
A SIMULATION MODEL FOR BUS BASED SHARED MEMORY

MULTIPROCESSOR SYSTEMS

by

ilker BEKMEZCi

B.S. in CmpE, Bogazi<;i University, 1994

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfilment of

the requirements for the degree of

Master of Science

In

Computer Engineering

Bogazi<;i University

1998

11

ACKNOWLEDGMENTS

I would like to thank to all who have helped during my study. I especially would like

to thank my thesis supervisor Prof. Dr. Oguz TOSUN for his help and guidance in this

study. In addition to this, I want to thank Asst. Prof. Can OZTURAN for his carefull

review of the thesis and valuable comments. I acknowledge the academic permission

given to me by the Turkish Air Force.

This study is dedicated to my wife and parents for their encouragement throughout the

study.

111

ABSTRACT

Simulation modelling is one of the most common methods to predict the performance

of multiprocessor computer systems. In this study, a new simulation model is developed

and a simulator based on this model is implemented to predict the performance of the bus

based shared memory multiprocessor systems.

The main inputs of the simulator are representation of the architecture and workload

parameters. There are several proposed algorithms to process these inputs, including path

finding, mailbox location, and memory units clustering algorithms. A number of protocols

are also devised and implemented in the simulator.

The verification and validation studies are very important for a simulator. The

verification study is realised by the help of several analytical models, which are available

in the literature. The validation is realised by the performance results of the TOMP

prototype.

In the last part of the thesis, several sample runs are provided to analyse and compare

certain architectures under various workload conditions.

IV

6ZET

Benze;;im modellemesi, 90k i;;lemcili bilgisayar sistemlerinin ba;;anm

modellenmesinde kullamlan en yaygm metodlardan biridir. Bu 9ah;;mada, yol tabanh

bellek payla;;lmh 90k i;;lemcili sistemlerin ba;;anm ol9umii amaclyla yeni bir benze;;im

modeli geli;;tirilmi;; ve bu modele dayah bir simUlator gergekle;;tirilmi;;tir.

Simiilatoriin ana girdileri, bilgisayar sisteminin mimarisi ve i;;yUku parametreleridir.

SimUlatOrde, bu girdileri i;;leyen bir90k algoritma vardu. Ana algoritmalar, yol bulma,

posta kutusu yeri ve haflza linitelerini slmflama algoritmalarldlr. Bunlara ek olarak,

simUlatorde bir90k protokol mevcuttur.

Gegerlilik ve dogrulama 9ah;;malan da, benze;;im modeli geli;;tirmede 90k onemli

9ah;;malardlr. Benze;;imin dogrulanmasl, literaturde bulunan bir90k analitik model ile

gergekle;;tirilmi;;tir. Gegerlilik ise TOMP prototipinin performans sonu91an ile

gergekle;;tirilmi;;tir.

~ah;;mamn sonunda, bir90k omek bulunmaktadu. Bazl mimarilerin farkh i;;yuku

ko;;ullanndaki performans degerleri sunulmu;; ve kar;;lla;;tmlml;;tu.

v

TABLE OF CONTENTS

1. INTRODUCTION ... 1

1.1. ORGANISATION OF THE THESIS .. 2

2. PARALLEL PROCESSING COMPUTER SySTEMS ... 3

2.1 THE NEXT REVOLUTION IN COMPUTING ... 3

2.1.1 Modem Prehistory .. 4

2.1.2 The Age of Dinosaurs ... '" ... 4

2.1.3 The Second Wave ... 4

2.1.4 The Third Wave .. 5

2.1.5. The Parallel Wave .. 6

2.2. FLYNN'S HARDWARE TAXONOMy .. 6

2.2.1 SISD .. 7

2.2.2 SIMD .. 7

2.2.3 MIMD ... 7

2.3 . PARALLEL PROCESSING ApPLICATIONS ... 8

3. PERFORMANCE EVALUATION OF MULTIPROCESSOR SYSTEM AND

SIMULATION MODELS ... 10

3.1. PERFORMANCE MEASUREMENT TECHNIQUES .. 11

3.2. PERFORMANCE EVALUATION MODELS .. 12

3.2.I.System Description ... 13

3.2.2. System Abstraction and Model Description .. 14

3.2.3. Data Collection .. 16

3.2.4. The Selection of Method of Analysis .. 16

3.2.4.1. Analytical Model .. 17

3.2.4.2. Simulation Model ... 18

3.2.5 Simulation Program Development.. .. 19

3.2.6. Verification .. 20

3.2.7. Validation ... 21

Vll

7.1. THE EFFECT OF ARCHITECTURE AND TASK GRAPH ... 65

7.2. PROTOCOLS " ... 66

7.3. THE PLACE OF TASK SYNCHRONIZATION MECHANISM .. 67

7.4. DATA DISTRIBUTION AND PROBABILITY DISTRIBUTION OF THE MEMORY USAGE 67

8. CONCLUSION ... co .. 70

REFERENCES .. " 71

Vlll

LIST OF FIGURES

Figure 3.1. Multiprocessor System performance evaluation techniques : 10

Figure 3.2. The modelling and analysis process .. 12

Figure 4.1. The block diagram of the simulator. ... 23

Figure 4.2. Classification of supervisor structures .. 26

Figure 4.3. The supervisor structure of the simulator. ... 27

Figure 4.4. A processing unit in a shared memory system .. 28

Figure 4.5. The states of a parallel program .. 30

Figure 4.6. An example of a task graph with node weights equal to 1 30

Figure 4.7. An example oftask. , ... 32

Figure 4.8. An example of a task structure. MP or RM is added .. 35

Figure 4.9. MP is at the end and RM is at the beginning ofthe task. 35

Figure 4.10. An example. MP and RM is in the task. .. 36

Figure 4.11. A complete example of tasks with two links .. 36

Figure 4.12. AllPaths procedure .. 38

Figure 4.13. LoadOnBus function ... 39

Figure 4.14. LoadOnPath function .. 39

Figure 4.15. Path Finding algorithm .. 40

Figure 4.16. A part of a multiprocessor system ... 40

Figure 4.17. Distance algorithm .. 41

Figure 4.18. Mailbox finding algorithm .. 42

Figure 4.19. An example of hierarchical bus based multiprocessor system44

Figure 4.20. Clustering algorithm .. 45

IX

Figure 4.21. An example of hierarchical bus based multiprocessor system. n 45

Figure 4.22. State transition diagram oftasks .. 49

Figure 4.23. Maximum Distance ProtocoL ... 51

Figure 4.24. Maximum Bus Efficiency Protocol. .. 52

Figure 4.25. Important Message ProtocoL .. 52

Figure 5.1. An example of single bus multiprocessor with external common memory 55

Figure 5.2. Processor utilization under different system loads .. 56

Figure 5.3. An example of multiple bus multiprocessor. ... 57

Figure 5.4. Simulation and analytical results ... 58

Figure 5.5. An example of single bus multiprocessor with distributed memory 59

Figure 5.6. Simulation and analytical results of single bus ... 59

Figure 6.1. Comparison of TOMP architecture and simulation model results 62

Figure 7.1. Architectures used in the example analysis ... 63

Figure 7.2. Task graphs used in the example work. .. 64

Figure 7.3. The performance data for Architecture 1 under TG 1 and TG2 65

Figure 7.4. The performance data for Architecture 2 under TG 1 and TG2 66

Figure 7.5.The performance data under the protocols of FIFO and Random 67

Figure 7.6.The performance data under different task synchronisation mechanism 68

Figure 7.7.The performance data under different probability distributions 69

x

LIST OF SYMBOLS

G : directed acyclic weighted task graph

V : set of task nodes

E : set of communication edges

C : set of communication edges costs

P(Ci) : probability of being chosen of Ci

T : set of node computation costs

m : number of memory module in a cluster

nj : jth node in the task graph

Ci : ith cluster set

PI :: conditional probability of being chosen of Ci

Sij : communication cost along ni to nj

y : number of nodes in a task graph

E : number of edges in a task graph

A : average completion time of CPU sub-tasks

!l : average completion time ofMEM sub-tasks

p : system load

1

1. INTRODUCTION

Recent progress in VLSI technology has allowed the production of single-chip

computing units with processing power comparable to that of mainframes of ten to twenty

years ago. A consequence of this innovation has been the possibility of designing and

implementing distributed computing systems inspired by the physical distribution and by

the intrinsic parallelism of many applications.

Different goals often suggest the development of distributed computing systems with

quite different structural characteristic. Multiprocessor systems are a special class of

distributed computing systems that appear to represent the most promising way of

obtaining the high-performance computers needed in many application fields, such as

artificial intelligence, CAD, expert systems, and large-scale system simulation.

Characteristic such as fault tolerance, flexibility, functional upgrading and cost

effectiveness are other motivations that have spurred the realisation of multiprocessor

systems. To achieve these goals, a variety of multiprocessor architectures with different

design alternatives have been proposed, implemented, and made commercially available,

but their relative merits are not yet fully understood. It is thus very important to develop

methodologies and tools for the predictions of the performance of multiprocessor

architectures, so that system designer can verify how well different alternatives suit certain

given performance specifications.

There are several performance evaluation techniques for multiprocessor systems, and

one of them is simulation. It is certain that developing a simulation model is a costly

technique and it is harder than any alternative modelling strategies. Moreover, multiple

runs are required to obtain accurate results and confidence intervals. Although simulation

model has some disadvantages, because of its flexibility and representing power, many

researches prefer simulation.

In this thesis, simulation model is used to evaluate the performance of "Bus Based

Shared Memory Multiprocessor System". By the help of this tool, performance of many

bus based systems can be investigated under different conditions.

2

1.1. Organisation of the Thesis

In the second chapter, the basic concepts of parallel processing are discussed. It covers

classification of architectures and different applications of parallel systems. Chapter 3 is

devoted to performance evaluation techniques. Especially, simulation models are explained

and steps of developing a simulation model are presented. In Chapter 4, the simulation

model developed in this thesis is described. Building blocks of simulation model, workload

characterisation and parameters, different algorithms and protocols in this simulation

model are in the scope of this chapter. Another important issue in simulation model is

verification and it is provided in Chapter 5, comparing analytic models and simulation

model for different architectures. Chapter 6 covers the validation of the model. TOMP

prototype system is used to show the accuracy of the results of this model. In Chapter 7,

multiple simulations are done varying the architecture and workload parameters and the

results are compared. The last chapter, Chapter 8, states the conclusion of the thesis.

3

2. PARALLEL PROCESSING COMPUTER SYSTEMS

In the first computing wave, scientific and business computers were more or less

identical-big and slow. This was the "prehistory of computing"; here computing had to be

employed at any cost. And, even though earlier electronic computers were not very fast,

they achieved speeds that easily exceeded human computers.

The second and third waves brought on mainframes, minis, and finally macros. This

diversity of computing caused a number of niches to develop, which broadened and

deepened the computer industry. Scientific and business computing went their separate

ways, and there seemed to be a computer in just about everyone's price range.

But the original power users who pioneered computing continued to emphasize speed

above all else. Single-processor supercomputers achieved unheard of speeds beyond 100

million instructions per second, and pushed hardware technology to the physical limits of

chip manufacturing. But soon this trend will come to an end, because there are physical

and architectural bounds, which limit the computational power that can be achieved with a

single-processor system.

Nowadays, it is the time of parallel wave of computing, where performance is

enhanced by using multiple processors. In this chapter, first, the history of parallel

computing will be introduced. And then, taxonomy to classify different architecture will be

explained.

2.1 The Next Revolution in Computing

Modem society is particularly susceptible to changes in computer technology. The

insurance and banking industries were forever changed by the mainframe data processing

computer; science and engineering will never be the same after the impact of

minicomputers and workstations and our personal lives have been emiched by personal

computers. Computers affect everyone.

To determine the next step in computing, it is a good idea to look to the past, because,

like most progress in technology, computing evolves through time in an orderly fashion.

