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Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computational Science & Engineering
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ABSTRACT

MERGER DYNAMICS IN THREE AGENT GAMES

The thesis analyses the dynamics of merger in three agent games. The purpose

of the study is to find out how merger affects the social structure.

To begin with the definition of a game, it is a series of competitions. In these

competitions three players are randomly picked and they compete against each other

with a given winning probability with respect to their actual points. In competitive

games this means that the player with the highest score is favored.

In our model, there are two types of competitions with different probability sets.

First is a competitive game and we define the second as merger game. Players act

separately in competitive games. In merger games two players combine their points

and act as a single player against the third. This would make sense if the players that

merge increase their winning chance.

The merger is realized by resolving three agent games in terms of two agent

mini tournaments. In a microscopic tournament, all players that participate in the

microscopic competition will play a two agent game against each other and winning

will be determined by the maximum wins in the mini tournament. Winner will gain

one point.

Defining merger in three agent games doesn’t violate the competitive structure

of the game. Meanwhile it yields sub-societies among the total hierarchy.



v

ÖZET

ÜÇ KATILIMCILI OYUNLARDA BİRLEŞME

DİNAMİKLERİ

Bu çalışmada üç katılımcılı oyunlarda birleşme dinamikleri incelenmiştir. Çalışmanın

amacı, birleşmenin sosyal yapı üzerindeki etkilerini bulmaktır.

Oyunun tanımı, müsabakalar dizisi olarak belirtilmektedir. Bu müsabakalarda üç

oyuncu rastgele seçilir ve seçilen oyuncular varolan puanlarına dayalı olarak kendilerine

atanan kazanma olasılıkları ile birbirlerine karşı yarışırlar. Rekabetçil oyunlarda bu

durum yüksek puanlı oyuncunun avantajlı olduğu anlamına gelir.

Bizim modelimizde, birbirinden farklı olasılık kümelerine sahip iki tip müsabaka

vardır. Birincisi rekabetçil müsabakalardır. İkincisini ise birleşme oyunları olarak

tanımladık. Bu iki oyun arasındaki fark, rekabetçil oyunlarda oyuncular tek başlarına

oynarken, birleşme oyunlarında iki oyuncu puanlarını birleştirir ve üçüncü oyuncuya

karşı tek bir oyuncu gibi darvanırlar. Bu hareket, birleşmeyi gerçekleştiren oyuncular

kazanma olasılıklarını arttırdığında anlamlı olacaktır.

Birleşme, üç katılımcılı oyunları iki katılımcılı mini turnuvalara çözümlenerek

gerçeklenir. Bir mini turnuvada, bütün katılımcılar birbirleri ile iki katılımcılı bir oyun

oynarlar, ve bu mini oyunların çoğunu kazanan, oynanan müsabakayı da kazanarak

puanını bir arttırır.

Üç katılımcılı oyunlarda birleşmenin tanımlanması, oyunun rekabetçil yapısına

karşı gelmemekle birlikte, bütün düzen içerisinde alt topluluklar oluşturmaktadır.
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ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. TWO AGENT GAMES MODEL . . . . . . . . . . . . . . . . . . . . . . . . 3

3. THREE AGENT GAMES MODEL . . . . . . . . . . . . . . . . . . . . . . . 9

3.1. The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2. The Regimes of Three Agent Games . . . . . . . . . . . . . . . . . . . 12

3.2.1. C− : Middle class society with mild hierarchy . . . . . . . . . . 14

3.2.2. C0 : Pure middle class society . . . . . . . . . . . . . . . . . . 15

3.2.3. C+ : Middle class society with mild anti-hierarchy . . . . . . . 16

3.2.4. C+
S : Anti-hierarchical society . . . . . . . . . . . . . . . . . . . 17

3.2.5. S : Egalitarian society . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.6. C−S : Hierarchical society . . . . . . . . . . . . . . . . . . . . . 19

4. GENERALIZATION OF n+ 1 AGENT GAMES . . . . . . . . . . . . . . . 21

4.1. An Example of Analytically Solvable n+ 1 agent game . . . . . . . . . 22

5. MERGER DYNAMICS IN THREE AGENT GAMES . . . . . . . . . . . . 24

5.1. Resolution of Three Agent Games in terms of Two Agent Games . . . . 25

5.2. The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3. Exact Equation for Merger Model . . . . . . . . . . . . . . . . . . . . . 26

5.4. Numerical Approach for Merger Model . . . . . . . . . . . . . . . . . . 28

5.5. Restraining Merger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6. SIMULATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

APPENDIX A: SIMULATION SOURCE CODE . . . . . . . . . . . . . . . . 51

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



vii

LIST OF FIGURES

Figure 2.1. Entering and leaving fx. . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 2.2. A graph for solution of p > q. The circles represent the simulation

and the line represents the analytical solution. . . . . . . . . . . . 7

Figure 2.3. A graph for solution of p ≤ q. The circles represent the simulation.

The shock is at 1/2. . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 3.1. Graphical representation of the equation of cumulative distribu-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 3.2. Graph for the solution in regime C−. The circles represent the

data from the simulation and line is the analytical solution. . . . . 14

Figure 3.3. Graph for the solution in regime C0. The circles represent the data

from the simulation and line is the analytical solution. . . . . . . . 15

Figure 3.4. Graph for the solution in regime C+. The circles represent the

data from the simulation and line is the analytical solution. . . . . 16

Figure 3.5. Graph for the solution in the regime C+
S . The circles represent the

data from the simulation and line represents the shock. Areas of

A1 and A2 are equal. . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 3.6. Graph for the solution in the regime S. The circles represent the

data from the simulation and line represents the shock. Areas of

A1 and A2 are equal. . . . . . . . . . . . . . . . . . . . . . . . . . 18



viii

Figure 3.7. Graph for the solution in the regime C−S . The circles represent the

data from the simulation and line represents the shock. Areas of

A1 and A2 are equal. . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 3.8. The phase diagram of the three-agent game presented on the plane

p + t + q = 1. The thin black curve represent the resolution of a

three-agent game in terms of two-agent mini tournament described

in chapter 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 4.1. Graph solution of n+1 agent games where n+ 1 = 3 and s = 0.4.

The circles represent the simulation and the solid line represents

the analytical solution. . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 5.1. Graph for the solution where θ = 0.75, zr < 2zl. The circles

represent the simulation and solid line represents the game without

a merger option . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 5.2. Graph for the solution where for θ = 0.79, zr > 2zl. The solid line

represents the simulation. . . . . . . . . . . . . . . . . . . . . . . 29

Figure 5.3. Simulation results for θ = 0.85, zr > 2z∗. . . . . . . . . . . . . . . 30

Figure 5.4. Graphical representation of the simulation for θ = 0.97. . . . . . . 31

Figure 5.5. The leftmost agents for all θ values. . . . . . . . . . . . . . . . . 31

Figure 5.6. The transitions of the shocks across the leftmost bunch . . . . . . 32

Figure 5.7. The interactions between separate bunches. . . . . . . . . . . . . 32

Figure 5.8. Simulation results for θ = 0.84. Curves represent the characteristic

polynomials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



ix

Figure 5.9. Represents the isolated rightmost shock region . . . . . . . . . . . 35

Figure 5.10. Represents the location of the rightmost shock. Red line represents

the extrapolation on the data . . . . . . . . . . . . . . . . . . . . 39

Figure 5.11. Simulation results for θ = 1, representing the extremely competi-

tive limit of merger game. . . . . . . . . . . . . . . . . . . . . . . 40

Figure 5.12. Represents the solution for restricted merger game in the extreme

limit of competitiveness. . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 6.1. Simulation results for θ = 0.95. Simulator calculated probabilities

are,p = 0.919, t = 0.063, q = 0.018. . . . . . . . . . . . . . . . . . 47

Figure 6.2. Simulation results for θ = 0.95, p = 0.7, t = 0.2, q = 0.1. . . . . . 47



x

LIST OF TABLES

Table 5.1. Table of Merging Conditions . . . . . . . . . . . . . . . . . . . . . 26



xi

LIST OF SYMBOLS

fx fraction of players that have x points over total players

Fx cumulative distribution of the points

F The value of F at z = 1/2

x, y, z ordered points of the competitors from highest to lowest re-

spectively

N Total number of players in the whole society participating a

game

n number of players that participate to a single competition

Pmax Maximum points that a player may theoretically obtain in a

particular time.

p, t, q probability values for a no-merger game.

p, t, q probability values of the players playing a merging competi-

tion

s probability modifier variable in generalization of the game for

n+1 agents

v the shock speed

Wx,y,z Assigned winning probabilities for selected players in a com-

petition

z points normalized by time

zl leftmost shock location in F(z) - z graph

zr rightmost shock location in F(z) - z graph

z∗ rightmost location of the left bunch of a shock in F(z) - z

graph

α probability modifier constant in generalization of the game for

n+1 agents, which is dependant to s

σ length of the score region over the total score shared by them

ω ratio of the players with lowest score versus highest scores

τ time variable



1

1. INTRODUCTION

Competitive games and self-organizing hierarchies have been studied in many

different areas. In 1998, Marsili and Zhang presented an approach to explain Zipf’s

law of city distribution [1], which was introduced at 1949. Opinion dynamics [2],

sportive competitions, [3] and emergence of hierarchies and dynamics of multi-player

games [4, 5, 6, 7, 8] are also examples of such studies.

These studies typically observe macroscopic phenomena with microscopic agent

to agent interactions. Our study is based on the three agent game model which was

studied in detail by Mungan and Rador in 2007[8]. In that model, game is defined

as a series of competitions in a large group of players. Three players that participate

in a competition are randomly selected and they compete against each other with a

probability distribution based on the ordering of their points [8]. The resulting regimes

depend on the defined probability set.

We studied a case in which there are two probability sets effecting the regime.

By defining two types of competitions with different probability sets, we introduced a

merger model where players with lower points gather their points and act like a single

stronger player against the favored one under the condition that all merging players

benefit from this action. For a better understanding of the problem we observed the

models with one probability set.

In Chapter 2, two-agent model is observed and explained.

In Chapter 3, three agent model is studied and the regimes that came out of

the model are observed.

