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ABSTRACT 

Earthquake Prediction is a mainly unsolved problem. A large number of different 

approaches have been tried and only a small number of attempts were fruitful. A few of 

these are explained briefly in this thesis. One of the most succesful earthquake prediction 

sytems in use today is the Canada-Nevada, CN, algorithm. It is discussed and contrasted 

to the neural networks implemented in the project. 

F or this project the earthquake prediction problem is treated as a time senes 

prediction problem and neural networks that have been used for ordinary time senes 

prediction with some success have been applied to the problem. The data used was treated 

as a two dimensional time series with two variables; the magnitude of the present 

earthquake, and the time elapsed since the previous earthquake. The neural network 

architectures implemented were the" multilayer perceptron network with sigmoidal activation 

function, NADINE, and a mult,ilayer network with chaotic activation function. The results 

were not succesful because of the complex nature of input data and the earthq~ake 

generation process. 
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QZET 

Tam olarak yoziilmemi~ bir problem olan deprem tahmin problemini yapay noron 

aglanna uyguladtk. Manyitiit ve iki deprem arasmdaki zamandan olu~an verilerin bir zaman 

serisini meydana getirdikleri ve bu serinin deprem strast hakkmda tiim gerekli bilgiyi 

iyerdigini kabul ederek, daha once ye~itli zaman serilerini tahmin etmede ve modellemede 

kullamlan bazt noron aglanm yah~tlrdlk. 

Tezde deprem tahmin etme amaclyla kullamlan algoritmalann en b~anhlanndan 

olan Canada-Nevada algorithmasl ktsaca aylklamyor ve bu algoritmanm b~anh olurken, 

tezde uygulanlann b~anslz olmasmm nedenleri tartl~lhyor. Aynca noron algorithmalanyla 

birlikte Box Jenkins yontemi de uygulamyor. 
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1. INTRODUCTION 

One of the central problems of science in the study of naturally occuring phenomena 

is forecasting the future values of a system using the previous and present knowledge about 

its behavior. There are two main approaches to choose for prediction purposes. These are 

the model based approach and the statistical one. The model based approach, which is 

usually expected to be more reliable, requires a priori and usually extensive knowledge 

about the underlying dynamics. Most often this is not available, or the economical or 

physical laws giving rise to the system are not fully understood. In such a situation, a 

stochastic prediction was the only choice until recently. Stochastic prediction schemes 

basically involve a step where they analyze the sequence of observations in order to infer 

from the statistics or dynamics of the process some valuable knowledge on the future 

evolution of the sequence. Another possible approach is using the neural networks. Neural 

networks, like the statistical approach, does not require extensive knowledge about the 

underlying dynamics. However any knowledge about the system can be used to guide the 

choice of the network architecture. This approach assumes that information about the 

generating function, is implicit in the data produced, and the network is trained adaptively 

on a set of data. After the network has learned the mapping in the training set to a sufficient 

error margin, the network is used for prediction. Sometimes it may be necessary to 

preprocess the data to attain logical results, but neural networks, unlike the conventional 

statistical methods that require human intervention and judgement at every stage,. build a 

valid model autonomously. The aim of this project is to use neural networks for earthquake 

prediction, treating the data as a time series. 

Nature tends to produce very complicated irregular and usually nonstationary and 

chaotic processes, and this is one of the main problems faced by a prediction model for 

naturally occuring phenomena. Furthermore it is usually impossible to isolate the system as 

there are a large number of intermingled factors affecting the system. This implies that a 

large number of variables will be needed to describe the process. Measurement . and 

inclusion of all these variables may be practically impossible. Therefore some appropriate 

metric, should be involved in order to limit the input variables to the most important ones. 

Some information will thus be lost. 

The time series analyzed in this thesis consists of a four dimensional earthquake data. 

The ten year earthquake catalog of the area in western Turkey, between lattitudes 39.50-

41.50N and longitudes 25.00-28.50E, starting from 11111970 was supplied by Prof Cemil 

Giirbuz and Serif Baris from Kandilli Observatory and Earthquake Research Inst. Each 
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earthquake in this catalog is described by a time of occurence to the nearest minute, three 

dimensional coordinates, lattitude, longitude and depth, and magnitude of the event. In 

order to simplify the system and since it was not very reliably measured the depth variable 

was ignored in the subsequent analysis. 

The basic assumption underlying this project is that the four dimensional earthquake 

sequence, as described by a time of occurence, two dimensional coordinates, lattitude and 

longitude, and magnitude, contains enough information about the dynamical system 

producing it for building a model capable of making valid predictions. This may not be 

necessarily true and the failure of building an acceptable model might be due to the lack of 

information. Another simplification that we have performed was to limit the region 

analyzed to a small area so that only the time of occurence and magnitude of an earthquake 

would be used to describe it. This proved to be a bad choice as it ignored effectively a large 

portion of the underlying dynamical system that gave rise to the earthquake sequence in that 

region.. In other words by studying a smaller region without any consideration to the 

faulting structure we have ignored some of the earthquakes that were generated by the same 

dynamical system that generated the earthquakes in the study region. Thus valuable 

information was lost. Actually even the whole area that was to be analyzed, might b~ too 

small for it to accurately contain all the information pertaining to the sequence of 

earthquakes. In fact even though the complete set of data had complete information on 

small earthquakes starting with magnitude 2.6 according to the Richter scale, it was found 

that it did not contain enough information on earthquakes with high magnitudes. The 

highest magnitude that was at all included in the data set was 5.5. The faulting system of 

the area, as well as other physiacal properties such as the structure of litosphere and the 

stress and strain regime of the area, must be used as guide when determining the boundaries 

of the unit region to be studied. This extra information is absolutely necessary to make sure 

that the information content of the data collected from the region is not incomplete. The 

time span considered is also important and the competeness analysis must be performed to 

make sure that there is enough information on both high and low magnitudes. If the 

information is not comlete then a longer time span or a different geometry for the region 

must be considered. 

There have been various attempts to earthquake prediction problem, mostly based 

on identification of the precursary signs of earthquakes, with magnitudes above a threshold, 

that occured in the past and announcing that there is a probability of an earthquake of a 

given magnitude range occuring in a specified time span. Usually this time span is on the 

order of years and the magnitudes of the predicted earthquakes are above a threshold so that 

they would actually have an effect, that is they would actually cause economical damage or 
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harm life in some way. Small earthquakes are generally not predicted because they do not 

have any direct effect on human life and because they occur very frequently. 

We have not encountered any application of the problem of earthquake prediction as 

a continuation of a time series to adaptive neural networks, or to any other methods, in the 

literature. There have been various succesful applications of seismic processes to neural 

networks but they are all classification problems [1,2] This is to be expected since neural 

networks are well known for their powerful interpolation capability. Given a smooth 

enough mapping an adaptive neural network can reconstruct it from the time series. They 

have also been succesful in modelling or identifying nonlinear dynamic systems [3,4]. Such 

networks do not perform as well when the problem is manipulating new dynamic 

information, or extrapolating. They usually require additional information in order to 

extrapolate which might either be unavailable or unknown. Therefore practical application 

of neural networks to time series prediction of naturally occuring sequences have not been 

very succesful. Another approach to earthquake prediction has been to visually analyze 

plots of a set of variables related to succesive earthquakes [5]. These variables provide a 

mean for representing time difference and distance between succesive events, clustering, 

rate of clustering and diffusion of seismicity. The analysis, effectively, identifies the 

precursory signs of large earthquakes and these precursory signs are used for further 

prediction. 

The earthquake prediction problem is described in greater detail in the second 

section which discusses two different approaches to earthquake prediction or modelling. 

One of the approaches is to fit a curve or a line through the earthquake data [6-9]. Namely 

these are the time magnitude predictable scheme [6-8], that looks for a relation between the 

interevent time between the previous event and the present event and the magnitude of the 

present event, together with the bayesian probabilistic prediction scheme that uses teh 

bayesian theory to predict the probability of an earthquake at a given time[9]. The other 

main approach is the pattern classification scheme [10-12]. In this scheme the precursory 

conditions before major earthquakes are identified in the training phase, and if these 

conditions are satisfied an earthquake is predicted. It was found that the application of the 

pattern recognition schemes has been favorable in most cases [13]. 

Section three is devoted to a discussion of different approaches to time senes 

estimation. A traditional forecasting method, Box-Jenkins [14], is discussed in this section. 

It is to be used as a check mark for the performance of the neural network application. As 

another non-neural application nonlinear and linear parametric prediction schemes are 

discussed for the case of chaotic series. The chaotic series applications are included because 
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the earthquake sequence data is known to possess a chaotic exponent as discussed in the 

section four. Third section also introduces two of the architectures implemented in this 

project as well as two alternative ones which were not implemented because of time 

restriction. The time series prediction problem applied to the presented neural networks is 

discussed in this section for general data. 

Finally in the fourth section the earthquake occurence sequence is analyzed to reveal 

its properties. Fractal dimension of the temporal distribution of the earthquake magnitudes, 

and completeness analysis are presented in this section. Also the fourier transform as well as 

the autocorrelation functions and partial autocorrelations, that will be used in the Box

Jenkins prediction method, are given in this section. The results of the application of the 

time series prediction are given in the fifth section together with explanations for the chosen 

architecture and parameters. 

A plot of the epicenters of all earthquakes in the data set is presented in the 

introduction of section 4. A very brief explanation of the dynamics of the region is also 

given in the same section. 
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2. EARTHQUAKE PREDICTION PROBLEM 

There have been various attempts for predicting the earthquake occurence sequence 

and identifying the underlying dynamical· system giving rise to this sequence in the 

geophysics society. Some researchers have found that the mathematical system underlying 

the seismicity of the regions they studied is nonstationary and nonlinear [5,6]. This would 
• 

imply that a prediction scheme or a model for identification based on a limited data set may 

be valid only for a relevant length of time. That is, building a satisfactory model does not 

guarantee prediction in the same error margins for a long time under ideal conditions, 

unless the model is adaptive. Furthermore it implies that if the modelling attempts do not 

take into account this nonstationarity of the system, a more complicated system with 

complex dynamics will be built in order to account for the variations due to nonstationarity. 

Earthquake occurence system is a very complex one depending on a large number of 

natural and human induced factors. Ideally when making a prediction or identifying the 

underlying system producing the earthquakes, all relevant seismic activity should be taken 

into account. Furthermore the tectonic regime of the region is also very important in at 

least the initial model building phase. Variables such as change in magneticity of the rewon 

can give some implication of a coming earthquake. In fact anything that might indicate that 

there is abnormal action underneath the crust might be helpful in predicting the possibility of 

an earthquake occuring in future. Theoretical as well as practical limitations, restrict 

researchers to a much smaller set than the set mentioned above. It is not possible to 

determine all relavant factors because the dynamics change in time and the system is not 

completely understood. Also it does not make too much sense to measure all the suspected 

factors. Thus, most of the models built for understanding the dynamics of the earthquake 

generation process or for predicting the future evolution of it, are too simplified. Another 

deficiency of the reasearch, done up to this point is, perhaps, that most of the work done 

has been devoted to earthquakes with magnitudes greater than a certain threshold which is 

usually taken to be around 5. Using such a magnitude cutoff restricts the scope of the study 

and therefore the scope of possible understanding of the underlying dynamical system. 

removing the aftershock sequence of major earthquakes is a very commonly used 

simplification approach. Even though in some cases the number or, intensity of aftershocks 

are used as a parameter, exclusion of these shocks must result in some information loss. 

Model building is very helpful in understanding the dynamics of a system, and 

therefore making predictions about its future evolution. F or this reason a model of the 

earthquake generation process in the Aegean area, which also includes the Marmara region 
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studied in this thesis, is presented. This model is not very helpful in prediction, and it 

seems to be too restricted. In section 2.2, one of the most widely used pattern recognition 

algorithms for earthquake prediction is presented. This algorithm uses the same type of 

input, the data from earthquake catalogs, as the type used in this thesis. There are two 

versions of this algorithm, one for prediction in regions with transform faulting and the 

other one for prediction in subduction zones. The fact that the faulting structure is an 

important factor for building a model of earthquake generation process was mentioned 

before. The original pattern recognition algorithm mentioned above, Canada-Nevada 

algorithm [10], or CN algorithm, was originally applied to the Canada, Nevada regions, 

and it was found to be succesful in prediction. Afterwards it was applied to a number of 

other regions with some success. But there were regions where it did not show a good 

performance as well. It turned out that, the algorithm performed well for regions whose 

faulting system are similar to that of the Canada Nevada region. That is the CN algorithm 

was succesful for prediction in regions with transform faulting, but unsuccesful in 

subduction zones. The reason was that in these regions with different faulting structures, 

the the precursory conditions were different. The CN algorithm will be explained in some 

detail in order to give some idea about the features that can be used for earthquake 

classification. M8 [11], algorithm is an adaptation ofCN to subduction zones. 

2.1 Time and Magnitude Predictable Model for Earthquake Generation 

Modelling the earthquake generation process IS very desirable SInce it will, 

probably, allow a better understanding of the actual generation process and also will help in 

predicting the future earthquakes. There have been some attempts for finding the 

relationship between some variables pertaining to earthquakes. Papazachos [7] has 

analyzed the area 34-43N and 18-30E, that includes the whole Aegean and the surrounding 

areas in Greece, Albania, southern Yugoslavia, southern Bulgaria and western Turkey, 

and determined the following relation between interevent times and magnitudes of events 
that occured in the region. 

logY; = 0.36Mmin + 0.35Mp + constJ, 

M f = 0.95Mmin -0.49 + const2. 
(2.1.1) 
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where Tt is the repeat time, or interevent time, measured in years and MP and NJ! are, 

respectively, the surface wave magnitude of the preceeding and the following mainshocks, 

Mmin is the smallest earthquake considered and constl and const2 are constants that vary 

from source to source. The magnitude threshold for this analysis was 5.5 and data from 

1855 to 1990 was used. The region was divided into 49 smaller regions each corresponding 

to a different source . The amount of data used was very small, in some cases only two 

events occured in the region analyzed. The region analyzed by Papazachos is one of the 

most active regions of Eurasia. Thrust type faulting occurs along the southern and western 

parts, inner Aegean experiences normal faulting. and strike-slip faulting occurs along the 

northern Anatolia seismic belt and its extension [7]. Papadimitriou [8], has applied the same 

method to the western coast of South and Central America and has arrived at the same 

result. 

The area considered in this thesis is included in the analysis above but in the time 

span we considered there was only a few earth movements above 5.5. The rest of the data 

did not show any such distribution and the number of events above Richter scale 5.0 were 

very few. The original catalog used was not complete for the bigger magnitudes. This 

might have been the reason for the failure to find a relation in the same form as that of 

Papazachos and Papadimitrou. 

A similar approach as the above has also been used by other researchers. For 

instance Ferraes [9] has used Bayes' theorem in order to construct a relation for predicting 

next earthquake with a magnitude greater than 6 according to Richter scale. Ferraes has 

applied his algorith to the Omatepec segment which belongs to a subduction zone. In [6] 

the earthquake generation process is simulated in order to help in understanding the 

underlying dynamics. This kind of experimention is very helpful in the initial stages of 

model building forthe prediction problem. 

2.2 Earthquake Detection using Pattern Recognition Techniques 

There are some applications of pattern recognition to the prediction problem of 

earthquakes such as the CN and M8 algorithms [10,11], both produced by the same group. 

These algorithms make use of precursary signs of earthquakes, such as clustering or 

quiscence, increasing of seismic activity to a certain level, migration, expansion of 

seismicity, simultaneous changes, increase in the level of seismic activity of the region, 



8 

increase in clustering of earthquakes and a period of relative quiscence among other things 

as they occured for previous events. 

The idea behind the CN algorithm is basically to evaluate 9 functions that describe 

the precursory indications of a strong earthquake then a time of increased probability of the 

occurence of a strong earthquake (TIP,) is announced for a given time. These functions 

were chosen to account for experimental results and expectation. F or example it was 

observed that a major earthquake was preceeded by a variation in the intensity of the 

earthquake flow, in the form of quiscence or increase in the level of earthquakes. 

