
".,-

AND 

AN IMPLEMENTATION FOR THE AZERI LANGUAGE 

by 

ilker Hamzaoglu 

B.S. in Computer Engineering, Bogazi~i University, 1991 

Submitted to the Institute for Graduate Studies in 

Science and Engineering in partial fulfillment of 

the requirements for the degree of 

Master of Science 

in 

Computer Engineering 

Bogazici University Library 

111111111111111111111111111111111111111 ~ 
39001100130213 

Bogazi~i University 

1993 



111 

ACKNOWLEDGEMENTS 

I would like to thank my thesis advisor Prof. Dr. Selahattin Kuru for giving me the initial 

idea and for his encouragement during all the steps involved in the preparation of this 

thesis; Dr. Sumru Ozsoy and Dr. Cern Say for taking time out of their extremely busy 

schedules to participate on thesis jury. I would also like to thank the following individuals. 

Tunga Gungor for his valuable comments about Turkish morphology; and the members of 

the Spelling Checker and Corrector project team Dr. Levent Akm, Tunga Gungor and 

Duygu Arbath for participating in the development of the Turkish morphological parser 

used in this thesis. 



iv 

ABSTRACT 

Machine translation is the application of computers to the translation of texts from one 

natural language into another. There are three different approaches proposed for machine 

translation; direct translation, transfer-based translation and interlingua-based translation. 

Since none of these approaches are suitable for the problem of machine translation from 

Turkish to other Turkic languages, we propose a lexicon-based approach. As the sentence 

syntax is similar for Turkish and the Azeri language, chosen as a representative of Turkic 

languages, we do not employ any syntactic analysis. Morphological and semantic analyses 

are carried out for the translation. Translation can not be viewed as a word for word 

translation even though the source and the target languages have a similar syntactic 

structure. This is due to the existence of ambiguous words with multiple meanings. The 

subject of the ambiguity in translation from Turkish to Azeri is explained and possible ways 

to resolve the ambiguities are put forward. A translator from ITurkish to Azeri is 

implemented using the proposed approach. The results obtained from the translator show 

that the proposed approach is feasible for machine translation from Turkish to the Azeri 

language. 



v 

QZET 

Makine ~evirisi bilgisayadann dogal bir dilden bir digerine metin ~evirimine 

uygulanmasldlr. Makine ~evirisi i~in onerilmi§ ii~ degi§ik yakla§lm vardlr; dolayslz 

~evirim, aktarma temelli ~evirim, ge~i§ dill temelli ~evirim. Bu yakla§lmlann hi~ biri 

Tiirk~eden diger Tiirk dillerine makine ~evirisi i~in uygun olmadlgmdan biz sozliik 

temelli bir metot onerdik. Tiirk~e ve diger Tiirk dillerinin temsilcisi olan Azeri dilinin 

sozdizimi yapllan benzer oldugundan sozdizimi analizi yapmadlk. <;;eviri i~in 

bi~imbilimsel ve anlamsal analizler ger~ekle§tirildi. Kaynak ve hedef dillerin sozdizimi 

yapllan benzer olsa bile makine ~evirisi kelimeden kelimeye olarak dii§iiniilemez. Bunun 

sebebi birden ~ok anlaml olan belirsiz kelimelerdir. Tiirk~eden Azericeye ~eviride 

belirsizlik konusu a~lklandl ve bu belirsizlikleri ~ozmek i~in muhtemel yollar ortaya 

kondu. Onerilen yakla§lm tarzl kullarularak Tiirk~eden Azericeye bir ~eviri programl 

ger~ekle§tiri1di. <;;eviri programmdan alman sonu~lar onerilen yakla§lmm Tiirk~eden 

Azericeye c;eviri i~in uygulanabilir oldugunu gosterdi. 



vi 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS ............................................................................................................ iii 

ABSTRACT ....................................................................................................................................... iv 

QZET ................................................................................................................................................... v 

TABLE OF CONTENTS ............................................................................................................... vi 

LIST OF FIGURES ......................................................................................................................... x 

·LIST OF TABLES ........................................................................................................................... xii 

1. INTRODUCTION ....................................................................................................................... 1 

2. MACHINE TRANSLATION .................................................................................................... 4 

2.1. Machine Translation within the Context of Natural Language Processing ...... 4 

2.2. Methods of Machine Translation .............................................................................. 8 

2.2.1. Direct Translation ......................................................................................... 8 

2.2.2. Transfer-based Translation .......................................................................... 9 

2.2.3. Interlingua-based Translation ..................................................................... 10 

2.2.3.1. Knowledge-based Translation ..................................................... 12 

2.3. Machine Translation Research on Turkish ............................................................. 13 

3. MORPHOLOGICAL PARSING ............................................................................................. 15 

3.1. Morphological Parsing in Agglutinative Languages ............................................... 15 

3.2. Research on Morphological Parsing of Turkish ..................................................... 17 

. 4. MACHINE TRANSLATION FROM TURKISH TO OTHER 

TURKlC LANGUAGES ........................................................................................................... 18 

4.1. Turkish and the Azeri Language ............................................................................... 19 

4.1.1. Alphabet, Lexicon and Phonology ............................................................. 19 

4.1.2. Morphology .................................................................................................... 21 



VII 

4.2. Translation From Turkish to the Azeri Language ................................................ 25 

4.3. No Ambiguity Case ...................................................................................................... 27 

4.4. Ambiguity in Translation ............................................................................................. 27 

4.4.1. Word Sense Ambiguity ................................................................................ 30 

4.4.2. Morphological Ambiguities ......................................................................... 32 

4.4.2.1. Root Words that are Similar in Form to Stems with 

Inflectional Suffixes ...................................................................... 32 

4.4.2.2. Root Words that are Similar in Form to Stems with 

Derivational Suffixes ..................................................................... 35 

4.4.2.3. Suffixes with Multiple Surface Forms ....................................... 37 

4.4.2.4. Similar Suffixes ............................................................................... 39 

4.4.2.5. Identical Suffixes ............................................................................ 41 

4.5. Methods Used in Resolving Ambiguities ................................................................. 46 

4.5.1. Semantic Features ......................................................................................... 46 

4.5.2. Concept Structure ......................................................................................... 48 

4.5.3. Collocation Info Structure ........................................................................... 50 

4.6. Resolving Ambiguities .................................................................................................. 54 

4.6.1. Word Sense Ambiguity ................................................................................ 55 

4.6.2. Morphological Ambiguities ......................................................................... 57 

4.6.2.1 Multiple Root Words ..................................................................... 57 

4.6.2.2 Identical Suffixes ............................................................................. 59 

5. A TRANSLATOR FROM TURKISH TO THE AZERI LANGUAGE ....................... 60 

5.1. Overview of the Translator ......................................................................................... 60 

5.2. Lexicons .......................................................................................................................... 64 

5.2.1. Turkish Root Words Lexicon ..................................................................... 66 

5.2.2. Translation Lexicon ...................................................................................... 67 

5.2.3. Morphologically Ambiguous Root Words Lexicon ................................ 69 

5.2.4. Word Sense Ambiguous Root Words Lexicon ....................................... 70 

5.2.5. Macro Collocation Info Definitions Lexicon ........................................... 72 



viii 

5.2.6. Identical Suffixes Lexicon ............................................................................ 72 

5.2.7. Bilingual Suffix Lexicon ............................................................................... 73 

5.2.8. Turkish Proper Nouns Lexicon .................................................................. 74 

5.3. Algorithms ...................................................................................................................... 75 

5.3.1. Main Algorithm ............................................................................................. 77 

5.3.2. Modifying Translator Lexicons ................................................................... 80 

5.3.3. Turkish Morphological Parser .................................................................... 80 

5.3.4. Affixing Suffixes ............................................................................................. 81 

5.3.4.1. Affixing a Suffix ............................................................................. 81 

5.3.5. No Ambiguity Case ....................................................................................... 82 

5.3.6. Finding Collocation Index ........................................................................... 82 

5.3.7. Checking Collocation .................................................................................... 85 

5.3.8. Checking Macro Collocation Definition ................................................... 89 

5.3.9. Resolving Word Sense Ambiguities .......................................................... 90 

5.3.10. Resolving Morphological Ambiguities .................................................... 91 

5.3.11. Resolving Identical Suffix Ambiguities ................................................... 92 

6. DISCUSSION AND EVALUATION ...................................................................................... 93 

6.1. Shortcomings of The Translator ................................................................................ 93 

6.2. Performance Evaluation .............................................................................................. 95 

6.3. Further Improvements for the Translator ............................................................... 99 

7. CONCLUSION AND RECOMMENDATIONS ................................................................. 101 

7.1.Conclusion ..................................................................................................................... 101 

7.2. Lexicon Formation by Corpus Analysis .................................................................. 102 

7.3. Towards a Machine Translation System From Azeri to Turkish ...................... 102 

7.4. Towards a Machine Translation System From Turkish to Other 

Turkic Languages ....................................................................................................... 103 



ix 

APPENDIX A. List of Word Sense Ambiguous Words ......................................................... 104 

APPEND IX B. List of Morphologically Ambiguous Words ................................................... 105 

B.I. List of Root Words that are Similar in Form to Stems with 

Inflectional Suffixes ....................................................... ............. ...... ..... 105 

B.2. List of Root Words that are Similar in Form to Stems with 

Derivational Suffixes ............................................................................. 113 

B.3. List of Ambiguous Words due to Similar Suffixes ............................................... 115 

APPENDIX C. List of Morphological Parses Produced by Identical Suffixes ................... 116 

APPENDIX D. List of the Specific Semantic Features .......................................................... 120 

APPENDIX E. Listing of the Lexicons ...................................................................................... 123 

E.I. Representative Listing of the Turkish Root Words Lexicon ............................. 123 

E.2. Representative Listing of the Translation Lexicon .............................................. 128 

E.3. Morphologically Ambiguous Root Words Lexicon .............................................. 132 

E.4. Word Sense Ambiguous Root Words Lexicon ..................................................... 150 

E.5. Macro Collocation Info Definitions Lexicon ......................................................... 162 

E.6. Identical Suffixes Lexicon .......................................................................................... 163 

E.7. Representative Listing of the Bilingual Suffix Lexicon ....................................... 165 

E.8. Representative Listing of the Turkish Proper Nouns Lexicon .......................... 170 

APPENDIX F. Sample Runs for the Translator ...................................................................... 173 

REFERENCES .............................................................................................................................. 177 

REFERENCES NOT CITED ...................................................................................................... 180 



LIST OF FIGURES 

Figure 2.1. Direct Translation 

Figure 2.2. Transfer-based Translation 

Figure 2.3. Interlingua-based Translation 

Figure 4.1. Three ambiguous interpretations of the noun phrase 

slcak et reyonu satlclsl 

Figure 4.2. Algorithm for Finding Identical Suffixes 

Figure 5.1. Overall Structure of the Translator 

Figure 5.2. The Overall Algorithm of the Translator 

Figure 5.3. Main Algorithm 

Figure 5.4. Algorithm for Modifying the Translator Lexicons 

Figure 5.5. Algorithm for Affixing a Suffix 

Figure 5.6. Algorithm for No Ambiguity Case 

Figure 5.7. Algorithm for Finding Collocation Index 

Figure 5.8. Algorithm for Checking Collocation 

Page 

8 

9 

11 

28 

43 

61 

76 

77 

80 

81 

82 

82 

85 

x 



Xl 

Figure 5.9. Algorithm for Checking Macro Collocation Definition 89 

Figure 5.10. Algorithm for Resolving Word Sense Ambiguity 90 

Figure 5.11. Algorithm for Resolving Multiple Root Words Ambiguity 91 

Figure 5.12. Algorithm for Resolving Identical Suffix Ambiguity 92 



LIST OF TABLES 

Table 4.1. The appearance of a sentence in Turkic languages 

Table 4.2. The usage of the suffix -lA in the Azeri language 

Table 4.3. Examples of ambiguous words that can be ignored 

in translation from Turkish to Azeri 

Table 4.4. Examples of ambiguous words that can be ignored 

in translation from Turkish to Azeri 

Table 4.5. Semantic features for nouns, pronouns and proper nouns 

Table 4.6. Subcategories of parts of speech 

Table 4.7. Symbols used in collocation info definitions 

Table 4.8. Generic suffix names 

Table 5.1. The content of the translator's lexicons 

Table 6.1. Memory requirement of the translator 

Page 

18 

22 

34 

36 

46 

47 

52 

53 

65 

97 

XlI 



1 

1. INTRODUCTION 

The motivation for Machine Translation(MT) is very clear. Translation among languages 

is economically and politically vital in the modern world. Translation among European 

languages, for instance, is a requirement for the European Community (EC). The 

EUROTRA project [1] of the Commission of European Countries for machine 

translation between European languages proves this argument with its grant of 16 million 

ECU (about 12 million dollars) by the Council of Ministers for a five and a half year 

program of research and development. The U.S. and Japanese economies rely on export 

markets in a large number of languages, where English alone does not suffice. The 

emergence of new Turkish Republics in Central Asia following the collapse of the former 

Soviet Union created a potential market for machine translation between Turkish and 

the other Turkic languages. 

Scientists, technologists, engineers, economists, agriculturalists, administrators, 

industrialists, businessmen and many others have to read documents and have to 

communicate in languages that they do not know. In addition to the high cost and 

unavoidable delays of human translation, human translators are also unable to cope with 

the ever increasing volume of material which has to be translated. With this indisputable 

need for massive, timely and inexpensive translation, the dream of many computational 

linguists and computer scientists has been to achieve fully automated machine translation. 

Translation between Turkic languages is a new area possibly with interesting problems, 

e.g. seeing if conventional approaches will work for the problem, investigating different 

sorts of ambiguities in Turkish, investigating appropriate lexicon structures, and seeing 

how the close relationships among the Turkic languages can contribute to reduce the 

complexity of translation process. Moreover, Natural Language Processing(NLP) of 

Turkish is an emerging area in Turkish NLP research communities, and translation 

system is a good testbed for NLP applications. 



2 

In this respect we studied the problem of machine translation from Turkish to other 

Turkic languages. Since Turkic languages are agglutinative languages, we have actually 

worked on the problem of translation from an agglutinative language to another one. 

Although there is a considerable amount of literature on the problem of machine 

translation, almost none is related with this problem. To the best of our knowledge this 

work has been the first attempt in this field. 

This thesis discusses the problem of machine translation from Turkish to other Turkic 

languages. Up to now, three major approaches were proposed in the literature for 

machine translation, direct translation, transfer-based translation and interlingua-based 

translation. These approaches differ in the scope of translation they cover. Since none 

of these traditional approaches is suitable for our problem, we propose a lexicon-based 

approach to achieve the translation. We have compiled those techniques of the 

conventional approaches that can be utilized in this approach and incorporated them into 

the approach. 

As the sentence syntax is similar for Turkish and the Azeri language, representative of 

other Turkic languages, we do not employ any syntactic analysis. Even though the source 

and the target languages have similar syntactic structure, translation can not be viewed 

as a word for word translation. This is due to the existence of ambiguous words 

conveying multiple meanings. The subject of ambiguity in translation from Turkish to 

Azeri is investigated, different sorts of ambiguities and lexical data that cause those 

ambiguities are identified, and possible ways to resolve them are put forward. A practical 

machine translation system for translation from Turkish to Azeri is developed using the 

proposed approach. 

The second chapter includes the discussion of machine translation, and practical machine 

translation systems developed for Turkish. The third chapter discusses the problem of 

morphological parsing for agglutinative languages which is especially critical for this thesis 

work. Chapter 4 presents the characteristics of Turkish and the Azeri language from 



3 

translation perspective and discusses the approach proposed for solving the problem of 

machine translation from Turkish to Azeri. Chapter 5 describes the implementation of 

the translator in terms of the contents and structures of its lexicons, and the algorithms. 

Chapter 6 puts forward the shortcomings of the translator, its performance evaluation 

and further improvements. The last chapter gives an idea of further developments and 

summarizes the work accomplished in a final conclusion section. 