In Chapter 4, a general solution to n+1 agent game is analyzed and an analyti-

cally solvable approach for this model is introduced.
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In Chapter 5, the dynamics of merge are analyzed. Construction of the model was

detailed. An analytical approach to the phenomena was introduced and the effects

of a merger was evaluated. Strategies that would soften the merge effects and the

resulting structure were exposed.

In Chapter 6 our n-agent game simulator explained. Computational details are

covered.
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2. TWO AGENT GAMES MODEL

To have an insight on the fundamentals of competitions, we studied a two agent

game model with respect to the three agent model [8]. In two agent model, game

is a series of micro competitions between two competitors. These competitors are

randomly picked from a large number of players. The players compete against each

other with a given winning probability. The probability assignments depend on the

points of the players. At the end of each competition there is always one winner which

means there is no withdraw condition. No decline rate is defined in this model. Player

that loses a competition does not lose points while winner gets one point.

First we pick two agents from a total set of N players. Let’s say x stands for

the highest point, and y stands for the lowest point among the selected agents. The

microscopic rules of a competition for two agent model is,

(x > y)⇒ (p, q),

(x = y)⇒ (
p+ q

2
,
p+ q

2
)⇒ (

1

2
,
1

2
). (2.1)

First line of Equation (2.1) implies that for all x greater than y, the player

with the score x will advance the competition with a probability of p and the player

with the score y will advance the competition with a probability of q. The second

line shows that if x is equal to y, both will advance the competition with the same

probability which is 1/2. This means that in this model agents with the same score

will be evaluated on the basis of equal likelihood. If p = 1, the player with x points

always wins and if p = 0 the player with y points always wins [4]. By using this

microscopic model, we can observe the changes in number of teams in a particular

score range through the function below.

fx = { fraction of the number of agents that have x points }
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For fx is a scaled function,

∑
x

fx = 1. (2.2)

As we mentioned before, players do not lose point when they lose in a competi-

tion. For this reason changes in an arbitrary fx occur when a player with x− 1 points

wins a game and enters fx or a player with x points wins a game and leaves fx.

Figure 2.1. Entering and leaving fx.

For a long time period, changes in fx can be written as a derivative of time.

∂fx
∂τ

=
∑
y

fx−1Wx−1,yfy −
∑
y

fxWx,yfy (2.3)

Wx,y denotes the winning probability of the players. Its value was set by the

microscopic rules in Equation (2.1), and it is the balancing factor of scaling in the

Equation (2.3). On average, each player is expected to participate a single competition

against all other players during a round, which defines the unit time and denoted by

τ . Average point of the players is,

x(τ) ≡
∞∑
x=0

xfx =
τ

2
. (2.4)

For an arbitrary x value, summing fx would provide us a cumulative distribution

for the rate of x,

Fx ≡
x−1∑
x′=0

fx′ (2.5)
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which turns out that,

fx = Fx+1 − Fx (2.6)

Then summing the Equation (2.3) over x would reveal the result below.

∂F

∂τ
= f−1

∑
y

W−1,yfy − fx−1

∑
y

Wx−1,yfy (2.7)

As there can not be a player with a negative point, x = −1 term is eliminated.

Finally the equation becomes,

∂F

∂τ
= −fx−1

∑
y

Wx−1,yfy. (2.8)

If Equation (2.8) was expanded by using Equation (2.1) and Equation (2.3), we

would get,

∂Fx
∂τ

=− fx−1[pFx−1 + q(1− Fx)]

− 1

2
f 2
x−1. (2.9)

The first line of the Equation (2.9) gives us the combination of interactions for

the players with different scores which might be considered as bulk interactions [8].

The second line refers to the interactions where two players have the same scores. We

should mention that players start the game in the same state. This refers that, in the

very beginning of the game there would be many players with the same scores and

because of this the second part of the equation is expected to affect the set of players.

As time passes equalities will be broken and the bulk interactions will dominate the

game. Therefore, in a continuum limit where the differences are expanded in terms of

derivatives, the second part of the equation will be negligible and one may consider

only bulk terms. As a result we will have,

∂Fx
∂τ

= −∂Fx
∂x

G′(F ) (2.10)
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where,

G′(F ) ≡ pF + q(1− F ). (2.11)

To analyze the winning rate for long time span [2] we normalize the points of the

players by time. This gives us a chance to introduce a scaling solution to Equation

(2.10) in an ansatz form. Let x denote the points of an arbitrary player, and τ unit

time. By defining F as,

F (x, τ)⇒ F (z ≡ x

τ
) (2.12)

we would get,

dF

dz
[−z +G′(F )] = 0. (2.13)

In this scaling equation F would be constant or G′(F ) = z [8]. A general form

of the solution would be,

F (x, τ) =


0 z < zl

Φ(z) zl ≤ z ≤ zr

1 z ≥ zr .

(2.14)

We form a characteristic equation where G′(F ) is the speed of the curve emerging

from x0.

x(τ) = x0 + τG′(F (x0, 0)) (2.15)

The speed characteristics for a two player game are G′(0) = q, which represents

the rate of the player with lowest points and it is denoted by (zl), and G′(1) = p, which

represents the rate of the player with higest points and it is denoted by (zr). There

are two regimes in two agent games. First is the case where p > q, and the second is

the case where q ≥ p. Figure 2.2 represents a graph solution for p > q. For this case,
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we have F (z) = 1 where z > p and F (z) = 0 where z < q. From the ansatz,

G′(Φ) =
x

τ
≡ z. (2.16)

We get Φ(z) for the region q ≤ z ≤ p,

Φ(z) =
z − q
p− q

. (2.17)

0 0.2 0.4 0.6 0.8 1
z

0

0.2

0.4

0.6

0.8

1

F(
z)

Figure 2.2. A graph for solution of p > q. The circles represent the simulation and

the line represents the analytical solution.

For the case of p ≤ q, the characteristics intersect. Players with higher points

get lower winning probabilities against players with lower points which will lead to a

shock solution in a hydrodynamical limit. The shock speed for any G(F ) is given by

the equal area construction [8],

v =
G(Fl)−G(Fr)

Fl − Fr
(2.18)

where Fl and Fr are right and left discontinuities. In this situation where p < q,

Fl = 0and Fr = 1. The integral of G′(F ) is,

G(F ) =
(p− q)F 2 + qF

2
. (2.19)
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When we solve Equation (2.18), we find v = 1/2. The shock will be at 0.5 and

areas crossing the intersection point are same. Figure 2.3 represents a graph for the

situation p ≤ q.

0 0.2 0.4 0.5 0.6 0.8 1
z

0

0.2

0.4

0.6

0.8

1

F(
z)

Figure 2.3. A graph for solution of p ≤ q. The circles represent the simulation. The

shock is at 1/2.
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3. THREE AGENT GAMES MODEL

As we mentioned before this model was previously studied in detail by Mungan

and Rador, 2007 [8]. The concept of the game is the same with the two agent model

we studied in the previous chapter. The game is played among a large number of

players. In this model we have three participating agents.

3.1. The Model

Points of the three agents, ordered from highest to lowest are denoted by x, y, z

and winning probabilities are denoted by p, t and q respectively. As we mentioned

earlier, agents participating the competition with the same score will be evaluated on

the basis of equal likelihood. Accordingly our microscopic rules for this model would

be,

(x > y > z) =⇒ (p, t, q)

(x = y > z) =⇒ (
p+ t

2
,
p+ t

2
, q)

(x > y = z) =⇒ (p,
t+ q

2
,
t+ q

2
)

(x = y = z) =⇒ (
1

3
,
1

3
,
1

3
). (3.1)

As in two player games, we need the function fx to observe the changes in the

number of players in a particular score range. This function is a fraction of the number

of agents over the whole game players.

∑
x

fx = 1 (3.2)

Changes in an arbitrary fx occur when a player with x − 1 points wins a game

and enters, or a player with x points wins a game and leaves fx. Therefore the changes
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in fx with respect to time would be written as,

∂fx
∂τ

=
∑
y,z

fx−1Wx−1,y,zfyfz −
∑
y,z

fxWx,y,zfyfz. (3.3)

Remember that Wx,y,z denotes the winning probability of the players. Its value

is set by the microscopic rules in the Equation (3.1). On the ground that we have

three players, the average point of players is,

x(τ) ≡
∞∑
x=0

xfx =
τ

3
. (3.4)

We remember from the previous chapter that the cumulative distribution of the

point rate for an arbitrary points of x is defined as,

Fx ≡
x−1∑
x′=0

fx′ (3.5)

which turns out,

Fx+1 ≡
x∑

x′=0

fx′ ⇒ fx = Fx+1 − Fx. (3.6)

If we get the sum of Equation (3.3) over x we get,

∂F

∂τ
= −fx−1

∑
y,z

Wx−1,y,zfyfz. (3.7)

Note that we ignored the f−1 part of the equation since there can not be negative

points. The right handside of the equation denotes the winning probability of the

player with x points against all other competitors. As we mentioned earlier that Wx,y,z

stands for the winning probability of the ordered agents against its competitors and it

is determined by the ordering of the points revealed in Equation (3.1). Summing over
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the rate equations in (3.3) we get a closed equation for the cumulative distribution,

∂Fx
∂τ

=− fx−1[pF
2
x−1 + 2tFx−1(1− Fx) + q(1− Fx)2]

− 2
(p+ t)

2
f 2
x−1Fx−1

− 2
(t+ q)

2
f 2
x−1(1− Fx)

− 1

3
f 3
x−1. (3.8)

The first line of Equation (3.8) represent the bulk of interactions between agents

with different scores. The bulk part of the equation is quadratic since we have three

agents. Second and third lines represent the case that two agents have the same points

and the last line represent the case that every agent participating in the competition

have the same score.

We can also show Equation (3.8) in a graphical representation that x-axis and

y-axis refers to the possible opponents of the player with a score x − 1. All players

positioned on the lines according to their scores.

Fx−1

Fx−1

1−Fx

1−Fx q

p

t

t

Figure 3.1. Graphical representation of the equation of cumulative distribution.