4

2.1.1 Modern Prehistory

The Alwac 3E computer was typical of the state of computing in 1963. It could store

32,000 numbers, each with 32 bits, and read punched paper cape at unheard of 100 Frames

per second. The Alwac was less powerful than a 1980 personal computer, but it was

operated by one person at a time much like a personal computer.

Early computers such as the Alwac had one major disadvantage compared which

personal computers: they were expensive. Because of high hardware costs, the first

generation of computers had to be shared by a lot of users to justify their cost. It would

take 20 years before simple and easy-to-use machines were to reappear as inexpensive

alternatives to centralized computing.

2.1.2 The Age of Dinosaurs

By 1965 the Alwac "personal computer" and its contemporaries had been pushed aside

by the radically new IBM Systeml360 mainframe.

The IBM Systeml360 was the right computer in the right place at the right time. It was

in harmony with the instincts of most programmers of the mid-1960s and early 1970s. It

had a real operating system, multiple programming languages, and incredibly large disks

capable of 10 megabytes of storage. This was the first wave of modem computing, and the

world quickly jumped on the mainframe bandwagon.

The Systeml360 filled a room with boxes and people to run them. Its transistor circuits

were reasonably fast. Power users could order magnetic core memories which up to one

megabyte of 32-bit words. This machine was large enough to support many- programs in

memory at the same time, even though the central processing unit had to switch from

program to program.

2.1.3 The Second Wave

The mainframes of the first wave were firmly established by the late 1960s when

advances in semiconductor technology made the solid state memory and integrated circuit

5

feasible. These advances in hardware technology spawned the minicomputer era. They

were small, fast, and inexpensive enough to distribute throughout the company.

Minicomputers made by DEC, Prime, and Data General led the way in defining a new kind

of computing: departmental.

By the 1970s it was clear that there existed two kinds of commercial or business

computing:

• centralized data processing mainframes, and

• decentralized transaction processing minicomputers.

The minis expanded the usefulness of computing into engineering, scientific and non

data processing applications.

2.1.4 The Third Wave

When personal computers were introduced in 1977 by Altair, Processor Technology,

North Star, Tandy, Commodore, Apple and many others, they were largely ignored. But

then the original "personal " computing idea of the 1960s was suddenly catapulted into

orbit. By 1981, personal computing was becoming so pervasive that IBM entered the

"billion dollar baby" market.

Personal computers enhanced the productivity of individuals, and in turn departments.

Because big companies are made up of individuals, the productivity improvement of

individuals using stand-alone computers was too compelling to ignore. PCs soon became

pervaSIve.

Networks of powerful personal computers and workstations began to replace

mainframes and minis by 1990. The power of the most capable "big" machine could be

bought in a desktop model for one-tenth the cost. But, these individual desktop computers

were soon to be connected into larger complexes of computing by networking.

One of the clear trends in computing is the gradual substitution of networks in place of

central computers. These networks connect inexpensive, powerful desktop machines to one

another to form unequaled computing power. Network is an early form of parallel

computing.

6

Clearly, there is a limit to the power of a single computer. Even networking has

limitations. Within the decade of the 1990s, the maximum switching speed of silicon will

be reached and the rapid progress in achieving greater computing speed will level off [1].

2.1.5. The Parallel Wave

What is the next wave of computing? How can machines continue to operate faster

and faster in the face of fundamental limits to the hardware? Parallel computing is the

answer to both of these questions. The 1990 decade is to parallel computing what the 1980

decade was to personal computing.

Parallelism is the process of performing tasks concurrently. When many tasks can be

executed in parallel, average execution time is decreased. This is the basic logic of parallel

systems.

2.2. Flynn's Hardware Taxonomy

There are many different ways to organize computational structures to exploit the

parallelism that exists in most current and future computer applications. Many research

efforts around the world are being conducted with the purpose of determining those

hardware and software organizations that are best suited for general purpose parallel

processing. The availability of parallel processing is essential to achieve the wide

acceptability and commercial success. At the same time, many other efforts have

concentrated on speeding up the solutions of specific problems or classes of problems in

special purpose systems [2].

As a result, the large number of proposed parallel processing architectures exhibit such

a great diversity of combinations of common as well as unique characteristics that they are

difficult to group into a neat classification scheme.

Flynn's taxonomy is one of the basic taxonomies III parallel systems[3]. This

classification scheme was introduced by Michael J. Flynn [4]. It is originally proposed to

classify hardware as SISD, SIMD or MIMD.

7

2.2.1 SISD

SISD (Single-Instruction-Single-Data) computing is the traditional single-processor.

An application is run on a single processor under control of a single instruction scream

(one instruction is taken from the program at a time), and each instruction operates on a

single datum at a time.

SISD machines are often gIven the appearance of parallelism through operating

system features for supporting multitasking. When equipped with time multiplexing of

tasks, a fast SISD machine can support a form of concurrency, but true parallelism is not

supportable. Therefore, SISD hardware is incapable of parallel computing.

2.2.2 SIMD

SIMD (Single-Instruction-Multiple-Data) seems restrictive at first, but is perhaps the

most useful paradigm for massively parallel scientific computing.

In a SIMD computer, a single instruction stream is acted upon by many processing

elements, in lockstep sequence.' That is, one instruction counter is used to sequence through

a single copy of the program. The data that is processed by each processing element differs

from processor to processor. Therefore, a single program and a single control unit

simultaneously act on many different collections of data.

Many scientific and engineering applications naturally fall into the SIMD paradigm,

e.g., image processing, particle simulation, and finite element methods.

2.2.3 MIMD

MIMD is the most general model of parallelism. Synchronization is achieved

explicitly and locally rather than through a global synchronization mechanism. This is

flexible, but it also means the software is more difficult to control.

Because of the flexibility of MIMD, a variety of programming paradigms may be

used. However, the overriding question is, "when should the MIMD paradigm be

employed?". As a generalization, MIMD is useful when the problem allows multiple,

8

heterogeneous tasks to be perfonned at the same time. This is most likely to occur when

either the number of tasks to be perfonned is not known ahead of time, the tasks perfonn

different operations from one another, or both.

In fact, MIMD is general enough to encompass SIMD, because SIMD behaviour can

be emulated by restricting MIMD through careful programming. However, there may be

several perfonnance penalties inherent in simulation of one fonn on a machine of a

different fonn.

To complicate matters even more, MIMD machines are typically composed of SISD

processors, and each processor is capable of supporting many at the "same" time. Indeed,

most shared-memory multiprocessor systems such as Encore support multiple UNIX tasks

on each processor, giving rise to a class of machines not covered by Flynn's taxonomy.

Such hybrids of the concurrent and parallel processing worlds make very cost-effective

transaction processing systems because they are able to dramatically improve response

time in a multitasking operating system.

2.3. Parallel Processing Applications

Parallel processing provides many different high-speed architectures. Solving many

complicated problems and implementing many algorithms are easy with the help of these

architectures,. There are some specific areas that are very suitable for parallel architectures.

One of them is artificial intelligence. Artificial Intelligence is an area that can take

advantage of Parallel Processing for new approaches to solve efficiently many important

problems. One important question in AI applications is the actual speedup from parallelism

that can be exploited in the underlying logical structure. It appears that at least in some

cases, such as rule-based systems, the practically achievable speedup is quite limited, less

than tenfold [5].

Another application area is computer vision. Computer vision is an application that

can be implemented efficiently in different architectures, if the corresponding low level

algorithms are matched to the architectures. There are many examples of this application in

the literature [6].

9

Signal processmg IS another important application area in which a number of

architectures have been shown to be very effective, including data flow machines, systolic

arrays and the CHiP computer [7].

Parallel processing can also support discrete event simulation techniques efficiently.

The main design issue is the partitioning of the problems among the processors of the

system and the synchronization of the partitions, since each has its own simulation clock.

Parallel processing for Computer Aided Design (CAD) is an application area being

offered by most vendors of parallel computers because of its big market and because most

design automation algorithms partition well into parallel architectures.

Neural networks and optical computing studies are only some of the new technologies

developed after parallel processing systems have been implemented. These new areas are

also very suitable for parallel architectures.

10

3. PERFORMANCE EVALUATION OF MULTIPROCESSOR SYSTEM AND

SIMULATION MODELS

The performance evaluation of computing system has been the object of extensive

research studies since the early days of computer. Many different techniques are used to

evaluate the performance of many computer systems, including multiprocessor systems.

Performance evaluation techniques can be classified into two main areas; these are

measuring and modelling, respectively. Measurement techniques can be investigated in

three branches. These are measurement, benchmarking, and prototyping. Simulation and

analytic models are the most common modelling techniques [8]. All performance

evaluation techniques are shown in a hierarchical diagram in Figure 3.1.

PERFORMANCE

EVALUATION TECHNIQUES

Measurements

Benchmarking

Proto typing

Simulation

Analytical

Figure 3.1. Multiprocessor System performance evaluation techniques.

12

3.2. Performance Evaluation Models

There are some certain steps and rules of developing and usmg a model for a

multiprocessor system. The key step in this process is that of abstracting a system design

into a model design. This process of abstraction is mostly based on past experience, and

even the experienced modeller finds new challenges in each new system. To develop skills

in abstracting from system design to model requires working with an actual system. It is

best to begin with an existing system. In this way, workload characterisation and model

validation data can be obtained easily.

The modelling and analysis method is outlined in Figure 3.2 [11]. The process can be

divided into three phases: development, testing, and analysis.

SYSTEM DESCRIPTION ..
SYSTEM ABSTRACTION & MODEL DESCRIPTION ..

DATA COLLECTION ..
ANAL YSIS METHOD SELECTION

.. ,L.
• SIMULATION PROGRAM

DEVELOPMENT
ANAL YTICAL FORMULATION

DEVELOPMENT ..
PROGRAM DEBUGGING 1

~
VERIFICATION (program vs. Model) ..

VALIDATION (model vs. System)

+
SIMULATION OUTPUT ANALYSIS ..

PROBLEM ANALYSIS

Figure 3.2. The modelling and analysis process.

The first step in development is to describe system operation from a performance

viewpoint. This description then is abstracted, in accordance with the objectives of the

analysis, into a model description. This specifies the facilities to be represented in the and

13

the operations that are involved in accomplishing this work. The level of abstraction

determines the data to be collected. Next, the appropriate analysis method is chosen, and a

model implementation is developed.

The testing phase comprises three steps: debugging, verification, and validation. If

model gives accurate and reasonable results, it is debugged. In same cases, giving a result

is a sufficient condition for a successful debugging. Verification insures that the system to

evaluate the performance is indeed an implementation of a model. Validation insures that

the model is a reasonable representation of the real system. The details of modelling and

analysis process will be explained in the following sections.

3.2.1.System Description

It is generally assumed that the designer and modeller is the same person. When they

are different persons, the modeller's first task is learning how the system works and

describing its operation from a performance viewpoint; this description provides the basis

for developing a model. The modeller relies on the designer to provide the knowledge

needed. If the two fail to communicate, the analysis effort is, at best, a waste of time; at

worst, it can result in bad design decisions. Communication problem can be both technical

and inter-personal.

Effective technical communication places responsibilities on both designer and

modeller. The designer has a broad view of the system: the modeller, a narrow one.

However, the modeller has to learn enough about the design to determine what aspects are

critical to its performance and must be included in the model. The designer and modeller

are mutually responsible for the latter's education. The modeller needs to gain both a

working knowledge of the overall design and a detailed understanding of the part of the

system to be modelled. He has to understand this part in more detail than he plans to model

it. The designer has a continuing responsibility for answering questions about design

details; because the modeller's view differs from, the designer's, these questions may cut

across design levels and modules. The modeller needs to explain the designer what

analysis results can be expected, why particular questions are being asked, and how the

answers will be used. The design may be incomplete (for reasons motivating the analysis

14

in the first place), and designer and modeller need to work together to develop the

assumptions needed to carry out the analysis.

The knowledge the modelier gains in this learning process is an abstraction of the

design, a model in its own way, and reflects a number of assumptions, some explicit, some

implicit. The modeller's view of how the system operates should be documented, this

system description is reviewed and any appropriate revisions are made by the designer.