Throughout the thesis, all the Turkish and Azeri expressions are given in italics, and the 

meaning in English immediately follows in brackets, e.g. ayak (foot). The suffixes are 

given together with the symbol -, and capital letters and the symbol 0 are utilized to 

represent the allomorphs of the suffixes as explained in Section 4.1.2, e.g. -(y)A 

(dative). The symbol - coming just after a Turkish word represents a verb, e.g. gel-(to 

come) and kO!j-(to ron). Since, in this thesis we deal with machine translation from 

Turkish to Azeri, the terms "translation" and "machine translation from Turkish to Azeri" 

are going to be used interchangeably. 



4 

2. MACIDNE TRANSLATION 

Machine translation is the application of computers to the translation of texts from a 

natural language into another. There are three different approaches proposed for MT. 

Machine translation and the proposed approaches are discussed in this chapter. 

2.1. Machine Translation within the Context of Natural Language Processing 

Natural language processing is an area of artificial intelligence that deals with 

automating the various language-oriented tasks that are currently performed 

predominantly by humans. The domain of NLP includes applications such as machine 

translation, language understanding, language generation, natural language interface to 

databases and expert systems, morphological and syntactic parsing, spelling checking, 

grammar checking and thesaurus. 

One of the first linguistic applications of computers to be envisaged and funded was 

machine translation. The general task of machine translation can be described very simply 

as follows [2]: 

"Feed a text in one language (SL, for source language) into a computer and, using 
a computer program, produce a text in another language (TL, for target language) 
such that the meaning of the TL text is the same as the meaning of the SL text." 

The history of machine translation goes back to late 1940s. Starting with the so-called 

Weaver Memorandum [2] which was claiming the feasibility of MT, different scientific 

groups in Europe and USA worked on the field. Through the 1950s and into the 

following decade, research in MT continued and grew. 



5 

The first generation machine translation programs were constructed on rudimentary 

linguistic theories. They ignored the fact that meaning was essentially involved in the 

translation process, and employed word-by-word substitution to achieve the translation. 

Because of these reasons, their results were disappointing. This caused the release of 

famous ALP AC (Automatic Language Processing Advisory Committee) report [2] in USA 

in 1966, evaluating the practicality of contemporary MT research. The negative comments 

of this report drastically reduced the level. of support for MT research. 

Together with the failure of first generation machine translation programs, it was realized 

that machine translation is not a trivial process. It needs well-formed linguistic theories 

and supporting products provided by other natural language processing applications such 

as morphological analysis, syntactic analysis, semantic analysis, language understanding 

and language generation. 

The most obvious deficiency of any word for word translation is that the order of words 

in the resulting target language text is more often wrong than correct. The solution of this 

problem demands some kind of syntactic analysis of the input texts. 

The second problem is that there are rarely one to one correspondences in the 

vocabularies of natural languages. In most cases, a particular SL word may correspond 

to a number of different TL words. MT systems either print out all the possibilities or 

attempt to select the one which is most appropriate for the specific text under 

translation. Some kind of morphological, syntactic or semantic analysis or a combination 

of these should be taken into account to resolve this kind of ambiguities. 

The number of ambiguous words in the source language text can be easily restricted by 

choosing a sufficiently narrow subject domain. This attitude in MT is known as the 

sub language approach. In this way, instead of the general language, MT translation 

systems are designed for a specified subfield of the language. 



6 

Despite the ALP AC report, considering these facts MT research and development 

continued in Europe and later in Japan. Notable MT achievements, with the SYSTRAN 

and EUROTRA projects in Europe and the Mu project at Kyoto University in Japan, 

gradually led to a revival of MT research in USA. 

Until very recently, most MT systems necessitate postediting, improvement of the results 

of machine translation by a human. To decrease the postediting requirement, some MT 

systems allow human interaction during translation process, which is known as human 

assisted machine translation. One of the main research and development objectives in this 

field is to enhance the power of MT systems so that the extent of postediting is reduced 

and, eventually the need for it is eliminated. 

Together with the spectacular advances in computer technology and computational 

linguistics, MT researchers and supporters are now optimistic about reaching the ultimate 

goal of machine translation, constructing a fully automated machine translation system. 

Although the major objective of MT researchers is to achieve fully automated machine 

translation, many of the methods, techniques, and tools of machine translation can be 

used to build sophisticated tools for human translators, e.g. terminology banks, spelling 

and grammar checkers, text production facilities. Human translation with the use of these 

sophisticated tools is known as machine aided translation. 

In machine translation there have been several efforts to develop procedures for 

evaluating the quality of the results produced by machine translation systems. Some 

quality and performance measures were proposed for this purpose. The following is a set 

of these performance metrics [2] : 



7 

1. Linguistic generality: the number of source and target languages covered by the 
system and the extent of coverage in the grammar and the general vocabulary. 

2. Application-domain generality: the number of subject domains covered by the 
system and the extent of coverage of each domain. 

3. Degree of automation: the extent to which human must intervene in the 
translation. 

4. Semantic accuracy: the degree to which the translated text expresses the same 
meaning as the source text. 

5. Intelligibility: the degree to which the translated text is easily understandable by 
readers of the target language without access to the source text. 

6. Appropriateness: the degree to which the target text is stylistically appropriate 
for its intended audience. 

7. Domain and language portability: the ease with which additional subject domains 
and languages can be added. 

8. Extensibility: the degree to which an MT system provides for seamless and 
incremental extensions to the grammatical and lexical coverage of the languages 
and subject domains already in the system. 

9. Improvability: the degree to which a system permits changes and enhancements 
to the level of automation as domain or lexical knowledge improves, without 
significantly compromising the quality of the translation. 

10. Ergonomics: the extent to which the user interface provides maximum 
communication bandwidth, maximal clarity and minimal opportunity for 
errors. 

11. Integrability: the extent to which an MT system can be an integral component 
of a complete authoring and document-production facility. 

12. Software portability: the ease with which the MT software can be ported to other 
hardware platforms, other operating systems and so on. 



8 

2.2. Methods of Machine Translation 

Machine Translation methods fall into three major categories [1,2,3] : 

1. direct translation 

2. transfer-based translation 

3. interlingua-based translation 

The central point of difference among them is on the depth of source and target 

language analysis. These methods are discussed below. 

2.2.1 Direct Translation 

Direct MY systems are the first generation machine translation systems [1,3]. They 

translate from a specific source language to a specific target language without any 

intermediate steps as shown in Figure 2.1. 

Translation 
L-__ ~--------------------------------------~~ 

Text in 
Source Language 

Figure 2.1. Direct Translation 

Text in 
Target Language 

They realize word for word translation relying on the assumption of finding direct 

correspondences between all the lexical items of the source and the target language. They 

assume that the SL texts need not be analyzed any more than strictly necessary for 

resolution of ambiguities. They have been highly criticized for their ad hoc techniques to 

resolve the ambiguities and they lost their scientific standing. 



9 

Although some of the current commercial MT systems, notably SYSTRAN, were built 

using the direct MT technology, they are currently being converted to employ the other 

approaches. 

2.2.2 Transfer-based Translation 

Transfer-based MT systems also translate from a specific language to another specific 

language [1,2,3]. However, they accomplish the translation process in three steps as 

illustrated in Figure 2.2. 

1. source language analysis 

2. source-to-target language transfer 

3. target language generation 

Source language 
dependent 
syntactic representation 

Analysis 

Text in 
Source Language 

Transfer 

Target language 
dependent syntactic 
representation 

Generation ., 

D 
Text in 

Target Language 

Figure 2.2. Transfer-based Translation 

In the first step, syntactic analysis is performed on the source language text to transform 

it into a syntactic representation using the source language lexicon and the grammar. 

Then, source language dependent syntactic representation is transferred into a 

corresponding syntactic representation specific to the target language. This stage of 



10 

transforming standard syntactic structures is implemented through a bilingual lexicon and 

the grammars of both languages. In the last step, target language text is produced from 

the syntactic representation of the target language by utilizing the target language 

dictionary and the grammar. 

In the transfer approach only those ambiguities inherent in the source language are 

tackled in source language analysis. Differences between languages are handled during 

transfer. 

2.2.3 Interlingua-based Translation 

Transfer systems are not suitable for multilingual translation, since a different transfer 

unit is necessary for each pair of languages. If there are n languages involved and 

translation is to be from and into each of them, then a system would need n(n-l) binary 

transfer units. The solution of this problem is to separate the source and the target 

languages in the translation process. This idea is the basis of interlingua approach [1,2,3]. 

In the interlingua approach, the translation system for n languages would need just 2n 

transfer units, since source and target languages are never in contact. Interlingua systems 

basically involve two stages for translation as shown in Figure 2.3. 

1. source language analysis 

2. target language generation 



r------------------~ 

Analysis 

Source Language 

Representation in 
Interlingua 

11 

Generation 

D 
Target Language 

Figure 2.3. Interlingua-based Translation 

In the first stage the meanmg of the source language text is represented in an 

unambiguous formal artificial language, interlingua. Then in the second stage this 

meaning is expressed in target language using the lexical units and syntactic constructions 

of the target language. Procedures for source language analysis are intended to be SL 

specific and not devised for any particular TL in the system. Similarly, target language 

generation is intended to be target language specific. 

The major distinction between the interlingua-based and the transfer-based systems is the 

attitude toward comprehensive analysis of meaning. Transfer-based systems achieve 

translation without deep understanding of the source language text. However, interlingua 

approach necessarily requires complete resolution of all ambiguities and anomalies of SL 

texts so that translation should be possible into other languages. 

The most famous example of interlingua-based machine translation systems is the Eurotra 

project [1]. Eurotra, started in 1978, is an ambitious, well-supported project aiming to 

provide MT among all official European Community languages (Danish, Dutch, English, 

French, German, Greek, Italian, Portuguese and Spanish) . The project is still under 

development, and it represents a mile stone in MT research. 



12 

2.2.3.1 Knowledge-based Translation 

In the last few years, knowledge-based approach is proposed as a descendant of 

interlingua oriented machine translation [2]. This· new approach is developed in the 

Center for Machine Translation at Carnegie Mellon University. The central principle 

underlying this approach is the stress on functionally complete understanding of the 

meaning of the source text as a prerequisite to successful translation. Thus, it requires 

a much deeper level of source language analysis in order to be able to translate between 

a number of languages. 

Since it belongs to the class of interlingua-based systems, translation within knowledge

based systems is also a two step process, analysis and generation. 

The main difference between the interlingua-based approach and the knowledge-based 

approach is on the depth of source language analysis and the reliance of knowledge

based systems on explicit representation of world knowledge. Knowledge-based machine 

translation systems must be supported by world knowledge. They utilize a model of the 

world, an ontology, including knowledge about basic types of objects and events in the 

physical world, e.g. a car is a kind of vehicle, relationships among them, e.g. "is-a" , 

"part-of', and particular instances of object types, e.g. IBM is an instance of the object 

type "corporation", and election of Bill Clinton as president of the United States is an 

instance of the complex action "to_elect". 

With special attention paid to acquisition of large knowledge bases and with the advent 

of new tools the practicality of the knowledge-based approach is growing steadily. Since 

a totally comprehensive analysis of meaning is not yet feasible, and the attainment of this 

goal will remain an objective of computational linguistics for years to come, a practical 

knowledge-based system will attain a lesser depth of understanding. 



13 

2.3. Machine Translation Research on Turkish 

Up to now, there have been several works on the machine translation problems involving 

Turkish either as a source language or as a target language. We examined the following 

two works of this kind. 

The work of OZgiiven and Tsujii [3] is about MT from English to Turkish restricted in 

the domain of the news reports sublanguage. They employ a kind of transfer-based 

method for translation. The translation is carried out by translating phrases as a whole, 

and then assembling them. The translator first locates the phrases in the input text with 

Phrase Analysis module, and then translates each phrase with the Phrase Translation 

module. Finally, they form the Turkish sentences by assembling the translations of 

phrases in the correct syntactic structure with the Structural Translation module. The 

major shortcoming of the translator is the fact that they don't attempt to resolve the 

lexical and structural ambiguities. Although they state that the results obtained from the 

translator were good, they also remind that these results were produced by only a small 

model of the actual design. 

Another work on the problem of machine translation involving Turkish is the Transit 

(Translation System Into Turkish) project started in September 1985 in the Department 

of Computational Linguistics of the University of Nijmegen [4,5]. It is a large scale 

project aiming to achieve machine translation from Dutch to Turkish. They utilize 

transfer-based method. In this respect, they develop several programs to realize each 

phase of the translation. The programs called AMAZON and CASES are responsible for 

the source language analysis. They syntactically and semantically analyze the Dutch 

sentences and provide the semantic representations for them. On the other hand, 

programs called AMATUMOR (Automatic Turkish Morphological Analyzer), 

AMATURKA (Automatic Turkish Syntactic Analyzer) and ATMACA (Semantic 

Analyzer for Turkish) are responsible for the same processes for Turkish. They are 

currently working on the integration of these two groups of by-products to achieve the 



14 

translation. 

As far as we know no results are published on their translator yet. However, the results 

obtained from ATMACA are available. Their Turkish morphological analyzer 

AMATUMOR determines the morphological ambiguities and ATMACA tries to resolve 

them by utilizing semantic features. 

Since Turkish and its dialects are agglutinative languages, we have actually worked on the 

problem of translation from an agglutinative language to another one. The translation 

systems explained above do not involve agglutinative languages (see Chapter 3) as both 

the source and the target language. In both systems only the target language, Turkish, is 

agglutinative. To the best of our knowledge, there is no work done on machine 

translation research where both the source and the target languages are agglutinative, and 

on the problem of machine translation from Turkish to other Turkic languages. Therefore 

this work is the first attempt on machine translation from Turkish to other Turkic 

languages as well as from an agglutinative language to another one. 



15 

3. MORPHOLOGICAL PARSING 

Morphological parsing is an area of natural language processing as stated in Section 2.1. 

It is utilized to determine the constituents of a word, its root and affixes. 

3.1. Morphological Parsing in Agglutinative Languages 

Morphological parsing is especially critical for agglutinative languages like Turkish, Finnish, 

Hungarian, Quechua and Swahili. 

In agglutinative languages words are combinations of several morphemes. There is a root 

and several suffixes are affixed to this root to form new words, either modifying or 

extending its meaning. In agglutinative languages stem formation by affixation to 

previously derived stems is extremely productive. A given stem, even though itself quite 

complex, can serve as a basis for even more complex words. Consequently, agglutinative 

languages contain words of considerable complexity, and parsing such languages requires 

a detailed morphological analysis. 

The phonemes and morphemes are two basic constituents of the morphology in 

agglutinative languages. Their definitions are as follows. A phoneme is the unit of sound, 

and allophones of a phoneme are its variant forms as conditioned by position or adjoining 

sounds, e.g. the allophones of the Turkish phoneme I are 1, i, u, ii. A morpheme is the 

smallest unit of speech bearing a meaning, and the allomorphs of a morpheme are its 

different forms it might take according to the context it appears, e.g. the allomorphs of 

the Turkish morpheme -lAr are -lar and -ler. 



16 

In agglutinative languages, morpho tactic rules determine the way morphemes are ordered 

to form a word. A given morpheme may take a shape, one of its allomorphs, dependent 

on its morphological and phonological environment. The morphophonemic alternation 

rules determine the surface form of the morpheme, namely its allomorph. 

Morphological analysis methods fall into two major categories: 

1. Listing methods 

2. Computational methods 

Listing methods are not suitable for agglutinative languages as discussed by Hankamer[6] 

and Kibaroglu[7]. Computational methods are divided into two categories: 

1. Left-to-right parsing (Root matching method) 

2. Right-to-Ieft parsing (Suffix stripping method) 

Left-to-right parsing is more suitable for agglutinative languages than right-to-Ieft parsing, 

as stated by Hankamer[6] and Kibaroglu[7]. 

In the computational methods, there are two representations of the language, lexical and 

morphological. While lexical representation includes the vocabulary of the language, 

morphological representation contains the rules of the language which determine the way 

morphological compounds come together. 