The player with x − 1 points is represented with a filled circle. On Figure 3.1

dashed lines represent the opponents with less than x − 1 points and the dot-dashed

lines represent greater than x − 1 points. The areas represent the bulk interactions

where all players have different scores and the interfaces represent the cases where two

players have the same score. The filled circle represents the last line of the equation

where all players in the competition have the same score. From this figure one can

calculate the bulk interactions by summing up the areas. A sum along the interfaces
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would give us the result of second and third lines of Equation (3.8). As we mentioned

previously, the dot represents the cases where all players have the same points and in a

continuum limit the dot and interface terms would break the balances between points

aparting the points of the players from each other. This would lead the importance of

the interface terms to decline and the bulk interactions become the dominant factor

of the game. As a result, the Equation (3.8) may be written as,

∂Fx
∂τ

= −∂Fx
∂x

G′(F ) (3.9)

with,

G′(F ) ≡ pF 2 + t(1− F )F + q(1− F )2. (3.10)

In the Equation (3.10), G’(F) is not linear as it was in two agent games but it

is a quadratic function. This means that G’(F) is not a function that monotonously

increase or decrease and F has discontinuities like shocks. Defining the scaling ansatz,

F (x, τ)⇒ F (z ≡ x

τ
) (3.11)

we would get,

dF

dz
[−z +G′(F )] = 0. (3.12)

When G′(F ) = z, F is concave up or down in z.

3.2. The Regimes of Three Agent Games

The regimes emerged from the solution of F are:

• C− : p > t ≥ q and t < 1/3,

• C0 : t = 1/3 > q,

• C+ : t > 1/3 and p ≥ t,
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• C+
S : p < t and q ≤ 1/3,

• S : q ≥ 1/3 > p,

• C−S : q > t and p > 1/3.

A general form of the solution for all regions is,

F (z) =


0 z < zl

Φ(z) zl ≤ z ≤ zr

1 z ≥ zr.

(3.13)

As G′(F ) = z, we find the roots of Φ±(z) as,

Φ±(z) =
q − t± [(q − t)2 + (1− 3t)(z − q)]1/2

1− 3t
. (3.14)

In the extreme competitive limit where p goes to one, Equation (3.14) would

yield,

Φ±(z) =
√
z. (3.15)

We introduce two metrics, namely “social indices ” [8], which define the score

distributions of the players in their societies. Equation (3.16) is the ratio of the lowest

and highest points and Equation (3.17) is the length of the score region that the agents

are distributed over total points.

ω ≡ f(zl)

f(zr)
=
F ′(zl)

F ′(zr)
(3.16)

σ ≡ zr − zl
1

(3.17)

Note that F is the cumulative distribution of all players in a particular score

range and cannot have multiple values. In regimes that G’(F) is not monotonous we
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see regions with multiple values because of a shock. Those cases are solved with an

equal area construction.
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p=0.7   t=0.2   q=0.1

Figure 3.2. Graph for the solution in regime C−. The circles represent the data from

the simulation and line is the analytical solution.

3.2.1. C− : Middle class society with mild hierarchy

In this regime G′(F ) is a monotonously increasing function from q to p. We can

define zl = q and zr = p. Φ+(q) = 0 and Φ+(p) = 1. From the Figure 3.2, we can see

that F is a concave function which implies that most of the agents are in the lower

range. This is also consistent with the fact that the players which are in the middle of

the sorted agents win a competition with a probability less than 1/3. Observing the

social indices we would get,

ωC− =

√
1 +

(1− 3t)(p− q)
(q − t)2

> 1 (3.18)

σC− = p− q (3.19)

where ωC− > 1 shows the bias in the distribution that opposes two agent games. At

an extreme point p = 1− 2t and q = t, Φ becomes,

Φ(z) =

[
z − t
1− 3t

]1/2

(3.20)
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where ω diverges as a simple pole meaning that most of the agents are near the

lowest scores in the situation that z = q.
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0

p=0.567   t=0.333   q=0.1

Figure 3.3. Graph for the solution in regime C0. The circles represent the data from

the simulation and line is the analytical solution.

3.2.2. C0 : Pure middle class society

From the general form, we have zl = q, zr = p.

Φ(z) =
z − q
p− q

(3.21)

As middle player wins with a probability of 1/3, this solution is quantitatively

same with the two agent games where p > q. The behavior of the middle player is like

a random walk.

The social indices give us,

ωC0 = 1, (3.22)

σC0 = p− q (3.23)

which means the number of highest scored players are the same with the players with

lower scores.
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Figure 3.4. Graph for the solution in regime C+. The circles represent the data from

the simulation and line is the analytical solution.

3.2.3. C+ : Middle class society with mild anti-hierarchy

From the general form of the equation we have zl = q, zr = p. t > 1/3 implies

that the most of the players will be at the higher regions. An extreme case that p = t

and q = 1 − 2t may be considered one step before a shock. For this case we have a

particular Φ(z),

Φ(z) = 1−
[
1 +

z − q
1− 3q

]1/2

(3.24)

where the social indices are,

ωC+ =

√
1− |1− 3t|(p− q)

(q − t)2
< 1, (3.25)

σC+ = p− q. (3.26)

In this case ωC+ = 0 which confirms that most of the players are close to the

highest score where z = p.
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Figure 3.5. Graph for the solution in the regime C+
S . The circles represent the data

from the simulation and line represents the shock. Areas of A1 and A2 are equal.

3.2.4. C+
S : Anti-hierarchical society

In this regime G′(F ) is not monotonous which yields a shock front at zr. From

the general form of the solution, zl = q and the location of zr is determined by equal

area rule,

G′[Φ(zr)] =
G(1)−G(Φ(zr)

1− Φ(zr)
(3.27)

which yields a Φ(z) like,

Φ(zr) =
1− 3q

2(3t− 1)
(3.28)

and for G′(Φ(zr)) we obtain,

zr = q +
3q − 1

4(1− 3t)
(4t− q − 1). (3.29)

There is a jump from F = Φ(zr) to F = 1 and we have a shock discontinuity

at zr. Note that as t > p in this game it is a disadvantage to have a higher score

since middle points are favored in this society. This situation decelerates the rate of
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the players at the highest point level of the spectrum, which turns out that a player

winning a game will be less favored and a player losing a game will be more favored

having a chance to recover its position at the shock region.

Another interesting point is that when two players from the shock region and one

player from the below region are selected, the winning probability of the higher two

would be (p + t)/2 and the player with the lower point’s probability will be q, where

q < 1/3. This means that player with lower points would be disfavored automatically,

resulting in a continuous population below the shock region. As we have discontinuity,

in general form we have an F like below.

F (z) = Φ(z) + [1− Φ(zr)]Φ(z − zr) (3.30)

where our social indices would become like,

ωC+
S

=
constant

δ(0)
, (3.31)

σC+
S

=
4t− q − 1

4

(
1− 3q

3t− 1

)
. (3.32)
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Figure 3.6. Graph for the solution in the regime S. The circles represent the data

from the simulation and line represents the shock. Areas of A1 and A2 are equal.

3.2.5. S : Egalitarian society

In this regime G′(F ) is monotonously decreasing with F. Let’s denote that the

resulting discontinuity is z∗. The shock speed comes out as 1/3, i.e. we have zl = zr =
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z∗ = 1/3. Note that in the case that p > t and p < 1/3, we have a discontinuity at z

covering whole interval of F so that the shock speed is again 1/3 and z∗ = 1/3. The

social indices are ωs = 1 and σS = 0 meaning that all players share the same wealth.
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Figure 3.7. Graph for the solution in the regime C−S . The circles represent the data

from the simulation and line represents the shock. Areas of A1 and A2 are equal.

3.2.6. C−S : Hierarchical society

In this regime shock is at zl and zr = p. From the equal area construction we

get

Φ(zl) =
3(q − t)
2(1− 3t)

(3.33)

where zl is found as,

zl = q − 3(q − t)2

4(1− 3t)
(3.34)

In this form, q > t means that lower points are favored than middle points. And

p > 1/3 yields that p > (p + t)/2. This means that players with higher points are
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trending towards the right side of the shock. The social indices are,

ωC−S
=
constant

δ(0)
, (3.35)

σC−S
= p− q +

3(q − t)2

4(1− 3t))
. (3.36)

ωC−S
diverges much more strongly than the simple pole divergence in regime C−.

−

C0

p

C

CS
−

t

S−

q

C+

CS
+

Figure 3.8. The phase diagram of the three-agent game presented on the plane

p+ t+ q = 1. The thin black curve represent the resolution of a three-agent game in

terms of two-agent mini tournament described in chapter 5.

Figure 3.8 is a phase diagram on the plane p + t + q = 1 that all regimes are

represented in a combined form. The three corners represent the probabilities p, t, q

equal to 1. For the edges of the triangle at the line pt, q = 0 and at the line qt, p = 0

and finally at pq, t = 0. The dot gives the point where p = t = q = 1/3. And the

thin curve represents the resolution of three agent games in terms of two agent games

which is discussed in detail in chapter 5.
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4. GENERALIZATION OF n+ 1 AGENT GAMES

The geometric representation in chapter 3 for Equation (3.8) can be generalized

to an n+1 agent game model. The concept of the game is same with two and three

agent games. n+1 agents are selected from a large number of players. The distribution

of the winning probabilities depend on the sorted points of the selected agents. The

form of the equation is considered only in a hydrodynamical limit, where we focus

only the bulk interactions. Game is constructed by picking a point in an n-cube and

splitting its volume into n-1 planes by drawing line that passes through this point, each

are orthogonal to each other and intersecting side. The binomial coefficient represents

the number of equivalent n-volumes[8]. Accordingly, the formula comes out as,

∂F

∂τ
= −∂F

∂x
G′(F ). (4.1)

where,

G′(F ) =
n∑
k=0

(
n

k

)
pk(1− F )kF n−k. (4.2)

As mentioned before, the winning probabilities are set by ordering the points of

the players and kth highest score will get a probability of pk.

n∑
k=0

pk = 1 (4.3)

For n+ 1 players, the mean score is,

x(τ) =
τ

n+ 1
(4.4)
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4.1. An Example of Analytically Solvable n+ 1 agent game