When the designer agrees with the description, it becomes an informal contract between

designer and modeller. The designer usually will let the modeller know when design

changes affect this description, and will readily accept results from models based on it. The

form of this description depends on the type and scope of the system being modelled; it

may be nothing more than a one-page flow diagram.

3.2.2. System Abstraction and Model Description

A model is an abstraction of a system, and represents a particular view of that system.

Models frequently are described in terms of the method used to obtain performance

measures: analytic model, simulation model. At this point in the modeling and analysis

process, a representation of the system, which captures its essential performance

determining characteristics, is developed. This analysis should be developed

systematically. Otherwise, some invalid assumptions may introduce unconsciously. All the

study that should be done in this step is to describe the representation of the model.

A model description of a simple system typically takes the form of a diagram showing

system resources (both hardware and software) and their interconnection, annotated to

show the flow of work through the system and the operations involved, and accompanied

by explanatory notes and descriptions of assumptions. It identifies decisions and timings

dependent on attributes of work as well as timings dependent only on the system design.

For complex systems, multiple levels of diagrams may be used to show the configuration,

and flow charts or pseudo-programs used to describe processing operations. Its style

depends on the design background of the modeller (hardware or software); the way in

which it is developed depends on how the abstraction process is approached.

There are no formal rules for abstracting a system design into a model description.

There is no simulation text which helps in this topic, and performance text which can not

15

offer more. Approaches differ from problem to problem (and person to person), but

basically either employ synthesis or decomposition.

Synthesis. Synthesis begins at the level of the design description. To form a higher

level description, elements of the system are combined (or perhaps just ignored), and

associated activities are correspondingly combined and simplified. In making each

simplification, modeller needs to ask if and how the essential underlying characteristics

have been preserved. In this step, some resources may be combined. It is important that

each simplifying assumption should be recorded. The synthesis process may take several

steps, each creating a higher level of description. When the desired level of detail is

reached, all the assumptions made are reviewed and assessed their probable impact on the

results of the analysis. If the net effect is in acceptable range, the assumptions are useful

for the model.

Decomposition. Decomposition is the reverse of synthesis. The system initially is

viewed as a single entity, its work viewed at the highest level (computer system, job; disk

subsystem, request, LAN, message). Work is decomposed into its principal; this process is

repeated through increasing levels of detail until the desired level is reached. In

decomposition, the starting point is very general assumptions. Modeller should refine them

in advancing from one level of detail to the next. Decomposition provides a better overall

representation; to add details is very easy, when it is needed. In either approach, the

strongest assumptions probably will be very much the same and will involve describing

work.

The problem is to choose the appropriate method. Sometimes modeller do not have

any chance to choose, because system allows only one of them. Large systems are best

approached via decomposition. In most cases, although synthesis is available,

decomposition is used. Because, it is better to begin at a high level of abstraction and add

detail later than to begin with too much detail.

16

3.2.3. Data Collection

When development of the model description is complete, the next task is to list the

model parameters that have to be specified numerically and determine their values. These

parameters can be categorised as workload parameters (such as inter-arrival times,

execution times, storage requirements, record types and lengths) and system parameters

(usually timings for various operations, such as the memory cycle time). A parameter may

have a single fixed value, or it may have to be specified in terms of the distribution of its

values.

It is useful to start by determining values of system timing parameters. When

modeling an existing system, it may be possible to measure parameters either directly (via

hardware or software instrumentation) or indirectly (via regression analysis). When

modelling a design, parameter values will have to be estimated.

Determining values of workload parameters and, in particular, specifying distributions,

is the hardest part of the analysis process. Measurement and characterisation of actual

system workloads can provide values directly to the analysis of existing system, and can

provide a basis for estimating values for use in analysing new systems. There are several

studies on this subject [12, 13].

It is difficult to carry out a workload characterisation study of a particular

environment, and extremely difficult to study a range of environments. The difficulties

increase with the level of detail with which the system is viewed. In undertaking a study, it

is hard to find existing measurement tools. This may not be possible; even when it is the

added overhead or added risk, which may limit.

While there is no substitute for the insights gained from studying actual system

behaviour, blind use of measurement may create a false sense of confidence in the analysis

and its results. In working with real systems, it is very hard, and frequently impossible, to

demonstrate that a design performs as desired.

3.2.4. The Selection of Method of Analysis

Models can be divided into two classes: simulation models and analytical models.

Analytical models describe system operations and workloads in mathematical terms.

17

Performance estimates are obtained by either analytical or numerical solution of the

resulting mathematical model. Simulation models, instead, are computer programs in

which system behaviour and workload are d,escribed by using proper algorithms. Special

high-level programming languages are usually employed for the construction of these

models, whose performance indices are obtained by monitoring program execution. In the

following parts of this chapter these two models will be explained.

3.2.4.1. Analytical Model

In the development of an analytical model it is often necessary to use a high level of

abstraction, since in order to be able to solve the model, some constraints on its structure

must be accepted. In the simpler cases it is possible to obtain closed form solutions useful

for studying the impact that different model parameters have on performance indices, ie. to

perform a sensitivity analysis. In the more complex cases the model solution can be

obtained only numerical, and the sensitivity analysis is possible only at the expense of a

large number of numerical solutions, computed for different values of the model

parameters. In extreme cases, the computational complexity, the storage requirements, and

the numerical problems may make the solution of an analytical model more cumbersome

and expensive than simulation.

A class of models that is widely used due to their limited mathematical complexity is

based on the theory of stochastic processes named Markov chains [14].

A limit on the use of Markovian models of complex computer systems comes from the

fact that their direct construction often requires some familiarity with the basic results of

the underlying theory. Indeed, in these cases it is necessary to identify all the system states

and the speeds or the probabilities with which the system moves from one state to another.

This task may be particularly difficult, and ad hoc techniques may be required for its

accomplishment.

A more convenient approach is that of using one of the high-level model description

tools that have been proposed by the literature. The two best known such techniques are

queuing networks and stochastic Petri nets [15]. These techniques allow model to be

constructed in a natural way from the description of the system components and operation

rules; the model is specified in a graphical form rather than in mathematical one. Petri nets

18

are then analysed by studying their underlying Markovian model, but the system designer

need not be aware of the theory and of the methods that are necessary to obtain the model

solution.

3.2.4.2. Simulation Model

Another method to develop a multiprocessor system model is simulation. In this thesis

this kind of method is used to evaluate the performance of multiprocessor systems. The

key step to develop and use a simulation model is that of abstracting a system design into a

model.

Several simulation packages are available to develop a simulation. One of them is

"smpl". This is the most common library for simulation developers [11]. However, to use a

package is not a must for simulation. Many developers use a programming language to

develop simulations for multiprocessor systems.

Analytic versus simulation methods. In doing performance analysis in a real-world

design environment, the most important point is function, not form. The best method is

arithmetic, but, beyond that, the choice depends on the knowledge of the modeller. If

modeller is not aware of analytic methods, it is better to use simulator. Successful

performance analysis uses both methods, and uses them together. Simulation models are

used as submodels of analytic models, and conversely, in hybrid modeling [16], and

analytic models can be used in simulation model verification.

Choosing a method. An analytic model is always preferable, if there is one that fits

our model description, because of its solution speed. If an appropriate analytic model does

not exist, it can be developed if time and skill permit, or perhaps a model can be adapted

from technical literature [11].

However, it is not possible to develop an analytic model sometimes. If the problem

complexity is much higher than the power of analytic methods, simulation is a must.

In this study, simulation model is used to evaluate the performance of a bus-based

multiprocessor system. So, only simulation model is under our scope. The following

sections of this chapter are based on this assumption.

19

3.2.5 Simulation Program Development

Developing a simulation pro'gram is very. much like any other program development

task. The main considerations are:

• simulation model design,

• program organisation,

• parameter management,

• debugging aids,

• instrumentation.

Simulation model design. After deciding upon simulation as the analysis method, the

next step is to transform the model description into a simulation model design. This is the

first point in the modeling process at which the simulation language's view is imposed on

the model. If the method of simulation is event-oriented, the model design defines

sequences of activities with their initiating and terminating events. However, if the model

is complex, it should be tried to approximate a process-oriented view by developing

separate definitions for different classes of processes. This essentially involves defining a

separate event-oriented model for each class and specifying any inter-model coordination

required.

Program organisation. The next transformation is from model design to program

design. The organisation of the program depends on the complexity of the model. For

simple models with few activities, the simulation program may be a single procedure with

events identified by number. For somewhat larger models, separate function procedures

will be used for each event routine. For complex model designs, the program is organised

as a set of submodels, each of which may comprise a set of function procedures. There is a

limit on complexity of model, when using smpl or any other event-oriented language.

Some submodels may be combined at this point in which case their data structures have to

be merged and modified.

Parameter management. When program is developed, one of the most important

decisions is which parameters can be assigned by the user and which parameters will be

20

fixed. This effects the flexibility of simulator directly. When most of the parameters can be

assigned by the user, complexity of the program increases. However, simulator can

simulate different architectures mider different, conditions, so its flexibility also increases.

It is clear that parameter management affect all the program development phase.

Simulation Program Debugging. Debugging is the task of getting the simulation

program to the point where it runs without errors and the results it produces seem

reasonable. This task can be done by the help of a special tool of the simulation languages.

These tools are traces, dumps, reports, error messages. Those kinds of tools are available in

any programming languages.

3.2.6. Verification

When the program produces reasonable results, verification study must be done.

Verifying a simulation model means that the program is a valid implementation of the

model [17]. For small models, this may be obvious from inspection; for larger models,

some substantiating analysis is needed.

At a minimum, verification requires a comparative "walkthrough" of the model

description and the simulation program. Sometimes this is all that is feasible, and success

of the analysis effort depends on how diligently it is done. However, additional verification

via comparison with analytic models often is possible. The simulation program is modified

to represent a model for which analytic results can be obtained, and the simulation and

analytic results are compared. This analytic verification does not, of course, guarantee that

the program matches the model. However, it does provide a way to eliminate errors in at

least part of the modeling process. If analytic verification is successful, then any remaining

errors are either in transforming the model description to a model design or extending

assumptions from the analytic model to the simulation model.

The results obtained from simulation rarely, if ever, will agree exactly with those

obtained analytically. Simulation is a sampling process. Some difference between

simulation and analytic results can result sampling variation. If this difference is small, it

can be acceptable. Alternatively, analysis should be continued: collect additional data,

compute confidence limits for the simulation estimate, and determine if these limits

21

include the analytic result. Another possible source of variation between analytic and

simulation results is approximations used in the analytic model. So, the modeller should be

aware of all assumptions.

3.2.7. Validation

Validation is the task of demonstrating that the simulation model is a reasonable

representation of the actual system: it reproduces system behaviour with enough fidelity to

satisfy analysis objectives. The question of how much is enough can be answered only in

terms of these objectives and perhaps the results obtained in the current iteration of the

analysis process. For example, demonstrating that model tracks real-system trends may be

sufficient in a comparative analysis in which one alternative significantly outperforms the

other. On the other hand, when a critical system parameter must be estimated within a few

percent, the simulation model must be demonstrably capable of providing that accuracy.

The simulation model usually is developed to analyse a particular problem and may

represent different parts of the system at different levels of detail. The model does not have

to be equally valid for all parts of the system over the full spectrum of system behaviour; it

just has to meet the requirements of the problem.

There are two different cases of validation to consider. In the first case, the system

being modelled exists and can be measured, and validation is based on comparison of

model results with measurements. In the second case, the system being modelled exists

only as a design, and the analysis objective is to estimate performance of the design or

perhaps to evaluate alternative designs; little or no comparative data exists, and validation

mostly is a matter of design-model comparison.

4. ARCHITECTURAL MODEL AND WORKLOAD MODEL OF THE

SIMULATOR

22

In this project, a new simulation model is developed and implemented to predict the

performance of bus based shared memory multiprocessor systems. This chapter is

dedicated to explain all the details, algorithms and methods used in this model. However,

there are some basic information, which must be explained. These are the reasons for

choosing simulation modeling, the systems that can be simulated by this model, and

general description of the simulator.