Therefore these traits was represented by three functions. Also it is suspected that the 

underlying system is nonlinear so that traits such as clustering in time and space were 

incorporated into the algorithm. The functions used in CN are listed below [10,12]. The 

magnitude range considered is M z ::; M ::; Mu' The integral traits of the earthquake flow 

are defined in a sliding time window I-s:strst. Let Ii and Mj be the time and magnitude of 

the main shock respectively. The number of earthquakes with magnitudes greater than or 

equal to a specified threshold is 

N(IIMz,s) (2.2.1) 

The functions are listed briefly. 

1. Clustering of earthquakes. Let bj{Ma,h) be the number of aftershocks with 

magnitude M;:Ma within the period h for each main shock i. The measure of clustering will 

be the maximum of all bj{Ma,h). 

(2.2.2) 

2. The weighted number of earthquakes within intervals of time and magnitude. 

This function is weighted according to Mi, 

(2.2.3) 
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where ~ is used to normalize the weights so that only the magnitude range will be used This 

is done in order to allow the algorithm to be applied to different areas with same type of 

behavior. The parameter f3 is determined by one of the two conditions: the weight of an 

earthquake is roughly proportional either to the area of the rapture in the source or to its 

linear dimension. If the energy released by an earthquake is dependent on its magnitude 
according to the relation [ogrE) =cons+BM, where M is the magnitude, then 

p =(2B/3), or p =(B/3). 

3. The ratio of the number of earthquakes for two overlapping magnitude ranges 

(Ml, M2J and M:2M[. 

R(tIMlI ,M21 ) = 1-( N(tIM21's)/ N(tIMlI,s)) (2.2.4) 

4. Deficiency of activity or quiscence. The following integral is taken over only 

positive values. 

Ql(tIIM1,s,u) = J:~:-u[n( Mzs -N(tIMz,s)]dt (2.2.5) 

5. Quiscence is defined in one more way. This is taken to be the last minimum of 

N(t). Only the last 15 years are considered in this function 

6. Deviation from the long term trend. This defines the temporal variation of 

seismicity. 
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7. Increase in activity. This function calculates the difference between the number 

of earthquakes at two succesive intervals (t-s, t) and (t-2s, t-s). 

K(tIM/,s) = N( M/,s)-N(t -sIM/,s) (2.2.8) 

8. Maximum area of fractures in the source within u years. j3=2/3Y 

0maxftlm,M' ,s,u,a,p) = 

max[t-u,tj[ I(tlm,Mz,Mu,s,a,p)}2 / 3[ N(tltIM,s)-N(tIMu's)} 
(2.2.9) 

9. Spatial contrast of activity is defined as simultaneous quiscence and activation in 

adjacent regions. Quiscence is diagnosed if N(tIM/,s):{Nq and activation is diagnosed if 

N(tIM/,s):{Na, where Nq and Na are threshold number of events. Spatial contnl~t of 

activity is measured as time since the region iunder study and some adjacent region were in 

opposite states for more than one year and defined as 

(2.2.10) 

The original application of this algorithm requires extensive knowledge of the 

underlying system and of course needs to be trained for each area seperately even though 

the functions have been normalized so that it would be applicable to a wide range of regions 

with different seismic activity level. The problem is that it cannot be applied to every area 

directly and needs to be used by an expert. It was shown that even though it is applicable to 

California Nevada region and a large number of other regions on different continents it 

cannot be applied to the subduction zones such as some regions in Japan and Mexico [13]. 

The reason is that the nine functions computed for the California Nevada region is not 

applicable to these areas therefore a new extensive study of these functions need to be done. 

F or instance one of the nine functions used in the CN algorithm is the number of 
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aftershocks but in the studied regions in Mexico a main earthquake is usually followed by 

seismic quiescence. Therefore one of the nine functions used in the eN is eliminated and 

prediction, or classification, should be done using only the remaining eight functions. 

Since the eN algorithm did not work as it was in such regions it had to be re-tailored to fit 

the new data set. For this reason the same group that devised eN produced the subduction

zone version of eN: M8 [11]. 

The M8 algorithm has been applied to Japan and other areas with some success but 

it can only predict earthquakes with magnitudes greater than 7.5. Pattern recognition 

techniques has been applied to detection and recognition of earthquakes but no such 

tecnique for adaptively predicting earthquakes using neural networks was found in the 

literature. 
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3. TIME SERIES PREDICTION METHODS 

In this section a number of time series prediction methods are introduced. The 

subject of this thesis is to solve the earthquake prediction problem by using neural networks 

while treating the earthquake data as a time series. In an earthquake catalog each 

earthquake, that is each datum of the time series, is described by three coordinates, 

lattitude, longitude, and depth, time of occurence and magnitude. It is assumed that these 

information are sufficient for describing an earthquake event fully, and that prediction of 

possible future behavior of the system can be made by using only the time series data up to 

the present time. 

It was mentioned in Section 2 that there have been various attempts to solve the 

earthquake prediction and analysis problem using pattern recognition techniques as well as 

other more conventional techniques such as line fitting [7-12]. No references to attempts, 

using artificial intelligence or any other approach, for predicting future earthquakes based 

solely on the past earthquake sequence was found in literature. Therefore this section 

introduces a number of conventional methods, such as the Box-Jenkins method, as well as 

the neural algorithms that can be used for such a prediction task. Unfortunately only a:few 

of the methods presented in this section are actually applied to the problem because of time 

restriction. The result of the applications will be given in the last section together with 

discussion on possible improvements and other viable alternatives. 

3.1 Box-Jenkins Forecasting System 

There are a lot of mathematical models describing the evolution of physical 

phenomena in use today. Most of these are based on some physical laws or at least a theory 

validating the assumptions made for building the particular model. These systems are 

usually assumed to be totally deterministic, in other words calculating the future value of 

some time dependent quantity with arbitrary error margin is assumed to be possible. Most 

of the time this is just an approximation because there are always some unknown and/or 

uncontrollable factors, such as the variable wind velocity when launching a missile, that 

affect the system generating the time series. As stated before it is not possible to isolate the 
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system. Therefore probably none of the naturally occuring phenomena or systems is totally 

deterministic. 

Even though totally deterministic models are just approximations of the real world 

they are usually fairly good approximations. There are problems where no assumption of 

determinism, and no use of theoretical rules, can be made. One such problem is predicting 

the monthly sales of a newsprint. In this case there are many unknown phenomena and it is 

not possible to build a deterministic model to desribe it. Stochastic models, or probability 

models are used for problems of this kind. A stochastic model calculates the probability of a 

value lying between two specified limits. Box-Jenkins Model [14], is a particular stochastic 

model building system and has been widely used as a tool for time series prediction and 

control in business and economics world for a long time. It is a well established sytem and 

therefore has also been used as a conventional forecasting sysem in order to test or show the 

validity of new forecasting algorithms. 

Box-Jenkins model fits an Autoregressive Integrated Moving Average, ARIMA, 

process to the data set it is given. Both AR and MA are time series models themselves. An 

AR process models a process output as a linear combination of past values of the output 

plus a white noise error. An MA process can be considered, on the other hand, as a linear 

combination of past errors or equivalently as the output of a linear filter whose input is a 

white noise signal. The white noise signal or error is defined by Box and Jenkins, as 

random drawings from a fixed distribution usually assumed Normal and having mean zero 

and variance a;. Throughout this section the term stationary will be used to define 

processes with a constant mean. This loose definition, however will be replaced by the 

more formal definition, that the variance of a linear process should converge, whenever 

there is need to define the stationarity formally. The terms trend and level of a process will 

be used to refer to the mean and the slope, respectively, of a time series or of a part of it. 

Throughout this subsection bold faced symbols will be used to denote vectors. Also 

frequent use of the backward shift operator B and the backward difference operator V, 

defined below will be made to simplify the representation. 

BZt = Zt-l, and 

Bm
,? -z -t - t-m' (3.l.1) 
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Let z = Z - jJ, where jJ is the mean, replace z in the sequel, so that the resulting process 

has a zero mean. Consider a general linear process: 

ao 

=at + IVPt-j 
j=l 

= V( B )at 

CXJ • co . 

(3.1.2) 

where V( B) = 1 + I VjB} = I VjB} , with Vo = 1. This process can also be seen as the 
j=l j=O 

output of a linear filter whose input is white noise process at. The white noise process is a 

sequence of uncorrelated random variables with mean zero and constant variance as 

defined below: 

E[atl =0 

var[atl =~. 
(3.1.3) 

The autocovariance function of white noise is therefore zero for all lags except zero lag 

Yk = E[atat+k ] 

=~, if k=O, 

=0, ifk ~O. 
(3.1.4) 

Then its autocorrelation function Pk IS 1 when k=0 and zero otherwise. The 

autocovariance of (3.1.2) is: 



Yk = E[ ZtZt+k] 

= E[ ll'l/j 'l/hat-Jat+k-h] 
j4Jh4J 

Then the variance of the same process is given by: 

The auto covariance generating function of a linear process is defined as: 

15 

(3.1.5) 

(3.1.6) 

(3.1.7) 

For stationarity the infinite series 'l/j,} 5{O must converge. To see this consider the power 

spectrum of(3.1.2) 

Then the variance is: 

p( f) = 2 ~ '1/( e--i27( ) '1/( ei27( ) 

=2~I'I/(e--i27()12, 05{j 5{1/2. 
(3.1.8) 
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1/ 2 1/ 2 
0; = f p( f )df = 2 ~ f 'p{ e--i2t( ) '1/( ei21Zf) (3.1.9) 

o 0 

The requirement for stationarity of a process is that its variance, that is the integral in 

(3.1.9), must converge. And for the integral in (3.1.9) to converge the infinite series 

'l/j ,j ::;0 must converge for B within or on the unit circle. Note that the operator B in the 

auto covariance generating function is replaced by e-i211/ to arrive at (3.1.8) and (3.1.9). 

These results will be referred to frequently for describing the special time series AR, MA, 

ARMA and ARIMA. 

A purely AR process is in the form: 

¢( B ) Zt = at, where 

¢( B) = 1 - tPIB - tP2B2 _ .. -tPpBP , 
(3.1.10) 

where Zt is the deviation of the process from some origin. If the process is a stationary 

process J..l can be its mean so that the resulting time series Zt is has zero mean. Such a 

model contains p+ 2 unknown parameters: p weights ¢i, the mean J..l, and the white noise 

variance ~. In the sequel p will be considered as the order of the AR process. An AR 

process can be stationary or nonstationary depending on the weights ¢j. The process 

defined in (3.1.10) can be transformed into a linear filter format as follows: 



17 

¢(B) can be factorized to obtain¢(B) =( I-G]B)( I-G2BJ-··(l-GpB). Then expanding 

in partial fractions, 

1 P K 
;:; - % (B) - '\' } a 
':'t - 'f' - J~l(J -GJB) t· 

(3.l.12) 

Comparing (3 .l.12) to (3.l.2), it can be seen that, for '1/( B) = ¢-l ( B) to be convergent 

for IBI s 1, then IGj lsI, where j=O,2, ... ,p. Thus the roots of the equation ¢(B)=O, also 

referred to as the zeros of the polynomial ¢(B), must lie outside the unit circle. 

For calculating the auto covariance function multiply (3.l.1O) throughout by Zt-/e> 

and take expectations of both sides. Note that Zt-k contains shocks aj only upto time t-k, 

and that previous shocks are uncorrelated with the present or future shocks. Then the 

auto covariance function is 

(3.l.13) 

Dividing (3.1.13) throughout by 'fo gives the autocorrelation function of the process 

(3.1.14) 

The above difference equation can be written as follows 

(3.l.15) 
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where t/J( B) = 1 - t/JIB _ .. -t/JpBP, and B operates on k instead of t. Note that ¢(B) can be 

expressed as t/J(B) =ll(J -GiB), so that Gj-I,G;I, ... ,G;I are the roots of the 
i=l 

characteristic equation ¢(B) in (3.1.15). Then the general solution of (3 .1.15) is: 

(3.l.16) 

It was shown that for stationarity it is required that Iq I::; 1. Therefore there are two 

possible situations for distinct Gj. 

1. A root G j is real and will geometrically decay to zero as k increases. This is 

refered to as a damped exponential. 

2. A pair of root Gj, Gj are complex and follow a damped sine wave as desribed by 

Hdk sjn( 2 ;ifk + F) (3.l.17) 

Another important operation in time series analysis is the partial autocorrelation function 

Even though an AR process has an autocorrelation function which is infinite in extent, it 

can be represented by p nonzero functions of autocorrelations. Let ¢kj denote the jth 

coefficient in an autoregressive process of order k, ¢kk is the last coefficient. Then 

(3.l.18) 

This leads to the Yule-Walker equations 
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1 Pl P2 Pk-l tPk1 Pl 

P1 1 Pl Pk-2 tPk2 P2 (3.l.19) = 

Pk-1 Pk-2 Pk-3 1 tPkk Pk 

The equation (3.1.19) can be solved for succesive values of k to obtain the partial 

autocorrelation functions ¢kk The quantity ¢kk is regarded as a function of lag k, and for 

an AR process of order p it is nonzero only for k less than or eqaul to p. This is equivalent 

to saying that for a pth order AR process the partial autocorrelation function has a cutoff 

after lagp. 

An MA process of order q is written as: 

Zt =at -()..Pt-l -(}Pt-2-"-(}qat-q 

= ( 1 - ().. 1B - (}~2 - ... -(}qW Jat 

= (}( BJat 

(3.l.20) 

Such an MA process of order q has q+ 2 unknown parameteers: q weights ~, the mean J.1 

and the white noise variance 0 2 for the at which are generally estimated from the data. 
Comparison between (3 .l.20) and (3 .l.2) shows that '1'( B J = (}( B J, and (}( B J is a finite 

series, therefore there are no restrictions on the coefficients to ensure stationary. 

The auto covariance function of a MA( q) process is defined as 

Yk = E[( at - (}Pt-l - ... -(}qat-q)( at-k - (}Pt-k-l _ .. -(}qat-k---<J.J] 

=(-Ok + (}1(}k+l +02(}k+2+"'+(}q--k(}qJ~, k=1,2, ... ,q, and 

=0, k >q 

(3.1.21) 
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From (3.1.21) it is easily seen that the variance of this process is 

(3.1.22) 

Thus the autocorrelation generating function of a MA( q) process is given by 

(3.1.23) 

The autocorrelation function for lags greater than q is zero for a MA( q) process. In other 

words the autocorrelation function of a MA(q) process has a cut-off at lag q. It is possible 

to write the autocorrelation functions in the form of (3.1.19). However the Yule-Walker 

equations for a MA( q) process are not linear unlike the AR(p) process. Therefore iterative 

algorithms are employed to make crude estimates of the coefficients of the MA( q) process 

using the autocorrelations. 

It is possible to convert between these two models by sacrificing parsimony. An AR 

process of finite order p is modeled by an infinite MA series and a MA process of finite 

order can be expressed as an AR process of infinite order. In other words a finite MA 

pocess is equivalent to an infinite AR process and vice versa. This observation explains the 

duality between the properties of the AR and MA proceses. For example a finite MA 

process has an autocorrelation function which is zero beyond a certain lag, however its 

partial autocorrelation functioin is infinite in extent. 

In prediction tasks the the character and order of the process are generally not 

known. Therefore it is advantageous to model an unknown series as a mixed ARMA 

process to achieve parsimony. 

(3.1.24) 
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which employs p+q+ 2 unknown parameters, p+q weights and the mean of the process, 

and the variance of the white noise. This process is refered to as ARMA(p,q) process. It 

can be thought of as a special AR(p) process ¢( B ) Zt = et ' with e t following a qth order 

MA process et = O( B )at . Similarly it can also be thought of as a qth order MA process 

Zt = O( B )bl' where ¢( B )bt =al' so that ifJ( B )Zt = O( B )ifJ( B )bt = O( B Jato It can easily 

be seen that the moving average term on the right of (3 . 1.24) will not affect the stationaroty 

conditions established for the AR process in the preceeding text. 