The generalized function is,

∂F

∂τ
= −∂F

∂x
G′(F ) (4.5)

with,

G′(F ) =
n∑
k=0

(
n

k

)
pk(1− F )kF n−k. (4.6)

Let the pk be derived by an s variable powered by k,

pk = αsk, (4.7)

forming a binomial expansion,

α
n∑
k=0

(
n

k

)
sk(1− F )kF n−k

︸ ︷︷ ︸
[s(1−F )+F ]n

(4.8)

which makes the equation (4.5) analytically solvable. Sum of pk written as a multiple

of sk gives us,

n∑
k=0

pk = 1⇔
n∑
k=0

αsk = 1 (4.9)

gives us a geometric series resulting with an analytical solution,

n∑
k=0

αsk = α
1− sn+1

1− s
= 1. (4.10)
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It turns out that

α =
1− s

1− sn+1
. (4.11)

Construction of α as a scaling variable accepts pk < 1 for all values of s. From the

ansatz,

F (z) = [−z +G′(F )] (4.12)

we find,

G′(F ) = α[s+ (1− s)F ]n = z (4.13)

If we solve F from this argument, we get,

F (z) =

(
z
α

) 1
n − s

1− s
(4.14)

with α as in Equation (4.11).
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Figure 4.1. Graph solution of n+1 agent games where n+ 1 = 3 and s = 0.4. The

circles represent the simulation and the solid line represents the analytical solution.
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5. MERGER DYNAMICS IN THREE AGENT GAMES

In previous chapters we observed the dynamics of multi-agent games in two

agent, three agent and a generalized n+ 1 agent game models. All these models have

common characteristics that a finite number of players are picked from a large group,

the selected players are ordered with respect to their points from highest to lowest and

they compete against each other with given winning probabilities according to their

points. In all these games there is one probability set assigned among the competitors.

In merger model we studied a case where there are two different competition

types with different probability sets. We studied this case in a condition that these

competition types conflict with each other. To realize this idea, we chose competitive

game as the first type of competitions where highest score is favored. This types of

game is denoted as “no-merger games”. Second type has been merger game where

middle score is favored.

In merger games weaker players combine their points and act as one strong player

against the strongest only if it is an advantageous situation. It is not possible to study

this case in a two agent model as we need at least two players to merger against a

third one. This needs the case to be studied in three agent model at least.

In the case we observe, two players with lower points merge against the player

with the highest point and because of the fact that there will be one winner in a

competition, winning against the strongest player would lead the merging players play

a new game against each other. This suggests a two agent game and it would be

meaningful to resolve the game as a subset of the three agent game in terms of two

agent mini tournaments.
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5.1. Resolution of Three Agent Games in terms of Two Agent Games

Let the players participate in a competition be denoted by x, y, z, where x rep-

resent the player with highest point, y is the middle and z is the one with smallest

point. Winning probabilities are represented by (p, t, q), respectively. Resolving the

game as a subset of three agent games in terms of two agent games would mean that

each player will play a two agent game against all its opponents. We introduce a single

probability variable, (θ), denoting the winning probability of the player with higher

point between the two competitors in a round of the tournament. Accordingly, the

player with lower point will have (1− θ) probability of winning.

As there will only be one player that will increase its points in the competition,

the winner of the tournament will be determined by counting the wins of players for

every round of the tournament. If a player wins more rounds than its competitors, it

increases its points. An analysis on the tournament gives us the following equations

to determine the winning probabilities of the three players:

p = θ2 +
1

3
θ(1− θ)

t = θ(1− θ) +
1

3
θ(1− θ)

q = (1− θ)2 +
1

3
θ(1− θ) (5.1)

The thin line in Figure 3.8 represents this kind of resolution. For θ > 1/2, game

results in in the C− regime and the probability θ = 1/2 means that p = q = t = 1/3,

suggesting a shock and it is represented by a thick dot in Figure 3.8. For the situation

θ < 1/2, the shock remains as the game results in the S regime.

5.2. The Model

In the beginning of chapter 5, we mentioned that there are two types of com-

petitions with different probability sets in merger model. One is a competitive game,
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namely no-merger game, and the second is merger game. While competitive games

are played in the form of two agent mini tournaments, in merger games two players

combine their points against the third one and act as a single player. Table 5.1 shows

all possible merging combinations and the winning probabilities of the sorted agents

for each case. x, y, z denote the points of the players ordered from highest to lowest

while p, t, q represent the assigned probabilities respectively and θ denotes the winning

probability of the player with highest score in a round of two agent mini tournament.

Table 5.1. Table of Merging Conditions

no-merger x-y y-z(y+z > x) y-z(y+z < x) x-z

p = θ2 + θ(1−θ)
3 θ2 ↓ (1− θ) θ θ2 ↓

t = 4θ(1−θ)
3 θ(1− θ) ↓ θ2 ↑ (1− θ)θ ↓ (1− θ)

q = (1− θ)2 + θ(1−θ)
3 (1− θ) θ(1− θ) ↑ (1− θ)2 ↓ θ(1− θ)

In a merger game, it is expected that each merging player increase its winning

probability compared to the probability it would get in a no-merger game. From Table

5.1, we can see that this situation occur only at the fourth column where the players

with middle and the smallest points merge under the condition that the sum of their

points is higher than the player with the highest point. We can define that a merger

occur when,

y + z > x,

t > t,

q > q, (5.2)

where p, t, q denote the winning probabilities of ordered players for merger game.

5.3. Exact Equation for Merger Model

The general formula of the interactions for merger model is,

∂fx
∂τ

= − ∂

∂x

{
fx

∫
dydzfyfzWx,y,z

}
, (5.3)
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∂Fx
∂τ

= −∂Fx
∂x

{∫
dydzfyfzWx,y,z

}
. (5.4)

We remember from the previous chapters that, fx is the fraction of the players

with x points and Fx represents the cumulative distribution for the rate of x and Wx,y,z

denotes the winning probability which is assigned to the players with respect to the

ordering of the selected players and the type of the game.

It is interesting that with these conditions a player with very small value of z

points and a player with y points very close to x, can merge against x. This means

that whole game is expected to be effected by merger. But an arbitrary player with

r points as a middle player cannot merge with players lower than its score against a

player with 2r or higher points, because there is no possibility that the sum of their

points exceed 2r. This is also true where r is the highest score for players with r/2

points. This suggestion gives us the boundaries for the interactions in the model.

Let’s denote p, t, q as the winning probabilities for a no-merger game, and p, t, q as the

winning probabilities for a merger game. The interactions in merger model gives us

the differential equation for Equation (5.4) as,

∂Fx
∂τ

= −∂Fx
∂x

H (5.5)

H = p[F 2(x)− F 2(x/2)] + pF 2(x/2) + 2(p− p)
∫ x

x/2

dy
∂F

∂y
F (x− y)

+ 2t[F (2x)− F (x)]F (x) + 2tF (x)[1− F (2x)] + 2(t− t)
∫ 2x

x

dy
∂F

∂y
F (y − x)

+ q[1 + F 2(x)− 2F (x)F (2x)]− 2qF (x)[1− F (2x)] + 2(q − q)
∫ ∞

2x

dy
∂F

∂y
F (y − x).

(5.6)

In Equation (5.6), x denotes the observed player and y denotes its opponent in

a single microscopic competition of the two agent resolution of the game. Probability

assignments are dependent not only the order of the points but also the merging option

regulations. We can find some solutions in the extreme ranges where players will play

either a merger game or a no-merger game by definition. But in the sections between

these extreme ranges the interactions are non-deterministic and it is difficult to find
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an exact approach to Equation (5.6). By the help of numerical analysis we are able to

find some explanation about merger model.

5.4. Numerical Approach for Merger Model

From the definitions in Table 5.1 and Equation 5.2, comparing no-merger game

versus merger game yields that merger is effective at,

θ >
3

5
. (5.7)

Observing the results of games in the range of θ from Equation 5.7 to one, gives

us an idea about the dynamics of merger. It gets clearer what happens on the regime

at some extreme points. Figure 5.1 represents a graph solution where θ is close to

3/5. The solid line in the graph shows a competitive game which results in C−. The

circles represent the simulation of merger game which results in a shock solution. This

yields an anti-hierarchical society which is denoted by C+
S for three agent games. zl

represents the leftmost point of the shock and zr is the rightmost of the shock.
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Figure 5.1. Graph for the solution where θ = 0.75, zr < 2zl. The circles represent the

simulation and solid line represents the game without a merger option

In Figure 5.1 zr < 2zl suggests that when we pick two arbitrary players, it

is certain that sum of their points will always exceed the maximum points gained.
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This yields a game which is totaly dominated by merger. At an extreme point where

zr = 2zl, the players in the zr bunch start to play no-merger game against the players

near zl. Calculating θ for zr = 2zl by the help of Equation (3.29) yields,

θ =

√
13 + 1

6
≈ 0.77. (5.8)

For θ values that are higher than Equation (5.8), zr > 2zl holds. The effect of

the no-merger games show it self as a collapse in the leftmost part of the graph. This

forms another shock with boundaries zl and say z∗. The players in zr play no-merger

games with the players lower than z∗. Figure 5.2 shows that situation.
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Figure 5.2. Graph for the solution where for θ = 0.79, zr > 2zl. The solid line

represents the simulation.

At the extreme point of zr = 2z∗, the players at zr become completely isolated

from mergers against the players at z∗ but there are still players between z∗ and zr

and these players will still play merger games against the players at z∗. zr = 2z∗ occur

at θ ≈ 0.8. We should mention that this value of θ is observed by numerical analysis

and we do not have an analytical explanation for this case.

A slight increase of θ from 0.8 leads the players between z∗ and zr deplete the

area. This forms a complete isolation of the players at zr from merger games against

all lower bunches. Figure 5.3 represents this effect. It is not necessary that the players
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in zr have the same points. Most of the players in this bunch have points very close

to each other. This shows that the players in zr will mostly play merger games with

the players in its own range which will be mentioned as “self games”.
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Figure 5.3. Simulation results for θ = 0.85, zr > 2z∗.