In left-to-right parsing, the parser employs a finite state transition network representation 

of morphotactics and a treatment of morphophonemic alternations. Parsing proceeds as 

follows. Roots are sought in the lexicon that match initial substrings of the word, and the 

grammatical category of the root determines what class of suffixes may follow. When a 

suffix in the permitted class· is found to match a further substring of the word, 

grammatical information in the lexical entry for that suffix determines once again what 



17 

class of suffixes may follow. If the end of the word can be reached by iteration of this 

process, and if the last suffix analyzed is one which may end a word, the parse is 

successful. 

3.2. Research on Morphological Parsing of Turkish 

Morphological parsing has attracted relatively little attention in computational linguistics 

until recently. The reason seems to be the fact that virtually all parsing research has been 

concerned with English, or with other languages morphologically similar to English. Since 

in these languages words contain only a small number of affixes or none at all, almost 

all of the parsing models for them assume either that there is no real need for 

morphological parsing or that any such morphological parsing, recognizing this small 

number of affixes, will be trivial. 

However, as explained in above section, this is not the case with agglutinative languages, 

hence for Turkish. Agglutinative structure of Turkish requires an extensive analysis of its 

morphology to build a morphological parser for parsing Turkish words. So far, several 

researchers worked on the problem of morphological parsing of Turkish and produced 

morphological parsers for parsing Turkish words. Kibaroglu[7], Akm et. al.[8], 

Hankamer[9] and Solak and Oflazer[lO] are among those researchers. In all of these 

works, the parsers employ left-to-right parsing method. The morphological parser 

produced in the project "A Spelling Checker and Corrector for Turkish" [8] is adapted 

and used in the translator developed in this work. 



18 

4. MACIDNE TRANSLATION FROM TURKISH TO OTHER TURKIC 

LANGUAGES 

This chapter discusses machine translation from Turkish to other Turkic languages. Since 

Turkic languages are agglutinative languages, this discussion is actually about the problem 

of machine translation from an agglutinative language to another one. 

Azeri Language is chosen as a representative of the other Turkic languages, since it is 

closer to Turkish more than all the others. The example in Table 4.1 illustrates this 

similarity [11]. Note that capital letters represent characters not available in the Latin 

alphabet. 

Table 4.1. The appearance of a sentence in Turkic languages 

I Sentence I Language I 
abla-sl Ylldlz-Ia telefon-da konu§-uyor. (Turkish) 

b6yi.ik bacl-sl YIldlz-la telefon-da dam§-lf. (Azeri Language) 

eceke-si YIldlZ bilen telefon-da giirle§-Yar. (Turkmen Language) 

apa-si YIldlZ bilAn telefon-Da sozlA§-AyApti. (Uzbek Language) 

apa-sl Ylldlz-ben telefon-da soyle§-ip tur. (Kazakh Language) 

ece-si YlldlZ menen telefon-da siiylo§-up catt!. (KIrghlz Language) 

apa-sl YlldlZ bilAn telefon-da soylA§-A. (Tatar Language) 

Of the three major approaches to machine translation, namely direct translation, 

transfer-based translation and interlingua-based translation, none fits this problem alone. 

So we propose a lexicon-based approach to achieve the translation. 



19 

4.1. Turkish and The Azeri Language 

In this section we discuss the key features of Turkish and the Azeri Language. Turkish 

is an agglutinative language in which syntactic relations between words are expressed 

through discrete suffixes. Turkish is a subject-object-verb language, however the order of 

phrases may be changed to emphasize certain constituents of the sentence. The main 

constituent of a Turkish sentence is verb. The usage of other constituents is optional and 

dependent on the properties of verb [12]. Azeri is also an agglutinative language with a 

similar syntactic structure. Thus the discussion is given in terms of the alphabets, the 

lexicons, the phonology and the morphology. 

4.1.1. Alphabet, lexicon and phonology 

Turkish uses an alphabet of 29 letters in its current orthography using Latin characters. 

There are 8 vowels: a, e, 1, i, u, ii, 0, 0, and 21 consonants: b, c, ~, d, e, f, g, g, h, j, k, 

1, m, n, p, r, s, §, t, v, y, z. On the other hand, Azeri has 9 vowels and 23 consonants. It 

has the vowel ii, and the consonants x and q, in addition to letters of the Turkish 

alphabet [13,14]. Azeri has many words common with Turkish. About 1100 of the 6900 

Azeri words, approximately 1/6, in the "Comparative Dictionary of Turkish Dialects" [13] 

are the same with their Turkish equivalents. Azeri also has many words borrowed from 

various other languages such as Greek, English, and Russian. Velosiped(bicyc1e ), 

lampo<;ka(1amp), prodyiiser(producer), prospekt( street), and respublika( republic) are 

examples of those words. 

Some Azeri words are phonological variations of Turkish words. The domain of some 

phonological variation rules covers all the Azeri words, whereas some of them can 

influence only a group of Azeri words. The phonological variation rules valid for all the 

Azeri words are the following: 



20 

1.the consonant k at the end of the polysyllabic words corresponds to g if the last 

vowel of the word is in the set {a,l,o,u}. 

2.the consonant k at the beginning of the words corresponds to g if the first vowel 

of the word is in the set {a,l,o,u}. 

About 190 of the first 1100 Azeri words, approximately 1/5, in the "Comparative 

Dictionary of Turkish Dialects" [13] obey the second type of rules. The phonological 

variation rules valid only for some Azeri words are the following: 

1. the vowels a, e, i correspond to a. 
2. the vowels u, ii correspond to 0, 0, respectively. 

3. the consonant y at the beginning of the word is deleted and the following 

consonant I corresponds to i or u. 

4. the vowel I at the beginning of the word corresponds to i. 

5. the consonant h is attached to the words beginning with ii or 0. 

6. the vowels a and e correspond to 0 and 0, respectively, if they come just before 

the consonant v in the word. 

7. the consonant k corresponds to x. 

8. the consonants §, d, g, k and y correspond to §§, dd, gg, kk and yy, respectively. 

9. the consonant k at the end of the word corresponds to y. 

10. the consonants g, v between two vowels corresponds to y. 

11. the consonants pr and vr correspond to rp and rv, respectively. 

12. the consonants p, ~, t and k at the end of the word correspond to b, c, d and 

g, respectively. 



21 

4.1.2. Morphology 

As agglutinative languages Turkish and Azeri use derivational and inflectional suffixes to 

form new words. Derivational suffixes alter the meaning of the word, whereas inflectional 

suffixes do not. 

There is a one-to-one correspondence between the inflectional suffixes of Turkish and 

Azeri, either in the same form or in a different form, except the following two: 

1. The Turkish suffix -mI§ forming past indefinite tense has two equivalents in 

Azeri, -mI§ and -Ib, e.g. the meaning of the Turkish word gelmq can be expressed with 

either giilmi§ or galib in Azeri. 

2. The Turkish suffix -mAlI forming the necessitative modal has two equivalents 

in Azeri, -mAlI and -As!. The word garak together with the suffix -(y)A is also used for 

this modal, e.g. the meaning of the Turkish word gelmeli can be expressed in three ways 

in Azeri: giilmiili, giiliisi, and gariik giiZii. 

Since, for both tenses, all the equivalent Azeri suffixes give the same meaning, only one 

of them is considered in the translation process. 

However, the same is not true for derivational suffixes. Some of the derivational suffixes 

of Turkish do not exist in Azeri. The suffixes -sAl, -giller, -alger and -(i)k are the 

examples of this kind of suffixes. Moreover, some of them which have equivalents in 

Azeri, may not be applicable to all Azeri words. The suffixes -lA, -kar and -hane 

exemplify this kind of suffixes. 

This situation for the suffix -lA (derivational suffix from noun to verb) is illustrated in 

Table 4.2. For instance, the Turkish word bag (string) can be used as a stem in the 

derivation of the word bagZa- (to tie) with the suffix -lAo Since the Azeri equivalent of 

bagla- can be derived from the Azeri equivalent of bag with the suffix -lA, the suffix is 



22 

applicable for this word. However, the same is not valid for the Turkish words sergi 

(exhibition) and sergile- (to exhibit). Although sergile- can be derived from sergi with the 

suffix -lA in Turkish, its Azeri equivalent siirgiyii goy- can not be derived from the Azeri 

equivalent of sergi with the suffix -lA. This implies that the suffix -lA is not applicable for 

this word. 

Table 4.2. The usage of the suffix -lA in the Azeri Language 

status Turkish word Azeri equivalent 

applicable bag( string) bag 
bagla-(to tie) bagla-

applicable dilim( slice) dilim 
dilimle-( to slice) dilimHi-

applicable hesap( calculation) hesab 
hesapla-( to calculate) hesabla-

not harman(blend) Xlrman 
applicable harmanla-(to blend) gan§dlr-

not sergi( exhibition) sargi 
applicable sergile-( to exhibit) sargiya goy-

Turkish has the vowel harmony rule and the consonant harmony rules defining the 

morphophonemics of the language and some morphotactic rules determining the orders 

of morphemes [7,8,10]. 

Vowel harmony is a process by which the vowels in all syllables of a word except the first 

assimilate to the preceding vowels with respect to certain phonetic features. The Turkish 

vowels a, e, 0, 0 are classified as low vowels, and the ones I, i, u, ii as high vowels. 

Except the present tense suffix -Iyor, there are no suffixes in which the low vowels 0 and 

o appear. Therefore in citing suffixes, the letter A is used for low vowels and I for high 

vowels. When a suffix is affixed to a stem, the first vowel in the suffix changes according 

to the last vowel of the stem. Succeeding vowels in the suffix change according to the 

vowel preceding them. So the two classes of vowels are resolved as follows: 



A = a if the previous vowel is in the set {a, 1, u, a} 

= e if the previous vowel is in the set {e, i, ii, 6} 

I = 1 if the previous vowel is in the set {a, I} 

= i if the previous vowel is in the set {e, i} 

- u if the previous vowel is in the set {a, u} 

- ii if the previous vowel is in the set {o, ii} 

23 

The following examples illustrate the usage of vowel harmony rule. gel (to come) + -DI 

(past definite tense) = geldi, ko§ (to run) + -Iyor (present tense) = ko§uyor, and defter 

(notebook) + -lAr (plural suffix) = defterler. 

Because of their different phonetic structures, some words borrowed from other 

languages do not obey vowel harmony rule during agglutination, e.g. saat (watch) + 

-(y)A (dative) = sa ate. 

Besides vowel harmony rule, there exist another morphophonemic rule involving vowels 

of the morphemes, which is known as elision. Morphemes beginning with a vowel are 

affixed to stems ending with a vowel with the deletion of their first vowel, e.g. masa 

(table) + -(I)m (1st singular possessive) = masam. The first vowels of these suffixes are 

shown with the symbol 0, as in this example. 

Turkish consonants are classified in two sets: the consonants ~, f, t, h, s, §, k, P as 

voiceless consonants and b, c, d, g, g, j, I, m, n, r, v, y, z as voiced consonants. The 

consonant harmony rules listed below are based on this classification [12,15,16]. 

1. consonant mutation rule: In multi-syllabic words and in certain mono-syllabic 

roots, the final voiceless consonants p, ~, t, k are mostly changed to b, c, d, g, 

respectively, when a suffix beginning with a vowel is attached to the word, e.g. kitap 

(book) + -(y)I (accusative) = kitabz. 



24 

2. consonant assimilation rule: In some suffixes beginning with one of the 

consonants c, d, or g, this consonant might change to ~, t, k, respectively, if the last 

phoneme of the stem to which one of such suffixes is attached is a voiceless consonant, 

e.g. gel (to come) + -DI (past definite tense) = geldi, but ko§ (to run) + -DI (past 

definite tense) = ko§tu. These consonants are shown as C, D and G, as in the example. 

3. phoneme insertion rule: Some morphemes beginning with a vowel are affixed to 

the stems ending with a vowel with the insertion of one of the consonants n, S, or y, e.g. 

ev (house) + -(s)1 (3rd singular possessive) = evi, but kapl (door) + -(s)1 (3rd singular 

possessive) = kapzsl, and the consonants inserted are shown as (n), (s), and (y). 

Azeri has similar morphotactic rules with Turkish, but not the same morphophonemic 

rules. Vowel harmony rule exists in Azeri including the vowel a. The vowel e is not used 

in Azeri suffixes, and the vowel a is treated the same as the Turkish vowel e in the 

application of the vowel harmony rule. 

Consonant harmony rules exist in Azeri with some modifications. Since the voiceless 

consonants p, ~, t, k already appear as b, c, d, g as the last letters of Azeri root words, 

the first consonant harmony rule is not utilized in the Azeri. The second consonant 

harmony rule is not valid for the consonant d, which is always used as d. However it is 

valid for the consonants c and g with the following two exceptions. The derivational 

suffixes -CI, -Clk deriving nouns from noun root words always appear as -~I and -elK, 

respectively. The phoneme insertion rule is the same with the Turkish equivalent with the 

exception that, instead of inserting letter y letter n is inserted as auxiliary letter with 

accusative suffix. 

Azeri has an additional consonant harmony rule that does not exist in Turkish. The 

consonant k, which will be shown as K, in the suffixes changes according to its preceding 

vowel. It takes one of its allophones k or g according to the following rule: 



25 

K - g if the previous vowel is in the set {a, 1, u, o} 

= k if the previous vowel is in the set {a, e, i, ii, 6} 

4.2. Translation From Turkish to The Azeri Language 

None of the approaches discussed in Chapter 2 is suitable for machine translation from 

Turkish to the Azeri language. Since translation from Turkish to Azeri requires a detailed 

morphological analysis and detailed processing for ambiguous words, direct translation 

alone is not suitable for this purpose, as it is not for many other translation problems. 

Transfer based approach requires a detailed syntactic analysis. Since the syntactic 

structures of Turkish and Azeri are similar, there is no need for such a detailed syntactic 

analysis for this problem. The aim of the interlingua-based approach is to achieve 

multilingual translation among completely different languages and this is quite different 

from this problem. Therefore the construction of a formal interlingua language to express 

the meaning is redundant for our problem. Knowledge-based approach requires a much 

deeper analysis to get the complete meaning of the input text, and it is also redundant 

for our problem. Therefore we have proposed a lexicon-based approach and incorporated 

some of the techniques used in conventional approaches into it in order to solve the 

problem of translation from Turkish to other Turkic languages. 

With this approach we claim that translation from Turkish to Azeri can be achieved 

without completely understanding the input text, and the translation process can be 

viewed as a word for word translation of sentences. Because the number of words that 

can be translated into Azeri with one-to-one correspondence of the words is much larger 

than the number of ambiguous words that needs additional processing to be translated 

correctly. We determined 750 of 6900 Turkish words in our root lexicon as ambiguous 

in the context of machine translation from Turkish to Azeri. Therefore representing the 

meaning of each Turkish word seems unnecessary for this problem. Only the ambiguous 

words that should be disambiguated in the translation process are taken into account. 



26 

The ambiguities that do not cause any problem are ignored in the translation. All the 

information for the ambiguity resolution process is stored in the lexicons, and the 

disambiguation is carried out in a lexicon-based manner. 

Moreover, as the sentence syntax is similar for both languages, there is no need to 

employ syntactic analysis to find out the syntactic structures of the Turkish sentences. 

However, we note that syntactic analysis may help to resolve the ambiguities in the 

semantic level. Even though we did not employ syntactic analysis, we utilize some of the 

syntactic rules of Turkish in resolving ambiguities. 

Thus, we get the idea of word for word translation from direct translation approach, the 

techniques for morphological and semantic analyses from the transfer-based and 

interlingua-based translation approaches. Translation is achieved in 4 steps: 

1. morphological analysis 

2. semantic analysis 

3. resolving the ambiguities 

4. word generation by replacing the Turkish root word and the suffixes with their 

Azeri equivalents 

Translation starts with the morphological analysis phase. At the end of the morphological 

analysis, all possible parses for a single word are obtained. For each parse of the word 

the Azeri equivalent of the root word and the suffixes involved in the parse are also kept. 

Semantic analysis is performed concurrently with morphological analysis, and the 

necessary information to be used in a possible disambiguation process is obtained. The 

characteristics of this information is explained in Section 4.5. Then the lexical item is 

disambiguated using the semantic information if there exists any ambiguity. Finally, the 

word is translated into Azeri by replacing the Turkish root word and the suffixes with 

their Azeri equivalents. 