The autocorrelation and autocovariance function of the mixed ARMA process can 

be derived by multiplying (3.1.24) throughout by Zt-k' Then the auto covariance function is 

given by 

where Yza(k) =E[Zt_kat] is the covariance function between z and a. But Zt-k depends 

only on shocks that occured up to time t-k, therefore /,za(k) is nonzero only for k less than 

or equal to O. Therefore the autocorrelation function is defined as 

(3.1.26) 

Thus for an ARMA(p,q) process there will be q autocorrelations Pq ,Pq -1, ... ,P1, that depend 

directly on the q MA parameters 0 as well as on the p AR parameters ¢. Also, p of these 

values Pq ,Pq -1 , ••• ,Pq - p +1 provide the starting values for the difference equation (3.1.26). 

This difference equation, more compactly written as ¢( B) Pk = ° , determines all the 

autocorrelations at higher lags. If the order of the AR part of the ARMA process is higher 

than that of the MA part, i.e if q-p<O, the whole autocorrelation function Pj, for 

)=0,1,2, ... , will consist of a mixture of damped exponentials and/or damped sine waves. 

The nature Qfthe exponentials and sine waves is determined by the polynomial ¢(B) and the 

starting values. If on the other hand the order of the MA part of the ARMA process is 
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greater than or equal to that of the AR part, that is if q-p;::.O, then q-p+ 1 initial values 

Po. PI , ... ,Pq -p will not follow this general pattern. 

The ARMA process defined in (3. 1.25) can also be written as 

(3.1.27) 

6-1 (B) is an infinite series in B. Hence the partial autocorrelation function of an ARMA is 

infinite in extent. Eventually the partial autocorrelation function of an ARMA process 

behaves like that of a purely MA process, and it is dominated by a mixture of damped 

exponentials and/or damped sine waves. 

So far all the model processes discussed are stationary but many series encountered 

in practice, for example in industry and business, exhibit nonstationary behavior. These 

series however exhibit homogeneous behavior such that when differences in level and trend 

are allowed for the behavior of the series may be similar. Such a behavior may ~ be 

represented by a general AR operator,cp(B), which has one or more zeros on the unit circle. 

If the zeros are allowed to be outside the unit circle the system will be unstable and exhibit 

exponential behavior. 

rp(B) =¢(B)(1-B/ (3.1.28) 

where ¢(B) is the stationary AR operator defined before. Therefore homogeneous 

nonstationary behavior can be represented by the following model. 

cp( B) Zt = ¢( B )(1 - B l Zt = 00 + O( B )at ' or 

¢( B )wt = 00 + O( B )at , where 

wt = pi Zt 

(3.1.29) 
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This model is called ARIMA of order (p,d,q). The term ¢(B) is called the autoregressive 

operator and is assumed to be stationary, in other words it is assumed to have its roots lie 

outside the unit circle. rp(B)= vd¢(B) is the generalized nonstationary autoregressive 

operator and has d of its roots lie on the unit circle. 'I' in the name ARIMA stands for 

Integrated, and it is used to explain that summation, which is the inverse of differencing 
operator, must be performed in order to isolate Zt on the left of (3.1.29). ()( B) is the 

moving average operator and is assumed to have its roots lie outside the unit circle for 

invertibility. It was explained before that a linear process is stationary if the variance of the 

process is finite, or equivalently the coefficients 1fI{B) converge. Note that the series 
Ip{ B ) = ()( B) is finite thus without any limitations on the MA parameters ()( B) the 

variance of the MA process is finite.. The additional term (}o allows inclusion of a 

deterministic function of time in the model. Without (}o the model is capable of 

representing series with stochastic trends such as random changes in level and slope of the 

series. Allowing (}o to be nonzero is equivalent to allowing the mean of the process to be 

nonzero. As an example consider a system where d= 1. When (}o is nonzero the mean of 

the difference Wt is 

(3.1.30) 

Most of the time though there is not sufficient cause for assuming a deterministic 

trend for the practical systems, therefore it is not included unless it absolutely needed. 

ARIMA processes can be expressed in three different forms discussed in the preceding text. 

The value Zt can be expressed in terms of previous values of z's and present and previous 

values of a's. It can also be expressed in terms of current and previous shocks, that is only 

in terms of at-j for /;:.0. Alternatively it can be expressed in terms of the previous values of 

Zt-j' for, and the present shock at only. 

Difference equation representation of Zt is more convenient for use in forecasting 

than the others. It is in the same form as that of the ARMA process (3.1.24) except that the 
stationary AR operator, ¢( B ), is replaced by the general nonstationary one, cp( B ). 



Zt = rp1Zt~1 + .. +rpp+dZt~p-d - (}Pt~1 - ... -(}qat--<j -at, where 

rp( B) = ¢( B)( 1- B f = 1 - rp1B - rp2B2 _0" -rpp+dBp+q 
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(3.1.31) 

The random shock form of the ARIMA model is the same as the expression for the output 

of a linear filter when input is white noise. 

(3.1.32) 

The linear filter weights can be found by applying the general AR operator, rp( B ), on both 

sides of (3 .1.32) and equating the righthand side to the righthand side of (3 .1.29). Then the 

linear filter weights, 'fI( B ), are calculated using (3.1.33) 

Note that for j greater than the larger of p+d-1 and q, 'fI( B) must satisfy 

rp( B ) 'fIj = ¢( B )( 1 - B f'flj = 0 . If the inverse of the linear filter operator is applied to 

both sides of (3 .1.32) the signal z( is expressed in terms of previous zs and current shock at. 

(3.1.34) 

The values of the 1'( werights can be found in terms of the ARIMA coefficients by applying 

MA operator to both sides of(3.1.34) and equating the lefthand side to that of the (3.1.29). 
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These results are used in identifying and modelling the characteristics of the data in 

an formalized way. Model building using Box-Jenkins system is an iterative process 

consisting of the following general steps. 

1. Postulate a general class of models by inspecting the theoretical as well as 

the practical aspects of the situation. 

11. Identify the subclass of these models that is dictated by the data 

11. Estimate the parameters of the model. In other words fit the model to 

the data. 

iii. Perform diagnostic checks. If the model does not fit the data properly 

repeat the procedure from step i. 

These stages win be explained in more detail in the subsequent sections. Each one of these 

sections will refer to the basic theory given in the preceding paragraphs. 

3.1.1 Model Identification 

Two of the stages, identification and estimation, m Box-Jenkins modelling 

algorithm necessarily overlap. During identification process at least a crude estimation is 

made about the parameters. And at the estimation stage more information is collected so 

that if possible a simpler model than the one derived in identification stage can be employed. 

Model identification involves the task of finding the appropriate subclass of models from the 

general ARIMA processes 

(3.1.35) 

that satisfy the given contraints in the form oftime series data. In the rest of the section the 

parameter Bo will be assumed to be 0, for reasons explained before. The approach is first 

to difference Z(, that is apply the differencing operator, as many times as needed to produce 

a stationary mixed autoregressive moving average process in the form below. 



ifJ( B JWt = 00 + O( B Jat , where 

wt =( I-Bl Zt = ?Zt· 
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(3.1.36) 

Then the resulting ARMA process is identified. In both steps use of autocorrelation and 

partial autocorrelation function is made. 

For a stationary mixed ARMA process of order (p,O,q) the autocorrelation function 

satisfies the following equation: 

ifJ( B J Pk = 0, k > q (3."1.37) 

If the weights satisfy the relation 

(3.1.38) 

then the autocorrelation function for this difference equation is of the form: 

(3.1.39) 

The stationarity condition is that the roots of ¢(BJ lie outside the unit circle, which implies 

that the roots Gi, 1 Si.5p, lie inside the unit circle. This means that if none of the roots lie 

close to the unit circle the autocorrelation function will die out rapidly for moderate or large 

k. The tendency for the estimated autocorrelation function not to die is taken as an 

indication of nonstationarity since it implies that a root close to unity exists. Such a process 

should be treated as nonstationary in zt but possibly stationary in vz( or higher differences. 
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After chosing the degree, d, of differencing necessary to achieve stationarity, the 

next step is to estimate the autoregressive order p, and the moving average order q. For 

this purpose use of estimated autocorrelation together with partial autocorrelation functions 

is made. The autocorrelation function of an autoregressive process of order p tails off and 

its partial autocorrelation has cutoff after lag p. The moving average process of order q, on 

the other hand has its autocorrelation function cutoff after lag q, while its partial 

autocorrelation tails off If both the autocorrelations and partial auto correlations tail off, a 

mixed process is suggested. Also the autocorrelation function of such a mixed process of 

the given orders has its autocorrelation function contain a mixture of exponentials and 

damped sine waves after the first (q-p) lags and its partial autocorrelation function be 

dominated by a mixture of exponentials and damped sine waves after the first (p-q) lags. 

It should be kept in mind that in these stages estimated auto correlations and partial 

auto correlations are used as the theoretical ones are not available. These estimated values 

can be autocorrelated with each other and can have large variances. Also they should not 

be expected to very closely approximate the theoretical ones [14]. One of the reasons for 

these deficiencies is that the fixed precision causes the error to accumulate. It is not possible 

to remedy the situation so caution should be exercized when interpreting the estimated 

values. In particular it was found that large estimated auto correlations can be found after 

the theoretical autocorrelation function has damped out[14]. 

Initial estimates for the parameters of the model identified, is also made at this stage. 

For example consider a MA(q) process with autocorrelation function (3.1.23). The 

autocorrelation function is zero onle for the first q lags. The expressions for p], P2 , ... ,Pq in 

terms of 0], O2 ,, .. , Oq , and this supplies the q equations for q unknowns needed to find the 

coefficients of the MA process. The preliminary estimates for the coefficients can be made 

by substituting the estimated autocorrelations instead of the theoretical ones. Then a 

preliminary estimation of the white noise standard deviation can be made using the 

estimated MA coefficients and the estimated Yo as follows 

(3.1.40) 

For an AR process the parameters are found by solving the Yule-Walker equations (3.1.19). 

The estimated values should be substituted for the theoretical ones. After applying the 
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differencing operator Vas needed for making the process stationary, an ARIMA process 

can be represented as an ARMA process as can be seen in (3.1.29). An ARMA process is 

indicated by the fact that both auto correlations and partial auto correlations functions tail off. 

Also from (3.1.26) it can be seen that theoretical auto correlations of ARMA follow the 

difference equation satisfied by the auto correlations of the pure AR process ¢J( B )wt =at . 

For example if the autocorrelation function of the dth difference appears to be falling off 

exponentially except for a change in Pl' A (J,d,]) order process described as 

(] - ¢JIB )wt =(] - (JIB )at , with wt = ? Zt should be suspected. Then the parameters are 

found by substituting the estimated autocorrelation values in the autocorrelation expressions 

for this process. It should be noted that these estimated values should be used to make the 

scope of the search for more efficient estimation of parameters narrower. For a problem 

more than one model may seem to be possible at this stage, then the only possible solution 

is to foIllow the Box-Jenkins algorithm for one model and see if this is sufficient. If it is not 

the oher model is entertained. Usually estimation stage can give a clue about which model 

is better suited to the data. 

3.1.2 Model Estimation 

After having identified the orders of the ARIMA process the parameters need to be 

estimated. Box and Jenkins modelling estimates the parameters based on likelihood and 

Bayesian methods. 

Suppose there is a sample of N observations z whose known probabality distribution 

p(z/~ depends on some unknown parameters~. The vector ~ denote a general set of 
parameters and particularly can be taken to refer to the p+q+] parameters ¢J, B, (J' of the 

ARIMA nodel. With the outcome of an experiment in the form of observations z in hand, 

the problem is to find the set of parameters ~ that gave rise to the observations. The 

likelihood function which fixes z but lets the ~ be the variable is used for finding the values 

of the parameters. The relative value rather than the absolute value of the likelihood 

function is needed, so that L( ~Iz) is usually regarded as containing an arbirtrary 

multiplicative constant. Box and Jenkins uses the log likelihood function 

l( ~Iz) =lnL( ~Iz)instead of the likelihood function, because the former contains an 

arbitrary additive constant and it is more convenient to work with and additive arbitrary 

constant than a multiplicative one. 
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The importance of the likelihood function stems from the .idea that all the 

information about the mathematical system giving rise to the observed data is contained in 

the likelihood function. The Bayesian meaning of the likelihood function is that it is the 

posterior distribution of parameters that arising from the data. 

Graphical as well as analytical study of the likelihood function has to be employed in 

order to understand the situation better. Box and Jenkins found that for moderate to large 

amounts of data the likelihood function is unimodal and can be approximated by a 

quadratic function around the maximum value. In these cases the likelihood function is 

described by its maximum value and the second derivative at the maximum. The parameters 

are found to meet the conditions at the maximum value and the second derivative of the 

function at the maximum value gives an idea about the spread of the likelihood and can be 

used to calculate the standard errors of the estimates. 

Suppose that there are N=n+d observations z, of a time series generated by a 

(p,d,q) ARIMA process. A series w, of n=N-d elements, is generated from Z such that 

wt = pi Zt. In this way the nonstationary ARIMA process is transformed into a stationary 

ARMA process in the form of (3 .1.24). In this case the process can be expressed as 

(3.1.41 ) 

where p =E[wt }, and WI =wt -p. When d>O it is clear that p=O, otherwise it is 

sufficient for most purposes to substitute the average of the differenced signal as the mean 

n 
of the process, i.e. p =W = Iwt/n. 

t=1 

In order to start working on the difference equation (3.1.42), the ideal p values of w 

and q values of a prior to the commencement of the observed series are needed. Then the 

values of a conditional on this set of initial values can be calculated. Let the terms w., a. 

denote the initial values input to the difference equation (3.1.42). Then the succesive values 

of the shock at ( (J, Bjw * ,a. ,w ) can be calculated. If a's are normally distributed, 
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(3.l.42) 

Then the log likelihood function conditioned on the initial values is 

(3.l.43) 

where the conditional sum of squares function is defined as 

n 
S.( t/J, (}) = Ia? (t/J, ~w.,a., w) 

t=1 
(3.1.44) 

It can be seen that the data dependency of the log likelihood function is only throough the 

sum of squares function. This implies that, under the normal distribution assumption sum 

of squares can be studied to understand the log likelihood functon. In fact for any fixed O'a' 

I. is a linear function of S •. 

The starting point for parameter estimation is thus finding the initial values of wls 

and a's. There are a few approaches that can be shosen for calculating suitable values that 

can be used as starting values. One procedure is to replace the elements of w., and a. by 

their unconditional expectations. The unconditional expectations of the random shock 

process a. is zero. If f.1. = 0 and the model does not contain any deterministic elements, the 

unconditional expectation of w. is also zero. It was found that this procedure can give rise 

to poor approximation when the roots of ¢( B) = 0 are close to the boundary of the unit 

circle so that the process is approaching nonstationarity [14]. Another, more reliable, 

approach is to set all initial a's to zero and calculating the values of a's starting with ap+ ]. 

The actual values of wls will be used throughout this procedure.. Note that using the latter 

procedure only n-p=N-p-d values of at will be available for calculating the sum of squares. 

But for large enough data sets this loss of information is not very important. 
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The unconditional log likelihood function of the process is derived in [14] and is 

given below 

(3.1.45) 

where the unconditional sum of squares function is denoted by 

(3.1.46) 

f ( ¢I, ()) is a function of the AR and MA parameters and is not important when n is not 

small. Usually the unconditional sum of squares dominates the equation (3.1.44). Then 

minimizing the sum of squares in (3.1.45), referred to as the least squares estimates in [14], 

very close approximations to the maximum likelihood estimates can be made. 

