges does not change by time. Figure 5.20b shows a video example

where a text band is inserted near to the TV logo in the video. The edges of text band

are connected to the edges of logo and ideal logo mask is not obtained. Figure 5.20c

shows another example where some static texts are inserted close to the TV logo in the

video. Consequently, logo mask is not obtained accurately due to those static texts.

85

6. CONCLUSIONS

In this study, we have developed a fully automatic TV logo identification system.

In the first part of the work, we have concentrated on detection of logo images in

a sequence of frames. In the second part, logo classification is handled. We have

used SVM in multiclass classification and compared performances of some well known

subspace analysis techniques such as PCA, NMF, ICA, and DCT to find the best feature

to describe TV logos. GD method is used as preprocessing step before applying the

subspace analysis methods to obtain a fixed size representation of logo images.

Most of the previous works in the literature were on the logo detection, in this

work we add logo classification part on the top of logo detection part and combine them

to obtain a logo identification system. In the logo detection, we use time averaged edges

method with some important additions such as hysteresis thresholding and adaptive

structuring element method. In the logo identification system, mask transition method

is used by obtaining new logo masks from current logo mask in order to increase SVM

scores. And to increase robustness, a decision system which uses time windowing

mechanism is designed.

Two different categories of experiments are performed in this work. First exper-

iments are performed to find the best feature describing TV logos. For this purpose,

we have constructed a logo DB of 3040 images from 152 different Turkish and Euro-

pean TV channels. In these experiments, ICA2 outperforms other features with an

accuracy rate of 99.21% (754/760). Second group of experiments are conducted to test

performance of the logo detection and identification system. We have collected 240

one minute duration broadcast videos from most popular 12 TV channels of Turkey.

And the proposed system achieves to 99.17% (238/240) logo detection rate and 96.03%

average accuracy rate for the logo identification.

86

6.1. Future Work

We have used time averaged edges to detect logos in a video sequence. In the case

of no motion and complex background in the sequence, a secondary method can be

applied to detect logos. For example “logoness” features can be used; i.e. there must

be commonality of features that separate all logos from any non-logo program video.

An ANN or SVM can be trained with two classes, i.e. positive and negative examples,

and corner regions can be scanned to detect regions that have logoness properties.

We have tested our system on a variety of broadcast videos and achieved very

encouraging results. In order to cross-validate the system performance, it can be tested

on a totally different set of broadcast videos.

In the proposed logo detection algorithm, frames are processed sequentially from

start to end. As an alternative method, logo detection can be performed by starting

logo search process at arbitrary points in the video and wrapping around the sequences.

Therefore, logo detection process can be accomplished in a less amount of time.

87

APPENDIX A: LIST OF TV CHANNEL LOGOS

Table A.1: TV channel logos in logo DB

Name Type Logo # Name Type Logo

1 24 anim. 2 24cz opaq.

3 24n transp. 4 3sat opaq.

5 4+1live transp. 6 4live transp.

7 5telec. transp. 8 akilli anim.

9 ans opaq. 10 art opaq.

11 ata opaq. 12 atv opaq.

13 atvcan. opaq. 14 ayna opaq.

15 azadazer. opaq. 16 azeritv opaq.

17 baskent opaq. 18 bengutu. anim.

19 berat opaq. 20 bjk opaq.

21 brt opaq. 22 buket opaq.

23 business opaq. 24 bw opaq.

25 cay opaq. 26 cem opaq.

27 ch. 1 transp. 28 ch. 5 opaq.

29 ch. 67 opaq. 30 ch. 6 opaq.

31 ch. 7 opaq. 32 ch. a opaq.

88

Table A.1 – Continued

Name Type Logo # Name Type Logo

33 ch. av. opaq. 34 ch. b opaq.

35 ch. d opaq. 36 ch. t opaq.

37 cine5 transp. 38 cnbce opaq.

39 cnnturk opaq. 40 cnnturkc. opaq.

41 ct24 transp. 42 ct2 opaq.

43 ctsport transp. 44 dingi opaq.

45 dogu opaq. 46 dost opaq.

47 dr1 transp. 48 dr2 transp.

49 dshopp. opaq. 50 dsmart opaq.

51 duzgun opaq. 52 e2 opaq.

53 ekin opaq. 54 emlak opaq.

55 etv opaq. 56 euroStar opaq.

57 eurod opaq. 58 fashion opaq.

59 fb opaq. 60 flash opaq.

61 fox opaq. 62 foxcan. opaq.

63 foxturk opaq. 64 foxyeni opaq.

65 france2 transp. 66 gala opaq.

67 gantepo. opaq. 68 genc opaq.