The leftmost part of the Figure 5.3 is merger dominated in itself. It has a

similar structure with Figure 5.2. Denoting L as a player from left bunch and R as a

player from right bunch, a list of interactions between two bunches for every possible

combination that three players are picked in Figure 5.3 would be:

• L−L−R : as zr > 2z∗ all the players in the right bunch are more than two times

greater than that of left bunch, leadingto no-merger game for all competitions in

this combination.

• L−R−R : because of the fact that point differences of R−R are overcome by

that of L, this combination ends up almost always a merger game.

• L− L− L : this is a merger dominated self game.

• R−R−R : this is also a self game in the boundary of zr with little differences

in players points and they will almost always play merger game.

Increasing θ generates a result that z∗ ≥ 2zl. In this case z∗ also protects itself

from merger against zl and becomes a separate bunch. This is determined as a self

similar structure. The graph at very high values of θ, showing the isolated bunches

and self similar structure, is represented in Figure 5.4.
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Figure 5.4. Graphical representation of the simulation for θ = 0.97.

Figure 5.5 represents the players at the leftmost point of an F (z)− z graph for

all effective θ values. From the derivative of Figure 5.5 with respect to θ, we can see

the transitions of the shocks.
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Figure 5.5. The leftmost agents for all θ values.

Figure 5.6 shows the two type transitions for the shocks. First type represents

the cases where zr = 2z∗ and become separated from the left bunch. The second

transition is the case where z∗ = 2zl which starts a new shock. From the Figure 5.6,

we can see the self similar structure of the game.
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Figure 5.6. The transitions of the shocks across the leftmost bunch

Observing the interactions between bunches we form an ansatz,

Figure 5.7. The interactions between separate bunches.

In Figure 5.7, fn denotes the players in the bunch and Fn+1 denotes the players

below fn. We assume that bunches are separate enough so that a given bunch, fn, is

protected against mergers of any two players from the bunches below. Note that, as

bunches emerge in the direction from one to zero, we enumerate the bunches from the

right to the left. So iterating the possible combinations we listed for Figure 5.3, we

have,

∂F x
n

∂τ
= −∂F

x
n

∂x
H (5.9)
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where

H =pF 2
n+1

+ 2Fn+1{p(F x
n − Fn+1) + t(Fn − F x

n )}

+ 2tFn+1(1− Fn)

+ 2(1− Fn){t(F x
n − Fn+1) + q(Fn − F x

n )}

+ (1− Fn)2q

+ (q − q)
0∑

k=n−1

(Fk − Fk+1)
2

+ p(F x
n − Fn+1)

2 + 2t(F x
n − Fn+1)(Fn − F x

n ) + q(Fn − F x
n )2 (5.10)

For a player with x points in the nth bunch, the last line of H represents the self

game terms which means all players are in fn with the possibilities that the opponents

are lower or higher than x. The first line represents the case that both opponents are

from the below range playing a no-merger game. The second line holds the case that

an opponent in the same bunch or x against an opponent from the same bunch merges

with a player from the lower range. Third line is a no-merger game with one lower

and one upper bunches. While the fourth line represents a case where one opponent

is from the upper bunch and the other opponent is in fn with either lower or higher

points than x. In the fifth line all opponents of x are from the upper bunches. The

sixth line represents the interactions for the regions between bunches. By borrowing

Fk terms of Equation (5.10), we find the characteristic polynomials.

From this sense, in Figure 5.8 by borrowing the location of F1, we determine the

values of zr, z∗ and zl. Because of the equal area rule for the shocks, the areas across

the curves and the graph are equal and the area under the solid line in Figure 5.8 is

2/3 by construction. For more than two shocks as in Figure 5.4, borrowing Fk is not

enough for a direct approach.
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Figure 5.8. Simulation results for θ = 0.84. Curves represent the characteristic

polynomials.

At the extreme competitive limit where value of θ = 1,

p, t, q =⇒ 1, 0, 0

p, t, q =⇒ 0, 1, 0 (5.11)

the Equation (5.9) becomes,

∂F x
n

∂τ
= −∂F

x
n

∂x

{
F 2
n+1

+ 2Fn+1(Fn − F x
n )

+ 2(F x
n − Fn+1)(Fn − F x

n )
}
. (5.12)

From our observations we expect that the shocks occur in a scaling behavior in

the extreme competitive limit. To study the scaling let us isolate the first shock and

consider the system as such. We assume the shock is protected from merger of the

two players from the below range.
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Figure 5.9. Represents the isolated rightmost shock region

We separate the total interactions into two parts. f0 denotes the players in the

bunch and fL denotes the players below the bunch. Accordingly we have,

fx = fxL + fx0 (5.13)

Observing these two parts separately we have two equations:

∂fx0
∂τ

= − ∂

∂x
fx0

∫
(f yL + f y0 )(f zL + f z0 )Wx,y,z (5.14)

∂fxL
∂τ

= − ∂

∂x
fxL

∫
(f yL + f y0 )(f zL + f z0 )Wx,y,z (5.15)

x, y, z denotes the selected players. Wx,y,z denotes the winning probability for

the players. Expanding Equation (5.14) will give all interactions for a selected player

from the first shock.

fx0

∫
f yLf

z
LWx, y, z (5.16)

Equation (5.16) means that two players are selected from left bunch and so, it will be

a no-merger game.

fx0

∫
f y0 f

z
LWx, y, z (5.17)

Equation (5.17) refers that players with lower scores one from inside the bunch and

the other is from the below part of the bunch. Which emerges almost always as a
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merger game.

fx0

∫
f y0 f

z
0Wx, y, z (5.18)

In Equation (5.18), all players are from inside the bunch. As the sum of the

points of lower scored players will always be higher than the higher one, this part is

merger dominated. So the formula from the Equation (5.14) comes out like this,

∂F x
0

∂τ
=− ∂F x

0

∂x
{pF 2

1 + 2pF1(F
x
L − F1)

+ 2t(F1)(1− F x
0 ) + p(F x

0 − F1)
2

+ 2t(F x
0 − F1)(1− F x

0 ) + q(1− F x
0 )2} (5.19)

For the Equation (5.15) the expansion reads the combinations as follows:

fxL

∫
f yLf

z
LWx, y, z, (5.20)

Equation (5.20) reads that all players are in the left bunch, namely a self game of left

part. As they are all within boundaries, it is a merger game.

fxL

∫
f yLf

z
0Wx, y, z, (5.21)

Equation (5.21) shows that two players will be from left and one player from f0 bunch.

As we mentioned before we assume that f0 is protected from mergers of lower regions.

Therefore, it is a no-merger game.

fxL

∫
f y0 f

z
0Wx, y, z, (5.22)

In Equation (5.22), two players are in the f0 bunch and their points are close to

each other. The lower one of these two will always catch up the higher one by merging
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with any of the players from left. This case is also a merger game.

From these arguments we can form Equation (5.15) like,

∂F x
L

∂τ
=− ∂F x

L

∂x
{
∫
f yLf

z
LWx,y,z + 2(1− F1)tF

x
L

+ 2(1− F1)q(F1 − F x
L) + (1− F1)

2q}. (5.23)

To observe the scaling behavior we define,

F x
L = F1Φ

x
L (5.24)

where Φx
Lε[0, 1] since F x

Lε[0, F1]. Using this definition we can form the Equation (5.23)

scaled by F1, which yields,

∂Φx
L

∂τ
= −∂Φx

L

∂x
{F 2

1

∫
∂Φy

L

∂y

∂Φz
L

∂z
Wx,y,z

+ 2t(1− F1)F1Φ
x
L

+ 2q(1− F1)F1(1− Φx
L)

+ q(1− F1)
2}. (5.25)

In the extreme competitive limit defined in Equation (5.11), all parts on the right

hand side of the Equation (5.25) except the first line will vanish. When we look at the

Equation (5.26) we will see the self similar structure of the game.

∂Φx
L

∂τ
= −∂Φx

L

∂x

{
F 2

1

∫
∂Φy

L

∂y

∂Φz
L

∂z
Wx,y,z

}
(5.26)

F 2
1 acts like a scaling factor of the original formula, which we introduced at equa-

tion (5.6). The scaling ansatz which we first defined in two agent games in Equation



38

(2.13) becomes,

dΦL

dz

[
− z

F 2
1

+G′[ΦL]
]

= 0.
(
z =

x

τ

)
(5.27)

We scaled F with a variable Φ and z with its square. To observe this scale in the

whole regime we apply it to Equation (5.5). The shock locations are found with

the equal area rule which yields,

vn =
1

3
[F 2
n + FnFn+1 + F 2

n+1] (5.28)

In the view of the scaling ansatz we assume

Fn = Φn (5.29)

which yields,

fn = (1− Φ)Φn (5.30)

∞∑
n=0

fn = 1. (5.31)

Forming Equation (5.28) with the help of Equation (5.29), we would get,

vn =
(1 + Φ + Φ2

3

)
Φ2n (5.32)

where,

v0 =
(1 + Φ + Φ2

3

)
. (5.33)

v0 denotes the location of the first shock. The mean speed emerges from the
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construction of the game which is,

∞∑
n=0

vnfn =
1

3
. (5.34)

Because of this we cannot use it to find the value of v0 and we take v0 by applying an

extrapolation on the graph in Figure 5.10 which shows the rightmost points for all θ

values. From this graph we find the value of v0 as,

v0 =
2

3
(5.35)

This value means that the fastest moving agents move twice as fast as the mean

speed of the whole players. Solving Equation (5.33) with Equation (5.35) we find,

Φ =

√
5− 1

2
=⇒ (golden ratio -1) (5.36)
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Figure 5.10. Represents the location of the rightmost shock. Red line represents the

extrapolation on the data

In the extreme competitive limit where p and t go to one, and all other possibili-

ties go to zero, one would ask that why the player with the lowest score participates a

merge while the winning probability it would get from a merge, denotingly q, goes to

zero. That is because q, the probability it would get from a no-merger game, is also
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goes to zero. Observing this in a case that θ is very close to one, we assume that,

θ = 1− ε. (5.37)

where ε is a very small number. From the equations in Table 5.1 we would get,

q = ε2 +
ε(1− ε)

3
≈ ε

3
,

q = ε(1− ε) ≈ ε. (5.38)

From the expressions in 5.38 we would understand that, by participating in a

merge, the player with lowest score increases its winning probability approximately

three times compared to the the winning probability it would get from a no-merger

game. That’s why the player with lowest score among the selected three players would

participate a merge in extreme competitive limit even the probability it would get

from a merge goes to zero.
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Figure 5.11. Simulation results for θ = 1, representing the extremely competitive

limit of merger game.