The time series generated by (3. 1.41) can also be generated by 

(3.1.47) 

where F=B-i is the forward shift operator. The equation (3.1.46) now supplies the 

backward forecasts E[ Wi -J!f,q, w]. In practice the estimates beyond a point t=-Q become 

esentially equal to zero. Thus a further approximation results in 

(3.1.48) 
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This means that the simpler rules for solving the sum of squares function of a moving 

average process of order Q can be used to approximate the solution of a mixed ARMA 

process. 

The general procedure is to make use of the equation (3. 1.46) to generate the 

backward forecasts and then to use the eqaution (3.1.41) to generate the E[ ad's with all the 

signals replaced by their expectation. Graphical aids can be of very great help in both 

identification and estimation stages, but they are not included in the present discussion. 

Detailed explanation of their application can be found in [14]. 

3.1.3 Model Diagnostics Checking 

Two important problems in modelling are overfitting and lack of fitting. Use of 

autocorrelation functions as well as simple inspection can be made to pinpoint these 

problems in the application. This stage is essentially similar to the testing step in neural 

network terminology. The purpose is to test the goodness of fit. The model is analyzed to 

see whether it is adequate or not for the purposes and also to see the deficiencies of the 

modelling. After this stage if the requirements are not met the process is repeated for an 

altered form of the original model or for a new model. 

After having identified a correct model the previous stages, a more elaborate model 

is actually fitted to the data in this stage. This technique is called overfitting and its purpose 

is to find out if additional parameters are actually needed to fit the data more closely. It is 

important to notice that if the results show that the additions are not needed, it simply , 

means that the additions are not needed. By using this technique only the deficiency of a 

model can be proved. It does not validate a model. 

Another method employed for diagnostic checking is based on the analysis of the 

residuals. The residuals are the ai parameters estimated by the process. For example 

consider a model 

¢( B JWt = O( B Jat , where 

wt = ?Zt o 

(3.1.49) 
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Assume that such a process has been fitted with estimated weight parameters then the 

residuals for this case are in the following form 

(3.l.50) 

As the series length increases, the estimated at values approach the actual white noise a/so 

This is because if the model is adequate the estimated values approximate the actual values 

with a small error. 

(3.l.51) 

where n is the length of the time series. The study of these estimated shocks, at, will 

indicate the existence and nature of inadequecy of the model. Particulary the estima!ed 

autocorrelations of at can be used to see deficiencies of the model. Caution should be 

exercized in putting aside a model based solely on the autocorrelation function as the 

parameters of the process themselves are also estimated so that errors in estimating these 

parameters also add up. Particularly deviation of the estimated autocorrelations rk ( a) from 

their theoretical zero value by less than nII2 should not be taken as lack of fit unless k is a 

moderately high lag. A similar approach is called a partmanteau lack of fit test and it 

K 
considers the first K autocorrelations, rk (a), and checks the distribution of Q = n Irf (a) . 

k=I 

K should be large enough so that the linear filter weights If/j' are effectively zero for j;?O. 

If the fitted model is appropriate certain distribution conditions should be met, otherwise 

the average values of Q will be inflated. 

Sometimes the parameters of a process change over a prolonged time period and the 

model becomes inadequate in modelling even though the form and the degree of the model 

is appropriate. 

There are other tests that can be performed to check the ability of the model to fit 

the system. These are very complicated and detailed explanation is needed in order to make 
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them clear. Therefore they are not treated here, [14] contains detailed analysis of every 

stage of Box-Jenkins model. 

3.2 Chaotic Time Series Prediction 

Box and Jenkins method is useful in building stochastic models from time series. 

This procedure is explained in general terms in the preceding section. This section deals 

with the building of deterministic models. In this situation the deterministic component is 

desired to be extracted from the noisy observation data. Then a dynamical system model 

that contains the minimum number of variables and satisfies the constraints in term of the 

observed data should be built. 

In this section, prediction methods for a special class of processes, the chaotic 

processes, will be discussed. Chaotic processes, or time series, had been treated as 

pathological cases for a long time before they actually gained any credibility and 

applicability in science. Some of the processes dismissed as random were found to:be 

deterministic chaotic processes. The most exciting novelty introduced by the chaotic 

dynamics is that it made it possible to define and predict the evolution of these processes. 

Chaotic processes are characterized by a number of measures such as a positive 

lyapunov exponent, fractal dimension and Kolmogorov entropy. Several relations exist 

among these mesaures and usually only the lyapunov spectrum is used for characterizing a 

chaotic process or at least for identifying one. A positive Lyapunov exponent implies that 

points that are arbitrarily close, so close that it is not possible to resolve them, in the 

beginning evolve into completely different outcomes after a finite number of iterations. In 

other words trajectories diverge, on average, at an exponential rate characterized by the 

largest lyapunov exponent. One definition oflyapunov exponent is due to [15] 

1 _I' !..10 IU pJt) 
Ai - 1m 11

0 2--
t~<XJt pJO) 

(3.2.1) 
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The equation (3.2. 1) was derived by considering the long term evolution of an infinitesimal 

n dimensional hypersphere of initial conditions. Note that the dimension of the hyperspace 

is the same as the dimension of the phase space. The sphere will be deformed into a n 

dimensinal hyperellipsoid because of the locally deforming nature of the flow. The term 

Pi(t) denotes the principal axis of this ellipsoid. Notice that if an axes is on the average 

expanding then the corresponding lyapunov exponent is positive and if the axes is on the 

average contracting the lyapunov exponent is negative. Dissipative systems have at east one 

negative exponent and the sum of all exponents is also negative. This limits the motion of 

trajectories of the process to occur in a limit hypervolume, the attractor. The exponential 

expansion seems to be incompatible with the motion on a bounded attractor. But a folding 

proess merges widely seperated trajectories and thus limits the motion to the attractor. 

Therefore it is claimed that each positive exponent computed by (3.2.1) indicates the 

direction in hich simultaneous expansion and folding takes place. This simultaneous 

operations decorrelates nearby points of the process. The equation (3.2.1) is not the only 

way of calculating the Lyapunov spectrum, there are a number of algorithms proposed to 

calculate this rate of exponential divergence in literature [16-18]. 

A chaotic process can also be described by its dimension which is fractal. The 

dimension of a process is the dimension of the attractor in the phase space of the dynamical 

system generating the process. There are a large number of algorithms for calculating te 

dimension of an experimental time series in literature one treatment can be found in[ 19]. A 

fractal dimension is defined as the Hausdorff dimension that is stricly greater than the 

topological dimension, which is classical integer dimension. It turns out that most of the 

time the fractal dimension is a non integer value. This mesaure will be used in section 4.1 to 

describe the spatiotemporal clustering of earthquakes. 

These measures are employed to understand the underlying system better and to also 

help in model building and preduction schemes. For example it is claimed that the lyapuov 

exponents give an idea how far into future succesful forecasts can be made and that the 

fractal dimension gives a clue about the number of variables needed to make a prediction. 

There are two main approaches to the prediction problem of deterministic time 

senes. The first one is to compute the actual generating function, that is compute a global 

predicton function that approximates the actual generating function. Ideally such a solution 

is desirable not only because it will allow the user to predict he future behavior of the system 

but it will also help in understanding the dynamics of the process. Choosing this approach 

requires an immense amount of data and tedious work for practically occuring processes. 

There are cases when only some help in making predictions is needed. In cases like this it is 
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more sensible to calculate local functions for prediction task. These local functions are 

usually valid only over a specified region of the attractor. In the sequel applicaton of both 

local and global methods for predicting chaotic time series will be discussed. A geometric 

interpretation of the local prediction methods used in this section is that local portions of the 

curve z(t) in the past that resemble the present situation are found and the prediction is done 

using the values the process had taken immediately after those events. This can be fitting a 

function to a local portion of the observed data that is similar to the present situation. For 

gloabal prediction methods, on the other hand, a function should be fitted to the whole set 

of data. 

The local method is also divided into two main approaches. These are linear and 

nonlinear approximation approaches. Both methods have their own advantage and 

disadvantages as will become more clear in the subsequent discussion. 

3.2.1 Linear Prediction 

In this subsection a method, proposed by Paul Linsay, for forecasting chaotic time 

series using linear interpolation will be discussed [20]. The method introduced in this 

section is a local method that uses m+ 1 equations when the attractor dimension is m. 

A common method for prediction calculates the Jacobian of the strange attractor in 

the vicinity of the target point and then uses the Jacobian to calculate the future evolution of 

the target point. It is not an easy task to calculate the Jacobian and most of the time nearest 

neighbor algorithms are employed to compute a prediction function. Unfortunately nearest 

neighbor algorithms need two to five times the minimum number of data needed to compute 

the Jacobian, in the form of nearest neighbors, to compute a function whose prediction 

performance is comparable to that of a Jacobian function. The same procedure must be 

repeated for every target point. 

Consider a time series {z}, and an unknown map f(z). Suppose that a repeated 

application of Zt=!(Zt-l) produces a chotic time series. The problem is to predict the value 

Zt+l of the first iterate of Zt he first step to the solution of this problem is to find the k 

closest points {zt<1),zt<2), ... ,zt<k)} to the value Zt on the attractor. The term ztfi) is used to 

denote the ith closest neighbor to the value Zt Also find the first iterate of each of the 

elements of the k closest neighbor set {Zt+l(l),Zt+l(2), ... ,zt+l(k)}. Then compute a set of 

weights A. that satisfY the following equation 
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k 

Z, = IWiZd i) (3.2.2) 
i=l 

The weight should be chosen to satisfY the normalization condition 

k 
IWi =1 (3.2.3) 
i=l 

Let the Jacobian matrix in the vicinity of Zt be denoted by J and let b be a constant vector. 

Then if the function f(.) is nearly linear around Zt, the next iterate of Zt is described as 

Z,+l = j (Zt) = JZt +const ·(3.2.4) 

Applying the functionj(.) to both sides of (3.2.2) under the constraints (3.2.3) and (3.2.4) 

the next iterate Zt+ 1, is found in terms of the next iterates of the k closest neighbors. 

(3.2.5) 

Then the prediction is simply made by calculating the coefficients satisfYing the equation 

(3.2.2) and applying them to the first iterates of the closest neighbors. 

The value of k is determined by the embedding dimension, m, of the process. In 

equation (3.2.2) there are m equations for the k unknowns and the normalization condition 

(3.2.3) contributes one more equation to the set. Thus k=m+ 1. If more neighbors than 

m+ 1 are used for prediction ad. hoc. conditions must be added to determine the weights A;. 

Note that the fractal dimension of the attractor of the process indicates the minimum 
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embedding dimension that should be used. Particulary the embeding dimension m should be 

greater than the fractal dimension. 

If the Jacobian matrix matrix method was to be used as in (3.2.4), then d(d+ 1) 

unknowns with an equal number of equations would have to be solved both for J and b. 

This prediction can be made more accurate if the number of neighbors used is increased, 

the usual amount is two to five times m+ 1, and the best approximation of J and b are found 

through the least squares application. This, of course, requires more computing power 

and time. 

An improvement in speed of the proposed method can be achieved by using delay 

embedding of a single variable. This means that the d dimensional point is denoted by 

{Zt -d -1' Zt -d , ... , Zt -1 ' Zr } . Thus the first d-1 coordinates of coordinates of Zt+ 1 are equal to 

the last d-1 coordinates of Zt, therefore the next iteration of only one coordinate should be 

calculated. 

3.2.2 Nonlinear Prediction 

Martin Casdagli employs an inverse problem approach for nonlinear prediction of 

time series in [21]. The inverse problem is defined as the construction of a functional 

model, or a mapping, based on the data given. This map can then be used to make 

predictions into the future. The construction is achieved by interpolating or finding 

approximate functions that covering the observed data. 

Casdagli has found that this approach can also be used in order to differentiate low 

dimensional chaos from randomness. Using this method not only predictions into the future 

can be made bu invariant mesaures such as the lyapunov spectrum of the process can also be 

found. 

Let 1: fJ{" -+ fJf' denote a smooth map of iterates zn = 1 n (zo)' where 1 s n s CXJ 

lying on a strange attractor a. Generally the function 1 ( Zt) is not known and a smooth 

map Ix;: fJ{" -+ fJ{" is to be constructed based on the iterates zn so that 
A 

1.,,+1 = fJ zn). for 1 sn s CXJ is satisfied. It can be seen that such an inverse solution has a 

unique solution and 1001 =11 . There is no requirement on the behavior of the estimated 
a a 

function J 00 outside the attractor a. It is not however practical to employ the above model 
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which approximates using an infinite number of iterates. A more realistic approach is to use 

only a finite number of data points and interpolate among these points in an attemp to 

approximate the generation function J (z,,). Then the inverse problem is 

A 

Z -.( (z) for 1 ::; n ::; N n+1 - J N n' (3.2.6) 

It is easy to see that the solution of the inverse problem operating on only a finite number, 

N, of data points is not unique. The predictor error of the estimated function 

(3.2.7) 

The denominator in (3.2.7) is a normalizing factor. The estimated process is said to be of 

order (J, if 8( iN) = 0 ( N -PI D ) where D is the information dimension of the process. 

Consider a series of scalar variable z(t) sampled at discrete intervals of time t=nr. If 

the underlying dynamics is that of a strange attractor lying on an I-dimensional manifold 

then the sequence z(nr) is classified as a chaotic time series. In such a case Taken's 

embedding theorem states that for generic 't and embedding dimension ms2I+ 1, there 

exists a smooth map J: fir --)0 fJl that satisfies (3.2.8) for 191:5oc. 

J(z((n +m -1) r), ... ,z(nr)) = z((n +m)r) (3.2.8) 

The minimum value of the embedding dimension satisfying (3.2.8) will be denoted by m* 

and called the minimal embedding dimension of the process. The inverse problem related to 

this situation is to compute a smooth function iN according to (3.2.8), using N data points 
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z(m:). Before a method is actually applied to compute the estimated function there are some 

practical problems that need to be tackled. The first problem is to find a practical 

performance measure. Given a time series of length N+M, the equation (3.2.7) is 

approximated by 

A 1 N +M -1 (A ))2 
t?(IN)=- I z((n+l)-r)-IN(z(n-r), ... ,z((n-m+l)-r) /() (3.2.9) 

M n+N 

where a is the variance of the time series. The next step is to calculate m *. A simple 

procedure is to start with m= 1 and compute 8( j N ), and to repeat until increasing the 

embedding dimension does not improve 8( j N) or an acceptably small value is reached. 

Having determined the minimal embedding function and a performance mesaure, an 

interpolation technique should be chosen so that the smallest value for 8( IN) should be 

achieved with the smallest number of computational means. The final problem, th~t will be 

ignored in this thesis is minimizing the effects of noise pollution of the time series. refemces 

for this subject can be found in [21]. 

In the sequel a few approximation techniques will be discussed briefly. The previous 

requirement that j N should be smooth is relaxed. Also a new operator Ei is introduced to 

denote the projection onto the ith coordinate. 

Global techniques choose the coordinate functions ~jN: fJf' ~ fJi, 15i 5m from 

a standard function basis. In particular polynomial predictors of a given degree can be 

chosen to model the process. Then the free parameters of model are found by using a least 

squares algorithm for minimizing (3.2.10). 

(3.2.10) 

Choosing such an approach is advantageous because the resulting model, which is 

in a standard form, will be easy to analyze conceptually. Also Weirstrass approximation 
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guarantees that the estimated function iN' will converge to f as the number of data points, 

N, and the degree of the polynomial, dp, are increased. On the other hand even though 

methods for decreasing this computational requirements are available this approach is 

computationally very expensive. 

There is a variant to the method discussed in the previous paragraph that is popular 

for model building. This method is called the rational predictor and as the na,e suggests it 

fits a ratio of polynomials to the given data. The degrees of the polynomials need not be 

equal. In this case the function to be minimized for finding the optimal estimates for the 

free parameters is 

(3.2.11) 

where the ratio of polynomials to be fitted is g1/g2. 