4.1. Why Simulation Modelling?

As it was explained in Chapter 3, modelling is one of the most important method to

evaluate the performance of the computer systems. There are two main techniques to

model a system: analytic and simulation.

Surely, there are many advantages and disadvantages of these methods. Analytic

modelling is easier and cheaper to implement than simulation modelling. However, to

represent complex systems is very hard for analytic models. Because the current

mathematical theories used in analytic modeling, such as Petri nets and queuing theory are

not enough powerful for complex systems. Although simulation is more expensive and

requires more effort than analytic methods, it can model all multiprocessor systems.

The first aim of this project is to develop a general model that can represent all

multiprocessor systems. This is possible only with simulation modelling.

4.2. The Architectures That Can Be Simulated

The first aim of the project was to develop a general simulator, which can evaluate the

performance of all multiprocessor systems. In order to achieve this, a known model,

EUCLID, was very suitable. EUCLID was developed by James Butler and Yavuz Omy in

1986. According to this model, all multiprocessor systems are processing networks. They

include processors and terminals (memory or 1/0). The interconnection network (mapping)

23

between processors and terminals is the topology of the system [18]. The implementation

of EUCLID was realised by Hiiseyin Sepik and TUlly Ylldmm at Bogaziyi University as

BUEUCLID. However, EUCLID has some ~isadvantages to simulate the multiprocessor

systems. First, its simulation level is instruction level. It simulates all instruction execution

in the system. However, simulating instruction execution for a large system would take

prohibitively long. Moreover, user must write a real parallel program before simulation,

and a wrong code in the program may break all the simulation. For these reasons, EUCLID

(or BUEUCLID) was not found feasible to simulate especially large multiprocessor

systems.

On the other hand, it is a fact that there are so many different topologies, protocols,

and other parameters in multiprocessor systems it is hard to produce a general simulation

model. So, the project is restricted and bus based shared memory multiprocessor system

were selected for simulation.

4.3. General Description of the Simulator

A model of a multiprocessor system, and in general of any computing system usually

consists of two parts: the representation of architecture, and the representation of workload.

These are the main inputs ofthe simulator.

Representation of Representation of

Architecture Workload

1 1
SIMULATOR

The algorithms, protocols and methods
used in the simulator.

1
Performance Measurement

of the System

Figure 4.1. The block diagram of the simulator.

24

Undoubtedly, there are many algorithms, protocols, methods used in the simulator. The

results of the simulation model are the performance values of the whole system. This is

described in Figure 4.1.

In this chapter, representation of architecture, representation of workload, and

algorithms and methods such as path finding, mailbox location, memory module clustering

algorithms, will be explained.

However, first, another key element in the model development will be mentioned. It is

the level of abstraction.

4.4. Level of Abstraction

The level of abstraction can be defined as the choice of the level of detail of the

description of each subsystem, as well as the functional relationships and the rules of

communication among building blocks. In order to define a proper system model, first it

must be clearly defined the objectives of the analysis and then decide the level of

abstraction of the representation. The level of abstraction should be chosen bearing in mind

the parameters that significantly describe system performance. The evaluation (or the

estimation) of such parameters is the actual goal of the analysis and must be performed as

efficiently as possible. The model must contain all elements relevant to the analysis,

whereas all the details that are not significant at that level of abstraction must be eliminated

[8]. In the performance evaluation of a computing system, several possible levels of detail

can be identified. Starting from the lowest level of abstraction (maximum level of detail):

1. Hardware level: In this level, all the details of the original system must be

represented in the model. Even if, registers of the processor must be defined explicitly.

2. Functional level: This corresponds to the objective of evaluating the behaviour of

basic hardware units, while they cooperate (or interfere) in performing basic operations. It

includes less detail than hardware level.

3. System level: This corresponds to the objective of verifying the efficiency of the

global system. It contains the least details.

25

The system level includes less information then the other levels. It is easy to

implement a system level model, but it may not give enough information. Analytic

methods for predicting the performance are suitable for system level. Because it includes

less details and complexity about the system and analytic models can represent only simple

systems. Hardware level is another extreme point in levels of details. It includes all the

details, like the register of the processors. A model in hardware level is hard to use,

because user must know and set all the details of the system. Moreover, it requires all the

details of the program that will be run in the abstract machines. EUCLID is a good

example for hardware level model.

The functional level covers more information than the system level, but includes less

detail than the hardware level. This project is designed to be used in parallel computer

courses. So, it can be considered as an educational tool. The possible users of this program

will be students. If this model is in the hardware level of abstraction, users must write a

parallel program and design a real detailed multiprocessor system. However, it may not be

possible for a student, who has no detailed information about this kind of systems. If it is in

the system level of abstraction, on the other hand, student can not research different types

of architectures, protocols and topologies.

As a conclusion, it is clear that the most appropriate level for this simulator is the

functional level.

4.5. Representation of the Architecture

Another important issue is the representation of the computer system architecture that

includes the building blocks like supervisor structure, processors, memories and the

interconnection network between shared memories and processors. These blocks will be

mentioned in the following section.

First, the supervisor structure of the system will be introduced.

4.5.1. Supervisor Structure

When a program is run in a multiprocessor system, there are several issues must be

done. For example, task to processor assignment, establishment of communication paths,

26

data distribution and alike. Supervisor structure manages all the system and tries to find

the optimal solutions for these issues. One of the most important issues for a bus based

system is supervisor.

There are two main supervisor structures in the multiprocessor systems. These are

distributed supervisors and centralised supervisors. Centralised approach has also two main

methods: Dedicated and floating supervisors. This classification is shown in Figure 4.2.

DISTRIBUTED

SUPERVISOR STRUCTURES

CENTRALISED

t Floating

Dedicated

Figure 4.2. Classification of supervisor structures.

In distributed supervisor structure, there are some special supervision tasks in each

processor. These tasks are responsible for the works of a supervisor. There is no

specialised processor, which is responsible for the supervision of the system.

Another possibility is centralised supervisor approach. In this case, supervision of the

system is done by a special processor. In other words, a processor is responsible to run the

supervision tasks. If this special processor is not deterministic, if it may change, it is called

ajloating supervisor. In this situation, while system runs, supervisor tasks may be migrated

to another processor. However, in dedicated supervisor, there is a special processor for

supervision. and it is static. The same processor must be supervisor from beginning to end

of the run time.

The supervisor must communicate with the other processors. It may communicate with

the other processor by the help of the existing interconnection network. However, in some

cases, there is another interconnection network between supervisor and normal processor.

All communications and processes between supervisor and processors are granted by this

network.

27

In the simulator, it is assumed that, there is a dedicated supervisor and there is another

interconnection network between supervisor and processors. The supervisor is directly

connected to each processing element (Figure 4.3).

Moreover, all delays from supervisor and .processor to supervisor communication time

IS assumed to be zero. For example, if a processing element tries to access a shared

resource, this supervisor finds a path from processor to that resource. However, time to

find that path is assumed as zero.

SUPERVISOR

Processor 1 Processor n

Figure 4.3. The supervisor structure ofthe simulator.

4.5.2. Basic Elements of Multiprocessor Architecture

The representation of multiprocessor architectures are based on three basic elements

These are processors, memories and the interconnection network structure. First,

processing elements will be explained.

4.5.2.1. Processing Elements

In this simulation model, a processing unit consists of a processor, a cache and a

private memory. In this section the properties of these units will be introduced.

Processor. Processors are the core unit of a computer system. There are several kinds

of processors, which are commercially available. The most commons are RISe based and

else based ones. Surely there are many differences between them. However, in functional

level, all differences and details are hided. These differences effect only the performance·

28

of the processors. So, differences between internal architectures of processors are

embedded in the speed of the processing unit.

Private Memory. In this simulator, it is· assumed that all processing units have a

private memory. This type of memory may be used by its related CPU. It includes program

codes or frequently used data. The aim of this memory is to operate the CPU faster. A CPU

can access its private memory with no handicap or contention, because only that CPU can

reach its private memory.

Cache. In many cases, processors try to access to its private memory unit. However,

private memory may be slow with respect to CPU. In this case, CPU needs a faster

memory to operate faster. This faster memory is called as cache. Cache is placed between

processor and private memory. Cache includes most frequently needed data. When

processor tries to access data, most probably, it can find the desired data in the cache. In

the simulation model it is assumed that there is a cache in each processing unit.

Figure 4.4. shows the processor, cache and private memory in a processing unit.

Private
Memory

Shared
Resource

A Basic
Processing
Unit

Figure 4.4. A processing unit in a shared memory system.

The only important parameter of a processing unit is the speed. The speed of a

processing unit is the work done within a processing unit in one time unit. The work with a

processing unit includes works within CPU, works with the interaction of its private

memory or its cache. Default speed of a processor is 1000 unit work in one unit time, but

29

user may change the speed of each processor in the system. Simulator allows simulating

processors with different speeds.

4.5.2.2. Shared Memory Units

A shared memory may accept and serve requests issued by several processors. In few

architectures,memories are capable of serving several simultaneous access requests.

Memories of this type are referred to as multiport memories. However, in this model all

memories are assumed to have only one port. In this case, a memory can serve only to one

request at a time. The only property for a memory that user can set is the speed. The

default speed of a memory unit is 100 unit data in one unit time. However, as in processor,

user can set the speed of each shared memory unit.

4.5.2.3. Interconnection Network

The interconnection network links processors to memories. It is very important for the

performance of the system. In this model, only bus-based interconnection networks are

covered. Bus is a shared communication link connecting all the system component..

Processors can access shared resources through buses. A bus can hold data for only one

processor. In other words, only one processor can use a bus at a given time. When a

processing element requires accessing a shared memory, then a path, which is a collection

of buses that connects processor to memory, is requested for that processor. If that path is

granted, processor can communicate with shared memory.

4.6. Representation of Workload

Program that runs on the system is as important as the architecture itself. It effects

performance results directly. The task of describing the work performed by a system is

called as workload.

In a normal multiprocessor system, a program is written in a parallel programming

language. The compiler compiles this program and optimises the parallelism of the

30

program. When a programmer compiles the program via a parallel compiler, it partitions

the program and data and identifies the parallelism. The parallelism inherent in a program

can be modelled as a directed acyclic task graph (DAG). After that, task graph is scheduled

on a parallel machine. At the end, the progra.rn is ready to run on a parallel computer. The

fundamental steps of compiling a program in multiprocessor system are shown in Figure

4.5.

Program Parallel Task graph of Task to Execution of
Source Compiler the program --+ processor the program.

(DAG) assignment

Figure 4.5. The states of a parallel program.

A directed acyclic weighted task graph (DAG) is defined by a tuple G = (V, E, C, T)

where V = {nj, j = 1 : y} is the set of task nodes, E is the set of communication edges and E

= lEI is the number of edges, C is the set of edge communication costs and T is the set of

node computation costs. The value Sij E C is the communication cost incurred along the

edge Eij = (ni, nj) E E, which is assumed to be zero if both nodes are mapped in the same

processor. The value 'ti E T is the execution time of node ni E V [19]. An example of a

complete task graph is shown in Figure 4.6.

A task is a unit of computation that may be an assignment statement, a subroutine or

even an entire program. In the task computation, a task waits to receive all data in parallel

before it starts its execution. As soon as the task completes its execution it sends the output

data to all successors in parallel [19].

n2 n3

Figure 4.6. An example of a task graph with node weights equal to 1.

31

In this model, the task structures and communications between tasks are realised by a

different mechanism. In the following sections, the details of this mechanism will be

explained.