89

Table A.1 – Continued

Name Type Logo # Name Type Logo

69 gercek opaq. 70 gs opaq.

71 haber7 opaq. 72 habert. anim.

73 halk opaq. 74 hatay opaq.

75 hayat opaq. 76 hilal opaq.

77 iplay opaq. 78 ist opaq.

79 itv2 transp. 80 itv3 transp.

81 kackar opaq. 82 kadirga opaq.

83 kanalt. opaq. 84 karaden. opaq.

85 kontv opaq. 86 kral opaq.

87 kralkar. opaq. 88 manolya opaq.

89 mavikar. opaq. 90 mehtap opaq.

91 meltem opaq. 92 mesaj opaq.

93 mpl opaq. 94 mtv transp.

95 mzefirst opaq. 96 nova opaq.

97 ntv opaq. 98 n. one transp.

99 ocko opaq. 100 odeon opaq.

101 olay opaq. 102 ordu opaq.

103 orf1 transp. 104 ozlem opaq.

105 powert. opaq. 106 quizcall opaq.

107 rtl transp. 108 rumeli opaq.

90

Table A.1 – Continued

Name Type Logo # Name Type Logo

109 samany. opaq. 110 ses opaq.

111 shopping opaq. 112 show opaq.

113 showroom opaq. 114 skytrav. opaq.

115 skyturk opaq. 116 smart opaq.

117 star opaq. 118 starcan. opaq.

119 stop opaq. 120 su opaq.

121 susport opaq. 122 t5estr. opaq.

123 t5sport opaq. 124 ta3 opaq.

125 tatlises opaq. 126 tay opaq.

127 tca opaq. 128 teknolo. opaq.

129 tempo opaq. 130 tgrtHab. opaq.

131 top opaq. 132 trt1 opaq.

133 trt1can. opaq. 134 trt2 opaq.

135 trt3 opaq. 136 trtint opaq.

137 trtturk opaq. 138 turkce opaq.

139 turkmen. opaq. 140 turkshop opaq.

141 turkshow opaq. 142 tv2 transp.

143 tv58 opaq. 144 tv8 opaq.

91

Table A.1 – Continued

Name Type Logo # Name Type Logo

145 tvnet opaq. 146 tw1 opaq.

147 uktvhis. transp. 148 ulusal opaq.

149 ur transp. 150 viva opaq.

151 wfashion opaq. 152 yaban opaq.

153 yenicag opaq. 154 yildiz opaq.

155 yleteema transp. 156 yol opaq.

157 yumurcak opaq. 158 ztv opaq.

92

REFERENCES

1. Albiol, A., M. J. C. Fulla, A. Albiol, and L. Torres, “Detection of TV Commercials”,

Proc. IEEE ICASSP, Montreal, Canada, May 2004.

2. Yan, W.Q., J. Wang, and M.S. Kankanhalli, “Automatic video logo detection and

removal”, Multimedia Systems 10(5): pp. 379-391, 2005.

3. Meisinger, K., T. Troeger, M. Zeller, and A. Kaup, “Automatic TV Logo Removal

Using Statistical Based Logo Detection and Frequency Selective Inpainting”, Proc.

European Signal Processing Conference, September 2005.

4. Santos, A.R. and H.Y. Kim, “Real-Time Opaque and Semi-Transparent TV Logos

Detection”, Proc. 5th Int. Information and Telecommunication Technologies Sym-

posium (I2TS), Cuiaba, 2006.

5. Cózar, J.R., N. Guil, J.M. Gonzlez-Linares, and E.L. Zapata, “Video Cataloging

Based On Robust Logotype Detection”, IEEE International Conference on Image

Processing (ICIP), 2006.

6. Ekin, A. and R. Braspenning, “Spatial detection of tv channel logos as outliers

from the content”, Proceedings of SPIE – Volume 6077 Visual Communications and

Image Processing, 2006.

7. Duffner, S. and C. Garca, “A neural scheme for robust detection of transparent

logos in TV programs”, Lecture Notes in Computer Science – II vol. 4132, pp.

14–23, Springer, Berlin 2006.

8. Wang, J., L. Duan, Z. Li, J. Liu, H. Lu, and J. Jin, “A Robust Method for TV

Logo Tracking in Video Streams”, icme, pp.1041–1044, 2006 IEEE International

Conference on Multimedia and Expo, 2006.

93

9. Wang, J., Q. Liu, L. Duan, H. Lu and C. Xu, “Automatic TV Logo Detection,

Tracking and Removal in Broadcast Video”, MMM 2007, LNCS 4352, Part II, pp.63–

72, 2007.

10. Günsel, B., A. Ferman, and A.M. Tekalp, “Temporal video segmentation using un-

supervised clustering and semantic object tracking”, Journal of Electronic Imaging,

Volume 7, pp.592–604, 1998.