A viable alternative for global approach is the local one. This local approach, in its 

crudest form, requires much less computational resources than the global one. And 

significant improvements can be achieved by organizing the data. To construct a local 

predictor, first local areas of the data space are fitted by local functions and then all these 

functions are pieced together. For example if a value of S}N at a point z is required the k 

nearest neighbors of z are found and a polynomial of degree d is fitted through the 

corresponding points. Note that generally, the the degree d for local approximation is 

smaller than that of the global approximation. 

The main disadvantage of the local prediction method is that the resulting overall 

prediction function is usually discontinous and thus difficult to analyze. This discontinuity is 

also dangerous when computing long term iterates because a local function is valid only at a 

portion of the phase space and should be used only where it is valid. 
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3.3 Neural Networks For Time Series Prediction 

In this section a few of the neural network architectures that have been used for time 

series prediction in literature are explained briefly. Neural networks are well known for 

their interpolation capabilities. It has been shown that a multilayer percepron network, 

MLP, with two hidden layers is capable of modelling arbitrary nonlinear systems without 

memory [3,4,22]. Neural networks used for pattern recognition and classification tasks has 

performed very well and proved useful in practical applications. 

Neural networks have also been used for modelling dynamical systems or predicting 

the continuation of a time series sequence with success as long as the process modelled or 

predicted is smooth enough or is not very complicated. All of the following networks were 

tested using experimental time series such as hennon mapping or Mackey-Glass chaotic time 

series. Very few application of real time data such as earthquake sequence or sunspot series 

have been used for testing the performance of these network. 

3.3.1. Using CNLS-Net to Predict the Mackey-Glass Chaotic Time Series 

The Connectionist Normalized Local Spline Network (CNLS-net) combines 

normalized radial basis functions, a linear gradient term and a simple rapid solution of the 

training algorithm proposed by Mead et. al. [22]. The motivation was to modify the radial 

basis function (RBF) nets so that better interpolation capabilities would be embodied with 

reduced amount of training requirement for accurate learning. 

The CNLS-net has a single hidden layer. Asume that Xj(z) is a localized function of 

z about some Zj as in RBF networks. Also consider the following identity. 

N 
J;g(z)X/z) 

g(z) ="-1=_1 ___ _ 

~X/z) 
(3.3.1) 
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where g(z) is an arbitrary function. It can be approximated by its Taylor expansion about 

Zj. Then the approximation of g(z) is: 

(3.3.2) 

The basic difference between CNLS-net and the RBF nets is the inclusion of the linear term 

(z-z).rj and the radial basis function normalization. These additions intend to reduce the 

amount of training data needed for reasonable approximations. Since the training of.li and 

dj is linear, it is fast. 

The test case used for this architecture was Mackey-Glass (M-G) equation: 

(3.3.3) 

where, a=O.2, b=O.l, c=10, and r=30. At this value of the delay parameter T, the M-G 

attractor has an information dimension of3.6. 

The performance indicator used was the root mean squared prediction error 

(RMSE) divided by the standard deviation. The M-G equation was treated in [22] to limit 

its range approximately in the interval (0,1) and in this form it had a standard deviation of 

0.24. A constant fit through the mean value of the function leads to a value of 1.0. 

The training and test patterns were composed of 6 inputs and an output unit. The 

input units were spaced at time intervals of 6 time units each and the output unit was 6 

time units after the last entry in the corresponding input set. The embedding dimension, 

which is a very sensitive matter, was found by trial; and error in [22]. 

Mead et. al. used nonoverlapping training and test files which consisted of 1000-

5000 points at fixed time spacing. Sequential sets of 500 patterns were chosen at random 
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the corresponding test set which always consisted of 500 patterns were the sets following 

the training sets. The selected training patterns were held fixed for the entire training 

period but were usually presented in random, varying sequences for successive training 

epochs. 

The CNLS-net architecture chosen initially in [22], had 6 input nodes, 1 bias, 28 

hidden nodes and one output node. This yields about 200 weights, which were trained in 

to mimic the M-G equation. 

The CNLS-net has two continuously adjustable parameters. Mead et. al. claim that 

the learning rate has a broad minimum and learning showed some regions of instability. It 

was found in [22], that the range of acceptable performance was broad and that even 

though higher learning rates gave rise to faster training, the system was then more 

susceptable to instability. The basis functions, too, had a broad optimum width, which 

depended on the characteristic structure of the function to be fit under the chosen 

embedding. The embedding structure is determined by the number of inputs and the time 

delay between succesive nodes. For this experiment Mead et. al. found it to be 30-45. It 

was suspected to have a relation with the delay parameter 't of the M-G equation. 

Mead et. al. found that the trainability and prediction accuracy of the net were 

influenced by the random initial choice of basis function centers. Some of the effects of this 

were cancelled by the marginal stability of the training algorithm. 

3.3.2 Clusnet Architecture for Prediction 

The input to the ClusNet, proposed in [23], consists of sequentially delayed values 

of the signal whose future value is to be predicted. The mapping is designated as: 

z(t + T) = r(z(t ),z(t -Lt),z(t -2 Lt), ... ,z(t -(m -1)Lt)) (3.3.4) 

where bold faced letters denote vectors. Instead of learning global dynamics of the system, 

this approach employs an instance based method. When a new vector z(t) is presented as a 

basis for a prediction of z(t+ T), similar vectors in storage are located and a linear 
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interpolation is done to the future of these values. Unfortunately this class of algorithms 

require a large amount of storage and processing time. 

The clustering neural network Clusnet is a network that classifies a given set of n 

input vectors into N clusters. The learning phase determines the centroids of the clusters by 

minimizing the total Euclidean distances of the vectors from their respective centroids. For 

prediction the cluster that the input vector belongs to has to be determined. ,/ 

The Clusnet architecture consists of two layers, the input layer is a static one with a 

fixed number of nodes. The only function of the input layer is to pass the data to the next 

layer. There are as many input nodes as the embedding dimension or the size of the input 

vector. 

Cluster Layer 

@ ••• . .. ® 

z[l] z[2] z[3] z[n-2] z[n-3] z[n] 

Input Layer 

Figure 3.1 The Clusnet Architecture 

The cluster layer should accomodate an adequate number of nodes, corresponding to the 

necessary number of clusters for accurate classification, dictated by the system that is being 

analyzed. This layer is a dynamical layer and the number of nodes is modified during the 

learning process until an acceptable point on the error surface is reached. The two layers 

are fully connected but there is no connection between nodes in the same layer. The 

weights between nodes in the input layer and a cluster node corresponding to centroid c is 

denoted by the vector we. The values of the weights are determined by the leaming 

algorithm. 

Consider d, an input vector fed into the network. The activation of the cluster c is 

defined as: 
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(3.3.5) 

where the square operation is the scalar product of the vector with itself The cluster nodes 

compete with each other and the one with the smallest activation wins so that the output of 

each of the cluster nodes after the input is presented and the calculations are done as defined 

as follows: 

q =1, ifi wins 

= 0, otherwise 
(3.3.6) 

Such a competition will partition the input space so that similar points in the input space will 

be responded to by the same cluster node. The weight vector of the whole network is 

denoted by W It is modified, or learned, dynamically as the learning continues. The 

number of clusters need not be known a priori but cluster nodes are assigned as need arises 

according to the criteria given to the network. 

The Clusnet learning algorithm occurs in two stages. The first one is the initial 

cluster center allocation stage. During this stage the network is presented with a set of 

inputs. It partitions these into m clusters denoted by m cluster nodes. An assignment is 

correct if an input vector is assigned to the cluster center that is closest to it. 

Naturally every input vector should not normally cause a new addition to the cluster 

nodes in the second layer. As new vectors are added to a cluster, the corresponding weights 

should change to minimize a specified error term. This stage requires one pass of the input 

vectors. However when this stage is completed some of the input vectors may no longer 

belong to the same cluster they were initially assigned to, as the weight vectors have 

changed. That is some assignments are not correct, therefore the network is not in an 

equilibrium state. 

The second stage is the equilibrium stage. This stage starts with the set of weights, 

cluster centers, and input classifications determined by the first stage. It may reassign 

vectors from one cluster to another and change the corresponding weights appropriately. 

This decreases the number of misclassified vectors. The procedure continues until no vector 
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is assigned to a cluster incorrectly. When all vectors are assigned correctly the network is in 

equilibrium stage. 

The total error of the network after stage two converges is defined as: 

N nU )2 
E = I L\Wk -zj (3.3.7) 

k=l j=l 

where nk is the number of input vectors in cluster k, and N is the total number of clusters. 

Then let 

BE nU I ') --I = L\W -Zl =0 
bWi j=1 

The solution of the above equations is: 

1 nz ' 
Wi =- IzJ 

nz j=1 

(3.3.8) 

(3.3.9) 

The weights can be determined if the assignment of the input vectors to the clusters are 

known. 

Stage 1. Initial Cluster allocation stage 

Create a class node C 1 with a weight vector wI =zI. When k clusters have already 

been created and an input vector ;.i is presented to the network, the activation of all the 

nodes of the network are denoted by A I, ... ,Ak are computed. The node with the smallest 

activation value is found. Assume node m is the one that is closest to the input vector. If 
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Am is less than a user defined constant & this input vector is added to the cluster m and the 

corresponding weight vector is adjusted to minimize the following error term: 

(3.3.10) 

In the above equation nm is the number of vectors assigned to cluster m including the new 

input d. 
If the input vector is not close enough to the closest cluster center m, that is the 

activation function Am is not less than the constant &, then a new cluster center, ck+ 1, has 

to be created and its weight vector is set equal to the input vector: 

(3:3.11) 

All input vectors are passed through the network with the same procedure. The parameter 

& will dictate the number of clusters that will be formed. A large number of & will result in 

fewer clusters whereas a low value of E will cause formation of more clusters. 

Stage 2. The equilibrium Stage 

After all the input vectors are presented and assigned to one of the cluster centers, 

in the equilibrium stage, the weight vectors are updated until the network is in the 

equilibrium. 

Let A I, ... ,AN be the activation of the cluster nodes when d is presented and let the 

weight vectors be denoted be wI,"" wN If a vector d is found to be closer to a cluster cnew 
than the cluster C that it is initially assigned to, the activations functions are related as 

below: 

(3.3.12) 

where 



49 

(3.3.13) 

To remedy this situation vector zJ is assigned to the cluster c new by updating their 

corresponding weights using the equation below: 

(3.3.14) 

Assume that the embedding scheme is given, then the learning phase consists of the 

presenting the input-output pairs (zi,yi), 1 :SiSflk to the ClusNet. The prediction task is then 

to return the correct value of yJ given the state vector zJ. Typically the input vector has 

several components: 

l =[ zL~, ... ,z~] (3.3.15) 

where each component may be a delayed sample of the time series or any other independent 

measure. 

For simplicity assume that there exists a scalar function I: fJis~fJi/ Taylor series 

expansion of the input vector z that belongs to the cluster c with center zc, around the 

cluster center upto the linear term is: 

y =r(Zc;) +(z -Zc;) vr(Zc;) (3.3.16) 
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where the operator, v, denotes the gradient. The average value ofy is 

Y =F(z) (3.3.17) 

Since the function I is unknown, otherwise there would be no need to construct an 

adaptive network for prediction, its gradient is also unknown. Write the expansion as 

(3.3.18) 

where s is the size of the input layer of the Clusnet. The wis can be determined for each 

cluster using linear algebra techniques. 

3.3.3 NADINE-A Feedforward NN for Arbitrary NonLinear Time Series 

Madaline Networks applied to the modelling of time series realize a constrained 

Volterra series because of the fixed nature of the nonlinearity [24,25]. Nadine, proposed 

by Ahmed et. al. in [24], can model arbitrary Volterra series and therefore arbitrary 

nonlinearities with memory. 

Nadine can be realized by layers of Adaptive Linear Combiners (ALC), where the 

outputs of one layer are used as the weights rather than the activations of the next layer. 

The ALC implements a constraint Volterra series in which the kernels do not admit arbitrary 

shapes 
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Figure 3.2 Adaptive Linear Combiner 

The network can be trained usmg a backpropagation style learning without actually 

propagating adaptation information between the layers. The ALCs are, thus, locally 

adapted. 

Nadine is very modular and easily extendible. Ahmed et. al. claim that the high 

order neural networks and polynomial discriminant based methods are special cases 'of 

Nadine which can, now, be implemented modularly without requiring preprocessing [24]. 

When used for time series analysis the input to a neural network is usually a time 

lagged sequence of the present observation. The architecture of NADINE realizes a 

nonlinear transformation that is amenable to a Volterra series representation. 

t------ Q---e[n)+ 

OUTPUT LAYER 

INTERMEDIATE LAYER 

ALe ALe ALe ALe INPUT LAYER 

Figure 3.3 NADINE- Feedforward Neural Network 
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The architecture of NADINE, as can be seen from the figure, implements a constrained 

Volterra sysytem in which the Volterra kernels do not admit arbitrary shapes. 

NADINE can be realized by layering ALCs. The output of a layer is used to drive 

the weight rather than the activity of the next layer. Each layer obtains the same sensory 

inputs but one layer provides a dynamic function, or weight, to the next. This structural 

difference allows NADINE to model nonlinearities with memory that Madalines cannot. 

Unlike most multilayer networks, each ALC within the net can be adapted locally, 

instead of using an overall error measure. It will be shown in the following discussion that 

local adaptation minimizes the overall error measure. 

Consider the figure given above, the output of the linear combiner is: 

N-J 
y(n) = IWjz(n -i) (3.3.19) 

j=O 

Assume that the fixed nonlinearity f(t) is differentiable and thus admits a Taylor series 

expansion of the form: 

00 . 

f{t) = I Kt J 

j=O J 
(3.3.20) 

Substitutingy(n) for t in the above equation, the output, s(n), of the network is found. 

00 [N-J Jj s(n) = I Kj IWjz(n -i) 
j=O j=O (3.3.21) 

N-J N-J N-J 
= Ko + IKJwjz(n -i) + I I bj.jz(n -i)z(n - j)+ ... 

i=O i=O j=O 



53 

This is a Volterra series with only N degrees of freedom provided by N weights wi. The 

choice of the fixed nonlinearity fixes KJ' only Wj can be adjusted to learn the function. In an 

arbitrary Volterra system all the weights are variable. An arbitrary nonlinear system with 

finite memory is : 

N-J N-J N-J 
s[n} =wo + IWiz(n -i + I IWi,jz(n ~i)z(n - j) 

j =IJ i =IJ j =IJ 

N-J N -IN-J 
+ I I IWi.j,kz(n -i)z(n - j)z(n -k)+··· 

i =IJ j =IJ k =IJ 

(3.3.22) 

The drawback induced by having only N degrees of freedom is that it can only 

handle linearly seperable constraints. Madalines overcome this limitation by piecewise 

linearization, by implementing the nonlinear constraint through multiple linear constraints. 

The approach chosen for NADINE is to implement the nonlinear constraints by working on 

succesive tangent spaces of the nonlinear constraints. 

The architecture for only the first four terms of the Volterra series is derived here for 

the sake of computational ease, generalization to higher orders is trivial. Consider a 

truncated version of the arbitrary Volterra system presented above with only the first four 

terms. Such an equation is easily factorized to the following form: 

N -J [ N -J[ N -J }} y(n)=wo + I Wi + I wi.j + IWi,j,kz(n-k) (n-j) (n-i) 
j =IJ j =IJ k =IJ 

(3.3.23) 

Thus the content of each of the patranthesis is linear and can be implemented using ALCs. 

The output of each ALC becomes the weight in the next layer. Rewrite the above equation 

as: 
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N-J 
y(n) =WO + IwJZ)z(n -i) (3.3.24) 

i =fJ 

where Z is the set of N past observations of the time series and rolZ) is the output of the 

ALe and is denoted by: 

N-J 
wJZ) =Wi + I ~,j(Z)z(n - j) 

j=fJ 

(3.3.25)-

A can be seen the weights of both y(n) and OJ(Z) are state dependent. t5(n) are the outputs 

of the input layer of ALes whose weights are state independent. 