27 

During the translation if a word can not be morphologically parsed in any way, it means 

that the word does not exist in the translator's lexicons. In this case the Turkish word is 

given as the result of the translation together with the message "No Information". Proper 

nouns are translated into Azeri without any modification. 

4.3. No Ambiguity Case 

In the simplest case no ambiguity exists. The word can be parsed in just one way and the 

root word has just one equivalent in Azeri. In this case, the word is translated into Azeri 

directly by replacing the root word and the suffixes with their Azeri equivalents. For 

instance, the Turkish word konzquyorum (1 am speaking) has a single parse: 

kOnLq(to speak) - uyor(present tense) - um(lst single person) 

and it is translated into Azeri by a one-to-one substitution as danL§-zr-am. 

As another example consider the Turkish sentence arabayz yzkadz (He/she washed the 

car). The result obtained from the morphological parsing of this sentence is: 

araba(car) - yz(accusative) yzka(to wash) - dz(past definite tense) 

Since no ambiguity exists, it is directly translated into Azeri as araba-yz yu-du. 

4.4. Ambiguity in Translation 

With the disappointing results of the first generation machine translation systems, it is 

literally accepted that machine translation can not be considered as word for word 

translation without any additional processing. As discussed in the previous sections, 



28 

machine translation in general involves three levels: 

1. morphological analysis 

2. syntactic analysis 

3. semantic analysis 

In each of these analyses, there exist cases in which the analysis yields multiple solutions. 

The major problem in machine translation is the selection of the correct solution in these 

ambiguous cases. 

In the case of syntactic analysis, ambiguity exists when a sentence or phrase can be 

represented with more than one syntactic structure, which is called parse tree. The 

following example illustrates this fact [17]. Turkish noun phrase slcak et reyonu satlclsl 

(the hot/wann meat stand seller) can be interpreted in three ways as shown in Figure 4.1, 

and additional analysis is needed to identify the correct one. 

NP NP 

NP 
I . 

saticlsl(N) NP 

NP I NP I 
saticisl(N) 

reyonu(N) slcak(A) 

sicak(A) et(N) et(N) reyonu(N) 

( a) (b) 
NP 

NP 

slcak(A) I NP 

satlclS1(N) 

et(N) reyonu(N) 

(c) 

Figure 4.1. Three ambiguous interpretations of the noun phrase slcak et reyonu 
satlclsl 



29 

In this case the problem is to identify the modifiers and the way they modify the other 

nouns in the noun phrase. However, this does not introduce a problem in translation 

from Turkish to Azeri, since the sentence syntax is similar for both languages. The 

syntactic ambiguity is preserved in the output text in the same way as the input text. 

Therefore, trying to resolve syntactic ambiguities is useless for our problem. 

On the other hand, ambiguities involved in morphological and semantic analyses should 

be resolved for translation from Turkish to Azeri. Words that can be morphologically 

analyzed in more than one way due to several reasons are morphologically ambiguous. 

We have examined the characteristics of these words and categorized them according to 

reasons causing the ambiguity. 

In the case of semantic analysis, words with multiple word senses cause the ambiguity. 

Some root words do not convey a single meaning. They can be used for as many different 

meanings as the number of their word senses. Therefore in order to find the correct 

equivalent of a Turkish word in Azeri, the word sense ambiguity should be resolved. 

Another phenomena causing ambiguity in semantic analysis is pronominal anaphora [18]. 

In written discourse people may use certain instruments for pointing back in the discourse 

context to individuals, objects, events, times and concepts mentioned previously. The use 

of such a pointing device is called anaphora. Short constituents such as pronouns and 

definite noun phrases referring to more detailed descriptions elsewhere in the text are 

called anaphors. As an example consider the Turkish sentence, Ali Ay§eye arabaslnl 

sordu. It can be interpreted in two ways: Ali asked Ay§e about Ali's(his) car. or Ali asked 

Ay§e about Ay§eJs(her) car. In order to identify the correct meaning expressed by the 

sentence, the pronominal anaphora should be resolved with semantic information 

obtained from the surrounding text. However, the disambiguation is not necessary for 

translation from Turkish to Azeri. When the sentence is translated into Azeri, the 

resulting text preserves the same anaphoric relation. Therefore, resolution of pronominal 

anaphora can be ignored in our problem. 



30 

We then should deal with the ambiguities resulting from morphological and semantic 

analysis. Thus, we have classified ambiguous Turkish words into two major categories: 

1. word sense ambiguous words 

2. morphologically ambiguous words 

The Turkish words and their characteristics in both categories are presented below. 

4.4.1. Word Sense Ambiguity 

Word sense ambiguity exists in Turkish as there are words with multiple word senses. 

So, in this case, the Turkish word can be morphologically parsed in just one way, but the 

root word has multiple word senses causing multiple equivalents in Azeri. 

Linguists distinguish between homonyms and polysemes [1]; homonyms are words like 

bank which have two or more distinct and unrelated meanings (geological feature or 

financial institution); polysemes are words like face which reflect different shades of 

meaning according to context. They distinguish also between homophones (words which 

sound the same but have different meanings) such as pear, pair, and pare, and 

homographs (words which are spelled the same but have different meanings) such as tear 

(crying versus ripping). Fortunately, the homophone problem is irrelevant since MT deals 

only with written texts. For resolving the ambiguities it is also immaterial whether the 

source language word is homograph or polyseme, since in both cases the ambiguous word 

has mUltiple equivalents in the target language, and the problem is to select the correct 

equivalent for its current usage. 

Sometimes the target language vocabulary makes finer sense distinctions than source 

language. For instance, the verb know may be conveyed by wissen or kennen in German; 

similarly the English word river may be either Fluss or Strom in German. In either case 



31 

English words do not have more than one meaning. Instead, German makes distinctions 

which English does not. Nevertheless, in the context of a MT system the problem of 

selecting the correct target language form is much the same as when source language 

form is a genuine homograph or polyseme. Therefore we refer to all of these words as 

word sense ambiguous and treat them in the same manner in order to resolve the 

ambiguity. 

In this case, the problem is to find the correct equivalent of the root word in Azeri for 

its current usage. For instance, the Turkish word alay(regiment / mockery) has two word 

senses, and the word alaya has a single parse : 

alay(regiment / mockery) - a(dative) 

The word is ambiguous, since the root word itself is ambiguous. Thus, the word sense 

ambiguity has to be resolved in order to translate the Turkish word alaya into Azeri. 

However, if the equivalent of a Turkish word is the same in Azeri for each word sense, 

there is no need to resolve this ambiguity in translation from Turkish to Azeri. For 

example, the Turkish word don- has two word senses to revolve and to return, and its 

Azeri equivalent is don- for both senses. So, trying to resolve the word sense ambiguity 

is unnecessary in this case. The Turkish words hat(feature / line), pazar(Sunday / bazaar) 

and UYWi-(to get along together / to get numb) are some other examples of this kind of 

words. 

The list of word sense ambiguous words in the "Comparative Dictionary of Turkish 

Dialects" [13] that should be disambiguated in the translation process is given in 

Appendix A 



32 

4.4.2. Morphological Ambiguities 

Morphological ambiguity is the major ambiguity category in machine translation involving 

agglutinative languages, and it results from words with multiple morphological parses. 

Different types of morphological ambiguities exist in Turkish resulting from its 

agglutinative structure. We have so far identified 5 types of them: 

1. root words that are similar in form to stems with inflectional suffixes 

2. root words that are similar in form to stems with derivational suffixes 

3. suffixes with multiple surface forms 

4. similar suffixes 

5. identical suffixes 

These cases are discussed below together with illustrative examples. 

4.4.2.1. Root Words that are Similar in Form to Stems with Inflectional SuffIXes 

In this case, the Turkish word has multiple parses with different root words. For instance, 

the Turkish word halka has two morphological parses: 

halka(ring) 

(ring) 

halk(people) - a (dative) 

(to the people) 

Another example of this kind is the Turkish word ilim, which has also two morphological 

parses: 



ilim(science) 

(science) 

i/(city) - im(lst singular possessive) 

(my city) 

33 

So, the reason of this type of morphological ambiguity is the existence of a Turkish root 

word that is similar in form to another root word with inflectional suffixes. 

The close relation between Turkish and Azeri allows us to ignore some of the ambiguous 

words of this kind in the translation process. For example, the Turkish word eser is an 

ambiguous word of this kind, and it has the following two morphological parses: 

eser(work of art) 

asar 

es(to blow) - er(aorist suffix) 

as - ar 

Since, the Azeri equivalents are the same for both parses, eser can be translated into 

Azeri as fiset'r without any disambiguation process. The Turkish words altml~jalt, arka/ark, 

kzzar-/kzz-, oku-/ok, yarasa/yara- are also examples of these words as illustrated in Table 

4.3. 



Table 4.3. Examples of ambiguous words that can be ignored in translation from 
Turkish to Azeri 

Turkish word Azeri equivalent 

altml§( sixty) altml§ 
alt(bottom) - ml§(past indefinite tense) alt - Illi§ 

arka(the back) arxa 
ark( canal) - a( dative) arx - a 

kIzar( to turn red) glzar 
kIz( to be angry) - are aorist) glZ - ar 

oku( to read) oxu 
ok( arrow) - u( accusative/2nd singular possessive) ox - u 

yarasa(bat) yarasa 
yara( to be useful) - saC desiderative ) yara - sa 

34 

We have determined the ambiguous Turkish root words of this kind by parsing each 

Turkish word with the Turkish morphological parser developed at Bogazi<;i University 

[8]. Those with multiple morphological parses are identified as ambiguous. We have 

categorized these words according to the suffixes causing the ambiguity, in order to 

resolve the ambiguities effectively. These suffixes are the following: 

-(y)1 (accusative) 

-( s)1 (3rd singular possessive) 

-(y)A (dative, optative modal) 

-DA (locative) 

-(I)n (2nd singular possessive, 2nd single person for imperative modal) 

-(I)m (1st singular possessive) 

-(y)lz (1st plural person) 

-DI (past definite tense) 

-mI§ (past indefinite tense) 

-Ar (aorist suffix) 

-rnA (negation suffix, nominating participle) 



35 

-lA ( clitic) 

-sA (desiderative modal, compound conditional tense) 

-mAk (infinitive suffix) 

Ambiguous Turkish words of this kind that should be disambiguated in translation from 

Turkish to Azeri are given in Section B.1 in Appendix B according to the above 

categorization. 

4.4.2.2. Root Words that are Similar in Form to Stems with Derivational SuffIXes 

There exist Turkish root words that are similar in form to other root words with 

derivational suffixes, and they naturally convey absolutely different meanings. For 

example, the word kaYl§ has two morphological parses: 

kaYl§ (belt) 

(belt) 

kay(to slide) - l§(derivational suffix from verb to noun) 

(sliding) 

Even though the word kaYl§ is similar in form to word kaY-l§ the meaning belt has no 

relation with sliding. The word kaYl§ may be assumed to be word sense ambiguous, since 

it may be thought of as having two word senses, belt and sliding. However this is not the 

case in the "Comparative Dictionary of Turkish Dialects" [13]. Namely, the meaning 

sliding is not given as a word sense of the word kayl§. Therefore, we prefer to accept the 

words kaYl§ and kaY-l§ as two different words, and classify them as ambiguous due to 

the reason introduced in this section. 

The close relation between Turkish and Azeri also allows us to ignore some of the 

ambiguous words of this kind in the translation process. The Turkish word dolan is an 



example of these words. It has two morphological parses: 

dolan(to wander around) 

dolan 

dol(to fill up) - an (derivational suffix from verb to adjective) 

dol - an 

36 

Since, the Azeri equivalents are the same for both parses, dolan can be translated into 

Azeri as dolan without any disambiguation process. The Turkish words kaYlk/kay-, km§

/lar-, geli:j-/gel- are other examples of these words as illustrated in Table 4.4. 

Table 4.4. Examples of ambiguous words that can be ignored in translation from 
Turkish to Azeri 

Turkish word Azeri 
equivalent 

kaytk(boat) gaytg 
kaye to slide) - Ik( derivational suffix from verb to adjective) gay - Ig 

kIn§( to become wrinkled) gm§ 
kIr( to break) - I§( derivational suffix from verb to noun) glr - I§ 

geli§(to develop) gali§ 
gel( to come) - i§( derivational suffix from verb to noun) gal - i§ 

Ambiguous Turkish root words of this kind are already determined together with the 

ones presented in Section 4.4.2.1. We have identified them, and categorized them in the 

same manner. Suffixes causing this kind of ambiguity are the following: 

-(I)k 

-(I)§ 

-CA 

-(y)An 

(derivational suffix from verb to adjective) 

(derivational suffix from verb to noun) 

(derivational suffix from noun to adjective or adverb) 

(derivational suffix from verb to adjective) 



37 

The ambiguous Turkish words of this kind that should be disambiguated in translation 

from Turkish to Azeri are given in Section B.2 in Appendix B according to the above 

categorization. 

4.4.2.3. SuffIXes with Multiple Surface Forms 

Some suffixes in Turkish have multiple surface forms depending on the surface structure 

of the words that they would be affixed. For instance, the dative suffix -(y)A has the 

forms -yA and -A, two of its allomorphs, depending on the last character of the word it 

would be affixed. It is affixed to the word masa(table) as masa-ya, whereas to the word 

bisiklet(bicycle) as bisiklet-e. This may cause morphological ambiguity for words like 

ada (island) and aday(candidate), when the word adaya is to be translated into Azeri. It 

has two morphological parses : 

ada (island) - ya(dadve) 

(to the island) 

aday(candidate) - a(dadve) 

(to the candidate) 

The suffixes affected by the morphophonemic rules of phoneme insertion and elision 

cause this kind of ambiguity. We have determined this kind of suffixes for each part of 

speech. For example, the following suffixes that can be affixed to nouns are of this kind. 

derivational suffixes: 

-(A)l, -(i)k, -(i)st, -(i)zm 

inflectional suffixes: 

-(I)m, -(I)mIz, -(I)n, -(I)nIz, -(n)In, -(s)I 

-(y)A, -(y)I, -(y)IlAn, -(y)InAn, -(y)IA 



38 

The letters that may be deleted due to morphophonemic rules are I, A, n, y and s. 

Therefore nouns that differ one letter in length are ambiguous, if the last letter of the 

longer one is among these letters and the suffix is affixed to the other one without any 

letter deletion, e.g. the words elmas (diamond) and elma (apple) in the word elmasl 

(his/her apple / his/her diamond). So we identify ambiguous nouns by searching the root 

words lexicon for nouns satisfying this condition. The same process is repeated for each 

part of speech. The set of letters that might be deleted due to morphophonemic rules 

are I and A for adjectives, and I, A and y for verbs. 

The ambiguous words of this kind that are caused by the deletion of the vowels I and A 

are also identified in the case of words that are similar in form to stems with inflectional 

suffixes. This is because an ambiguous word with length n ending with one of these 

vowels can be derived from its pair whose length is n-l with either the accusative suffix 

-(y)I or the dative suffix -(y)A, e.g. the words a§l (vaccination) and a§ (cooked food). 

The following is the list of the ambiguous words of this kind according to the letters 

causing the ambiguity, excluding those explained above: 

(s) (the only example -( s )1) 

elma 

elmas 

hala 

halas 

(y) (like -(y)lA) 

ada 

aday 

kalH 

kalay 

hassa 

hassas 

ne 

ney 

kIsa 

kIsas 

kiime 

kiimes 



4.4.2.4. Similar SuffIXes 

Some Turkish suffixes have similar surface forms, and this may cause morphological 

ambiguities when they are affixed to root words with similar surface forms. For instance, 

the suffix -DAn(ablative) and -(y)An(derivational suffix from verb to adjective) have 

similar surface forms, and they cause morphological ambiguity in the word devreden: 

devre ( period / circuit) - den (ablative) 

(from the period / circuit) 

dovrli - dan 

devret(transfer) - en (derivational suffix from verb to adjective) 

(the one who is transferring) 

tilhvil ver - lin 

For some of the ambiguous Turkish words of this kind, there is no need to resolve the 

ambiguity in order to achieve the translation, since the corresponding Azeri words and 

the suffixes are also identical. For example, the Turkish word gemin has three 

morphological parses: 

gem(bit) - in(2nd singular possessive) 

(your bit) 

gam - m 

gem(bit) - in(genitive) 

(of the bit) 

gam - m 

gemi(ship) - n(2nd singular possessive) 

(your ship) 

grimi - n 



40 

However, the Azeri equivalents of all parses are the same. So, the ambiguity is ignored 

in the translation process. 