Figure (5.11) represents the graph solution of merger model in the extreme com-

petitive limit. The circles represent the simulation output, the solid line represents the

theoretical solution, the curve is the graph representation of
√
z which is the solution

of competitive games in extreme competitive level introduced by Equation (3.15). We
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can see from Figure 5.11 that merger model confirms the competitive pattern of the

game. But the effect of merger games yields sub-societies in the regime. In an ex-

tremely competitive limit the emergence of these sub-societies show a scaling behavior.

In competitive games where p > t > q, most of the players are in the lower ranges. In

merger model, players are distributed in separate sub-societies and for an individual

player moving from one society to another becomes very hard when these sub-societies

become isolated from other sub-societies.

5.5. Restraining Merger

We observed that merger game significantly increases the competitiveness of the

regime which yields sub-societies in a competitive game. We introduce an approach

to constraint this effect.

As we mentioned before, on average, each player is expected to participate a

single competition against all other players during a round, which defines the unit

time and denoted by τ . Because of this the maximum points that a player may

theoretically gain is equal to τ . As a restriction, we suggest that a merger is allowed

if the points of all players participating in a competition are higher than τ/2.

x > y > z > τ/2 (5.39)

We study this case separating the points into two parts .The first part is the case that

all players have points with less than τ/2 and For the second part, at least one player

will be higher than τ/2. L denotes the group of players with points that are equal to

or lower than τ/2 and R denotes the group of players with points that are higher than

τ/2. p, t, q denote the winning probabilites for a no-merger game and p, t, q denote

the winning probabilities for a merger game.

The first part is definitely a no-merger game. All the players are in L and there

is no possible combination for a merger. For this part, the interactions of the selected
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player according to their ordering yields,

HL = pF 2 + 2t(1− F )F + q(1− F )2. (5.40)

We study the second part by observing the selected players individually. We

know that there will be at least one player from R. Let’s denote the points of this

player as x. If all the opponents of the player with x points are from L, than there

will be a no merger game. If one of the players are from L there may a merger or no

merger game, and if all players are from the group R there will be merger game. This

observation yields,

HR =pF 2 + (p− p)(F − F ) + 2tF (1− F ) (5.41)

+ 2t(1− F )(F − F ) + q(1− F )2 (5.42)

F denotes the value of F at z = 1/2. We found that HL(F ) 6= HR(F ) where the

difference is small. The points zl and zr are observed in the extreme competitive limit.

In the extreme competitive limit, where θ, p and t goes to 1, the solution of F is,

F (z) =


√
z z < 1/2,

1
2
[
√

2 + 1−
√

2
√

1− z] 1/2 ≤ z ≤ zr,

1 z > zr,

(5.43)

with,

F = 1/
√

2 (5.44)

zr =
2
√
z − 1

2
(5.45)

In this limit ,

zr − zl = HR(F )−HL(F ) = (q − q)(1− F )2 (5.46)
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as we can write q and q in terms of θ we find,

q − q = θ(1− θ)2

3
− (1− θ)2. (5.47)

(5.48)

For θ goes to 1, we can define,

θ = 1− ε (5.49)

where ε has a very small value and equation (5.47) becomes,

q − q = (1− ε)2ε

3
− ε2 (5.50)

(5.51)

Therefore Equation (5.46) can be written as ,

zr − zl = ε
{2

3
− 5ε3

}
(1− F )2 (5.52)

(1−F )2 is also very small since F is not very small. So in general zr− zl is very small

and they are equal at z = 1/2.

Figure 5.12 represents the solution for the restricted merger game. We can

see from the figure that left handside of the graph confirms the competitive games

solution for the extreme competitive limit as only no-merger games were played in

this region. The right handside shows a mild convergence due to the merger effect. In

this configuration only the riches merge against each other. As we can see from the

Figure 5.12 there are no sub-societies in this game. The seperation at z = 1/2 is very

small for all values of θ and it vanishes at the extreme competitive limit.
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Figure 5.12. Represents the solution for restricted merger game in the extreme limit

of competitiveness.
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6. SIMULATION

We have four topics that we observed in this research,

• Two agent games

• Three agent games

• n+1 agent games

• Merging option in three agent games

In these simulations we observed the cumulative distribution of the players amongst

their points normalized by time, (F (z) − z graphs), to analyze the changes in social

regimes. Games have generic rules which only differentiate by the characteristics of

each model. Observing these circumstances we developed a single n-player simula-

tion engine where we give all requirements as program arguments. Merger option is

implemented and observed only for three agent games.

The arguments of the program cover the total number of players, (N), the number

of players that participate in a single competition, (n), this is also one of the identifiers

for the model we run the simulator, the time variable, (TOUR), histogram range,

(HIST ), merger condition. If merger strategy is chosen rather than no-merger game

then θ also stated here. For the last set of the arguments the winning probability

configuration for no-merger game is stated here, (pk). Whe the program is executed,

arguments are parsed and necessary arrays are allocated dynamically according to

the arguments. We used gsl block 1 data types for an accurate allocation and ease of

use. We also used gsl random number generator with the default generator algorithm

known as Mersenne Twister generator , introduced in 1998 by Makoto Matsumoto

et.al. [9], which provides a period of about 106000.

1GSL is GNU Scientific Library. One can obtain the reference manual from
http://www.gnu.org/software/gsl/
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The game starts in the loop limited with TOUR parameter where each loop con-

sists of N/n competitions. This structure provides ease in the calculation of theoretical

maximum points that a player would gain and one can expect that it provides statisti-

cally every player participating a competition with all other players in a hydrodynamic

limit of time.

A competition starts with selection of (n) number of players . After the se-

lection the points of the players are sorted from highest to lowest and their winning

probabilities are set. Same points are be treated on the basis of equal likelihood.

If it is a merger game than the merging conditions are checked and the winning

probabilities are recalculated which are covered in the previous chapter. A compari-

son on the merger probabilities and the no-merger probabilities provides us if it is a

convenient condition to merge on the base of the rule (5.2). As we gather all the infor-

mation we need to play a competition we initiate the competition by picking a uniform

random number. The location of this number in the line of the winning probabilities

of the players in a cumulative distribution determines the winner of the game where

a player increases its points by one.

For a merger game, three agent games are simulated as a resolution of the game in

two agent mini tournament. From the Table 5.1 we can see the probability distributions

amongst the players according to the games characteristic as a merger or no-merger

game is played. So with the simulation one would prefer either producing all that six

regulatory variables with the help of a unique variable, θ, or can give an arbitrary

no-merger probability set and observe an individual case. As an example, in the range

of θ = 0.95 observing the condition 1 where merging option is dependent to the rules

t > t

q > q

M + S > L
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We can check from Table 5.1 that simulator will calculate the no-merger proba-

bilities as, p = 0.919, t = 0.063, q = 0.018. The winning probabilities for merger games

will be p = 0.05, t = 0.9025, q = 0.0475. The resulting graph of this configuration

is represented in Figure 6.1. This game is a merger dominated game with multiple

shocks.
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Figure 6.1. Simulation results for θ = 0.95. Simulator calculated probabilities

are,p = 0.919, t = 0.063, q = 0.018.

If one configures a game with the same θ and define no-merger probabilities

as p = 0.7, t = 0.2, q = 0.1, the program will calculate the winning probabilities for

merger games same with the example above. But one can see from Figure 6.2 that this

configuration is not influenced by the merger option. It is because in this configuration

players can merge only at interface terms where y = z. At bulk interactions q < q and

players cannot merge.
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Figure 6.2. Simulation results for θ = 0.95, p = 0.7, t = 0.2, q = 0.1.



48

Note that the process of the simulation has characteristics of Monte Carlo method,

a recursive integration and as the winning probabilities are dependent to the points

of the picked players, the process is sequential but the range of θ can be parallelized.

Simulation collects the points of the players, normalizing the points with time, gives

a histogram at a given range as output.
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7. CONCLUSIONS

We studied multi-agent dynamics in two, three agent game models and we ob-

served that the social regimes emerge from the ordering of the winning probabilities in

these models. Two agent games yield two different societies. One is pure middle class

society where the number of players with the highest score is the same as the players

with the lowest scores. The second regime yields in an egalitarian society where all

players share the same wealth. In three agent games, we studied six different societies

which were introduced by Mungan and Rador [8]. On the back of methodologies in-

troduced in two and three agent games, we studied a general n+ 1 agent game model

and introduced an analytically solvable approach for this generalized model.

In all these models, a game is defined as a series of microscopic competitions

where in each competition a finite number of players are randomly selected and ordered

according to their points. A winning probability is assigned from a single probability

set, to each player with respect to the ordering of the points. From this perspective

we studied merger game model in three agent games. In this model there are two

conflicting competition types. First is a competitive game and the second is merger

game. By definition, merger games refer two agent games. Which led us to resolve

three agent games in terms of two agent mini tournaments. The probability sets for

each type of competitions are generated by the help of a single variable denoted by

θ. From the core rules of the model we found that merger is effective at θ > 3/5 and

increasing θ means increasing the competitiveness of the game. θ = 1 is considered

as the extreme competitive limit. In three agent games the solution for this limit is

represented in Equation (3.15).

The exact equation for the merger model is represented in Equation (5.5) and

Equation (5.6). Unfortunately an analytical approach for these formulas is not ap-

parent. Nevertheless with numerical analysis, we could understand some of the char-

acteristics that came out from the model. By simulating the model in the range of

θ, we observed the effect of merger games when the competitiveness of the game was
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increased.

In the effective range of θ, playing the game without a merger option mostly

yields a C− society which we explained in section 3.2.1. We observed that merger

model yields C+
S society where a shock emerges.

For lower values of θ, game is totally dominated by merger games. Increasing

the value of θ, we found that at some extreme values of θ the players at shock regions

become isolated from merged players in lower regions and form a sub-society and

other shocks emerge with a self similar structure. This behavior occur in two types of

transitions. The θ values that transitions emerge are represented in Figure 5.6.