N-J 
8. ,(Z) =W ,+ Iw 'kz(n -k) 

I,J I,J k=fJ I,J, 
(3.3.26) 

The state dependent weights change because of two reasons, the lower level ALes are 

adapted and because of adaptation, whereas the state independent weights change only 

because of adaptation. 

The weight update equation of the LMS learning rule is applicable to all ALes in all 

layers. Each ALe in the network uses a localized adaptation scheme to learn the mapping. 

The output layer consisting of a single ALe minimizes the error between the desired result 

and the network output. The rest of the structure minimizes the change in the respective 

weight in the next upper level. 

The update for the topmost layer, second layer and input layer are as follows, in the 

same order: 



wJn +1) =wJn) + TPn_Jn)e(n) 

wi,j.(n +1) =wi,/n) +lljZn_j(n)eJn) 

Wi,j,k (n + 1) =Wi,j,k (n) + llkzn--k (n )ei,/ n) 
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(3,3.27) 

where ern) is the network error and the errors for intermediate layer and the input layer are 

defined as: 

eJn) =wJn +1) -wJn) = T'/izn_Jn)e(n) 

e· .(n) =w· .(n +1) -w· .(n) = n·z _.(n)e.(n) l,j l.j l,j '(j n j I 

(3.3.28) 

Local adaptation of ALes in NADINE is a result of the separability of the layers. 

LMS based adaptation rules tend to be dependent on the eigenvalue spread of the 

autocorrelation matrix. The larger the eigenvalue spread the slower will be the learning: In 

the case of nonlinear constraints the eigenvalue spread increases with the order of the 

nonlinearity. Nadine overcomes this by using local errors. 

Nadine can also be considered as a volterra based nonlinear adaptive filter[26]. This 

kind of filters are actually linear filters with the input sequence to the filter consisting of a 

volterra series expansion of the original signal. This introduces the nonlinearity to the filter. 

The system is defined as follows: 

Ho=zero order term 

H 1 [zn]=first order term= LihiZj 

H2[zn]=second order term=LiLjhijZiZj 

H3[zn]=third order term=LiLjLkhijkZjZjZk 

The order can be increased according to the requirements of the process. The nonlinear 

filter then consists of two parts: 

1. A nonlinear volterra series expander that actually performs the multiplication of 

the input signal to account for the ZiZj and ZjZjZk 

2. A linear filter that operates on the inputs and adapts the weights of the system. 
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3.3.4 Chaotic Neural Network 

Experiments as well as numerical modelling by Hodgkin-Huxley equations have 

shown that a single biological neuron is capable of exhibiting a wide range of behavior 

including chaotic behavior[27]. This is one of the main deficiencies of the arificial neural 

units. Not only are they incapable of modelling the biological neurons but they are also 

incapable of exhibiting more than one type of behavior. For example an artificial neural unit 

with sigmoidal activation function may compute its output by evaluating the following 

particular formula, 

hid = J 
( J +e-ynet ) 

(3.3.29) 

where hid is the output and net is the input of the neural unit. Therefore the possible range 

of behavior of such an artificial neural unit is predictable and too rigid to model a biological 

neuron. This deficiency of a single artificial neural unit to imitate a biological neuron's wide 

capabilities have trigerred the proposal of a number of neural units that can actually exhibit 

chaotic behaviour as well as the usual non-decreasing simple behavior of the widely used 

sigmoidal neural units. 

In this section the chaotic neural unit proposed by Dingle et. al. [28] will be 

introduced. Dingle et. al. introduced the chaotic neural unit into the self organizing map 

and found promising results. In this project the same neural unit is used in a multilayer 

network. The application will be explained in more detailed with the results in section 5.2. 

One of the simplest chaotic systems is the Feigenbaum logistic equation 

y(t +J) =4gy(t)[J -y(n)] (3.3.30) 
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where g is the bifurcation parameter and t can be time or a discrete step. The long time 

behavior of (3.3.31) depends on g. The system output dies away to zero if g<O.25. If 

O.25<g<O.75, the system converges to a single non zero value. For O.75<g<O.89 the 

sytem output oscillates between an increasing number of values as g increases. for g>O.89 

the stem is defined as a chaotic system, that is small differences in initial conditions result in 

huge differences in outputs within a finite time. This behavior can be seen in Fig. 3.4. 
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Figure 3.4 Bifurcation Diagram for the Feigenbaum Logistic Equation 

In the chaotic neural unit, the total input to the unit determines the type of behavior 

produced, that is the input to the sytem plays the role of the g parameter. Another novelty 

is that the previous output of neural unit, is used to calculate the present one. In a 

conventional artificial neural unit, only the input to the unit is used as a variable parameter 

while the others are fixed. Note that the output if a neural network are not available until a 

time T after the inputs are presented. The waiting time T should be long enough for the 

transients to decay. Then Fig. 3.4 represents the transfer function ofthe neural unit. 

Dingle et. al used an inverted form of the bifurcation diagram in Fig. 3.4 so that it 

wouid agree with a set of observations from experiments performed by Freeman. Freeman 
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has found that the olfactory neurons of a rat appear to have chaotic activity when the rat is 

subjected to a novel odour, hereas the activation in reaction to a familar odour appeared to 

me more ordered. This result was immediately transferred to the artificial neural network 

world by having a large network output when the input is familiar, and allowing for chaos 

when the input is not familiar. The inverted bifurcation diagram of the Feigenbaum logistic 

equation can be seen in Fig. 3.5 and is described by the following equation. 

M 
net = .EWjZj 

i=l 

hid(n +1) = 1-4( 1-net)hid(n)( l-hid(n)) 
(3.3.31) 

where net is the net input into the neural unit and hid(n) is the output of the neural unit at 

step n. This terminology was chosen because the neural unit was used only in the hidden 

layer for this project, but it could also be used in the output layer. 

1.0 ~---------------------------------------------. 

0.9 

0.8 ~:. :; 

0.7 

0.6 

., 
:: .. . ' 

" . ;. 

· • ! I 

· ':. : 
>-0.5 ',,' 

0.4 

0.3 

'I " • !: . 
. : i : .j 

: :':: 

': :';: · ," 

,.' '.'1 

0.2 :;:;:' ,::. . 
• '1 1 ::,1 . o 1~: ,;;;::. 

. :: <:" 
'; " 

0.0 ~'~~ __ ~L-~~~~~ __ ~~~~~~~ __ ~~~~ 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
9 

Figure 3.5 Transfer Function of the Chaotic Neural Unit 

1.0 



59 

This neural unit behaves in the same way as a conventional neural unit for O.25<net<1.0. 

But when the net input to the neural unit is less than 0.25, the activity can be either periodic 

or chaotic. 

In [28], it is shown that a network of 10 chaotic neural units connected by pseudo 

randomly chosen connection weights can exhibit chaotic behavior similar to the electrical 

activity of brain recorded in electroencephalograms (EEG). It should be noted that the net 

input to a chaotic neural unit should not be greater than one. In other words the weights 

should be chosen such that: 

(3.3.32) 

where M is the number of neural units supplying input to the neural unit whose input 

connection weights are being updated. The parameter a describes the maximum coupling 

between the neural neural units and the behavior of the network depends on the' this 

parameter. For example the network describedc above for immitating EEG signals exhibit 

two kinds of behaviour depending on the coupling between the neural units, or in other 

words the parameter a. A low value of a produces irregular EEG activity whereas a higher 

value produces EEG alpha rhythms. 

Dingle et. al. use the chaotic neural unit in a self organizing map architecture and 

prove its improved abilities for clustering the input patterns and modelling their probability 

density function. 
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4 Earthquake Data Analysis 

The area studied in this thesis, bounded by lattitudes 39.50-41. 50E, and longitudes 

25-28.50N, is roughly the Mannara region of Turkey. A plot of the epicenters of 

Earthquakes that ocurred during the ten year time span from 11111970 to 11111991, can be 

seen below in Fig. 4.l. The plot shows all of the 3801 events detected by the local 

seismographic network. 
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Figure 4.1 Plot of the Earthquake Epicenters in the Region Analyzed 
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The Agean sea and the surrounding areas, that include the Marmara region, is the 

most active regions of all Western Eurasia [7,29,33]. The Aegean region is placed between 

the African and Eurasian continental plates. Three main movements give rise to the active 

deformation, and high seismic activity in the area [29]. These are: 

1. The West-bound movement of the Anatolian continental plate, starting from 

Bitlis-Zagros region, along the North and East Anatolian transform faults and the 

Southwest-bound movement of the Aegean sea base, both relative to Eurasia .. 

2. The subduction in the North and Northeast direction along the Hellenic Arc

Trench system. 

3. The continental compression between Northwestern Greece, Albania and the 

Apulia-Adriatic platform. 

In this area the West movement of the Anatolian continental plate and the 

Southwest movement of the Aegean sea base, are effected, in part, by boundary forces 

caused by the compression between the continental plates of Eurasia and Africa. Another 

factor giving rise to these movements are the buoyancy forces caused by the subduction 

zone, and the graviational potential energy due to the thickenning of the crust in East 

Anatolia [30]. 

The geophysical structure of the region is more complex than the above definition. 

F or example the area analyzed had small faults scattered densely in the region. The activity 

on each of these faults affect a number of others. Thus an earthquake occuring on one fault 

might trigger an earthquake on another fault. 

In the subsequent section the fractal dimension of the temporal distribution of the 

earthquakes and the completeness analysis are presented as well as the fourier transfom and 

autocorrelation spectrum of the earthquake data used in the project. Most of the 

experiments whose results are presented in section 5 were performed on the whole data set. 

The fractal dimension calculations of the next subsection were also performed on the whole 

data set in the same spirit. The fractal dimension calculation was performed to show that 

there is indeed a relationship between the interevent times and magnitudes of two sequential 

earthquakes. Thus the attempts for predicting the earthquake sequence are validated by the 

fact that the earthquake sequence posseses a stochastic self similar nature. 

The Box-Jenkins algorithm on the other hand was applied to data containing only 

the main earthquakes. This set contained only the magnitude range that was complete. The 

completeness analysis showed that the magnitudes less than 2.6 were not recorded reliably 

by the seismographic network, therefore these were eliminated from the set. Unfortunately 
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it turned out that high magnitudes especially the range 4.5-5.5 were not complete either. 

This incompleteness may be because the physical earthquake generation system of the 

region was not contained fully in the area analyzed. The earthquakes, with high 

magnitudes, generated by the this system might be occuring outside the study area at least 

durung the time span studied. Another reason for the incompleteness might be that the time 

span considered was not long enough to collect all the necessary movements of the 

particular area. The aftershocks of the main shocks were removed according to the 

procedure given in [10-12]. All earthquakes occuring within 23 days after a main shock in 

the area covered by a circle of radius 50km and center as the epicenter of the main shock, 

are removed if their magnitudes are less than or equal to the magnitude of the main shock. 

These parameters were chosen by trial and error, but they are also used by [13], other 

choices did not produce a very different picture. 

The Fourier spectrum of the data is presented in section 4.3 in order to give an idea 

about the frequency content of the data. It is also a good idea to perform a spectral analysis 

before choosing the activation function of the neural network. The reasoning for this 

statement will be presented in the same section. 

4.1 Fractal Dimension of the Temporal Distribution of Earthquakes 

The time clustering of earthquakes have been suspected to posses a chaotic character 

for a long time. The stochastic self similar nature, or the fractal structure in space and 

magnitude, and the fractal geometry of active seismogenic faults have been investigated in 

literature [29-31]. It was found however that the scale invariant behavior of the 

earthquakes persists only over specified scale lenghts. If the occurence of each earthquake 

was totally un correlated with the others, the earthquake production process would be a 

random one. It is not expected to find that the seismicity is random as an increase in the 

state of stress in the region is expected to cause clustering of earth movements. Finding a 

relation in such a form may help in devising algorithms for earthquake prediction, and in 

understanding the earthquake generation process of the region considered. Some study has 

already been done for relating the clustering dimension of seismicity to other measures such 

as Omori's exponent and b value [31]. 
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In the following an algorithm proposed by Smalley et al [32]. for quantifying the 

time clustering of the earthquakes on the basis of their temporal distribution is presented. 

Smalleyet al. applied the original algoritihm to New Hebrides. They found that there was a 

significant deviation from the usually assumed random or poisson behavior and that the 

fractal dimensions varied from 0.126 to 0.255 for the area they studied. Later on 

Papadopoulos et. al. [33], applied the same algorithm to the Helleneic Arch-Trench 

system and found that the fractal dimension varied betweeen 0.137 and 0.251. They have 

considered the shallow, intermediate depth and all depth shocks seperately. Denoting the 

fractal dimension of shallow, intermediate depth and all-depth shocks respectively as D 1, 

D2,D 3, they determined that fractal dimensions were related by D 3>D I>D2. 

Papadopoulos et. al. investigated parts of the area between latitudes 40-34N and longitudes 

20-29E. They divided the whole area into seven segments that did not cover the entire 

reglOn. 

Smalley et al. extended the fractal dimension definition of a curve, first proposed by 

Mandelbrot, to the temporal distribution of earthquakes. The smaller the value of D the 

more isolated are the clusters. Thus a smaller D value will correspond to concentt:ation of 

the events being isolated in time from each other. In this method the fraction, v, of the 

intervals in which an earthquake occurs is related to the time length, T, considered by:: 

V~!-D (4.1.1) 

then the fractal dimension is D. 

Papadopoulos et. al. have examined shallow, ht<60 km, intermediate depth, hp-60 

km, and all depth, hp-O events between the years 1964-1985 for the surface wave cutoff 

of 4.0 and 1950-1985 for a cutoff of 4.5. The fraction of the time intervals that include an 

event is plotted as a function of the interval size in logarithmic scale, and D is determined 

from the slope j of the best fitting line through the data by the relation j= I-D. 

Papadopoulos et. al. used two minutes as the smallest time interval considered and 

increased the size by factors of two. 

The fractal dimension is determined between the upper limit which corresponds to 

log(v)=O, and the lower limit where the distribution deviates from the uniform distribution. 

Uniform distribution predicts events equally spaced in time, in such a case v= 1, when an 

earthquake occurs in every interval, that is the number of events N, is greater than or equal 
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to the number of time intervals n. If N<n, then v=Nln. The two limits signify the scale 

lengths of time over which the clustering of the earthquakes is scale-invariant. 

Papadopoulos et. al., found that D 1 ranged between O. 13 7 and 0.191 in both time 

intervals and all segments considered expect for two. They attributed the anomalities, high 

D values, found in these segments to the relatively high number of shallow strong (M?-6.0) 

earthquakes. In other words the increased number of sequences of dependent events 

means less isolated clusters in time with respect to other segments examined. 

The relation D3>D 1>D2 has a seismotectonic meaning. Intermediate depth shocks 

are associated with relatively few number of foreshocks and after shocks. This character of 

intermediate depth shocks tend to decrease the clustering strength at the time around a 

specified mainshock with respect to the clustering strength of the foreshock-mainshock

aftershock shallow sequences. This is counteracted by the fact that the intermediate depth 

earthquakes are more scarce, causing the intermediate depth events to appear in clusters 

more strongly isolated in time with respect to shallow ones. Thus the relation D 1>D2 is 

explained. The relation D3>D 1 means that if a sequence of nonshallow earthquake 

sequence is added to a shallow earthquake sequence both occuring in the same tim~ interval 

and segment, then the clustering strength decreases. It was shown that the distribution of 

the shallow earthquakes in this area can be adequately described by a simple poisson 

process. The probability of occurence of nonshallow earthquakes in the same time position 

as the shallow ones is relatively low so that when both sequences are considered together 

the uniformity of the distribution is decreased. This explained D3>D 1. 