Each word category has a fixed set of suffixes that can be affixed to the words in it. We 

have determined these sets of suffixes for each word category. Then using this 

information we have affixed all possible suffixes to each Turkish word and 

morphologically parsed them. In this way the ambiguous Turkish words of this kind are 

determined. 

In this exclusive search, since we have also used the suffixes with multiple surface forms, 

the words determined as ambiguous due to these suffixes are also found in this case. 

Moreover, some of the words determined as ambiguous due to the previously explained 

two other reasons are also found in this case, since they are also ambiguous due to this 

reason. For example consider the Turkish word alnn (gold) and the suffix -(s)I (3rd 

singular possessive). When the suffix is affixed to the word, the resulting Turkish word 

has the following five parses: 

alnn (gold) - z(3rd singular possessive) 

(his/her gold) 

alnn (gold) - z (accusative) 

(the gold) 

aln (six) - n(2nd singular possessive) - z(accusative) 

(your six) 

alt (bottom) - zn(2nd singular possessive) - z(accusative) 

(your bottom) 

alt (bottom) - z(3rd singular possessive) - m(accusative) 

(his/her bottom) 

Therefore the Turkish words alnn, aln and alt are ambiguous words of this kind. 

However, they were also determined as ambiguous when the Turkish word alnn is tested 



41 

in the case of words that are similar in form to stems with inflectional suffixes. This is 

because it can be morphologically parsed in four ways: 

alnn (gold) 

aln (six) - n(2nd singular possessive) 

alt (bottom) - m(2nd singular possessive) 

alt (bottom) - m(genitive) 

So, in this case the Turkish words with more than one morphological parse, excluding 

those that are already determined due to reasons explained in the above sections, are 

identified as ambiguous words of this kind. They are presented in Section B.3 in 

Appendix B. 

4.4.2.5. Identical Sutl1xes 

In this case the Turkish word has multiple morphological parses with a single root word. 

The reason of the ambiguity is the existence of identical suffixes. Identical Turkish 

suffixes can be classified into two groups: 

1. Suffixes with multiple meanings 

2. Suffixes that become identical due to different surface forms 

Some Turkish suffixes have more than one meaning. For instance, the suffix -(I)m could 

be used as both 1st singular possessive and 1st single person, as in the following example: 

benim(my) gilzel(beauty) - im(lst singular possessive) 

(my beauty) 

ben (I) giizel(beautiful) - im(lst single person) 

(I am beautiful) 



42 

The Azeri equivalent of the Turkish word giizelim in the first utterance is goziilim, 

whereas in the second one goziiliim. Therefore the ambiguity should be resolved to find 

the correct translation. 

Some other Turkish suffixes become identical depending on words with different surface 

forms. For instance the suffixes -(y)1(accusative) and -(s)1(3rd singular possessive) become 

-I when they are affixed to a word ending with a consonant. For instance, the word 

bisikleti is ambiguous : 

bisiklet(bike) - i(3rd singular possessive) 

(his/her bike) 

bisiklet(bike) - i (accusative) 

(the bike) 

Since the Azeri equivalent of the word bisiklet is velosiped, which also ends with a 

consonant, there is no need to resolve the ambiguity. However, this is not valid for the 

Turkish word erik(plum), as eri@. has two morphological parses: 

erik(plum) - i(3rd singular possessive) 

(his/her plum) 

erik(plum) - i(accusative) 

(the plum) 

Since the Axeri equivalent of erik is alqa, the ambiguity should be resolved to decide 

whether to translate the word en'gi as alganz or algasl. So, for these two suffixes the 

morphological ambiguity should be resolved if the Azeri equivalent of the Turkish word 

ends with a vowel. 



43 

The ambiguous identical suffixes are determined in the following way. First, we form a 

list of generic words that includes all the morphophonemic alternations to be used as a 

test set. The words in this set are the following: 

e 

ed 

et 

a 

ad 

at 

1 

id 

it 

1 

Id 

It 

u 

ud 

ut 

li 

lid 

lit 

o 

od 

ot 

od 

ot 

Next, for each root word category we determine the word categories a root word in this 

category can reach with free jumps in the transition network representation of the 

morphotactic rules. Then for each word category in the transition network, we identify 

the root word categories from which these categories can be reached with free jumps. 

Finally, the identical suffixes were found using the following algorithm given in Figure 4.2. 

for all word categories in the transition network do 

{the one under translation is shown as category(i)} 

for all SUffixes that can be affixed to words in the category(i) do 

{the suffix under consideration is shown as sUfflX(i)(j)} 

for all possible root word categories from which the category(i) can be reached with free jumps do 

{the root word category under consideration is shown as rcategory(k)} 

for all artificial test words do 

{tword(m)} 

form the word to be tested as tword(m) + suffix(i)(j) and its category is rcategory(k) 

find morphological parses of the word 

if number of parses > 1 then 

store the related information in the ambiguity file 

end for 

end for 

end for 

end for 

Figure 4.2. Algorithm for Finding Identical Suffixes 



44 

After manual postprocessing the parses obtained from the above algorithm, the 

ambiguous identical suffixes are found. Postprocessing involves the elimination of the 

redundant parses. The parses produced by the identical suffixes are presented in 

Appendix C. 

Tracing the algorithm above for the word category v2, which is a verb category, may help 

to illustrate this complicated process. The only suffix that can be affixed to the words in 

the category v2 is -Ir, and it can be reached by free jumps from the root word categories 

v2 and v81. Therefore the following words are formed and morphologically parsed in 

order to find the ambiguous identical suffixes with -Ir. 

eir edir etir 

aIr adIr atlr 

llr IdIr ItIr 

iir idir itir 

our odur otur 

our odur otur 

uur udur utur 

uur udur utur 

The categories of these words are v2 and v81. At the end of the testing the following 

parse is found for the words IdIr, ItIr, idir, itir, odur, otur, odur, otur, udur, utur, udur, 

utur. 

v2 - v3 - Ir 

v2 - v16 - v18 - v73 - v19 - v24 - v25 - nO Ir 

v2 - v16 - v18 - v73 - v19 - v24 - v25 - v42 Ir 

All of them except the first one are eliminated in the postprocessing, since they are the 

redundant copies having the same information. The one maintained can be seen in 



45 

Appendix C. In this way the ambiguous identical suffixes are found for the suffix -Ir in 

the word category v2. 

By using the algorithm presented in this section only two suffixes or a suffix with a suffix 

sequence can be identified as identical. However, a suffix sequence can be identical with 

another suffix sequence as well. For instance, the suffix sequence -(s)I (3rd singular 

possessive) and -( n)I (accusative) become identical with the suffix sequence -(I)n (2nd 

singular possessive) and -(y)I (accusative), when both are affixed to a word ending with 

a consonant. The Turkish word defterini which has the following two morphological parses 

illustrates this fact. 

defter(notebook) - i(3rd singular possessive) - ni(accusative) 

defter(notebook) - in(2nd singular possessive) - i(accusative) 

The algorithm presented in this section can also be used to determine the identical suffix 

sequences by allowing the affixation of two or more suffixes. Although we did not carry 

out this process, we manually find out some obvious identical suffix sequences. The 

following is the list of these suffix sequences: 

-(s)I -(n)A 
-(I)n -(y)A 

-(s)I -(n)I 
-(I)n -(y)I 

-(s)I -(n)In 
-(I)n -(n)In 

-(s)I -(n)dA 
-(I)n -DA 

-(s)I -(n)dAn 
-(I)n -DAn 



46 

4.5. Methods Used in Resolving Ambiguities 

Ambiguities can be resolved using the semantic information obtained from the text. 

Different kinds of semantic information at various levels may be used to resolve the 

ambiguities in translation. This depends on what is used as semantic information and in 

what structure. There are different types of semantic information and structures to 

represent them. 

We utilize semantic features similar to those presented by Stoop [4], Boguraev et al. [19] 

and Sowa [20], the concept structure similar to those presented by Tomabechi [21] and 

Nogier et al. [22], and the collocation info structure similar to those presented by 

Nirenburg et al. [2] and Boguraev et al. [19] in order to resolve ambiguities. These 

structures are discussed below. 

4.5.1. Semantic Features 

Semantic features convey semantic information about words. Semantic features used for 

nouns, pronouns and proper nouns are displayed in Table 4.5. 

Table 4.5. Semantic features for nouns, pronouns and proper nouns 

I part of speech I Semantic feature I 
noun animate, inanimate, human, animal, plant, concrete/abstract, 

countable/uncountable 

pronoun human 

proper noun human, nation, country, city( town, village, region), sea( ocean, 
lake, river), mountain, language 



47 

We also use subcategories of the parts of speech as semantic features. The subcategories 

for each part of speech is displayed in Table 4.6. 

Table 4.6. Subcategories of parts of speech 

I part of speech I Subcategories I 
pronoun reflexive pronoun, personal pronoun, demonstrative pronoun, 

indefinite pronoun, interrogative pronoun, pronominal pronoun 

adjective qualificative adjective, demonstrative adjective, interrogative 
adjective, numeral adjective, indefinite adjective, time adjective 

adverb time adverb, place adverb, quantity adverb, quality adverb, 
interrogative adverb, demonstrative adverb 

verb transitive, intransitive, dative 

Moreover, we define some other semantic features specific to a small range of words. 

The full list of these features is given in Appendix D and the following are the examples 

excerpted from this list: 

time unit 

weapon 

object that can be bound 

object that can be driven 

organ of a human or an animal 

All the semantic features presented in this section are utilized in collocation info structure 

to resolve ambiguities. 

We do not intend to define semantic features to represent the world knowledge in a 

specific domain. Instead, in order to resolve an ambiguity if we need to identify whether 

a word has a certain property or not, we define this property as a semantic feature. For 

example, the Turkish word cilt has two word senses skin and binding. In order to resolve 



48 

this word sense ambiguity, we need to know whether an object can have a binding or not. 

Therefore, we have defined a semantic feature object that can be bound and identified 

all the words having this feature. So the ambiguity is tried to be resolved using this 

information. 

4.5.2. Concept Structure 

Concept structure is made up of the so-called concepts. To utilize the concept structure 

for an ambiguous word, a concept is defined and associated with it. In this way, the word 

becomes dependent on this concept. If an ambiguous word is dependent on a concept 

it means that the utterance under translation denotes this word if the related concept is 

active. In order for a concept to be active, at least one of the words that are related to 

it should have been used in the currently analyzed text. Therefore, together with each 

word, the numeric codes of the concepts it can activate are stored. The concepts that we 

have defined are as follows: 

military, medicine, agriculture, device, electricity, mine, 

grammar, navigation, mathematics, government, science, hOllse, 

space, weapon, religion, education, law, file, company, shop, 

press, apartment house, architecture 

We do not intend to define concepts to represent the complete world knowledge. Instead, 

we define concepts and associate the related words with them just to resolve the 

ambiguities. In this sense, our work is different from Schank's Conceptual Dependency 

Notation(CD) [23], which was devised to serve as semantic representation of the world 

knowledge. CD has its vocabulary for its specific domain, namely the sets of predicates, 

functions, and constants. However, we do not employ such a vocabulary, since our aim 

was not to represent the world knowledge. 



49 

Before translating a sentence, all the words in the sentence are allowed to activate their 

related concepts. By means of this, one sentence lookahead is performed in concept 

structure. 

Concept 0 is utilized to indicate that if none of the other alternatives is identified as the 

correct meaning denoted by the utterance under translation, the ambiguous word 

associated with concept 0 is valid. 

A concept is assumed passive if it is not activated. Once a concept is activated, it stays 

active during the analysis of the whole text. A concept may be sentence-active or 

text-active depending on whether or not the word activating it is used in the currently 

analyzed sentence. The priority of a sentence-active concept is higher than the text-active 

one. 

For example, the Turkish word uydu is ambiguous due to root words that are similar in 

form to stems with inflectional suffixes. It has two morphological parses: 

uydu (satellite) 

uy(to fit) - du(past definite tense) 

We have defined space as a concept, and the word uydu is associated with this concept. 

Consider the Turkish sentence Uydu yoriingede donuyor. It has the following 

morphological parses: 

uydu(satellite) yoriinge(orhit) - de (locative) don(to revolve) - uyor(present tense) 

uy(to fit) - du(past definite tense) yoriinge(orhit) - de (locative) don(to revolve) - iiyor(present 

tense) 

The word uydu is ambiguous since it has two equivalents in Azeri as peyk(satellite) and 

uydu(fitted). For this case, since the word yoriinge has activated the concept space, peyk 



50 

is selected as the equivalent Azeri word as it is dependent on the concept space. So the 

sentence is translated into Azeri as 

Peyk orbitada donur. 

4.5.3. Collocation Info Structure 

In the collocation info structure, co-occurrence information of words is used to resolve 

ambiguities. To utilize the collocation info structure for an ambiguous word, those words 

that are used together with it are stored as collocations of the word in the syntactic forms 

it might appear in Turkish. A special notation is employed to express these syntactic 

structures. The symbols used in this notation are presented in Table 4.7 and the generic 

suffix names that we introduce for referring to the suffix meanings are presented in Table 

4.8. This notation is also used in the examples presented in the following sections. The 

utterance under translation denotes this word if one of the collocations of the word is 

true, which means that the word is found to be used with its collocation in the correct 

syntactic form. 

Other than the co-occurrence information of specific words, some other generic co

occurrences of words are also utilized in the collocation info structure. These are the 

following: 

1. Simple syntactic rules of Turkish, e.g. an adjective precedes a noun and an 

adverb precedes a verb. 

2. The subcategory information of verbs as transitive, and intransitive, and in the 

case of transitive verbs dative objects, e.g. problem-i dil:jun- (to think about the problem), 

yalancl-ya kan- (to be persuaded by the liar). 

3. The possessive, genitive and case agreements in noun phrases, e.g. senin kitab

zn (your book), bu at-a (to this horse). 



51 

Collocations valid for more than one ambiguous word are defined as macro collocations. 

In this way, words with these collocations just refer to macro collocation definitions 

instead of explicitly defining them. This structure is mostly utilized for the ambiguous 

words that are similar in form to stems with inflectional or derivational suffixes. This is 

because the ambiguous words caused by the same suffix mostly have same collocations 

resulting from the nature of the suffix. 

Collocations of the alternative meanings of an utterance should be specific to each 

meaning. This means that the collocations that can be used with more than one 

alternative ambiguous word can not be stored as collocations of these alternatives, since 

they can not be utilized to resolve the ambiguity. Therefore the collocation information 

for alternative ambiguous words should be mutually exclusive. 

In locating the correct equivalent of a root word in Azeri, the hints obtained from 

collocation info structure are given a priority higher than those obtained from concept 

structure. One sentence lookahead is performed in the collocation info structure as well. 