Analyzing the interactions between the sub-societies, we introduced the charac-

teristic polynomials for two shock solution . As one can see in Figure 5.8,by borrowing

one term from the simulation data we found that polynomials fit the shocks.

To observe the emergence of the shocks show a scaling behavior in the extreme

competitive limit, we isolated the first shock and observed the system as two parts.

We found out that scaling the system with Φn yields the shock locations scaled by Φ2n

and by taking the location of the first shock from the simulation data, we find Φ as

“golden ratio− 1”.

In extreme competitive limit, we observe that the game confirms the competitive

pattern in Equation (3.15) but it forms sub-societies with a scaling behavior.

In conclusion, merger model leads to a significant increase in the competitiveness

of the regimes. It would be interesting to apply this model to realistic data. This model

can be applied to the cases where extreme competitiveness is observed.
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APPENDIX A: SIMULATION SOURCE CODE

// This program is a generic simulation for n-player games

// with merger option implemented only for three player

// games.

//

// Copyright (C) 2009 Rustu Derici <rustuderici@gmail.com>

//

// This program is free software: you can redistribute it

// and/or modify // it under the terms of the GNU General

// Public License as published by the Free Software

// Foundation, either version 3 of the License, or any

// later version.

//

// This program is distributed in the hope that it will

// be useful, but WITHOUT ANY WARRANTY; without even the

// implied warranty of MERCHANTABILITY or FITNESS FOR A

// PARTICULAR PURPOSE. See the GNU General Public

// License for more details.

//

// You may have a copy of the GNU General Public License

// version 3 from <http://www.gnu.org/licenses/gpl-3.0.txt>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include <gsl/gsl_rng.h>

#include <gsl/gsl_histogram.h>

#include <gsl/gsl_sort.h>
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#include <gsl/gsl_block.h>

// function checks for the condition 1 ( y+z >= x )

// for a merger option. It returns true or false.

int merger_condition1( gsl_block_int *player_point,

gsl_block_int *agent_index,int n);

// function checks for the condition 2

// ( z >= (theoretical max points /2 )

// for a merger option. It returns true or false.

int merger_condition2( gsl_block_int *player_point,

gsl_block_int *agent_index,

int n,int N,int t);

// main condition checking function for merger

int is_merger( int condition, gsl_block_int *player_point,

gsl_block_int *agent_index,int n,int N,

int t);

// calculation of the modified probabilities

// for the merger option

int merger_prob_conf(double prob_merger_p2,

gsl_block *prob_merger);

// after game is finished the resulting histogram and some

// useful information is written to separate files with

// extension .out.dat and .info.dat respectively.

// Files are written to the same directory that program runs

int results( int HIST, gsl_block_int *player_point,

gsl_block_int *player_playedgame,int N,

int n,gsl_block *resul,int MergerCnt,

int NoMergerCnt,int cond,double prob_merge,



53

gsl_block *prob_default,gsl_block *prob_merger,

int t);

// microscopic competition function

int play_game( gsl_block_int *player_point,

gsl_block_int *agent_index,

gsl_block *probs_shared,gsl_rng *r);

// probability deployment function

int prob_share( gsl_block *prob_default,int m,

gsl_block *prob_shr,

gsl_block_int *agent_index,

gsl_block_int *player_point);

// descendingly sorting agents

int sort_agents(gsl_block_int *agent_index,

gsl_block_int *player_point,int n,int N);

//usage information of the agents

int usage(char * pname);

// randomly picking the agents

int select_agents(gsl_block_int *agent_index,

int n, int N, gsl_rng *r);

int main(int argc ,char **argv )

{

// loop variables

int i,j;

// the counter for tour
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int tour_count=0;

// the counter for competitions in a tour

int competition_count;

// normalization of the probabilities should give one

// this variable holds the sum of given probability arguments

double prob_check;

// theta value for the probability modification for merger

double prob_merge_p2;

// limit time for a game

int TOUR;

// histogram range for the results

int HIST;

//total player count

int N;

// agent count that will initiate to a single competition

int n;

// merger condition . 0 means no merger

int condition ;

// minimum number of arguments before probs

int noabp=7;

// count for merger games initiated in the whole played games

int merger_cnt=0;

// count for merger games initiated in the whole played games

int nomerger_cnt=0;

// time variable

int t=0;

// determines if it is a merger game or not

int mflag;

//SETUP GSL RANDOM VARIABLES

const gsl_rng_type * T;
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gsl_rng * r;

gsl_rng_env_setup();

// we set a default seed for the game to analyze

// the differences in the same sequence of randomness.

T = gsl_rng_default;

// random number generator variable

r = gsl_rng_alloc (T);

//INITIALIZATION OF VARIABLES

if (argc< noabp)

{

// if argument count is less than necessary print

// usage and exit the program

usage(argv[0]);

}

N=atoi(argv[1]);

n=atoi(argv[2]);

TOUR=atoi(argv[3]);

HIST=atoi(argv[4]);

condition=atoi(argv[5]);

// if condition 0 is set,meaning no merger game,

// we will not need a merger modifier

if (condition > 0 )

prob_merge_p2=atof(argv[6]);

else

noabp=6;

if ((argc-noabp)!=n && (argc-noabp)!=0 )
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{

// if the given probability arguments are less than the players

// initiating a competition, which is define by n, then print

// this error ,usage information and exit the program

printf("ERROR: you should give exactly same number of winning

possibilities with agent number \"n\" !!\n");

usage(argv[0]);

}

// These are variables with gsl data types

// holds the shared probabilities during each competition in a

// no merger game.

gsl_block *probs_shr=gsl_block_calloc (n);

// holds the shared probabilities during each competition in a

// merger game. Used for merger check, if the modified probabilities

// are higher than actual ones for the merging players

gsl_block *probs_shr_mrg=gsl_block_calloc (n);

// the index of players that participate a competition

gsl_block_int *agents_index=gsl_block_int_calloc(n);

// holds the points of each player

gsl_block_int *player_points=gsl_block_int_calloc (N);

// holds the count of competitions that an individual player initiated

gsl_block_int *player_gameplayed=gsl_block_int_calloc (N);



57

// holds given probability values for a no merger game

gsl_block *probs_default=gsl_block_calloc (n);

// resulting histogram of the game

gsl_block *res=gsl_block_calloc (HIST);

// holds calculated probability values for a merger game

gsl_block *probs_merger=gsl_block_calloc (n);

//Probability configuration and normalization check

prob_check=0.0;

if (argc==noabp && (condition > 0) && n==3 )

{

// this construction is the resolution of three agent games

// in terms of two agent games

probs_default->data[0]=(double)(prob_merge_p2*prob_merge_p2)

+(double)(prob_merge_p2*(1.0-prob_merge_p2)/3.0);

probs_default->data[1]=

(double)(4.0*prob_merge_p2*(1.0-prob_merge_p2)/3.0);

probs_default->data[2]=(double)((1.0-prob_merge_p2)

*(1.0-prob_merge_p2))

*(+(double)(prob_merge_p2*(1.0-prob_merge_p2)/3.0);

prob_check=probs_default->data[0]+probs_default->data[1]

+probs_default->data[2];

}

else if((argc-noabp)==n )

{

for (i=0;i<n;i++)
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{

// setting the default winning probabilities of a no merger game

// and gets their total sum for a check

probs_default->data[i]=(double)atof(argv[i+noabp]);

prob_check+=probs_default->data[i];

}

}

if (((double)prob_check < (double)0.999)

|| ((double)prob_check > (double)1.0001))

{

//sum of given probabilities are not equal to one..

//give an error and usage info and exit.

printf("ERROR: sum of winning possibilities

should be equal to 1 !!\n");

printf(" your sum is : %lf \n",prob_check);

usage(argv[0]);

}

// setting the modified winning probabilities for

if (condition > 0)

merger_prob_conf(prob_merge_p2,probs_merger);

//GAME STARTS

while (tour_count < TOUR )

{

t++; // counting time

competition_count=0; // reset competition counter

while (competition_count < N/n)

{

// unit time is N/n competitions
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//reset merger flag

// default action is always no merger.

// merging is conditional

mflag=0;

select_agents(agents_index,n,N,r);

sort_agents(agents_index,player_points,n,N);

// probabilities for a no merger game is set

prob_share(probs_default,n,probs_shr,

agents_index,player_points);

if (is_merger(condition,player_points,agents_index,n,N,t))

{

//if game is verified as a merger game ,

//modified winning probabilities are calculated.

prob_share(probs_merger,n,probs_shr_mrg,

agents_index,player_points);

//as merger option is set only to three agent games

//we can make controls over indexes without

//generalization this control below checks that

//if the modified probabilities are higher than

//the actual probabilities for merging players

if ( ((double)probs_shr_mrg->data[1]

> (double)probs_shr->data[1])

&&

((double)probs_shr_mrg->data[2]

> (double)probs_shr->data[2])

)

{

mflag=1;

}
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else

{

mflag=0;

}

}

//play is separated from is_merger check for there is also "else"

//option for is_merger where we need not to implement,

// as mflag = 0 by default ,and we reset mflag

// at the beginning of every competition.

if (mflag==0) // this is a no merger game

{

nomerger_cnt++;

play_game(player_points,agents_index,probs_shr,r);

}

else // this is a merger game

{

merger_cnt++;

play_game(player_points,agents_index,probs_shr_mrg,r);

}

for (j=0;j<n;j++)

{

// increase the initiated game count for the players that

// participate the competition.

player_gameplayed->data[agents_index->data[j]]++;

}

competition_count++;

//competition ends here

}
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tour_count ++;

// tour ends here

}

//generating the histogram

results(HIST,player_points,player_gameplayed,

N,n,res,merger_cnt,nomerger_cnt,condition,

prob_merge_p2,probs_default,probs_merger,t);

gsl_rng_free (r);

gsl_block_free(probs_shr);

gsl_block_free(probs_shr_mrg);

gsl_block_int_free(agents_index);

gsl_block_int_free(player_points);

gsl_block_int_free(player_gameplayed);

gsl_block_free(probs_default);

gsl_block_free(probs_merger);

gsl_block_free(res);

return 0;