In this thesis, the fractal dimension of the temporal distiribution of all earthquakes 

occuring in the area 39.50-41.50N and 25.00-28.50E during the time length 11111970 and 

11111991 is calculated. The initial interval considered in the algorithm, 't, covered the 

complete time span and at each iteration the length of the interval is halved until 1 minute is 

reached. We counted the number of time intervals of length T that contained an event 

where an event is defined as any earthquake that was detected by the network. Unlike 

Smalley et. al. and Papadopoulos et. al. we did not consider only earthquakes above a 

certain magnitude. All events registered by the seimological network regardless of their 

magnitudes were significant for our algorithm and we did not distinguish between shallow 

and intermediate-depth events. We have considered a total of 3801 events in this study. In 

the references the authors chose to use a magnitude cutoff to ensure that all earthquakes of 

the particular magnitude range in the region are registered by the regional seismological 

network. The graph of the fraction v, and the time interval 't was plot and can be seen in 

Fig. 4.2. The fractal dimension found was about 0.1892278 which agrees with the results 

found by Papadopoulos et. al .. 
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Figure 4.2 Fractal Dimension of Temporal Earthquake Distribution 

4.2 Completeness Analysis of Earthquake Data 
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Completeness Analysis uses an algorithm similar to the one above. In fact this 

similarity is studied in [29]. The number of earthquakes of a given magnitude is calculated 

for all magnitudes. It is assumed that the number of earthquakes in log scale will have a 

linear relationship with the magnitude and b will be the slope of this line. The point where 

the data distribution deviates from such a behavior is taken to be the point where the 

magnitudes below are incomplete. 

This was applied to the earthquake sequence studuied and it was found that the data 

set was complete for all magnitudes greater than 2.6 according to the Richter scale. At the 

higher magnitudes the data was scarce and deviated considerable from the linear behavior, 

and the highest reported was 5.5 according to the Richter scale so that the data was not 

complete for the high magnitudes. 
The plot for completeness analysis can be seen Fig. 4.3. 
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Figure 4.3 Completeness Analysis of Earthquake Magnitudes 

4.3 Fourier Spectrum of Earthquake Magnitudes 

Bruce E. Segee suggests choosing the basis functions to match the spectral 

properties of the function to be learned [34]. Segee makes the observation that the network 

output is a linear superposition of the inputs which may be then passed through a 

nonlinearity. This makes it possible to use linear superposition to make intelligent choices 

for the parameters of the Artificial Neural Networks, ANN. 

Frequency domain analysis characterizes a signal m terms of the frequency 

components that it contains. It is usually employed to analyze the effect of a linear system, 

such as a linear filter, on a given signal. An important aid in such an anlysis is the fact that if 

a range of frequencies are not present in the input to a linear system they cannot appear in 

the output. Similarly if the transfer function of the linear system is zero at a certain 

frequeency range then these frequencies cannot exist in the output, because the output of 

the linear system in the frequency domain is the product of the transfer function of the filter 

and the frequency domain representation of the input signal. 
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The difference between a linear filter as described above and an ANN is that the 

operation is no longer that of producing a different signal by filtering a signal but that of 

linearly summing up a set of functions of independent variables. Therefore the input is not a 

signal but rather a set of independent variables. 

An important observation paralleling the fact stated above is that if the desired 

output function has frequency content in regions where the activation functions have little 

or no frequency content learning will be very difficult. Since the network is to compute 

only an approximation of the desired function it is not impossible to learn in such cases. 

Such a "wrong" choice for the activation function will probably result in slow learning and 

less reliability. 

The activation functions in the network have significant energy in some frequency 

bands. Learning involves enhancing the desired frequency components that are very small 

in the activation functions and cancelling out the unwanted ones that are large. The 

parameters of such a network must be chosen very carefully, and loss any of such 

parameters may destroy the delicate balance of the network. If on the other ~and the 

network parameters are well matched with the desired output function then the ANN will 

not devote all or most of its resources to achive a balance and will encode information in a 

more redundant way giving rise to a more fault tolerant system. 

In this light it is desirable for the network designer to have a good idea about the 

spectral properties of the activation functions that can be used in ANN, as well as the signal 

that is to be modelled, in order to make intelligent choices. 

The fourier analysis was not performed for this project. The main reason for this is 

that the data used as input was not in any form suitable for this analysis. For most of the 

applications, an earthquake was represented by its magnitude and the time that elapsed 

since the previous earthquake. This was a logical alternative to treating the data as a real 

time series of one dimension, that is the magnitude. As the interevent times between two 

earthquakes varied from one minute to hundreds of thousands of minutes, the data had to 

be treated on a minute by minute basis, which could take too long to process. 

The fourier spectrum of the earthquake data used in the project are presented in Fig. 

4.4. 
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where IMI stands for the magnitude and arg(z) stands for the phase of the complex number 

z. 
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4.4 Autocorrelation Functions of the Earthquake Magnitudes 

Viewing the autocorrelations and partial auto correlations of a data set is in itself 

useful for getting an idea about the function that can give rise to the particular data set. 

They are also needed for the Box-Jenkins algorithm in order to identifY and build a model 

for prediction. The auto correlations used for estimation on section 5 are presented here 

together with a brief account of the formulas used for computation. All the theory and 

formulas can be found in [14] in great detail. The calculations in this section are very 

similar to the ones presented in section 3. 1. The auto correlations are computed using the 

equation 

(4.4.1) 

where rk and ck are estimated auto correlations and autocovariances, respectively. The 

estimated autocovariance function is defined as 

(4.4.2) 

where the sequence w is obtained by differencing the original time series an appropriate 

number of times as explained in section 3. 1, and w is simply the mean of the sequence w. 

The plot of the autocorrelation function for the complete set of earthquake data whose 

incomplete small magnitudes and aftershocks are removed. 
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25 

The estimated partial autocorrelation IS calculated by usmg the estimated 

autocorrelation values. 

(4.4.3) 

where as before the symbol /\ means that the variable is calculated using the partial time 

series in hand. The equation (4.4.3) is valid only for /> 1, and ';)11 = r] . The rest of the 

unknowns in (4.4.3) are caluculated using (4.4.4) given below. 

(4.4.4) 
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where j ranges from 1 to /-1. The partial auto correlations of the earthquake data can be 
seen in Fig. 4.6 below. 
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5. RESULTS OF EARTHQUAKE PREDICTION METHODS 

In this thesis a different approach is adopted to the earthquake prediction problem. 

We treat the earthquake data as a time series that arises from a dynamical system, possibly a 

low dimensional chaotic system. The initial aim was to use the :five dimensional time series 

that includes the time, magnitude and three spatial coordinates, i.e, lattitude, longitude, and 

the depth of the earthquakes. This was abondoned for time restriction as well as the 

complexity of defining such a system in the area considered that is known to have many 

different small sources acting together. The problem, then was how to account for time as 

using the absolute time would cause overflow as computations proceed unless some 

precaution was made and also as the physics of the situation imply that the magnitude or at 

least the occurence of an event would depend on the interevent time since the previous 

event. This corresponds to the time needed to gather enough energy in a certain area before 

releasing it. We have applied the time series consisting of inter event time between the 

previous and present event, the two coordinates, lattitude and longitude, and the 

magnitude of the present event. We found that the number of hidden units ~sed and the 

epochs that the system was trained for was not quite enough and experimentation was not 

possible due to the time restriction. Also using the lattitude and longitude of the event 

would imply that there is actually a function that describes the order in which places on 

earth experience earthquake.. Therefore we have restricted our attention to a small area and 

worked on the data pertaining only to this region. It was expected that the dynamics of a 

part of the complete study area would be simpler than the dynamics of the whole region. 

Another approach, which is probably a more sound one, would be to use the data of the 

surrounding regions as input as well .. 

Limiting the region of study should not be a restriction if the system is chaotic, for 

space distribution, because chaotic systems possess a self-similar nature so that if we can 

solve the problem for this small area the optimistic view would be that we can solve it for 

the whole area by appropriately scaling the solution. Otherwise we can just apply a network 

of prediction networks covering the whole area and overlapping each other in order to 

compute predictions on a more global scale. Thus we had a two dimensional time series, 

interevent time and magnitude, of 415 elements. This set contained all events that occured 

in the ten year time span that was studied. This set is plotted in Fig. 5.1. 
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Unfortunately limiting the region had the drawback that the physical system 

producing the earthquake sequence was not contained in it entirety in the study area, 

therefore some of the relevant information on the system was lost. That is since the faulting 

structure that gave rise to the earthquakes in the region was not contained in the study area, 

some of the earthquakes occurred outside the study area and thus could not contribute to 

the model. 

The previous approach did not yield encouraging results. Assuming that this was 

due to loss of information, the earthquake sequence of the complete study region was to be 

used in order to capture the dynamics of the generation process. The complete data set had 

3801 elements. But these elements were cut down to 708 by eliminating small magnitudes 

that could not be reliably measured or detected by the seismographic network, and then by 

removing the aftershock sequences produced by major earthquakes. The completeness 

analysis, in section 4.2, showed that the smallest magnitude detected reliably by the 

seismographic network was about 2.6-3.00. Using this information, the events with 

magnitudes less than 3 were eliminated from the data set. Unfortunately, as mentioned 

before, the data set was not complete for high magnitudes. Either the area analyzed was 

too small, or the time span considered too short for the dynamics of the process to be 

portrayed correctly. This situation could not be remedied due to time restriction. 
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Then the aftershock sequences of the main events were removed. The first event of 

the data set was assumed to be a main earthquake, and all the events, whose magnitude is 

less than or equal to the magnitude of the main event, that occured within 23 days after its 

occurence in the circular area with radius 50 kIn around its epicenter, were taken to be the 

aftershocks of the main earthquake. All the aftershocks were removed and the procedure 

was repeated for the second event in the set and so on. Thus the resulting 708 event set 

consisted only of the main earthqukes that occured in the entire region. The results of this 

application are not encouraging either. This is probably due to the loss of information as 

well as the incompleteness of the data. Even though, it makes sense to analyze only the 

main events that are complete from a geophysical point of view, the aftershock sequence 

and all the activity, whether it is measured correctly or not, are also very important. Most 

of the time, these activities are also used in the analysis as extra parameters. For example 

eN is applied to a data set containing only the main events. It should be noted, though, 

that the number of aftershocks and the increase in the seismic activity are used as parameters 

for detecting a TIP. 

The Box-Jenkins algorithm was applied to the 708 element earthquake data 

containing the main events for magnitudes greater than or equal to three only. The results 

are presented in this section. 
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Two different architectures were used for the time series prediction. The input to 

each of the networks was a time delayed sequence of the two dimensional time series 

starting with the present values. One of these was a multilayer perceptron with sigmoidal 

activation function. Different combinations of step size hidden unit number and time delay 

values were used. The same architecture was used with a different activation function a 

chaotic function defined as in equation (3.3.32). It was expected that this choice of 

activation function would be more suited to time series modelling as the sigmoidal 

nonlinearity turned out to be very restricted and could not learn. Also since the output 

value of a hidden unit at time t is used to calculate the output of the same unit at the next 

time step, chaotic activation function involves a short term memory which should be 

valuable in modelling and predicting continuation of time series. 

The second architecture is NADINE, which is described in one of the previous 

sections. This architecture could calculate the second and third order correlations of the 

input data, if N, where n is the number inputs, was large enough, so that if there is indeed 

some correlation between the next event and the preceeding ones it should have been easy 

for NADINE to pick that up. The fact that N is not large enough for the multipl~cation of 

the time series values to be considered as correlations can be seen as a drawback for a 

conventional system. But if the system is indeed a chaotic one that it is better that N is not 

large as for a chaotic system nearby trajectories diverge and we do not and cannot have 

noise-free data with enough precision to stay on the same trajectory for a long time. 

We could not apply the Clusnet architecture which actually classifies the input data 

into a number of distinct classes according to the training. At any time only one clusnet 

node can be active. The network, then fits a linear equation that was computed for the 

particular clusnet node according to the input patterns that activate it. The is equivalent to 

saying that the mappng to be modelled can be expressed as a locally linear function. 

Another similar approach can be using a pattern recognition technique based on the 

k nearest neighbor algorithms. In such an application the distance measure should include 

the temporal closeness to the pattern as a weighting function. CNLS network could also be 

used. 
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5.1 Result of Box and Jenkins 

Inspection of the autocorrelation function reveales the fact that the time series does 

not need differencing and that the order of the AR process can be taken to be zero, as all 

the autocorrelation values except for the lag zero one are almost zero. The partial 

autocorrelation function on the other hand exhibits a possibly exponentially damped sine 

wave decay. This implies that an ARIMA(O,O,I) model can be used for estimation. The 

preliminary calculations indicate that the model is 

Zr =( J -O.5B Jar (5.1.1) 

There are two kinds of noise affecting this estimation system. The first one is the 

implicit noise in the data due to inaccuracies in reception, measuring and recordin~ of the 

seismic signal. The other one is the computationally induced one. The fixed point presicion 

as well as the fact that all through the analysis estimated values from a limited time series.are 

used all give rise to some error. 

The results of this section were not any different than the neural network results. 

The mean square error, MSE, was about 0.000562, which might seem to be a nice 

number. But it should be kept in mind that there are a lot of zero values in the data set and 

when the network produces a small number all the time then the total error will be very 

little. In order to visualize the situation, it is helpful think about the earthquake data set 

which is weeded from the incomplete magnitudes and the aftershocks. In this data set there 

are a total of 708 events that have a magnitude other than 0, but the time span is aroung 

one million minutes. The shortest interevent time is 1 and the longer ones can be on the 

order of 10000s. 
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5.2 Neural Network Estimation 

As mentioned in the introduction of this section two diflferent neural network 

architectures were employed with a number of different parameters. Each of the 

architectures are explained below in their relevant section. 

5.2.1 Result of MLP with Sigmoidal Activation Function 

In this section and throughout the thesis, a k-layerMultilayer Perceptron, . MLP, 

denotes an MLP with k-J hidden layers and one output layer. The basic architecture of a 

two layer MLP can be seen in Fig. 5.1. 

Output Layer 

Hidden Layer 

Input Layer 

Input 

Figure 5.1 Multi Layer Perceptron Architecture 

The nodes in the input layer pass the input to the hidden layer with no change. The input 

layer is static layer. The nodes in all the other layers sum up all the inputs entering the node 

and either pass this value to the next layer or to the outside as input, or else apply a 

nonlinearity to it and then pass it forward. The networks applied in this section have 

sigmoidal activation functions in the hidden layer nodes. The output nodes perform only 

the addition function. Let net denote the total weighted input to a neural unit, and hid 

denote the output of the hidden layer node. Then the output of a hidden layer node is 

calculated as 
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hid = 1 
1 _e-net (5.2.1) 

During the initial stages experimentation with the parameter net in (5.2.1) showed that 

mUltiplying it with a constant did not result in any immediate improvement. The initial 

weights were chosen randomely and adapted according to the backward propagation 

algorithm. 

The input to the network for all of the applications was rescaled so that they would 

lie in the range [0.2-0.8] as it is proposed that this range facilitates learning better than the 

acceptable range [0-1] of the sigmoidal function [34]. 

The results of the application of the MLP to the earthquake prediction task are 

reported below. Several two and three layer networks are employed for predicting the 

earthquake data series. Different number of input and hidden nodes and different step sizes 

were tried. 

The first approach to the problem was to treat the data as a four dimensional time 

senes, and try predicting the time of occurence, magnitude, and the two planar 

coordinates, lattitude and longitude, of an event. The input data set to the network 

included all the events detected by the seismographic network. The results are presented 

below. 

Table 5.1 Results of2-Layer MLP applied to four dimensional earthquake sequence 

Network Step Size epoch MSEfor MSEfor MSEfor MSEfor 
Architecture Time Magnitude Lattitude LOl!gitude 

5-31-4 0.005 10 0.029628 0.264557 0.043281 0.119119 
5-31-4 0.5 10 0.027331 0.265913 0.043947 0.116476 
5-31-4 0.05 500 0.179791 0.112623 0.066535 0.186016 

45-11-4 0.05 5 0.180446 0.280650 0.066613 0.185937 
45-11-4 0.5 10 0.181275 0.676863 0.067371 0.187494 
45-11-4 0.00005 50 0.092725 0.211001 0.061173 0.179106 
45-11-4 1.0 20 0.185565 1.512687 0.094923 0.225698 



79 

This was abondoned afterwards as it did not make sense, physically, to predict the location 

on the crust that will break release some energy in the form of an earthquake. Also the 

calculations tended to be too involved when the input time series was four dimensional. 