52 

Table 4.7. Symbols used in collocation info definitions 

collocation info definition element symbol 

word with the part of speech ca(a .. z) 

word with the specific semantic feature c(0 .. 99) 

word with the noun semantic feature 0 .. 9 

word with the proper noun semantic feature 0(0 .. 9) 

word with the adjective subcategory a(0 .. 9) 

word with the adverb subcategory d(0 .. 9) 

word with the pronoun subcategory p(0 .. 9) 

word with the verb subcategory v(0 .. 9) 

macro collocation info definition co(0 .. 99) 

the ambiguous word or the suffix -
(constant suffixes may be affixed to this word) 

a generic suffix name follows (the word should have the suffix) + 
(if no suffix name follows, the word should have at least one suffix) 

no suffixes can be affixed to the word (n) 

alternative collocations ( , ) 

sentence with the mood mood( ) 
(int for interrogative, exc for exclamation and sta for statement) 

possible( not restricted) collocation [ ] 



53 

Table 4.8. Generic suffix names 

Suffix Generic Name 

locative ( -DA ) loca 

ablative ( -DAn ) abla 

genitive ( -(n)In ) geni 

dative ( -(y)A ) dati 

accusative ( -(y)I ) accu 

any of the case endings case 

pronominal ( -ki ) pron 

negation ( -rnA / -mAz ) negp 

potential ( -Abil ) eyet 

aorist ( -Ir / -Ar ) tIte 

past definite tense ( -mI§) pate 

present tense ( -mAktA ) ptte 

necessitative modal ( -mAlI) nete 

past indefinite tense ( -DI ) pite 

desiderative modal ( -sA) dete 

present tense ( -Iyor ) prte 

optative modal ( -(y)A ) opte 

future tense ( -(y)AcAk ) fute 

imperative modal ( - ) imte 

interrogative particle ( -mI ) intp 

compound imperfect tense ( -DI ) eech 

compound narrative tense ( -mI§ ) eecr 

compound conditional tense ( -sA) eecs 

predicative ( -Dlr ) eecg 

elitic ( -(y)lA ) iles 

infinitive ( -mAk ) infs 

nominating particle ( -rnA ) noms 

plural ( -lAr ) plrp 

x.th singular/plural possessive psxs / psxp 

x.th singular/plural personal ending pexs / pexp 

any of the possessive suffixes / personal endings ps / pe 

x.th derivational suffix from word category a to b dsabx 



54 

For example, the Turkish word uydu is ambiguous as explained in the previous section. 

This time consider the Turkish sentence Bu anahtar kapzya uydu. It can be 

morphologically parsed in two ways: 

bu(this) anahtar(key) kapz(door) - ya(dative) uydu(satellite) 

bu(this) anahtar(key) kapz(door) - ya(dative) uy(to fit) - du(past definite tense) 

So, the word uydu is ambiguous, and its Azeri equivalents are peyk(satellite) and 

uydu(fitted). That means the ambiguity should be resolved. This time the concept space 

is not active, whereas one of the collocations of uy- is true. uy- has the following 3 

collocations: 

-an ca(n) 

ca(n)+dati [ca(d)] -

ca(a) + dati -

The second collocation ca(n)+dati [ca(d)] - is true for this sentence as 

ca(n)(kapz) +dati(ya) -(uydu). Therefore the correct morphological parse of the word is 

decided as uy(to fit) - du(past definite tense). So the Turkish sentence is translated into 

Azeri as: 

Bu aqar gapzya uydu. 

4.6. Resolving Ambiguities 

This section explains resolving each kind of ambiguity using the methods explained above. 



55 

4.6.1. Word Sense Ambiguity 

To translate the word sense ambiguous words into Azeri, the ambiguity should be 

resolved. We employ the concept structure and the collocation info structure to resolve 

this kind of ambiguity. For each sense of the word sense ambiguous word either the 

concept structure or the collocation info structure is used to resolve the ambiguity. 

As an example, consider the following Turkish sentence and its output obtained from the 

morphological parser: 

Komutan bu aZaya tayin edildi. 

(The commander was appointed to this regiment) 

Komutan(The commander) bu(this) aZay(regiment)-a(dative) 

tayin et(to appoint)-il(derivationaZ suffix from verb to verb)-di(past definite tense) 

The words komutan and tayin edildi are translated as komandir and tii'yin edildi, 

respectively. However the word alay is ambiguous since it has two equivalents in Azeri 

as aZay(regiment) and lag(mockery). For this case, since regiment word sense of the 

Turkish word alay is dependent on concept army and the word komutan has activated the 

concept army, alay is selected as the equivalent Azeri word. So the sentence is translated 

into Azeri as: 

Komandir bu alaya tii'yin edildi. 

As a second example consider the Turkish sentence 

Komutan askerle alay etti. 

(The commander mocked the soldier) 

The words komutan and asker are translated as komandir and iisgiir, respectively. 



56 

However the word alay is again ambiguous. In this case, although the word komutan is 

activated the concept army, alay is translated as lag since the following collocation of the 

word sense mockery is true 

ca(n)+iles -en) (etmek,ger;mek) 

as ca(n)(asker)+iles(le) -(n)(alay) etmek. So the sentence is translated into Azeri as: 

Komandir iisgiirlii lag etdi. 

This example also illustrates the fact that collocation info structure has a higher priority 

in comparison with concept structure. 

Some of the word sense ambiguities can not be disambiguated by using either the 

concept structure or the collocation info structure. As an example of this kind consider 

the Turkish sentence Alaydan hir; ho~lanmaz. (He/she does not like the regiment/mockery 

at all). The morphological parse of this sentence is: 

Alay(regiment/mockery) - dan (ablative) hir;(at all) ho~lan(to like) - maz(negation) 

The words hir; and ho~lanmaz are translated as her; and xo~lanmaz, respectively. However 

the word alay is ambiguous since it has two equivalents in Azeri alay(regiment) and 

lag (mockery ). In this case, since neither the concept army is active, nor any of the 

collocations of regiment is used with it, the ambiguity can not be resolved. Therefore the 

sentence is translated into Azeri as: 

(Alay / lag) her; xo~lanmaz. 



57 

4.6.2. Morphological Ambiguities 

This kind of ambiguities can be divided into two groups according to their treatment in 

the disambiguation process: 

1. Ambiguities involving multiple root words 

2. Ambiguities involving identical suffixes 

4.6.2.1 Multiple Root Words 

All the morphologically ambiguous Turkish words due to reasons other than identical 

suffixes have multiple morphological parses with different root words. Therefore for all 

the cases, the correct root word should be decided for the current usage of the Turkish 

word in order to resolve the ambiguity. 

Collocation info structure and concept structure is also utilized for these ambiguities. The 

related collocation info or concept structure information is collected and assigned to each 

root word of this kind. 

As an example, consider the Turkish sentence Pastan battzm. It can be morphologically 

parsed in two ways: 

pas (rust) - tan (ablative) bat(to soil) - tl(past definite tense) - m(lst single person) 

pasta(cake) - n(2nd singular possessive) bat(to soil) - tz(past definite tense) - m(lst single 

person) 

Since the Azeri equivalents of all the word senses of the Turkish word bat- are the same, 

this word sense ambiguity is ignored in the translation. But, the words pasta and pas are 

ambiguous due to similar suffixes, and their Azeri equivalents are tort and pas, 



58 

respectively. This means that the ambiguity should be resolved. Collocation info structure 

is used for both words. The following collocation of the word pas is true for this case 

-tan (batmak,geqilmez olmak) + (pels,pelp,pe2s,pe2p,pe3p) 

as -tan bat+pels. Therefore the correct morphological parse of the word is decided as 

pas (rust) - tan(ablative). So the Turkish sentence is translated into Azeri as: 

Pasdan batdzm. 

As another example, consider the Turkish sentence Yetmi§ tane elbise sattzk. It can be 

morphologically parsed in two ways: 

yetmi§(seventy) tane(piece) elbise(dress) sat(to sell) - tz(past definite tense) - k(1st plural 

person) 

yet (to suffice) - mi§(past indefinite tense) tane(piece) elbise(dress) sat(to sell) - tz(past 

definite tense) - k(lst plural person) 

The words yetmi§ and yet- are ambiguous due to words that are similar in form to stems 

with inflectional suffixes. Since their Azeri equivalents are yetmi§ and yeti§-, respectively, 

the ambiguity should be resolved. Collocation info structure is utilized for both words. 

The following collocation of the word yetmi§ is true for this case 

- (tane, adet) 

as - tane. Therefore the correct morphological parse of the word is yetmi§(seventy) , and 

the Turkish sentence is translated into Azeri as: 

Yetmi§ diinil paltar satdzg. 



59 

4.6.2.2 Identical Sufilxes 

The ambiguous Turkish words in this category have multiple morphological parses due 

to identical suffixes. The root words for all the possible parses are the same. So the 

problem is to decide among the alternative suffixes. 

Collocation info structure is used for these ambiguities. Collocation information is 

collected for the words derived with the ambiguous suffixes or suffix sequences. This 

information is used to resolve the ambiguities resulting from the words affixed with these 

ambiguous suffixes. 

As an example, consider the Turkish sentence Bu sen in arabanm kapLSl. It has the 

following two morphological parses: 

bu(this) sen(you) - in(2nd singular possessive/genitive) araba(car) - nm(genitive) 

kapz (door) - Sl (3rd singular possessive) 

bu(this) sen(you) - in(2nd singular possessive/genitive) 

araba(car) - n(2nd singular possessive) - m(genitive) kapl(door) - sz(3rd singular 

possessive) 

The word senin and arabanm are morphologically ambiguous due to identical suffixes. 

The suffix genitive is true for the word senin, since the collocation - c(n)+ps is true for 

it as - c(n)(araba)+ps(n). For the word arabanm, the following collocation of the suffix 

sequence -(I)n (2nd singular possessive), -(n)In (genitive) 

senin [ca(a)} -

is true as senin -. Therefore the Turkish sentence is translated into Azeri as: 

Bu siinin arabanm gapzsl. 



60 

5. A TRANSLATOR FROM TURKISH TO THE AZERI LANGUAGE 

This chapter explains the translator from Turkish to Azeri which is designed and 

implemented in Pascal in this study. The implementation is presented in terms of the 

contents and the structures of the lexicons and the algorithms. 

5.1. Overview of the Translator 

Translation is performed sentence by sentence. The translator first reads a sentence, and 

calls the Turkish morphological parser to realize the morphological analysis phase. In 

this way, it obtains all possible parses for all words of the sentence. Translation starts 

after all of the words in the sentence are morphologically parsed, since the information 

obtained from the morphological analysis is likely to be used in ambiguity resolution 

process. The overall structure of the translator is illustrated in Figure 5.1. 

For each word one of the following three cases is true depending on the result obtained 

from the morphological parser: 

1. no morphological parse 

2. single morphological parse 

3. multiple morphological parses 

The translator assumes that the text is free of spelling errors. Therefore, before running 

the translator, the input text should be checked with a spell checker. We are using the 

one developed in Bogazi~i University [8]. So, during the translation if a word can not be 

morphologically parsed in any way, it means that the word does not exist in the 

translator's lexicons. In this case the Turkish word is given as the result of the translation 

together with the message "No· Information". 



Turkish root 
words lexicon 

Turki 
sente 

sh 
nce 

.... 

II 

~ 

Turkish proper 
nouns lexicon 

II 
T 

.... 

" Turkish 

II 
T 

morphological 
parser 

Bilingual 
suffix lexicon 

.... 

II 

For each word 
in the sentence 

no morphological 
parse 

1 
T 

N o information 

no ambiguity ambiguity 

Translation 
Translation ~=====~ lexicon ~=====~ Check to ignore 

T 

Azeri 
word I 

T 

No 

r-I-----I Ambigui ty 
Resolution 

'f 

Azeri word or 
alternatives 

Word Sense 
ambiguous words 

lexicon 

.... 

I 
v 

Morphologically 
ambiguous root 
words lexicon 

ambiguity 

Yes 

I 
T 

Azeri 
word 

Identical 
suffixes 
lexicon 

Figure 5.1. Overall Structure of the Translator 

61 



62 

In case of a single morphological parse, if the word does not involve word sense 

ambiguity, it is translated into Azeri by replacing the Turkish root word and the suffixes 

with their Azeri equivalents. Proper noun root words are translated into Azeri without 

any modification. If it involves word sense ambiguity, it is tried to be disambiguated in 

the Resolve Word Sense Ambiguity routine by utilizing the concept and collocation info 

structures. 

In case of multiple parses, translator first checks whether the ambiguity can be ignored 

or not. The check is performed by finding the Azeri equivalents of each parse and then 

comparing them. If the Azeri equivalents for each parse of the Turkish word are the 

same, then the ambiguity is simply ignored. However, it should be noted that if anyone 

of the Turkish root words is word sense ambiguous, the ambiguity can not be ignored, 

since the Turkish word has alternative equivalents in Azeri at least for this parse. 

If the word has more than one morphological parse, it is identified as ambiguous either 

due to multiple root words or due to identical suffixes. Resolve Multiple Root Words 

Ambiguity routine, which employs the concept and collocation info structures, is called 

to resolve the multiple root words ambiguity and Resolve Identical Suffix Ambiguity 

routine, which utilizes only the collocation info structure, is called to resolve the identical 

suffix ambiguity. 

In case of multiple root words ambiguity, if anyone of the root words is also word sense 

ambiguous, then Resolve Word Sense Ambiguity routine is also utilized to resolve the 

ambiguity. In case of identical suffix ambiguity, even if the ambiguity is resolved, the root 

word itself may be word sense ambiguous. If this is the case Resolve Word Sense 

Ambiguity routine is utilized to resolve the ambiguity. 

Moreover, there exist some words which involve multiple root words and identical suffix 

ambiguity at the same time, e.g. the Turkish word kaZemi as kaZem(pen) + -(y)I 

(accusative), kaZem(pen) + -(s)I(3rd singular possessive) or kaZe(castZe) + -(I)m (1st 



63 

singular possessive) + -(y)I( accusative). If this is the case, since the Turkish word involves 

identical suffix ambiguity, it is treated as ambiguous due to this reason and Resolve 

Identical Suffix Ambiguity routine is utilized to resolve the ambiguity. If the ambiguity can 

not be resolved by this routine, and it also involves the multiple root words ambiguity 

then Resolve Multiple Root Words Ambiguity routine is employed to resolve the 

ambiguity. 

If the ambiguity is resolved the equivalent Azeri word, otherwise the alternative 

translations are given as the result of this word's translation. 

Translator employs 8 lexicons in the translation process. The Turkish root words lexicon, 

the Turkish proper nouns lexicon, and the bilingual suffix lexicon are used in the 

morphological analysis of Turkish words. The translation lexicon is utilized to find the 

Azeri equivalents of Turkish words, and their specific semantic features. The 

morphologically ambiguous root words lexicon, the word sense ambiguous root words 

lexicon, the identical suffixes lexicon, and the macro collocation info definitions lexicon 

are used in resolving ambiguities. 



64 

5.2. Lexicons 

A translator must employ complete lexicons and well-designed structures to effectively 

access them. We have employed the following 8 lexicons in the translator: 

1. Turkish root words lexicon 

2. translation lexicon 

3. morphologically ambiguous root words lexicon 

4. word sense ambiguous root words lexicon 

5. identical suffixes lexicon 

6. macro collocation info definitions lexicon 

7. bilingual suffix lexicon 

8. Turkish proper nouns lexicon 

The contents and the structures of each lexicon are discussed below. The entries in each 

of these lexicons, except the suffix lexicon which has a considerably complex structure, 

are presented in Table 5.1. Since the translator is implemented using Turbo Pascal 6.0 

compiler and it involves considerably large lexicons, it has not been possible to load the 

contents of these lexicons into main memory for fast access. Therefore all the lexicons 

except the suffix lexicon are kept in disk, and the information in them is obtained by file 

access. 



65 

Table 5.1. The content of the translator's lexicons 

Lexicon Number of Information in each entry 
entries 

Turkish root words lexicon 6900 1. Turkish word 
2. its-part_of_speech 
3. flags 
4. semantic jeatures jor _nouns_and -pronouns 
5. semantic_features_as-part_of_speech_ 

subcategories 

Translation lexicon 6900 1. Azeri_equivalent 
2. concept_activation_information_or_semantic_ 

features 
3. index _ of_the _morphologically-ambiguous Joot_ 

words lexicon if any 

Morphologically ambiguous 595 1. Turkish word 
root words lexicon 2. concept_structure _array 

3. collocation info linked list - - -
4. wsflag 
5. conceptf 
6. colinfof 

Word sense ambiguous root 157 1. Turkish word 
words lexicon 2. wsno 

3. array _ of_word _sense Jecords 
3.1. Azeri_equivalent 
3.2. concept_structure _array 
3.3. collocation info linked list - - -
3.4. conceptf 
3.5. colinfof 

Macro collocation info 25 1. collocation info linked list - - -
definitions lexicon 

Identical suffixes lexicon 49 1. suffix 
2. collocation info linked list 

Turkish proper nouns lexicon 10000 1. Turkish -proper_noun 
2. flags 
3. semantic_features jor -proper_nouns 



66 

5.2.1. Turkish Root Words Lexicon 

Part of the data in the Turkish root words lexicon necessary for the morphological 

analysis of Turkish, which includes the Turkish words, their parts of speech and a series 

of flags, is obtained from Department of Computer Engineering, Bogazi<;i University [8]. 