}

int merger_condition1( gsl_block_int *player_point,

gsl_block_int *agent_index,int n)

{

if (n!=3)

return 0; //function is called only in three agent games

else

{ // if the sum of middle and low points are equal

{ // or higher than high points there will be a merger

if( player_point->data[agent_index->data[1]]

+player_point->data[agent_index->data[2]]
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>=player_point->data[agent_index->data[0]]

)

{

return 1;

}

else

return 0;

}

}

int merger_condition2( gsl_block_int *player_point,

gsl_block_int *agent_index,int n,int N,int t)

{

if (n!=3)

return 0; //function is called only in three agent games

else

{

// if lowest point is greater than the

// (theoretical maximum points)/2, theoretical max=time

if ((double)player_point->data[agent_index->data[2]]

>=(double)((double)(t*1.0)/(double)2.0))

{

return 1;

}

else

return 0;

}

}

int is_merger(int condition, gsl_block_int *player_point,
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gsl_block_int *agent_index,int n,int N,int t)

{

int res=0;

// if merger game is selected at the arguments

// of the program and it is a competitive game

//we check for the convenient conditioning for

// merger game

if ( condition != 0

&&

player_point->data[agent_index->data[1]]

< player_point->data[agent_index->data[0]]

&&

player_point->data[agent_index->data[2]]

<= player_point->data[agent_index->data[1]]

)

{

switch (condition)

{

case 1: //calling for condition 1 check

res=merger_condition1(player_point,agent_index,n);

break;

case 2: //calling for condition2 check

res=merger_condition2(player_point,agent_index,n,N,t);

break;

default:

res=0; // default act is no merger.

}

}

else

res=0;

return res;
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}

int merger_prob_conf(double prob_merger_p2,gsl_block *prob_merger)

{

double q2;

double p2;

p2=prob_merger_p2;

q2=1.0-p2;

prob_merger->data[0]=q2;

prob_merger->data[1]=p2*p2;

prob_merger->data[2]=p2*q2;

return 0;

}

int results(int HIST, gsl_block_int *player_point,

gsl_block_int *player_playedgame,int N,

int n,gsl_block *resul,int MergerCnt,int NoMergerCnt,

int cond,double prob_merge,gsl_block *prob_default,

gsl_block *prob_merger,int t)

{

int i,j;

int maxpoint;

double percentageMerger=0.0;

double percentageNoMerger=0.0;

double totalgames=0.0;

double gamecount=0.0;

char filename[1024];

char filename2[1024];
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char buffer[100];

FILE *fp; // file for output histogram

FILE *fp2; // file for statistical information about the game

// generating filenames

sprintf(filename,"%dplayer_%dagent",N,n);

sprintf(filename2,"%dplayer_%dagent",N,n);

for (i=0;i<n;i++)

{ // default probabilities set to the game

sprintf(buffer,"_%lf",prob_default->data[i]);

strcat(filename,buffer);

strcat(filename2,buffer);

}

if (cond==0)

{

strcat(filename,"_nomerger");

strcat(filename2,"_nomerger");

}

else

{

sprintf(buffer,"_merger_condition%d_theta%lf",cond,prob_merge);

strcat(filename,buffer);

strcat(filename2,buffer);

// if it is a merger game give the merger option

// modified probabilities

for (i=0;i<n;i++)

{

sprintf(buffer,"_%lf",prob_merger->data[i]);

strcat(filename,buffer);

strcat(filename2,buffer);

}
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}

//giving file extensions

strcat(filename,"_out.dat");

strcat(filename2,"_info.dat");

// open files

fp=fopen(filename,"w");

fp2=fopen(filename2,"w");

//allocate histogram

gsl_block *resu=gsl_block_calloc (HIST);

// the maximum points that a player can gain is

// theoretically equal to time

maxpoint=t;

gsl_histogram *h = gsl_histogram_alloc(HIST);

gsl_histogram_set_ranges_uniform(h, 0, maxpoint);

//preparing the histogram

for(i=0;i<N;i++)

gsl_histogram_increment(h,(double)player_point->data[i]);

//getting the histogram

for(i=0;i<HIST;i++)

for(j=0;j<i;j++)

resu->data[i]+=gsl_histogram_get(h,j);

gsl_histogram_free (h);

percentageMerger=(double)MergerCnt/(double)(MergerCnt+NoMergerCnt);

percentageNoMerger=(double)NoMergerCnt/(double)(MergerCnt+NoMergerCnt);

for(i=0;i<N;i++) gamecount+=(double)player_point->data[i]*1.0;
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// writing the statistical data of the game to info.dat file

fprintf(fp2,"GameProbs:%2.3lf-%2.3lf-%2.3lf:",

prob_default->data[0],

prob_default->data[1],

prob_default->data[2]);

fprintf(fp2,"MergeProb(P’’):%2.3lf:",prob_merge);

fprintf(fp2,"MergingProbs:%2.3lf-%2.3lf-%2.3lf:",

prob_merger->data[0],

prob_merger->data[1],

prob_merger->data[2]);

fprintf(fp2,"Total Players---:%d:",N);

fprintf(fp2,"Total Agents----:%d:",n);

fprintf(fp2,"Game MergeCond--:%d:",cond);

fprintf(fp2,"Total GamePlayed:%d:",(int)gamecount);

fprintf(fp2,"Theoretical Max-:%d:",maxpoint);

fprintf(fp2,"Merger Played---:%d:%2.3lf:",

MergerCnt,percentageMerger*100.0);

fprintf(fp2,"NoMerger Played-:%d:%2.3lf:",

NoMergerCnt,percentageNoMerger*100.0);

fprintf(fp2,"Total Agents----:%d:",n);

fprintf(fp2,"Total Players---:%d",N);

//writing the histogram to out.dat file

for(i=0;i<HIST;i++)
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fprintf(fp,"%lf %lf \n",(double) (i*1.0)/HIST,resu->data[i]/N);

fclose(fp2);

fclose(fp);

gsl_block_free(resu);

return 0;

}

int play_game( gsl_block_int *player_point,

gsl_block_int *agent_index,

gsl_block *probs_shared, gsl_rng *r)

{

double game;

int i;

double gamechk;

//a random number is generated

game=gsl_rng_uniform(r);

i=0;

gamechk=probs_shared->data[0];

while(game> gamechk)

{

// to find the range that the random number is,

// we line up the probs of descendingly sorted agents

i=i+1;

gamechk+=probs_shared->data[i];

}
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player_point->data[agent_index->data[i]]++;

return 0;

}

int prob_share( gsl_block *prob_default, int m,

gsl_block *prob_shr,

gsl_block_int *agent_index,

gsl_block_int *player_point)

{

double pcurrent;

double ptmp;

int pos=0;

int count=0;

int i;

while (pos < m)

{

pcurrent=prob_default->data[pos];

count=1;

//as players are sorted we check the count of

//equal points and share their probabilities equally

//otherwise they get the preset value of probability.

while(player_point->data[agent_index->data[pos]]

==player_point->data[agent_index->data[pos+1]])

{

if (pos < (m-1))

{

pos++;

pcurrent+=prob_default->data[pos];

count++;
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}

else

break;

}

for (i=(pos-count+1);i<=pos;i++)

{

ptmp=pcurrent/count;

prob_shr->data[i]=ptmp;

}

pos++;

}

return 0 ;

}

int sort_agents(gsl_block_int *agent_index,

gsl_block_int *player_point,int n,int N)

{

int i;

gsl_block_uint *agents_sorted_index=gsl_block_uint_calloc(n);

gsl_block *agents_point=gsl_block_calloc (n);

gsl_block_int *tmp_index=gsl_block_int_calloc(n);

// as gsl sort engine requires double variables and

// we store them as integers.a conversion buffer is required

for (i=0;i<n;i++)

{

agents_point->data[i]=

(double)player_point->data[agent_index->data[i]];
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}

//descendingly sorting agents

gsl_sort_largest_index(agents_sorted_index->data,

n,agents_point->data,1,n);

//rearranging the indexes

for (i=0;i<n;i++)

{

tmp_index->data[i]=agent_index->data[agents_sorted_index->data[i]];

}

for (i=0;i<n;i++)

{

agent_index->data[i]=tmp_index->data[i];

}

gsl_block_int_free(tmp_index);

gsl_block_uint_free(agents_sorted_index);

gsl_block_free(agents_point);

return 0;

}

int usage(char * pname)

{

printf("USAGE : \n");

printf("if you will use MERGER OPTION (only in three agent games)\n\n");

printf("\t %s N n TOUR HIST merger_condition

prob_merge_p2 p[1] p[2] ... p[n] \n\n",pname);

printf("or \n\n");

printf("\t %s N n TOUR HIST merger_condition

prob_merge_p2 \n\n",pname);
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printf("\t in this option probs will

be calculated by means of two agent tournaments \n\n");

printf("if you will play NO MERGER GAME

you WILL NOT set prob_merge_p2 as: \n\n");

printf("\t %s N n TOUR HIST 0 p[1] p[2] ... p[n] \n\n",pname);

printf(" N: number of total players \n");

printf(" n: number of agents participating a single competition \n");

printf(" TOUR: game cycles ..for each turn agents play n games.\n");

printf(" HIST: Histogram range\n");

printf(" merger_condition:\n 0:no_merger \n

1: y+z>= x \n \t

2: z>= MaxPoints(t)/2 \n");

printf(" prob_merge_p2: it is the p2 value for two

agent simulated three agent game rules on merging \n");

printf(" p[1..n]: winning possibilities of selected agents.\n");

exit(1);

}

int select_agents(gsl_block_int *agent_index, int n,int N,gsl_rng *r)

{

int i,j;

int flag=0;

// randomly picking the agents .

// there should not be agents with the same index number .

while (flag==0)

{

for ( i=0;i<n;i++)
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{

agent_index->data[i]=gsl_rng_uniform_int(r,N);

}

flag=0;

for (i=0;i<n-1;i++)

for(j=i+1;j<n;j++)

{

if (agent_index->data[i]==agent_index->data[j])

{

flag=1;

break;

}

}

if (flag==1)

flag=0;

else

flag=1;

}

return 0;

}
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