4.6.1. The Structure of the Tasks and Primitive Routines.

From time to time, tasks may need to access a shared resource because of the cache

misses. So, tasks are interrupted and these interruptions affect the system performance

dramatically. However, in a normal task graph, all tasks are convex, which means that once

a task starts its execution it can run to completion without being interrupted for

communication. Therefore, modelling these interruptions is not possible with a normal task

graph. In order to model them, a different mechanism must be introduced. This mechanism

can be realised by the primitive routines. These routines are the fundamental parts of a

task. Another name of primary routines is sub-task. There are four basic sub-tasks to

represent the interruption due to cache misses. These are:

• CPU Sub-Tasks. This represents the work with no interruption. In this kind of sub

task, processor tries to access to private memory location or its cache. Processor does

not need any shared resources.

• MEM Sub-Tasks. This represents the accesses to shared memories. When a processor

can not find the required data in its cache, it tries to access a shared memory. There are

two conditions that must be satisfied to complete. First, the buses between the

processor and shared memory must be captured. Secondly, that shared memory must

be idle.

The other two sub-tasks will be explained in Section 4.6.2.

A task consists of consecutive structures of these routines. An example task is shown

in Figure 4.7.

CPU Sub-task;
represents the work
with no interruption.

MEM Sub-task; represents
access to a shared
memory.

Figure 4.7. An example oftask.

32

In order to understand the workload characterisation of this model, completion times

of sub-tasks and the length of a task must be explained.

4.6.1.1. Completion Times of Each Sub-Task and System Load

Completion times of each sub-task may seriously affect the performance results of the

simulator.

Completion time of a CPU sub-task is defined by the amount of work in the CPU sub

task over the speed of processor. The amount of work in a CPU sub-task is a random

number that is uniquely distributed between 20000 and 100000 unit work. As the default

speed of a processor is 1000 unit work in one time unit, the completion time of a CPU sub

task is between 20 and 100 unit time which is consistent with the recent studies [20].

Surely, when the processor speed is changed the completion times will be also changed.

Computing of MEM sub-task completion times is much likely in computing of CPU

sub-task completion times. It is the volume of data, which will be transported on this sub

task over the speed of the memory. It is assumed that the volume of data is a random

number between 2000 and 10000 unit data. It is also uniquely distributed. As the default

speed of a memory is 100 unit data in one unit time, the completion time of a MEM sub

task is between 20 and 100 unit time again.

Many of the analytical models in the literature assume that duration times of sub-tasks

are exponentially distributed and simulator must be compatible with the known models for

33

the verification study which is explained in Section 3.2.6. In order to realise the

compatibility of the duration times of the sub-tasks in the models, simulator can generate

exponentially distributed random number, instead of uniquely distributed random numbers.

This utility is used in Chapter 5, especially.

Average completion time of CPU sub-tasks over average completion time of MEM

sub-tasks has an important role on the performance results. In many analytical models, this

ratio is called system load and considered as one of the most important parameters about

the workload of the system. The formulation of system load is given in 4.1.

Let A be average completion time of CPU sub-tasks.

Let J..l. be average completion time of MEM sub-tasks.

System Load, p = A 1 J..l.. Formula 4.1.

For example, user uses the default speeds of processors and memories. As it was

calculated before, completion times of CPU and MEM subtasks are uniquely distributed

random numbers between 20 and 100. In this case, the average completion times of CPU

and MEM sub-tasks are (20+100)/2 = 60. According to Formula 4.1, system load will be

60/60 = 1.

When the user tries to simulate the system with the workload whose system load ratio

is 0.5, there are two methods. One of them is to set the average completion time of MEM

sub-tasks to 120. The other one is to set the average completion time of CPU sub-tasks to

30. This can be realised by decreasing the speeds of memory units to 50 unit data in one

unit time or increase the speeds of processors to 2000 unit work in one unit time. User can

set the system load in this way, and helshe can investigate the effects of different workload

conditions. This method will be used in verification and validation studies in Chapter 5 and

6.

34

4.6.1.2. Length of Tasks

In real parallel programs, lengths of tasks may not be equal. Some tasks are longer

than the others. This non-uniformity may affect the performance of the system. So, it is a

very important topic in the simulator.

The length of a task depends on the number of sub-tasks in it. User can set the number

of sub-tasks in a task. In this way, he/she can change the lengths of the tasks. So,

simulating tasks with different lengths is possible.

4.6.2. Task Synchronisation Mechanism

This simulator can simulate the contention that is arisen from accessing a shared

memory. However, there is another important issue that affects the system performance. It

is task synchronisation .. Cooperating processes or threads in a multiprocessor environment

often communicate and synchronise. Such interprocess communication employs one of

two schemes: shared variables or message passing.

Multiprocessor operating systems have experimented with a large variety of different

communication abstracts, including ports, mailboxes, links and others. From an

implementation point of view, such abstractions are kernel-handled message buffers.

However, only the mailbox mechanism is under the scope of this simulator.

Up to now, when a task is modelled by sub-tasks, it is assumed that all tasks are

independent and there is no synchronisation between tasks. In many simulators, this issue

is ignored and it is assumed that there is no delay due to task communication. In reality,

one of the handicaps in a multiprocessor system is task synchronisation between tasks. In

this simulation model, this constraint is one of the main parts of the workload model. The

following primitives are introduced to model task synchronisation mechanism:

• MP Sub-task: This sub-task represents the message passing to another task. It writes

the required data to the mailbox.

35

• RM Sub-task : This sub-task represents the receiving message from another task. It

reads the required data from the mailbox. If task can not receive this message, it will be

suspended, until it can access -and get the message it needs.

In Figure 4.7, there is a deficiency about message passing or receiving message. MP or

RM type sub-task must also be a part of a task. After the tasks are created from CPU and

MEM sub-tasks, all the links between tasks are added. This means to add MP and RM

primitives to the tasks. An example task with MP or RM sub-task is as in figure 4.8.

MEM Sub-tasks

Figure 4.8. An example of a task structure. MP or RM is added.

There are two ways of inserting MP and RM primitives. One of them is the classic

way. All MP's are at the end of the task and all RM's are at the beginning of the task as in

Figure 4.9.

Taskl MP

Task 2

This is the
message that
will be
passed.

Figure 4.9. MP is at the end and RM is at the beginning of the task.

In this system, no task can be initiated, unless it gets all the messages that are

required. This is the most common method in the simulation models. However, it is not the

real case. In reality, MP sub-tasks does not have to be at the end of the task and RM sub-

36

task does not have to be at the beginning. They may be placed at different places of the

tasks as in Figure 4.10.

In this case, RM may not be. in the first part, and, passing message may not be at the

end ofthe task. So, each task can be run immediately.

In this simulation, there are two options that support the situation in Figure 4.9. and

Figure 4.10. User can select one of them.

Task 1 MP

Task 2 RM
\I

Figure 4.10. An example. MP and RM is in the task.

In more realistic case, there may be more than one message passing from one task to

another. Simulating such cases is also possible in this simulator. Each link between tasks

has a certain property for the number of messages between tasks. Its default value is 1.

User can change that value. For example, if the value of this property is changed to 2, the

sender task must include 2 MP sub-tasks and receiver task must include 2 RM sub-tasks.

Figure 4.11. illustrates this situation.

Task 1 MPl MP2

Task 2

Figure 4.11. A complete example of tasks with two links.

37

The volume of data to be sent or received is another issue that should be discussed. It

affects the performance of the system, and it is also placed in the model. This simulator can

model different volumes of data. User can set the volume of data in the message. As a

result, the effects of different volumes in different messages can be investigated.

4.7. Path Finding Algorithm

Processors sometimes need to access to shared memory modules with the help of the

interconnection network. When a processor tries to access to a shared memory module, a

path between processor and memory must be established. This path is needed to transport

the data. The main questions for this problem are which buses will be used or which path

will be established.

For some architecture, the answers of these questions are simple. If there is only one

path from processors to memories, as in hierarchical bus based multiprocessor systems,

there is no need for choosing the optimal path. In each path establishment, that path must

be used. However, in some architecture, there may be more than one path, as in multiple

bus architecture. When there are more than one path, system should choose the most

efficient one.

There are two main approaches for path finding problem. One of them is static

approach. All the paths are fixed. If a processor tries to access to a memory unit, path that

will be used is fixed and is already known by the system. This path is the shortest path in

most of the systems.

On the other hand, there are some other systems that allow dynamic path finding. In

these kinds of systems, if there are more than one path, supervisor finds the most efficient

path from processor to memory.

This simulation model includes dynamic path finding algorithm. So, a processor may

access to a memory from different paths.

There are three helpful procedures that must be explained to understand path finding

algorithm clearly. First, AllPath procedure will be explained.

AllPath algorithm finds all paths from a processor to a shared memory. These paths

are stored into PEtoMEMPaths global variable. This procedure is run for all pairs of

processor and memory for only once. In this way, all possible paths are stored into

38

PEtoMEMPaths. When simulator needs the possible paths from a processor to a shared

memory, it can find them from PEtoMEMPaths variable. PEtoMEMPaths variable will be

used in mailbox location algorithm in Section 4.8. The AllPath algorithm is shown in

Figure 4.12.

The time complexity of AllPath procedure is O(2n) , when there are n buses in the

architecture.

procedure AllPath (E1 : Element, E2 : Element, P: Processor, APath : Path)

, Element is a processor or a memory or a bus

ifE2 is directly connected to E1by a bus, ABus then

APath.Add ABus

PEtoMEMPaths(P, E2).Add APath

Terminate

else

for each bus, ABus which is connected to E 1

ifABus is not in APath theIl

APath.Add Abus

AllPath(Abus, E2,P, APath)

APath.Remove Abus

endif

next

endif

end

Figure 4.12. AllPaths procedure.

The other procedures, which will be explained, are the load on a bus and load on a

path algorithm. Load on a bus is shown in Figure 4.13.

function LoadOnBus (B : Bus) : integer

for each task, T, waiting for B

TotalVolume = TotalVolume + T.DataVolume

next

LoadOnBus = TotalVolume / B.Bandwith

end

Figure 4.13. LoadOnBus function.

39

When a processor requires a bus and it can not be granted, that processor is put in a

bus request queue. Each processor requests the buses to read or write a certain volume

data Load on a bus is total volume of data, which are required by the waiting tasks on that

bus over bus bandwidth. In other words, load on a bus is time to complete all waiting

requests. The code for this load calculation of a bus is shown in Figure 4.13. When there

are t tasks in the system, the time complexity of this function is OCt) in the worst case.

It is time to explain the load on a path. It is as in Figure 4.14.

Load on a path is the maximum of loads on the buses in that path. The time

complexity of the algorithm is O(b*t), where b is the number of buses and t is the number

of tasks.

function LoadOnPath(P : Path) : integer

10ad=O

for each bus, B, in P , this loop finds the maximum load

if load < LoadOnBus(B) then

load = LoadOnBus(B)

endif

next

LoadOnPath = load

end

Figure 4.14. LoadOnPath function.

40

The path finding algorithm that uses LoadOnPath and AllPath algorithms is in Figure

4.15. The complexity of this function is O(b*t*p), ifb is the number of buses and, t is the

number of tasks and, p is the number of paths from processor to memory. The aim of the

algorithm is to balance the loads of the buses. If there is a high loaded bus in a certain path,

algorithm will try to find alternative paths. The algorithm will be clarified by the help of an

example.

function PathFinding(P: Processor, M: SharedMemQry) : Path

PossiblePaths = PEtoMEMPaths(P, M) : Min = + 00

for each path, Apath, in PossiblePaths ' this loops finds the minimum load

if Min > LoadOnPath(Apath) then

Min = LoadOnPath(Apath)

PathFinding = Apath

endif

next

end

Figure 4.15. Path Finding algorithm.

A part of a multiprocessor system is shown in Figure 4.16. In this figure, the names

and the loads of the buses are written. If a task in PEl tries to access to MEM1, a path must

be established.

BUS2

BUS 3

Figure 4.16. A part of a multiprocessor system.

First of all, according to path finding algorithm, all possible paths must be found.

There are two alternative paths. One of them is a path with BUS1, BUS2, BUS4 and the

other one is BUS1, BUS3, and BUS4.

41

The minimum of the path loads must be calculated. The load of the first path is the

maximum of the bus loads of BUS 1, BUS2, and BUS4. This is 8. The load of the second

path is the maximum of the loads of BUS 1, BUS3, and BUS4. It is 10.