If a certain flag is set for a word it means that either the word has the property 

represented by that flag or the suffix represented by that flag can be affixed to the word. 

In the current implementation 56 flags are used, 38 for nouns and adjectives, and 18 for 

verbs and adverbs. For a detailed description of these flags see "Internal Design 

Specification, A Spelling Checker and Corrector for Turkish" [24] . 

Turkish words derived using derivational suffixes that do not exist in Azeri and those 

derived by the suffixes that are not applicable to some Azeri words, about 1000, and their 

related information are also added to the lexicon. Thus, the lexicon totally contains about 

6900 words. If a Turkish word derived by a suffix that is applicable to some Azeri words 

is not stored in the lexicon, the suffix is assumed to be applicable to its root word. 

Moreover, it should be noted that if a Turkish word derived by the suffixes that are 

applicable to some Azeri words is added to the lexicon, the flags that allow the affixation 

of the suffixes deriving it should be set to O. 

The semantic features presented in Section 4.5.1 are added to all the words in the root 

lexicon. So, the structure of the lexicon is a file of records with the following definition: 

rootrecord = record 

end; 

Turkish _word : string[ maxwordlength ],. 

itsyarts_oLspeech : array [1 . .5] of category type; 

flags: array [1..38] of boolean; 

semanticJeaturesJor_nouns_andyronouns : array [1..10] of boolean; 

semantic Jeatures _as yart _of_speech 3ubcategories : array [1.. 5] of subcategory type; 



67 

In this definition, maxwordlength denotes the maximum length of a Turkish word, 

categorytype is a user defined type to represent the word categories in the transition 

network, and subcategorytype is also a user defined type to represent the subcategories 

of the parts of speech. The same notation is used for all the record definitions in this 

chapter. 

The current implementation uses an index of array type, each element of which is 

pointing to the first word in the group of words whose first two letters are the same. A 

representative listing of the lexicon including the first 150 entries is given in Section E.1 

in Appendix E. 

5.2.2. Translation Lexicon 

The Azeri equivalents of Turkish words are obtained from "Comparative Dictionary of 

Turkish Dialects" [13]. About 400 of these words are not included in the root lexicon, 

since they can be derived from existing root words with derivational suffixes. The entries 

of this lexicon are in one-to-one correspondence with the entries of Turkish root words 

lexicon. Therefore, the Azeri words in this lexicon are the equivalents of the Turkish 

words located in the same entries in Turkish root words lexicon. So, this lexicon has also 

about 6900 entries. The Azeri equivalent for a word sense ambiguous Turkish word is 

stored as "ws" to indicate that it is word sense ambiguous. If an unambiguous Turkish 

word has multiple equivalents in Azeri only one of them is selected arbitrarily. 

A flag (azerif) is employed to denote whether the equivalent of the Turkish word in 

Azeri is exactly the same as the Turkish word or not. By means of this flag, duplication 

of the Azeri equivalents of the Turkish words that are the same with the Turkish words, 

which are about 1100, is eliminated. 



68 

The Azeri equivalents of the Turkish words that are affected by the phonological 

variation rules, valid for all the Azeri words, are not stored in the lexicon, instead the 

same flag azerif is utilized. Therefore, while locating the Azeri equivalent of a Turkish 

word, if its Azeri equivalent is not explicitly stored in the lexicon, these phonological 

variation rules are automatically applied to the Turkish word. 

Actually, we have attempted to utilize the phonological variation rules that are valid for 

some Azeri words in storing the Azeri equivalents of Turkish words. Our idea is the 

following. If the Azeri equivalent of a Turkish word is its phonological variation 

depending on certain phonological rules, instead of storing the Azeri word explicitly, only 

the flags representing these rules may be stored. However, since the number of Azeri 

words that are affected by these rules are quite low, this strategy seemed to be 

inefficient. Thus, it is not used in the current implementation. 

As another attribute, concept activation information and specific semantic features are 

stored together with each word in an array containing 5 entries. These entries are either 

the numbers representing the concepts that the usage of the word activates or the 

numbers representing the specific semantic features that the word satisfies. The last 

attribute is the index of the corresponding entry in the morphologically ambiguous root 

words lexicon for the words that may cause morphological ambiguities. 

So, the structure of the lexicon is file of records with the following fields: 

translotionrecord = record 

end; 

keri_equivalent: smng[maxwordlength]; 

kerif : boolean; 

concept_activation _information_or _specific jemantic Jeatures : array [1 .. 5] of integer; 

Index _ oLthe yl.Orphologically _ambiguous Joot _words_lexicon_entry _if_any: integer; 



69 

No index is employed for this lexicon, since the entries are in one-to-one correspondence 

with the entries of the Turkish root words lexicon, and they are not accessed without 

accessing to that lexicon. A representative listing of the lexicon including the Azeri 

equivalents of the Turkish words in Section E.l of Appendix E is given in Section E.2. 

5.2.3. Morphologically Ambiguous Root Words Lexicon 

In the morphologically ambiguous root words lexicon an array to implement the concept 

structure and a linked list to implement the collocation info structure are stored for each 

entry corresponding to a morphologically ambiguous word in the translation lexicon. 

Instead of all the collocations of the ambiguous words, only the collocations specific to 

the resolution of the ambiguities are stored in the lexicon. \Ve have identified only those 

morphologically ambiguous words that exist in our root words lexicon. The lexicon 

contains disambiguation information for 595 morphologically ambiguous words. 

The concept array has 3 entries since in the current implementation a Turkish word is 

expected to depend on 3 different concepts at the same time. In each array entry, the 

numeric code of the concept on which the Turkish word is dependent is stored. The 

collocation info header pointer points to a linked list of nodes, each containing a 

collocation of the ambiguous Turkish word. If one of the collocations is used together 

with the word in the correct syntactic form, the corresponding Azeri word in the 

translation lexicon is chosen as the result of the translation. The semantic information in 

each entry is used in the disambiguation process involving the corresponding word in the 

translation lexicon. 

A flag (wsflag in the declaration below) is employed to denote whether the Turkish word 

is also word sense ambiguous or not, and two additional flags are employed to speed up 

the process of checking whether the concept (conceptf) and collocation info structures 

( colinfof) are used in the disambiguation process of the word or not. 



So, the structure of this lexicon is file of records with the following fields: 

colinfopointer = A colinforecord; 

colinforecord = record 

end; 

collocation : string[ maxcollocationlength]; 

next : colinfopointer; 

morphambiguouswordrecord = record 

Turkish_word : string[ maxwordlength]; 

end; 

concept _structure_array: array [1..3] of integer; 

collocation _info _linked_list: colinfopointer; 

wsflag, concept[, colinfof: boolean; 

70 

Colinfopointer is a linked list structure to store the collocation definitions, and 

maxcollocationlength denotes the maximum length of a collocation definition. Since the 

entries of this lexicon are accessed via the translation lexicon, and the entry numbers are 

stored in it, no index is employed for this lexicon. The full listing of this lexicon is given 

in Section E.3 in Appendix E. 

5.2.4. Word Sense Ambiguous Root Words Lexicon 

Turkish words with multiple equivalents in Azeri, due to multiple word senses are stored 

in a separate lexicon in order to handle them effectively. We have identified only those 

word sense ambiguous words that exist in our root words lexicon. The lexicon contains 

157 word sense ambiguous Turkish words, and disambiguation information for them. 

An array implementing the concept structure, a linked list implementing the collocation 

info structure, the Azeri equivalent of the Turkish word, and two flags to represent 



71 

whether the concept and the collocation info structures are used in the disambiguation 

process of the word sense or not are stored for each word sense. The concept structure 

array and collocation info linked list are the same with the ones explained in Section 

5.2.3. So, disambiguation information for each word sense is stored as a record with the 

following attributes: 

wordsenserecord = record 

end; 

Azen _equivalent : string[ maxwordlength]; 

concept_structure_array: array [1..3] of integer; 

collocation _info _linked Jist : colinfopointer; 

concept[, colinfof : boolean; 

An array of word sense records including these fields are stored together with each word 

and the number of its word senses. This array has 4 entries since the Turkish words in 

our root words lexicon have at most 4 word senses. So, the structure of this lexicon is file 

of records with the following fields: 

wordsenseambiguouswordrecord = record 

Turkish_word : string[ maxwordlength]; 

end; 

array _ oL word_sense Jecords : array [1..4] of wordsenserecord; 

wsno : integer; 

The current implementation uses an index of array type, each element of which is 

pointing to the first word in the group of words whose first two letters are the same. The 

full listing of the lexicon is given in Section E.4 in Appendix E. 



72 

5.2.5. Macro Collocation Info Definitions Lexicon 

Collocations that are valid for more than one ambiguous word are defined as macro 

collocations. This lexicon contains these macro collocation definitions. In the current 

implementation we use 25 macro collocation definitions. So the structure of the lexicon 

is file of collocation info linked list. Since the macro collocation info definitions are 

referred with their entry numbers, no index is associated with this lexicon. The full listing 

of the lexicon is given in Section E.5 in Appendix E. 

5.2.6. Identical SuffIXes Lexicon 

The identical suffixes lexicon is utilized in order to resolve the morphological ambiguities 

resulting from identical suffixes. A suffix may be identical with another suffix as well as 

with a suffix sequence. The lexicon currently contains 49 identical suffixes. 

Generic names for each identical suffix is stored in an array of suffixes, because of the 

existence of identical suffix sequences. A pointer array used to implement the collocation 

info structure for each suffix or suffix sequence is also stored. So, the structure of the file 

is file of records with the following attributes: 

identicalsuffixrecord = record 

end; 

suffix .' array [1.. 3 J of generic_suffix _symbols; 

collocation _info }inked _list.' colinfopointer; 

Generic _suffix _symbols is a user defined type to represent the generic names of the 

suffi'{es. (see Section 4.5.3) The suffixes are stored in sorted order. The full listing of the 

lexicon is given in Section E.6 in Appendix E. 



73 

5.2.7. Bilingual Suftlx Lexicon 

Morphological parsing has special importance in translation between agglutinative 

languages. The key feature of morphological parsing is the suffix lexicon, which mirrors 

the transition network representation of the morphotactics of the language. The suffix 

lexicon employed in the morphological analysis of Turkish is also obtained from Bogazi<;i 

University [8]. It is refined in order to be used in the translation process. 

The morphophonemic and morphotactic rules of the Azeri are taken from the 

"Comparative Dictionary of Turkish Dialects" [13] and "The Language of Turks" [14]. 

Some of the information about these rules and derivational suffixes that does not exist 

in these references was extracted from the Azeri words and Azeri texts by analyzing 

them. Derivational suffixes that do not exist in Azeri were excluded from the suffix 

lexicon. The meanings of the suffixes as generic suffix names and their Azeri equivalents 

were added to it. A representative listing of the suffix lexicon, including the transitions 

for nouns and adjectives is given in Section E. 7 in Appendix E. For a detailed discussion 

of this lexicon see "Internal Design Specification, A Spelling Checker and Corrector for 

Turkish" [24]. 

The data structure employed is a bucket structure. The bucket is an array of nodes, each 

belonging to a word state, which is the initial state of a transition. Each node in the 

bucket includes the name of the state, information on whether the words in this state are 

valid or not, and a pointer to the linked list of nodes holding information about the 

suffixes that can be affixed to the words in this state. Each node in the linked list 

contains the following information: 



74 

1. a Turkish suffix 

2. its meaning as a generic suffix name 

3. its Azeri equivalent 

4. the final state of the word if this suffix is affixed to it 

5. the flag number used to decide whether the suffix can be affixed to the word or not 

6. the information whether the sUffix is affixed to the end of the word or affixed separately 

7. a pointer to the next node 

The suffix lexicon is actually stored in a file and it is loaded into the bucket structure 

before the translator is run. 

5.2.8. Turkish Proper Nouns Lexicon 

The proper nouns lexicon was also obtained from Bogazic;i University [8]. It contains 

about 10000 Turkish proper nouns together with 13 flags for each that are used in their 

morphological analysis. For a detailed description of these flags see "Internal Design 

Specification, A Spelling Checker and Corrector for Turkish" [24]. The semantic features 

for the proper nouns are added to the lexicon. The structure of the proper nouns lexicon 

is file of records with the following fields: 

propernounrecord = record 

end; 

Turkishyroper_noun : string[maxwordlength}; 

flags: array [I .. J3} of boolean; 

semantic Jeatures Jor yroper _nouns: array [I .. IO} of boolean; 

The same index structure as the Turkish root words lexicon is utilized for this lexicon. A 

representative listing of the lexicon including the first 100 entries is given in Section E.8 

in Appendix E. 



75 

5.3. Algorithms 

The algorithms necessary to iIflplement the translator are listed below. The main 

algorithm is followed by the others. Whenever appropriate and helpful for a better 

understanding, a brief trace of the algorithm is given with specific examples. The overall 

algorithm of the translator is illustrated in Figure 5.2. The symbol nop in the figure 

denotes the number of parses for a word. The list of the algorithms for the translator is 

as follows: 

1. Main Algorithm 

2. Modifying Translator Lexicons 

3. Turkish Morphological Parser 

4. Affixing Suffixes 

5. Affixing a Suffix 

6. No Ambiguity Case 

7. Finding Collocation Index 

8. Checking Collocation 

9. Checking Macro Collocation Definition 

10. Resolving Word Sense Ambiguities 

11. Resolving Morphological Ambiguities 

12. Resolving Identical Suffix Ambiguities 



nop > 1 

Turkish 
sentence 

Turkish 
Morphological Parser 
Unit 

For each word 
in the sentence 

nop = 0 

1 
T 

nop = 1 No 

76 

information 

Check to Yes 
ignore the 1--------.

1 ambiguity 

No 

Identical 
suffixes 

Yes No 
I 
T 

T 

Azeri 
word 

Resolve 
identical 
suffix 
ambiguity 

esolve 
ultiple 
oot words 

R 
m 
r 
a mbiguity 

I 
I 

'T 'T T 
Azeri word 

or 
alternatives 

I 

Check multiple 
word senses 

I 
T 

Yes 

Resolve 
word sense 
ambiguity 

No 
I 
T 

No 
ambiguity 
case 

1 
T 

Azeri 
word 

Figure 5.2. The Overall Algorithm of the Translator 



77 

5.3.1. Main Algorithm 

The main algorithm initially checks the request for supervisor options. In case of such a 

request, if the user supplies the correct password, it allows the user to modify the 

translator's lexicons. The translator then loads the suffix lexicon into main memory and 

creates indexes for the Turkish root words, the Turkish proper nouns and the word sense 

ambiguous root words lexicons. 