11. Millerson, G., The technique of television production, 12th Ed., NewYork, March

1990.

12. Canny, J., “A Computational Approach to Edge Detection,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, Vol. PAMI-8, No. 6, pp. 679–698,

1986.

13. “Principal Components Analysis on Wikipedia”,

http://en.wikipedia.org/wiki/Principal components analysis, 2008.

14. Pearson, K., “On Lines and Planes of Closest Fit to Systems of Points in Space”,

Philosophical Magazine 2 (6): pp. 559-572, 1901.

15. Shlens, J., “A Tutorial on Principal Component Analysis”,

http://www.snl.salk.edu/˜shlens/pub/notes/pca.pdf, 2005.

16. Smith, L. I., “A Tutorial on Principal Component Analysis”,

http://kybele.psych.cornell.edu/˜edelman/Psych-465-Spring-2003/PCA-

tutorial.pdf, 2002.

17. Lee, D.D. and Seung, H., “Learning the parts of objects by non-negative matrix

factorization”, Nature, 401, pp. 788–791, 1999.

18. Lee, D.D. and Seung, H., “Algorithms for Non-negative Matrix Factorization”,

Advances in Neural Information Processing Systems 13: Proceedings of the 2000

Conference: pp. 556-562, MIT Press, 2001.

94

19. Okun, O. and Priisalu H., “Nonnegative matrix factorization for pattern recogni-

tion”, Proceedings of the 5th IASTED International Conference on Visualization,

Imaging and Image Processing, pp. 546-551, Benidorm, Spain, 7-9 September 2005.

20. “The FastICA Package for Matlab”, http://www.cis.hut.fi/projects/ica/fastica.

21. Bartlett, M. S., Lades, H. M., and Sejnowski, T. J., “Independent component

representations for face recognition,” in Proc. SPIE Symp. Electon. Imaging: Science

Technology - Human Vision and Electronic Imaging III, vol. 3299, pp. 528-539., San

Jose, CA, 1998.

22. Bartlett,M. S., Movellan, J. R., and Sejnowski, T. J., “Face Recognition by Inde-

pendent Component Analysis”, IEEE Transaction on Neural Networks, Vol 13, pp.

1450-1464, 2002.

23. Ekenel, H.K. and Sankur, B., “Feature selection in the independent component

subspace for face recognition”, Pattern Recognition Letters(25), No. 12, pp. 1377-

1388, September 2004.

24. Hyvärinen, A. and Oja E., “Independent Component Analysis. A Tutorial”,

http://www.cis.hut.fi/projects/ica, 1999.

25. Hyvärinen, A. and Oja, E., “Independent component analysis: Algorithms and

applications”, Neural Networks 13 (45), 411-430, 2000.

26. “Independent Component Analysis on Wikipedia”,

http://en.wikipedia.org/wiki/Independent component analysis, 2008.

27. Khayam, S. A., “The Discrete Cosine Transform (DCT): Theory and Application”,

seminar 1 – ECE 802-602: Information Theory & Coding, March 2003.

28. “Discrete Cosine Transform on Wikipedia”,

http://en.wikipedia.org/wiki/Discrete cosine transform, 2008.

95

29. Burges, C. J. C., “A Tutorial On Support Vector Machines for Pattern Recogni-

tion”, Data Mining and Knowledge Discovery 2, 121–167, 1998.

30. Cortes, C. and Vapnik, V., “Support-Vector Networks”, Machine Learning, 20,

http://www.springerlink.com/content/k238jx04hm87j80g, 1995.

31. Boser, B. E., Guyon, I. M., and Vapnik.,V. N. “A training algorithm for optimal

margin classifiers”, In D. Haussler, editor, 5th Annual ACM Workshop on COLT,

pages 144-152, Pittsburgh, PA, ACM Press, 1992.

32. “Support Vector Machine on Wikipedia”,

http://en.wikipedia.org/wiki/Support vector machine, 2008.

33. Hsu, C. W. and Lin, C. J., “A Comparison of methods for multiclass support vector

machines”, IEEE Trans. on Neural Networks, 2002.

34. Ding, C. H. Q. and Dubchak, I., “Multi-class protein fold recognition using support

vector machines and neural networks”, Bioinformatics 17, pp 349–358, 2001.

35. Chang, C. C. and Lin, C. J., “LIBSVM: a library for support vector machines”,

http://www.csie.ntu.edu.tw/ cjlin/libsvm, 2001.

36. Thangali, A., “A Directshow based AVI read interface for Matlab”, http://cs-

people.bu.edu/tvashwin/dx avi/index.html.