The first path has the minimum load. At the end, the first path, BUS 1, BUS2, BUS4, is

chosen.

The traffic on the second path is higher than the first one. In order to balance the

traffic, algorithm chooses the first path.

4.8. Mailbox Problem

In this simulation model, processors execute tasks that cooperate by passing messages

through mailboxes established in shared memory. Mailboxes are the meeting places of

communicating processes. When two tasks need to communicate, supervisor should

establish a mailbox at an optimal location, it must communicate with the other task and, a

mutual place must be found.

The place of mailbox may effect the whole performance of the system. A mailbox that

is far away from sender and receiver causes to increase the delays.

Mailbox finding algorithm finds an optimal place for communication of tasks. In order

to understand this algorithm, first distance function must be introduced.

function Distance(P: Processor; M: SharedMemory) : integer

AllPaths = PEtoMEMPaths(P, M)

for each path, Apath, in.AllPaths

NumberOfBus(P)= the number of bus in APath

next

Distance= minimum value in NumberOfBus

end

Figure 4.17. Distance algorithm.

The main aim of this algorithm is to find the number of buses used in the shortest path

from processor to shared memory. In this procedure, all possible paths from processor to

42

shared memory are found by the help of PEtoMEMPaths list, which is explained in Section

4.7. The buses used in each path are counted in the next step. At the end, the minimum of

them is selected. The code of the algorithm is given in Figure 4.17. The complexity of

distance function is O(P), where p is the number of paths from processor to memory.

The algorithm, which is in Figure 4.18, is the mailbox algorithm that uses distance

function.

function Mailbox (Task1, Task2: Task) : SharedMemory

dim PE1,PE2 as Processor

PEl = the processor that runs Taskl

PE2 = the processor that runs Task2

ifPE1=PE2 then

Mailbox = Null

terminate

else

for·each shared memory, M, in the whole system' beginning of the first stage

Formulal (M) = Distance(PE 1 ,M)+ Distance(PE2,M)

next

MinFormula1 = minimum value in Formulal

create a list, Candidates,keeps all memory modules

that Formulal value is MinFormulal 'ending of the first stage

for each shared memory, M, in Candidate list' beginning of the second stage

Formula2(M)= Abs(Distance(PE 1 ,M)-Distance(PE2,M))

next

MinFormula2= minimum value in Formula2

MailBox= a memory module which formula2 value is MinFormula2

endif 'ending of the second stage

end

Figure 4.18. Mailbox finding algorithm.

43

In the algorithm, first, the processors that run the tasks are found. If the tasks are in the

same processor, they can communicate through the private memory of the processor. So,

there is no need to find a mailbox ..

However, if they are not in the same processor, the first formula will be calculated for

each shared memory module in the system. The first formula is Distance(PE 1 ,M)+

Distance(PE2,M). This formula represents total number of buses that will be busy when

the message is sent and received, if M is selected as mailbox. This algorithm tries to

minimise this value. Those memory modules that minimises the total number of buses

which will be used for communication (i.e. send and receive) are added to the Candidates

list. In the second stage, algorithm tests and selects memory modules from Candidates

list. The aim of this stage is to balance the distance of the mailbox to sender and receiver

processors. When M is far from PEl and near to PE2, there may be a problem. To establish

a long path is harder than a short path. Therefore, communication delay for TASK1 and

TASK2 may be longer. This will degrade the performance. However, if distance(PE1,M)

and distance(PE2, M) are nearly equal, it will be easier to establish the paths. The balance

of the distances is achieved by Abs(Distance(PE1,M)-Distance(PE2,M)) formula.

This algorithm results in most efficient mailbox location, because combined send and

receive hops are minimised. Moreover, the distance of chosen shared memory unit to each

processor is balanced. The complexity of mailbox finding algorithm is simply O(m*p), if

m is the number of memory modules and, p is the maximum number of paths from a

processor to a memory.

Figure 4.19 may be considered as an example to understand the algorithm clearly.

Assume that, two communicating tasks are assigned to PEl and PE2. For M1

Distance(PEl,M1)+Distance(PE2,M1) is 6. That is the same for M2. It is 10 for GM and

16 for M3. Obviously, M1 and M2 are selected in the first stage.

The result of Formula2 for M1, Abs(Distance(PE1,M1)-Distance(PE2,M1)), is 2 and it

is the same for M2. In this case one of them is selected randomly.

However, if a communication between PEl and PE3 is needed, the result will be

different. Total distance calculated in the first stage ofthe algorithm is 10 for Ml, for GM

and for M3 and it is 13 for M2. So, M1, GM and M3 are selected as candidates.

44

1----1
M1 I-----iM2 I----IM3

Figure 4.19. An example of hierarchical bus based multiprocessor system.

In the second stage, the absolute differential distances are calculated as 6 for Ml and

M3; but it is 0 for GM. In this case, GM is selected as mailbox.

4.9. Memory Module Clustering and Data Distribution

One of the most important functions of a supervisor is to distribute the data over the

shared memories, so that each task can find the required data in the nearest memory

module as long as it is possible. This is called as data distribution and it affects the

performance of a multiprocessor system seriously. In order to simulate a real data

distribution case, the usage frequency of each shared memory unit must be formulated.

This formulation can be realised by the clustering algorithm.

The clustering algorithm is based on the distance from processor to memory units

which is explained in mailbox problem, Chapter 4.8. The details of the algorithm are

shown in Figure 4.20.

The distance between a processor and a memory is the minimum number of buses that

connect them. According to the clustering algorithm, The closest memory or memories are

classified as the first cluster. Other closest memory or memories after the first cluster are

classified as the second cluster. All memories are classified in this way, until all memory

modules are clustered.

This algorithm must be run for each processor, because a specific memory module

may be far from a processor and it may be near to another processor. So, the cluster sets of

each processor may be different.

procedure Clustering (P : Processor)

dim i, MinDistance as integer

i = 1

while there is still unclustered module do

MinDistance = minimum distance between P and unclustered modules.

Cluster(P,i)=a list contains the memories so that their distance is MinDistance

Mark memory modules in Cluster(P, i) as clustered.

i= i+l

wend

end

Figure 4.20. Clustering algorithm.

45

All clusters are kept as a list. In this way, this algorithm is run only once. When

simulator needs the cluster sets, it does not run the algorithm and takes this data from the

list. The complexity of this algorithm is Oem *p), if m is the number of memory modules

and p is the number of maximum paths from a processor to a memory.

I---IMI I---IM2 I---IM3 I-----lM4

Figure 4.21. An example of hierarchical bus based multiprocessor system.

An example will help to understand the clustering algorithm. Let the system be a

hierarchical bus based multiprocessor system as in Figure 4.21. First, clustering algorithm

will be executed for PEl. Distances from PEl to shared memories are as follows:

Distance (PEl, MEMI) = 2.

Distance (PEl, MEM2) = 4.

Distance (PEl, GM) = 5.

Distance (PEl, MEM3) = 8.

Distance (PEl, MEM4) = 8.

46

At the beginning, there is no shared memory module, which is clustered. It is clear

that, the closest unit, in other words, the unit with minimum distance is MEMI. So, MEMI

is clustered as the first cluster. After that, the closest unit that is not clustered is MEM2. It

is clustered as the second cluster. GM is clustered as third cluster in the same way. There

are two modules, MEM3 and MEM4, which are not clustered and their distances are the

same. So, these units are clustered as the fourth cluster.

However, the situation is different for each processor. For example, the first cluster of

PE3 is M3. The second cluster is M4. The third cluster is GM. And the third cluster ofPE3

is MEMI and MEM2.

Clustering information is not enough to simulate the real data distribution case. There

must also be a probability distribution that defines the frequency of accesses to cluster sets.

This probability distribution can be defined as follows:

Assume that, i is the cluster number and there are n clusters. In this case, i =(l .. n). Let

Ci be ith cluster, which is calculated in clustering algorithm, and Pi be the conditional

probability of Ci to be chosen, given that clusters CI to Ci-l, are not chosen. For example, let

P3 be 0.9 in certain architecture. If CI and C2 are not chosen, the probability of selection of

C3 is 0.9. It should be reminded that if there are n clusters, Pn must be 1. The probability of

choosing cluster Cj, P (cr), is as follows:

i-I
P(cr) = [IT (l-Pk)]* Pi

k=l
Formula 4.2.

According to 4.2, the probability of being chosen of the first cluster is Pl. The

probability of the second cluster is (l-PI)*P2. And it is (l-PI)*(I-P2)*P3 for the third cluster.

The others can be calculated in the same way.

A cluster is a set of shared memory modules. If there are more than one shared

memory units in the selected cluster, the probability of selection of each module in that

47

cluster is uniformly distributed. If Clusterj is selected, and if there are m modules in

Clusterj and if MEMk is a member of Clusterj, the probability of selection of MEMk is 11m.

For example; if Cluster3 is the selected cluster and if it contains three shared memory

modules, MEMI, MEM2, MEM3, the probability of selection of MEMI is 113. The

probabilities for MEM2 and MEM3 are the same, 113.

As it has been explained before, in order to simulate a real data distribution, clustering

information and a probability distribution must be defined. In the example that is shown in

Figure 4.21, clustering information of PEl was presented. The cluster sets was:

Cluster(1) = {MEMl}

Cluster(2) = {MEM2}

Cluster(3) = {GM}

Cluster(4) = {MEM3,MEM4}.

If usage probability of each cluster is defined, the data distribution can be simulated

correctly. Let PI, P2, P3 are 0.9. This is the default value in the simulator. But P4 must be 1,

because it is the last cluster. So, the probability of Ml to be chosen is 0.9. If Ml is not

chosen, that resource will be M2 with the probability of 0.9. If it is not M2, the probability

of GM will be 0.9. At the end if it is not GM, it will be M3 or M4. According to Formula

4.2, the probability distribution for PEl will be as follows:

The probability of Ml is 0.9

The probability of M2 is (1-0.9)*0.9

The probability of GM is (1-0.9)* (1-0.9) *0.9

The probability of M3 is (1-0.9)* (1-0.9)* (1-0.9)*0.5

The probability of M4 is (1-0.9)* (1-0.9)* (1-0.9) *0.5

Total probability is 1.

Surely, these probabilities are different for each processor.

Another flexibility of the simulator is the conditional probabilities, Pi'S. Although the

default values of the pi's are 0.9, user can set these. If probability values are decreased,

tasks can not find the required data in the closer modules. This implies a bad data

distribution case. If the values are increased, tasks can find required data in the closest

48

modules. So, user can simulate good or bad data distribution conditions with the help of

these probability values.

4.10. Cache Coherence

As it was explained, cache is a special memory associated with processor. Traffic

through the bus network can be reduced as much as %95 by using a cache memory [2]. But

while processor caches can significantly improve system performance, they introduce a

coherence problem due to the presence of multiple cached copies of main memory

locations. It is necessary to ensure that changes made to shared memory locations by any

one processor are visible to all other processors.

There are two basic approaches for cache updating; write-back and write-through.

Basically, write-back or write-through presents extra load on the system, when it updates

the data.

In this simulation model, there is no explicit cache structure, there is no explicit cache

simulation methods, and algorithms that simulates the cache coherence problem. Cache

coherence algorithms brings extra load to the system. Accessing to shared memory was

represented by memory sub-tasks. The traffic load in the system was determined by sub

task's completion times. So, the extra load which cache coherence brings to the system can

be represented as the extensions of MEM sub-task completion times [20]. This can be

regarded as a translation from a high-level workload model to a low-level workload model.

. How to calculate the MEM sub-task completion times was explained in 4.6.1.1.

This simulation model can not give results about the effect of cache size, cache speed;

because these are not represented explicitly. However, at least, cache coherence traffic can

be included.

4.11. The States of Tasks in Processors

Each task on the system is on a state in the processor. There are four main states for a

task. These are READY state, ACTIVE state, CURRENT state, and PASSIVE state. The

basic state transition diagram as in Figure 4.22. First, READY state will be explained.