The next approach was to predict only the magnitude of the event at the next time step. 

Initally the same input file that was used in the 2-Layer MLPs presented above was intended 

to be used, except that the zero magnitudes that were recorded by the seismographic 

network but could not be measured were removed from the data set, as a zero magnitude 

denoted no event for this application. The interevent times between two succesive 

earthquakes in this particular data set varied between one minute and order of 100,000 

minutes. Therefore processing the input stream on a minute by minute basis took a long 

time. This is an important point to keep in mind, since even after the aftershock sequences 

are removed the smallest interval is still on the order of one minute. This implies that the 

resolution of the input steam should be one minute. But if the input fed is the magnitude 

recordings at each minute, then there should be about 100,000 input nodes to make sure 

that at least one of the input nodes is nonzero. Practical limitations restrict the number of 

inputs of the network, so that usually 10, OOO's of iterations would be performed to update 

the weights without having any valid input. That is the input sequence would be aU zeros, 

denoting that there was no events occuring during this time interval. Inspection of the 

situation revealed the fact that such a scheme cannot be succesfull, especially if the netWork 

is trained off line, since it will not be possible to distinguish the time before an earthquke 

from the time of no-event. In other words the network will have an all zero input but the 

output can be either a zero magnitude or an earthquake of an arbitrary magnitude. The 

results of this application are presented in Table (5.2) .. 

Table 5.2 Results of 2-Layer MLP applied to one dimensional earthquake sequence 

Architecture epoch Step Size MSEfor Time 
11-31-1 20 0.005 0.006120 
21-31-1 20 0.005 0.006134 
21-31-1 20 0.005 0.005274 
21-41--1 50 0.005 0.006838 
21-31-1 40 0.05 0.006009 
21-31-1 80 0.05 0.018030 
21-31-1 40 0.5 0.014885 
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The major part of this project was dedicated to predicting using a two dimensional 

earthquake sequence. The coordinates of the earthquake were dropped and a smaller 

region in the whole area was chosen for prediction purposes. The smaller region was 

chosen by inspecting the plot of the earthquakes. A region which was dense in the number 

of earthquakes was chosen somewhat arbitrarily. The data set used for 2-layer MLP's in this 

section contain 415 data points, 300 were used for training and the rest 115 for prediction. 

This turned out to be a bad approach as it did not take into acount the physical 

system producing the earthquakes. Assuming that the region chosen contained all the 

relavant physical sources, the two dimensional time series approach seems to be a logical 

one. ~ The time is replaced by the interevent time, that is the time passed since the last event 

is used a parameter with the magnitude of the present event. The results of the application 

of the two dimensional time series to 2-layer MLP can be seen in Table 5.3. 

Table 5.3 Results of 2-Layer MLP applied to two dimensional earthquake sequence 

Architecture Step Size Epoch MSEfor Time MSEfor 
Magnitude 

3-9-2 0.05 1000 0.041959 0.036711 
3-19-2 0.05 1000 0.045367 0.039565 
3-90-2 0.005 425 0.041370 0.036556 
7-90-2 0.005 500 0.044675 0.030602 
7-19-2 0.005 1000 0.046267 0.032721 
7-19-2 0.05 500 0.042725 0.030221 
7-19-1 0.09 100 0.020363 -

41-41-2 0.1 100 0.003397 0.004476 
41-41-2 0.3 100 0.000679 0.002342 
41-41-2 0.15 300 0.001033 0.002105 

41-200-2 0.15 200 0.003130 0.006456 

The time passed since the last earthquake is indeed an important factor for determining the 

magnitude of the present event, as it, in a way, represents the time span that the energy hs 

been accumulating in the area. In fact in section 2.1 it was shown that they are related. The 

same data set was applied to a number of 3-layer MLPs also. The set of data on the whole 

area with aftershocks and incomplete small magnitudes removed was used for the remaining 

three layer networks. The results are presented in Table 5.5 .. For the first 12 entries the 

input used was taken from the smaller region as described above. The rest of the entries 

used the main earthquakes only. 
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Table 5.4 Result of3-Layer MLP applied to two dimensional earthquake sequence 

Network step size epoch Training MSE Training MSE 
Architecture for Time for Magnitude 
11-11-11-2 0.15 100 0.002795 0.015420 
11-11-11-2 0.35 100 0.003498 0.019801 
11-11-11-2 0.5 100 0.174811 0.002697 
11-11-11-2 0.85 100 0.014125 0.081928 
11-21-21-2 0.15 100 0.002719 0.015015 
11-21-21-2 0.2 500 0.002651 0.016267 
21-11-11-2 0.5 100 0.001651 0.002963 
21-21-21-2 0.2 100 0.002817 0.001637 
21-21-21-2 0.5 100 0.001617 0.002867 
11-21-21-2 0.5 100 0.001693 0.002950 
11-31-31-2 0.2 100 0.002936 0.015466 
21-21-21-2 0.3 2000 0.051830 0.002122 
21-21-21-2 0.5 2000 0.000720 0.002829 
21-21-21-2 0.85 2000 0.002393 0.009498 
31-31-31-2 0.35 2000 0.000564 0.002238 
31-31-31-2 0.5 2000 0.000728 0.002812 
31-31-31-2 0.85 2000 0.002424 0.009383 
41-41-41-2 0.5 2000 0.000703 0.002846 
41-41-41-2 0.85 2000 0.002294 0.009557 

Throughout this section only the training MSE will be presented as mentioned above. a 

network trained for earthquake detection should not be used off line as there are too many 

factors affecting the generating system and any error will grow very fast. 

The data used was always factored to be less than one and greater than zero. This 

means that if the predictions are small, especially if they are close to zero, the MSE will be 

small too whether the predictions are good or not. The prediction output of most 

experiments was very close to straight line usually close to the mean of the data whereas 

during the training phase the network usually imitated the behavior of the earthquake 

sequence at the previous step. For example if there was a rise in magnitude at step i to a 

level Mi, the network would produce an output close to Mj at step i+ 1. The earthquake 

sequence is not smooth at all, and this breeds the difficulties in predicting the future values. 

Table 5.5, below, shows the Prediction error of some of the 3-layer networks that 

were also presented in Table 5.4. It is not applied offline. That is it is adapted at each step. 

As mentioned before the earthquake generation process is a dynamic process that is 
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changing continously because a large number of natural and human induced factors. 

Therefore it is not a good idea to just build a model and then use it for prediction for a long 

time. This is also a deficiency of the Box-Jenkins algorithm for the earthquake prediction 

problem. 

Table 5.5 Results of 3-Layer MLP applied one step ahead prediction of two dimensional 
earthquake sequence 

Architecture Step Size epoch MSE Error for MSE Error for 
Time Magnitude 

21-21-21-2 0.3 2000 12.53441 0.304844 
21-21-21-2 0.5 2000 0.082612 0.473277 
21-21-21-2 0.85 2000 0.106992 l.037488 
31-31-31-2 0.35 2000 0.075214 0.326194 
31-31-31-2 0.5 2000 0.787246 0.485573 
31-31-31-2 0.85 2000 0.106992 l.037488 
41-41-41-2 0.5 2000 0.089847 0.524399 
41-41-41-2 0.85 2000 0.106992 l.037488 

5.2.2 Result of MLP with Chaotic Activation Function 

The network architecture used in this section is similar to the MLP presented above 

except that the activation function is the chaotic Feigenbaum logistic equation, (3.3.32), 

instead of the sigmoidal one. The advantage of this activation function over the sigmoidal 

one is that it actually incorporates a form of memory. The output of a hidden unit with 

chaotic activation function is calculated by using the output at the previous step. The 

drawback is that the the hidden unit should perform the calculation in (3.3.32) for at least 

ten times to make sure that the output has settled. This is similar to the behavior of 

biological neurons. A biological neuron cannot be automatically turned on and off like the 

artificial ones. The results of the application of the data from the smaller region are 

presented below in Table 5.6. -

, 
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Table 5.6 Result of chaotic MLP applied to two dimensional earthquake sequence 

Architecture Step Size epoch MSE Error for MSE Error for 
Time M~nitude 

65-11-2 0.00005 20 0.000814 0.001981 

65-11-2 0.005 50 0 .. 000780 0.001977 

11-65-2 0.0015 30 0.000784 0.002261 

11-65-2 0.0015 30 0.000774 0.002241 

11-65-2 0.0015 30 0.000745 0.002169 

11-65-2 0.0015 30 0.000756 0.002071 

11-65-2 0.0015 50 0.000766 0.002004 

11-65-2 0.0015 30 0.000751 0.001987 

11-65-2 0.0015 30 0.000752 0.002016 

11-65-2 0.0015 10 0.000724 0.002007 

11-65-2 0.0015 30 0.000715 0.002005 

11-65-2 0.0015 20 0.000863 0.002042 

5.3.3 Result of NADINE 

The architecture of NADINE is presented in section 3.3.3, and the training 

procedures are explained in detail. All the networks presented in Table 5.7 calculate 

Volterra terms up to order three except the last two which calculate up to the fourth order. 

The input data used was the same 415 element data set from the smaller region. 

The problem with using NADINE for predicting the magnitude and interevent time 

of earthquake sequence is that a single weight at the output layer is not sufficient model two 

different variables. It was observed that for most of the time the MSE results of these 

variables behaved the same way. That is the plot of the MSE versus epochs of the 

magnitude would be almost a copy of that of the interevent time except for a difference in 

level. 

It can be seen in Table 5.7 that the first three networks have only one output that is 

the magnitude. Predicting the time is actually the main difficulty in this problem because the 

very wide range of values it can assume. F or this reason, throughout this project atempts 

were made to predict just the magnitude from the magnitude data. Usually these attempts 
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seemed to have slightly better results when inspecting the graphs visually. But the good 

predictions for the magnitudes might be by chance as the network output, failed to take on 

the wide range of values that the actual data had. 

Table 5.7 Result of NADINE applied to two dimensional time series. 

No. of Inputs Step Size No. of Training Training MSE Training MSE 
N II Epochs for Time for Magnitude 
20 0.005 3 - 0.000510 
125 0.005 3 - 0.005600 
40 0.001 3 - 0.005600 
21 0.1 3 0.00099 0.001951 
21 0.3 3 0.00110 0.002242 
21 0.6 10 0.00156 0.002576 
41 0.5 4 0.00321 0.004279 
41 0.2 4 0.00122 0.002612 
41 0.5 3 0.00182 0.003001 
41 0.25 3 0.001312 0.004724 
41 0.15 6 0.00106 0.902286 
40· 0.15 6 0.000781 0.001859, 
40 0.3 3 0.000993 0.002096 
40 0.15 25 0.000729 0.001794 
40 0.25 30 0.000810 0.001831 
40 0.15 30 0.000713 0.001742 
40 0.25 30 0.000749 0.001766 
18 0.15 15 0.000718 0.001872 
18 0.25 75 0.00916 0.001937 
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6. CONCLUSION 

None of the Prediction schemes applied in this project seems to be able to predict 

the earthquake sequence. A total of seven different groups of experiments were performed 

during the project. The epoch column in the tables refers 0 the epoch number after which 

they have attained the MSE error specified in the next column. A collection of best 

performances for predicting the magnitude of the next earthquake of each one of the 

versions is listed below in Table 6.1. 

Table 6.1 Best performances of the neural networks for predicting the magnitude 

Description ofNN Input Data Epoch MSE for 

Magnitude 

5-31-4 MLP with sigmoidal activation function 4 dimensional 500 0.112623 

41-41-2 MLP with sigmoidal activation function 2 dimensional 300 0'.002105 

21-21-21-2 MLP with sigmoidal activation function 2 dimensional 100 0.001637 

65-11-2 MLP with chaotic activation function 2 dimensional 50 0.001977 

NADINE with 20 inputs 1 Dimensional 3 0.000510 

NADINE with 40 inputs 2 dimensional 30 0.001742 

In the above table a four dimensional input means that each earthquake is described by a 

lattitude, longitude, magnitude and interevent time as described before. When the input is 

two dimensional, only magnitude and interevent time are used to describe an earthquake 

and when the input is one dimensional only magnitude is used. In Table 6.1 best 

performances for time prediction are shown. In this case one dimensional input contains 

only the interevent time between two earthquakes. The two tables do not coincide, only 

NADINE listed in the last row of both tables have the minimum for both values. 



86 

Table 6.2 Best performances of neural networks for predicting the interevent time 

Description ofNN Input Data Epoch MSEfor 

Magnitude 

5-31-4 MLP with sigmoidal activation function 4 dimensional 10 0.027331 

21-31-1 MLP with sigmoidal activation function 1 dimensional 40 0.006009 

41-41-2 MLP with sigmoidal activation function 2 dimensional 100 0.000679 

31-31-31-2 MLP with sigmoidal activation function 2 dimensional 2000 0.000564 

11-65-2 MLP with chaotic activation function 2 dimensional 50 0.000715 

NADINE with 40 inputs 2 dimensional 30 0.000713 

Even though the mean square error, MSE, is listed throughout this thesis, it is not a good 

metric. The reason lies in the fact that the numbers involved are very small, after scaling, 

and the range of allowed values for especially the time data is very large and the movement 

from one point to the following one is abrupt and almost random. 

In the previous sections it was stated that the function is not smooth. This, 

naturally, impedes the learning. The main problem is deciding on the choice of inputs that 

will be used. It was mentioned that there is at least one algorithm that is being used by 

geophysicits. This is the eN algorithm. It is basically a classification scheme that inspects 

the present time for a number of features and then declares whether there is a possibility of 

an earthquake or not. This algorithm uses the same data set, namely the earthquake 

catalog, as the present project. But the data is cleaned from the incomplete magnitude 

range, and aftershocks first and only the major earthquakes are to be predicted. Yet the 

information on the aftershocks and the overall activity in the region are not discarded, they 

are used as features of the classes. The attempt to use only the main shocks and only the 

complete magnitude range failed in this project, and probably the loss of too much 

information was one of the reasons for this failure. 

In future work the data should be analyzed in more detail before any attempt to 

prediction or model building is made. The assumption that the data used in this project 

contains all or most of the necessary information about the eartquake sequence might be 

wrong. But before this approach is discarded, a complete data set with a large number of 

elements should be considered. Also ways of making the data more smooth must be 

explored. 

The underlying faulting structure is also very important. Precaution should be 

exercized so that the physical system releasing the energy is not interrupted by boundaries 
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erected by the neural network designer. It is important that at this stage an expert provides 

guidance in the choice of the area. 

The failure of the architectures used in this project is caused by the abnormal data 

nature. As was mentioned many times before the the intervent times vary between one and 

one houndred thousand minutes. Also the nature of th earthquake sequence is such that 

after a long time of no events occuring, a number of earth movements very close to each 

other in time might be experienced. These features are called respectively, quiscence, and 

swarm, or increase in activity. The pass from a state of quiscence to a state of frequent 

earth activity is very spontaneous and these are among the features used to detect possibility 

of an earthquake in the eN algorithm. The architectures that try to fit smooth function to 

this data, naturally fail. Therefore it might be more logical to apply some localized 

prediction mechanism such as a k closest neighbor algorithm that matches the present part 

of the function to past ones using time as a metric too. Events occuring in the nearer past 

must be weighted more than the ones occuring in distant past. 

At this point in the project, it seems as if the pattern classification approach is more 

suitable to the problem as it is. It is obvious that smoothing the data used in this project wiIll 

result in information loss. This is not desirable, even more information than available is 

needed to solve the problem. 

Another advantage of pattern recognotion is that different kinds of data can be used 

as features for detection rather than restricting the system to only the magnitude and time 

data. In problems like this as much data as possible should be used. 
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