49

. ACTIVE s~ate~
~ ~ CURRENT state

READYsta~ 0 .-----
PASSIVE stat-e----'--,

Figure 4.22. State transition diagram of tasks.

In this simulation model, there are some limitations of processors. One of these is

maximum number of outstanding tasks. As default, three tasks can be executed in the same

processor at the same time. If there are already three tasks in the processor, other tasks

must wait and can not be activated. Those kinds of waiting tasks are in READY state. They

are ready to be activated, but the capacity of the processor is full. When an activated task is

finished, one task can be migrated from READY state to ACTIVE state.

It was expressed that the capacity of a processor is three as default. However, the user

can set this capacity. This is another flexibility of the simulator.

ACTIVE state is another important state for tasks. The tasks in the ACTIVE state wait

for central processing unit of the processing element. Central processing unit, which is in

processor, can execute only one task at a time. When this unit is busy, the other tasks must

wait. When the central processing unit in the processor is idle, one task, which is in

ACTIVE state, will be migrated from ACTIVE state to CURRENT state.

CURRENT task is a task that is currently executed in the CPU. There can be only one

task in the central processing unit, so it includes only one task. If a task is in CURRENT

state, its sub-task must be CPU sub-task. If this CPU sub-task is executed, its state will be

PASSIVE.

If the task in the CURRENT state is migrated to PASSIVE state, and there is no task

in CURRENT state, one task is selected from ACTIVE state and it is put into CURRENT

state. If there is no task in CURRENT state and ACTIVE state, processor will be idle.

PASSIVE state is the last state to be explained. If a task, which is in CURRENT state,

requires a memory operation or waits for a message or tries to send a message, it is sent to

50

PASSIVE state. When the memory operation of a PASSIVE task is granted or its message

is sent or received, task will be in ACTIVE state.

4.12. Protocols

Transition from READY state to ACTIVE state or transition from ACTIVE state to

CURRENT state requires a selection process. Which task will be migrated? Or when two

processors try to access to the same bus, which processor will gain access? There must be a

rule for selection process. These selection rules are called as protocols. There are two main

protocols in a multiprocessor system. One of them is for bus contentions and the other one

is for selection of tasks.

4.12.1. Protocols for Bus Contention

When a bus is required by more than one task, one of them must be selected and that

bus must be assigned to selected task. This selection rule is called as bus contention

protocol. Protocols for bus contention are used as follows. Bus contention protocols that

this model supports are the followings:

• Defined Priority. In this kind of priority, user gives a priority value for each task. This

value is static and does not change during run time. A task with minimum defined

priority captures the bus. Its complexity is O(n) , because it is a minimum finding

algorithm.

• Randomly. A task is chosen randomly. That task achieves to gain the bus. Complexity is

simply 0(1).

• FIFO. If a task wants the bus first, bus is used by that task i.e. first in first out. The

complexity is 0(1).

51

• LRU. In least recently used protocol, the task that used that bus least recently has the

highest priority. The task that is the oldest in the waiting list gains the bus. The

complexity is O(n).

• Maximum Distance Protocol. The aim of this protocol is to give priority the task that

must establish longer paths. If the distance from processor to memory is longer, to

establish that path is harder. So, there should be a priority for that kind of tasks. In this

protocol, bus is assigned to a task that tries to access to a shared memory from

maximum distance. The function is shown in Figure 4.23. When there are t tasks in the

workload, the time complexity is OCt).

function MaxDistanceProtocol (Candidates: list of Task) : Task

Max=O

for each task, T, inCandjdates list

if Max < number of buses in T.RequiredPath then

Max = number of buses inT. Required Path

MaxDistanceProtocol = T

endif

next

end

Figure 4.23. Maximum Distance Protocol

• Maximum Bus Efficiency Protocol. The aim of this protocol is to maXImIse the

efficiency of the traffic through buses. The efficiency depends on the number of buses

in the path and the volume, which will be transported. In this protocol, the priority of a

task is volume of the data, which will be transported, times number of required buses.

The task with maximum priority gains the bus. Figure 4.24. gives the code of this

protocol. The complexity ofthis protocol is OCt) again, where t is the number of tasks.

function MaxBusEfficiency (Candidates: listof Task) : Task

Max=O

for each task, T, inCandidates list

if Max < (number of buses in T.RequiredPath)*T.DataVolume then

Max = (number of buses inT.RequiredPath)*T.Datayolume

MaxBusEfficiency =T

endif

next

end

Figure 4.24. Maximum Bus Efficiency ProtocoL

52

• Important Message. When a task can not receive the required messages, it must wait.

One of the most important factors, which reduce the system performance, is the delay

due to the messages. If a task has a mechanism for sending a message (MP sub-task) in

the following sub-tasks, this task should have the priority to be executed. If this task is

given then priority, it can send the message earlier and the receiver task can be activated

faster. Surely, this will improve the efficiency of the system. In this protocol, this kind

of scenario is considered. The tasks which may activate another tasks has the highest

priority. The program code of this protocol is given in Figure 4.25. When there are t

tasks, the complexity is OCt).

function ImportantMessage(Candidates: . list . of Task): Task

Max=O

for each task, T, i]1 ,Candid(ites list

if there is a message passing ,MP, operatiollin the following 5 sub-task then

Import<intMessages =T

Terminate

endif

end

Figure 4.25. Important Message ProtocoL

53

4.12.2. Protocols for Task Selection

When a transition from READY state to ACTIVE state or a transition from ACTIVE

state to CURRENT state must be done, a task must be selected from ReadyTask list or

from ActiveTask list. The selection rules are called as task selection protocols. The

followings are the protocols that is included into this simulation model.:

• Defined Priority. It is the same in bus protocols. User defines all the protocols statically.

These priority numbers are used to select a task.

• Randomly. A random task is selected from list, and that task is chosen.

• FIFO. First in first out for task selection. It selects the first entry of ReadyTask or

ActiveTask list.

• Important Messages. This protocol works with same logic as III bus contention

important message protocol which is explained in Figure 4.25.

User is allowed to select protocol algorithm and to observe the effects of the different

algorithms. This simulation tool gives an opportunity to research about protocols.

54

5. VERIFICATION OF SIMULATION MODEL

There are many types of verification methods. Some of them are explained in Chapter

4. The most practical and reliable method for verification is analytical method. It produces

cross checking. If the analytical results match with simulation results, simulation model is

assumed to be verified successfully.

This simulator can simulate most of the bus based shared memory multiprocessor

systems. In contrast, an analytical method can predict only certain architecture with strict

assumptions. It is hard to find an analytical method to predict the performance of all

architectures. For this reason, verification is tested on some specific architectures.

There are some assumptions on these architectures. All analytical results are based on

these assumptions. These are as follows:

• A processor executes a sequence of accesses to its private memory or to cache and

an access to a shared memory.

• Each processor can execute only one task. (i.e. no multitasking)

• All sub-task completion times are exponentially distributed.

• All memory modules have single-port. They can serve only one task at a time.

All the systems are analysed on different system load parameters. System load, which

was explained in Section 4.6.1.1, is the ratio of average completion time of CPU sub-tasks

over average completion time of MEM sub-tasks.

The performance index is another problem. In this example, average percentage of

active processors, the processor power, is used as a performance evaluation index;

because, many other indices may be evaluated from processor power.

There are three main architectures that are considered for verification. The first one is

single bus multiprocessor with external common memory. The second one is more

detailed. It is a multiple bus multiprocessor with multiple common memory. The last one is·

single bus multiprocessor with distributed common memory.

55

5.1. Single Bus Multiprocessor with External Common Memory

This may be the simplest form of the multiprocessor systems. There is only one global

bus. This bus connects the processors to common memory. An example of such a system is

shown in Figure 5.1.

Processing Processing
Element! Element2

I Shared Memory I

Figure 5.1. An example of single bus multiprocessor with external common memory.

The only bottleneck of the system is bus and memory. When more than one request for

shared memory from processors only one of them is served. The others must wait in

queuing state.

System with two processors and system with two processors are analysed. In Figure

5.2.(a), the comparison between analytic and simulation results in a system with two

processors are shown. The results of system with five processors are in Figure 5 .2(b).

0,95

0,85

...
; 0,75
0
Co
CI
c
'iii
1/1

0,65
CD
U
0 ..
Il.. 0,55

0,45

0,35

0,95

0,85

... ! 0,75

j 'iii 0,65
1/1
CD
U e

Il.. 0,55 T

o,~t

0

~Analytic

N
ci

--a- Simulation I

C')

ci
LO
ci

System load

(a)

~Analytic --a- Simulation I

0,35 +1 ~--j--+---+-I--+--+---t--t---j
o N

ci
C')

ci

System load

(b)

LO
ci

Figure 5.2. Processor utilization under different system loads,(a) System with two

processors, (b) System with five processors.

56

57

It is clear that there is no important difference between results of the models. The

results of analytical model are highly correlated with simulation results.

5.2. Multiple Bus Multiprocessor with External Common Memory

Single bus multiprocessor with common memory system is a base system. It can be

extended by some additional features. One of them is bus structure. There was only one

bus in the first system. If system has more than one global bus, contention through the

buses may be decreased. Figure 5.3. shows an example of such a system with three

processors, two common memories and two global buses.

Processing Processing Processing
Element! Element2 Element3

l l
I Shared Memory I I Shared Memory I

Figure 5.3. An example of multiple bus multiprocessor with external common memories

and multiple buses.

While a processor accesses to a common memory, another processor can also access to

another common memory. This opportunity is limited with the number of global buses and

number of common memories.

System with 12 processors and two global buses is used to verify the simulator.

Results are presented in Figure 5.4.

58

[-t:r- Analytic --0- Simulation I

0,9

0,8

0,7 ...
; 0,6
0
Co
C) 0,5 r:::
'iii
til

0,4 CII
(.)
0 ...
c.. 0,3

0,2

0,1

° 0 LO LO N LO (') LO
0 0 0 N_ o (')

0 0 0 0
System load

Figure 5.4. Simulation and analytical results.

Simulator finds lower processing power, while system load at 0.2-0.3. However, the

main structure of the results is similar and close to each other.

5.3. Single Bus Multiprocessor with Distributed Memory

In multiprocessor systems that are analyzed, all common memories are at the same

hierarchy with respect to processors. If common memories are split into separate modules

that can be accessed with different rights, the distribution of memories provides less

contention rate. In this way, utilization ofthe whole system may be increased.

There are many types of multiprocessor with distributed memory. One of them is

shown in Figure 5.5.

59

Processing Processing
Elementl I Shared Memory I Element2 I Shared Memory I

I I
T T

Figure 5.5. An example of single bus multiprocessor with distributed memory

Each processor accesses closer to common memory more frequently. For example, in

Figure 5.5, PI accesses to CMI and P2 accesses to CM2 frequently.

In order to verify the simulator, multiprocessor system with three processors is used.

The same architecture will be used for validation in the next chapter. The results are in

Figure 5.6.

-l!r- Analytic I -0- Simulation

0,9 ~==========::::;

0,8

i 0,7

~
Q.

~0,6
'iii
!II
CIl
U
o D: 0,5

0,4

: 0,3 -J-..,,-+-+-+-+--+-+-+--+-+--+-+--+--+--i-+---!
LO LO LO

N C')

ci ci ci
LO LO LO

""- LO_ co
0 0 ci
System load

LO LO LO r-- co (J)

ci ci 0-

Figure 5.6. Simulation and analytical results of single bus

multiprocessor system with distributed memory.

60

The results are very close and they provide the verification of simulator. The main

reason for differences may be run length and replication number.

In this chapter, the verification of simulation model is provided. All results from

analytical models and simulation model are very close to each other. It can be said that this

simulator can simulate the desired models.

61

6. VALIDATION OF SIMULATION MODEL

Validation is the comparison of the model with the real world. If a simulator is valid, it

is certain that it can produce reasonable results with respect to real world. In order to test

the validation of a simulation model, its results must be compared with an actual system.

Unfortunately, validation is not a hot topic in multiprocessor system simulation. There

are only a few studies about validation. In many times, when a new simulation model is

developed, the real data may not be available, especially either if the simulated system is a

new system, or if it is not implemented.

In this study, a general bus based multiprocessor system is simulated, and there are a

number of bus based systems realised. One of them is TOMP prototype. TOMP is an

implementation of multiprocessor system with distributed memory that is used for

verification study [8].

All assumptions in Chapter 5 are also used for validation. There is an important

additional assumption in this system. The probabilities of accessing to either local or

external common memory modules are:

P(accessing local common memory module) = 0.5

and

P(accessing each external common memory) = 0.25.

Comparison between real data and simulation results are in Figure 6.1. This

comparison shows that although simulation generally overestimates the real world, the

correlation between them is sufficient. The differences between the data may be generated

by the differences between the model and actual prototype. Another reason may be the

differences of distribution between actual system and simulation model. However, it is

clear that the predictions of simulator are very accurate.

There is a problem with the results of simulation. The results of simulation do not fit

in a curve. In other word, it is fluctuating. The main reasons are the simulation run length

and number of replication. If it runs longer, it is expected to fit in a curve as in TOMP's

data.

0,9

0,8

... 0,7 CD
3:
0
Q.

Cl 0,6 c
"iii
I/)
CD
U
0 0,5 ...
c.

0,4

0,3

--<>- REAL -a- Simulation

~ ~ ~ ~ ~ ~ ~ ~ ~
N ('I) '<t ~ <D I'- <Xl 0>

o 0 000 000 0
System load

I

Figure 6.1. Comparison of TOMP architecture and simulation model results.

62

63

7. SIMULATION EXAMPLES

A number of simulations are conducted using the developed simulator to show how

selected task graphs perform on various architectures. Furthermore the effect of changing

parameters like probability distribution on shared memory access and use of alternative

protocols developed in the thesis is analysed via multiple simulations.

Two hypothetical architectures and task graphs are selected for performance analysis.

These are shown in Figure 7.1. and Figure 7.2., respectively.

(a) Architecture 1

(b) Architecture 2.

Figure 7.1. Architectures used in the example analysis.

64

(a) Task graph 1 (TGl).

(b) Task Graph 2 (TG2).

Figure 7.2. Task graphs used in the example work.

The task graphs TG 1 and TG2 are simulated on each of the architectures under various

system loads. As the first approach, the default values of the simulator are used as the

parameters. In other words, bus protocol and task selection protocol are FIFO. MP subtasks

are at the beginning of the tasks and RM subtasks are at the end of the tasks. The

conditional probability of memory usage, which is explained in Section 4.9, are assumed to

65

be 0.9. The probability used to determine the amount of work III each subtask is

exponentially distributed.

7.1. The Effect of Architecture and Task Graph

Figure 7.3. shows the performance results of Architecture 1 under the workload of

TGI and TG2.

-o-TG1 ~TG2

0,35

0,3

0,25 ...
~
0

0,2 Q..

CD
c
'iii
III 0,15
c.J
c.J e
a. 0,1

0,05

° 0,2 0,4 0,6 0,8

System Load

Figure 7.3. The performance data for Architecture 1 under TGI and TG2.

As it can be seen from Figure 7.3. the task graph TGI runs on the Architecture 1 with

a better performance. On the contrary, Figure 7.4 shows that Architecture 2 fits to TG2

better,

66

-o--TG1 -<>--- TG2

0,35

0,3

0,25 ..
CI)

== 0
0,2 Q..

CI
c
·iii
::l 0,15
u
u e
Q. 0,1

0,05

° 0,2 0,4 0,6 0,8

System Load

Figure 7.4. The performance data for Architecture 2 under TGI and TG2.

7.2. Protocols

Up to now, the analysis is about the different cases, in architectures and task graphs.

No default parameter value is changed. The effects of these parameters will be introduced

in the further analysis. In the following, the architecture and task graph are fixed as

Architecture 1 and TG 1 and performance values are varied in conducting the simulation.

Figure 7.5. shows the performance, when the protocols are FIFO and random. The

performance differences are considerable when the system load is larger. Because when

the shared memory operation times are longer, the protocols will be more important and it

will effect the performance of the system.

67

-o-FIFO -<>-RND

0,35

0,3

0,25 ...
~
0

0,2 c.
CI
s:::
'iii
g: 0,15
(,)
(,)
0 ...
a.. 0,1

0,05

0

0,2 0,4 0,6 0,8

System Load

Figure 7.S.The performance data under the protocols of FIFO and Random.

7.3. The Place of Task Synchronization Mechanism

As it was explained in Section 4.6.1., there are two option for the place of the task

synchronization subtasks. In the first option, tasks receive messages at the beginning and

send messages at the end. In the second option, message passing may be in anywhere. The

simulator chooses the first option as default. The performance may be different, when the

second option is selected. The performance data varying the place of the task

synchronization subtasks are given in Figure 7.6.

7.4. Data Distribution and Probability Distribution of the Memory Usage

The frequency of accessing a shared memory unit is determined by the help of a

probability distribution, which is explained in Section 4.9. All conditional probabilities of

choosing a cluster is 0.9 as default. It represents a good data distribution scheme. When

data distribution is not so good, this probability value must be smaller. In this section,

different probability values will be tested. The system performance is found when it is 0.7

68

and 0.5. The results are in Figure 7.7. As it can be seen, the data distribution effects the

performance dramatically.

I -0-- First option --<>- Second Option I
0,4 ,---------------,

0,35

0,3

~ 0,25

Co

Cl
.~ 0,2
/I)
41
(J
(J e 0,15
D.

0,1

0,05

0+---~--_+--~--_4

0,2 0,4 0,6

System Load

0,8

Figure 7.6.The performance data under different places of task synchronisation

mechanism.

69

-0-0,9 ---<>-0,7 -lr-0,5
I

0,35

0,3

0,25

..
~ 0,2 0
ll. ..
0
III
III

0,15 Q)
u
0 ..
ll.

0,1

0,05

° 0,2 0,4 0,6 0,8
System Load

Figure 7.7.The performance data under different probability distributions.

70

8. CONCLUSION

Performance evaluation is one of the most important topics in computer world and

simulation modeling is a powerful method to predict the performance of multiprocessing

computer systems. In this study, a new simulation model is developed to predict the

performance of bus based shared memory multiprocessing systems.

There are two main inputs of the simulator. One of them is the representation of the

architecture that consists of processing elements, shared memory units and interconnection

network. The second input is the workload, which is the representation of the work

performed on the system. The workload is a task graph, so that each task consists of

consecutive structure of some primitive routines. These routines represent the internal

work in CPU, an access to a shared memory, or synchronisation ofthe tasks.

There are many algorithms to simulate the real multiprocessor systems m the

simulator. Path finding, mailbox location, memory clustering are the most important

algorithms. The details of these algorithms are explained in Chapter 4.

The flexibility is the most important characteristic of this simulator. It supports the

elements with different speeds. It also runs the simulation under different probability

distributions. There are many different protocols which user can choose. Moreover, many

workload parameters can be set by the user.

When a simulator is developed, verification and validation are very important steps.

The verification of the simulator is done by the help of analytic models in the literature.

Validation is realized by the performance results of TOMP prototype.

Finally, the sample runs are given in Chapter 7. It includes the performance results of

different architectures with different parameters used in the simulator.

This tool may be a base model for new researchers. It is easy to develop alternative

algorithms or to add new protocols. Many new features can be inserted in this simulator.

71

REFERENCES

1. Duncan, R., "A Survey of Parallel Computer Architectures", Computer, Vol 23,

pp.5-16, February 1990

2. DeCegama, A. L., The Technology of Parallel Processing, Prentice Hall, 1989

3. Lewis, T. G., and EI,Rewini, H., Introduction to Parallel Computing, Prentice Hall,

1989.

4. Flynn, M. J., "Very High Speed Computing Systems", Proc. IEEE, Vol 54, pp.1901-

1909, 1966

5. Gottlieb, A., "An Overview of the NYU Ultracomputer Project", Ultracomputer

Note, Vol. 21, pp.18-33, July 1986.

6. Annavatone, M., "Applications and Algorithm Partitioning", IEEE Conference

Proceedings on Computer Architecture, May 91, pp. 272-275.

7. Gaudiot, J.L., "Structure Handling in Data Flow Systems", IEEE Transactions on

Computers, Vol 33, pp. 489-501, June 1986.

8. Marsan, M. A., and Balbo, G., Performance Models of Multiprocessor Systems, The

MIT Press, 1986.

9. Dagum, L., and Simon, H. D., ''NAS Benchmark Results", IEEE Parallel and

Distributed Technology, Vol 6, pp. 40-55, February 1993.

to. Conte, G., DelCorso, D., and Gregorotti, F., "TOMP80-A Multiprocessor Prototype",

Proc. EUROMICRO 81, September 1981.

11. MacDougall, M. H., Simulating Computer Systems, The MIT Press, 1987.

12. Ferrari, D., Computer Systems Performance Evaluation, Prentice Hall, 1978.

13. Serazzi, G., "Workload Modelling Techniques", Proc. Modelling Techniques and

Toolsfor Performance Analysis 85, June 1985.

14. Parzen, E., Stochastic Processes, Holden Day, 1962.

15. Takacs, L., Introduction To the Theory of Queues, Oxford University Press, 1962.

16. Schwetman, H. D., "Hybrid Simulation Model of Computer Systems",

Communications of the ACM, Vo121, pp. 718-723, September 1978.

17. Law, A. M., and Kelton, W. D., Simulation Modelling and Analysis, McGraw-Hill,

1982.

72

18. Butler, J. M., and Oruc, A. Y., "A Facility for Simulating Mulatiprocessors", IEEE

Micro, pp. 32-44, October 1986.

19. Jonkers, H., and Reijns, G. L., "Predicting the performance of general task graphs

with Underlying queuing model", Proc.· Ft Annual Can! of the Advanced School for

Computing and Imaging, pp. 293-302, May 1995.

20. Holliday, M., and Stumm, M., "Performance Evaluation of Hierarchical Ring-Based

Shared Memory Multiprocessors", IEEE Transactions on Computers, Vo1.43, pp.52-

67, January 1994.

	KTEZ305001
	KTEZ305002
	KTEZ305003
	KTEZ305004
	KTEZ305005
	KTEZ305006
	KTEZ305008
	KTEZ305009
	KTEZ305010
	KTEZ305011
	KTEZ306001
	KTEZ306002
	KTEZ306003
	KTEZ306004
	KTEZ306005
	KTEZ306006
	KTEZ306007
	KTEZ306008
	KTEZ306009
	KTEZ306010
	KTEZ306012
	KTEZ306013
	KTEZ306014
	KTEZ306015
	KTEZ306016
	KTEZ306017
	KTEZ306018
	KTEZ306019
	KTEZ306020
	KTEZ306021
	KTEZ306022
	KTEZ306023
	KTEZ306024
	KTEZ306025
	KTEZ306026
	KTEZ306027
	KTEZ306028
	KTEZ306029
	KTEZ306030
	KTEZ306031
	KTEZ306032
	KTEZ306033
	KTEZ306034
	KTEZ306035
	KTEZ306036
	KTEZ306037
	KTEZ306038
	KTEZ306039
	KTEZ306040
	KTEZ306041
	KTEZ306042
	KTEZ306043
	KTEZ306044
	KTEZ306045
	KTEZ306046
	KTEZ306047
	KTEZ306048
	KTEZ306049
	KTEZ306050
	KTEZ306051
	KTEZ306052
	KTEZ306053
	KTEZ306054
	KTEZ306055
	KTEZ306056
	KTEZ306057
	KTEZ306058
	KTEZ306059
	KTEZ306060
	KTEZ306061
	KTEZ306062
	KTEZ306063
	KTEZ306064
	KTEZ306065
	KTEZ306066
	KTEZ306067
	KTEZ306068
	KTEZ306069
	KTEZ306070
	KTEZ306071
	KTEZ306072