It begins the translation process by reading the Turkish text that will be translated into 

Azeri. Translation is performed sentence by sentence. First, it finds all the morphological 

parses of the words in the sentence by using Turkish morphological parser. Then depending 

on the result obtained form the parser, it determines whether the word involves any 

ambiguity or not, and the kind of the ambiguity if any. Finally, for each word of the 

sentence it calls appropriate routines to perform the translation. Figure 5.3 gives the 

algorithm in structured English. 

ask the user for supervisor options 

if gets a positive request then 

call Modifying Translator Lexicons routine 

while not end of the Turkish text do 

read the sentence 

for each word in the sentence do 

call Turkish Morphological Parser unit and get the number of parses of the word and the related information 

for each parse 

activate the concepts related with the word if any 

end for 

{ translation } 

jor each word in the sentence do 

set okay to false 

Figure 5.3. Main Algorithm 



{ check to ignore ambiguity } 

if number of parses is greater than one then 

form the Azeri equivalent for each parse 

if all of them are the same then 

if none of them is word sense ambiguous then 

output the translation as the Azeri equivalent of one of the parses since all are the same 

set okay to true 

end if 

end if 

end if 

if not okay then 

{ No information} 

if number of parses is zero then 

perform no translation process and output the Turkish word itself with the prompt "No information" 

{ nop = 1 and not a proper noun } 

else if number of parses is one and not a proper noun then 

if the root word is not word sense ambiguous then 

call No Ambiguity Case 

output the translation 

else 

call Resolve Word Sense Ambiguity 

if Resolved then 

output the translation 

else 

output the alternative translations 

end if 

end if 
{ nop = 1 and proper noun } 

else if number of parses is one and a proper noun then 

call No Ambiguity Case 

output the translation 

Figure 5.3. Main Algorithm (continued) 

78 



{ multiple root words ambiguity } 

else if number of parses is greater than one and no identical suffix ambiguity then 

call Resolve Multiple Root Words Ambiguity 

if Resolved then 

output the translation 

else 

output the alternative translations 

end if 

{ identical suffix ambiguity } 

else if number of parses is greater than one and identical suffix ambiguity then 

call Resolve Identical Suffix Ambiguity 

if Resolved then 

output the translation 

else if not resolved then 

if the word also involves multiple root word ambiguity then 

call Resolve Multiple Root Words Ambiguity 

if resolved then 

output the translation 

else 

output the alternative translations 

end if 

else 

output the alternative translations 

end if 

end if 

end if 

end if 

end for 

end while 

Figure 5.3. Main Algorithm (continued) 

79 



80 

5.3.2. Moditying Translator Lexicons 

In this routine, if the user supplies the correct password for a supervisor, he can modify the 

translator's lexicons. Namely, he modifies the lexicons in text file format, and transfers them 

into suitable file format with this routine. The algorithm is given in Figure 5.4. 

request the password 

if correct password then 

read the name of the lexicons to be modified 

for each lexicon read do 

call the appropriate routine to transfer the lexicon from text file format into suitable file format that can be used 

by the translator 

end for 

end if 

Figure 5.4. Algorithm for Modifying the Translator Lexicons 

5.3.3. Turkish Morphological Parser 

The Turkish morphological parser obtained from Bogazi<5i University [8] is refined, and 

used as a separate unit which can be called by the translator. 

This unit receives a Turkish word, and produces all of its morphological parses together 

with the related information. For each parse of the word the following information is 

obtained: 

1. the Turkish root word 

2. its location in the Turkish root words lexicon 

3. its part of speech, 

4. its subcategories, 

5. its semantic features, 

6. the Turkish suffixes affixed to the word, 



81 

7. their related information for the vowel harmony rule and the consonant harmony rules, 

8. the generic names of the suffixes, 

9. their Azeri equivalents, 

10. the related information of the Azeri equivalents for the vowel harmony rule and the consonant harmony 

rules, 

11. a flag to denote whether the root word is a proper noun or not, 

12. a flag to denote whether the word involves identical suffix ambiguity or not. 

This information is utilized to diagnose the kind of ambiguity the word involves and to 

resolve the ambiguity. For a detailed algorithm of this unit see "Internal Design 

Specification, A Spelling Checker and Corrector for Turkish" [24] . 

5.3.4. Afflxing Sufflxes 

The routine receives an Azeri root word and the Azeri suffixes that will be affixed to it. It 

forms the equivalent Azeri word by affixing the suffixes to the root. In order to affix a suffix 

to an Azeri word it uses Affix a Suffix routine defined inside it. 

5.3.4.1. Af11xing a Suffix 

This routine affixes an Azeri suffix to an Azeri word applying the morphophonemic rules 

of Azeri. The algorithm is given in Figure 5.5. 

modify the root word and the suffix by applying the following morphophonemic rules 

apply the vowel harmony rule 

apply the consonant harmony rules 

affix the SUffix to the root word 

return the new form of the word 

Figure 5.5. Algorithm for Affixing a Suffix 



82 

5.3.5. No Ambiguity Case 

In case of no ambiguity, if the Turkish word is not a proper noun its equivalent Azeri word 

is found. If it is a proper noun, it is directly used as the Azeri equivalent. Then the 

translation is performed by affixing the Azeri equivalents of Turkish suffixes to the 

equivalent Azeri root word. The algorithm is given in Figure 5.6. 

if the root word is not a proper noun then 

find the Azen equivalent of the Turkish root word from Translation lexicon 

else 

use the Turkish proper noun as the equivalent Azen root word without any modification 

end if 
call AffIX Suffixes in order to affix the Azen equivalents of the Turkish suffIXes identified for the Turkish word to 

the Azen root word. 

Figure 5.6. Algorithm for No Ambiguity Case 

5.3.6. Finding Collocation Index 

This routine receives the first element of a collocation definition from Check Collocation. 

It finds the places of the words in the sentence that satisfy this element. The algorithm is 

given in Figure 5.7. In the algorithm, each possible case for the collocation element is 

represented with its symbol (see Section 4.5.3). X denotes any possible value for the place 

it appears. 

set all entries of the collocation index array to zero 

if the collocation element is a macro collocation definition then 

{coX} 

set the next collocation index array entry to minus one 

Figure 5.7. Algorithm for Finding Collocation Index 



else if it is a word with the part of speech then 

{ca(X) } 

for all words of the sentence do 

if the part of speech of the root word for any parse of it is the same as the part of speech X then 

store the place of the word in the sentence to the next collocation index array entry 

end for 

end if 

else if it is a word with the specific semantic feature then 

{cX} 

for all words of the sentence do 

if the root word for any parse of it has the semantic feature X then 

store the place of the word in the sentence to the next collocation index array entry 

end for 

end if 

else if it is a word with the proper noun semantic feature then 

{oX} 

for all words of the sentence do 

if the root word for any parse of it has the proper noun semantic feature X then 

store the place of the word in the sentence to the next collocation index array entry 

end for 

end if 

else if it is a word with the noun semantic feature then 

{X} 

for all words of the sentence do 

if the root word for any parse of it has the semantic feature X then 

store the place of the word in the sentence to the next collocation index array entry 

end for 

end if 

else if it is a word with the specified subcategOlY then 

{ a(X) or d(X) or p(X) or veX) } 

for all words of the sentence do 

if the root word for any parse of it belongs to the specified subcategory then 

store the place of the word in the sentence to the next collocation index array entry 

end for 

Figure 5.7. Algorithm for Finding Collocation Index (continued) 

83 



end if 

else if it is the ambiguous word then 

{ - } 

for all words of the sentence do 

if the word is the same as the ambiguous word then 

if the location of the word in the sentence is equal to the collocation index then 

store the place of the word in the sentence to the next collocation index array entry 

end for 

end if 

else if it is a sentence with the mood then 

{mood(X) } 

if the mood of the sentence is the same with the specified mood X then 

set the next collocation index array entry to minus one 

else if it is alternative collocation then 

{ ( , ) } 

find each alternative collocation 

for each alternative collocation do 

for all words of the sentence do 

if the collocation is tnle then 

store the place of the word in the sentence to the next collocation index array entry 

end for 

end for 

end if 

else if it is a constant word then 

{ e.g. gazel, geldi } 

for all words of the sentence do 

if the word is the same as the constant word then 

store the place of :he word in the sentence to the next collocation index array entry 

end for 

end if 

return the collocation index array 

Figure 5.7. Algorithm for Finding Collocation Index (continued) 

84 



85 

Here a couple of traces might be useful to understand the algorithm better. Consider the 

Turkish sentence Ali bir kalem ve silgi aldz (Ali bought a pencil and an eraser). Assume that 

the first element of the collocation that is currently analyzed is earn) which means a word 

with part of speech noun. In this case, since the Turkish sentence has two words (kalem, 

silgi) satisfying this element, find collocation index routine returns their locations in the 

sentence, namely 3 and 5. These are the possible places from which the collocation can be 

started to check. 

Another example might be the Turkish sentence Beni seviyor (He/she loves me). If the first 

element of the collocation is ea(p) +aecu , which means a pronoun with an accusative suffix, 

only 1 is returned by the routine. This is because only the word beni in the sentence 

satisfies this element. 

5.3.7. Checking Collocation 

This routine checks whether the current sentence satisfies a collocation or not. If it satisfies 

returns true, otherwise returns false. The algorithm is given in Figure 5.8. In the algorithm, 

each possible case for the collocation element that is to be checked is represented with its 

symbol (see Section 4.5.3). X denotes any possible value for the place it appears. 

find the distinct elements in the collocation 

call Find Collocation Index to find the places of the words, that satisfy the first element of the collocation, in the 

sentence 

set satisfied to false 

for each word found and while not satisfied do 

set okay to true 

set collocation index as the location of the next word in the sentence 

for all the distinct elements of the collocation beginning from the second one and while okay do 

Figure 5.8. Algorithm for Checking Collocation 



if it is a macro collocation definition then 

{ coX} 

call Check Macro Collocation Definition 

if it returns false then 

set okay to false 

end if 

else if it is a word with the part of speech then 

{ ca(X) } 

86 

if none of the parses of the word located in the current collocation index has a root word with part of speech 

X then 

set okay to false 

end if 

else if it is a word with the specific semantic feature then 

{ cX} 

if none of the parses of the word located in the current collocation index has a root word with semantic feature 

X then 

set okay to false 

end if 

else if it is a word with the proper noun semantic feature then 

{oX} 

if none of the parses of the word located in the current collocation index has a root word with semantic feature 

X then 

set okay to false 

end if 
else if it is a word with the noun semantic feature then 

{X} 

if none of the parses of the word located in the current collocation index has a root word with semantic feature 

X then 

set okay to false 

end if 
else if it is a word with the specified subcategory then 

{ a(X) or d(X) or p(X) or veX) } 

Figure 5.8. Algorithm for Checking Collocation (continued) 



87 

if none of the parses of the word located in the current collocation index has a root word which belongs to 

the specified subcategory then 

set okay to false 

end if 

else if it is the ambiguous word then 

{ - } 

if the word located in the current collocation index is not same as the ambiguous word or if the location of 

the word in the sentence is not equal to the collocation index then 

set okay to false 

end if 

else if it is the sentence with the mood then 

{mood(X) } 

if the mood of the sentence is not the same with the specified mood X then 

set okay to false 

end if 

else if it is alternative collocation then 

{ ( , ) } 

find each alternative collocation 

if none of the alternative collocations is true for the word located in the collocation index then 

set okay to false 

end if 

else if it is a constant word then 

{ e.g. gazel, geldi } 

if the word located in the current collocation index is not the same as the constant word then 

set okay to false 

end if 

end for 

if okay then 

set satisfied to true 

end for 

return satisfied 

end if 

Figure 5.8. Algorithm for Checking Collocation (continued) 



88 

As an example for the trace of this routine, consider the Turkish sentence yann sabah 

gelecekler. (They will come tomorrow morning) In this sentence the ambiguous word is yann 

as it has five morphological parses: 

yar(abyss) + m(2nd singular possessive) 

yar(abyss) + m(genitive) 

yar(to split) + m(2nd singular person) 

yan(half) + n(2nd singular possessive) 

yann(tomorrow) 

The following collocation of the word yann will be checked by this routine to decide 

whether the Turkish sentence satisfies it or not: 

- (sabah, ogle, alqam, gece) 

Firstly, the elements of the collocation is determined. In this case there exist two elements: -

and (sabah, ogle, alqam, gece). 

Next, Find Collocation Index routine is called with the Turkish sentence and the collocation 

element -. It returns 1 since the ambiguous word yann exist only as the first word of the 

sentence. 

Finally, the remaining elements of the collocation are checked beginning from the second 

word of the sentence. The next element is (sabah, ogle, alqam, gece) which is an alternative 

collocation, and the second word of the sentence satisfies this collocation element. Since 

there exist just 2 elements in the collocation, the collocation definition is satisfied by the 

check collocation routine. Thus it returns true. 



89 

5.3.8. Checking Macro Collocation Definition 

This routine gets a macro collocation definition number, and reads the collocation definition 

located in this entry of the Macro Collocation Info Definitions lexicon. It then checks 

whether anyone of the collocations of this definition is satisfied by the Turkish sentence 

or not. Figure 5.9 gives the algorithm. 

set satisfied to false 

for each collocation designated in the specified macro collocation definition in the Macro Collocation Definitions 

Lexicon do 

if Check Macro Collocation Definition returns true then 

set satisfied to true 

return satisfied 

Figure 5.9. Algorithm for Checking Macro Collocation Definition 



90 

5.3.9. Resolving Word Sense Ambiguity 

This routine tries to resolve the word sense ambiguity by utilizing the concept and 

collocation info structures. It first checks the collocation info structure, because of its high 

priority in comparison with the concept structure. It returns true if accomplishes to resolve 

the ambiguity, and returns false if not. The algorithm is given in Figure 5.10. 

set resolved to false 

for all word senses of the word and while not resolved do 

if collocation info structure is utilized for the word sense then 

for all the collocations of the word sense do 

call Check Collocation to check whether the Turkish sentence satisfies the collocation or not 

if it returns true then 

set resolved to true 

end for 

end if 

end for 

for all word senses of the word and while not resolved do 

if concept structure is utilized for the word sense then 

for all concepts the word sense is dependent on do 

if the concept is active then 

set resolved to true 

end for 

end if 

end for 

return resolved 

Figure 5.10. Algorithm for Resolving Word Sense Ambiguity 



91 

5.3.10. Resolving Multiple Root Words Ambiguity 

This routine tries to resolve the multiple root words ambiguity by utilizing the concept and 

collocation info structures. It first checks the collocation info structure, because of its high 

priority in comparison with the concept structure. If any of the ambiguous root words is also 

word sense ambiguous, then it calls Resolve Word Sense Ambiguity routine to resolve the 

ambiguity. It returns true if it accomplishes to resolve the ambiguity, and returns false if 

not. Figure 5.11 gives the algorithm. 

set resolved to false 

for all morphological parses of the word and while not resolved do 

find the corresponding entry in the Morphologically Ambiguous Root Words lexicon for the Turkish root word 

of the parse 

if the root word is word sense ambiguous then 

call Resolve Word Sense Ambiguity 

else if collocation info structure is utilized for the word then 

for all the collocations of the word do 

if Check Collocation returns true 

set resolved to true 

end if 

end for 

for all morphological parses of the word and while not resolved do 

find the corresponding entry in the Morphologically Ambiguous Root Words lexicon for the Turkish root word 

of the parse 

if concept structure is utilized for the word then 

if any of the concepts that the word is dependent on is active then 

set resolved to true 

end for 

return resolved 

Figure 5.11. Algorithm for Resolving Multiple Root Words Ambiguity 



92 

5.3.11. Resolving Identical Suftlx Ambiguity 

This routine tries to resolve the identical suffix ambiguity by utilizing the collocation info 

structure. It returns true if it accomplishes to resolve the ambiguity, and returns false if not. 

Even though the identical suffix ambiguity is resolved, the root word may be word sense 

ambiguous. In this case, if the identical suffix ambiguity is resolved, then the word sense 

ambiguity is treated accordingly. Figure 5.12 gives the algorithm. 

set resolved to false 

for all morphological parses of the word and while not resolved do 

find the corresponding entry in the Identical Suffixes lexicon for the ambiguous suffixes involved in the parse 

for all the collocations do 

call Check Collocation to check whether the Turkish sentence satisfies the collocation or not 

if it returns true then 

set resolved to true 

end for 

end for 

if resolved then 

if the root word is word sense ambiguous then 

call Resolve Word Sense Ambiguity 

end if 
return resolved 

Figure 5.12. Algorithm for Resolving Identical Suffix Ambiguity 



93 

6. DISCUSSION AND EVALUATION 

In this chapter the shortcomings and the performance of the translator implemented in 

this work are discussed, and proposals to improve its performance are put forward. 

6.1. Shortcomings of the Translator 

We are aware of the following shortcomings of the translator: 

1. incomplete linguistic data 

2. shortcomings of the Turkish morphological parser 

3. translation of idioms and expressions 

4. shortcoming about the concept structure 

5. ambiguities caused by proper nouns 

6. restriction on the number of words of a sentence 

The most obvious shortcoming of the translator is its incomplete linguistic data. It covers 

6900 Turkish words and their Azeri equivalents. The information used to resolve the 

ambiguities does not include all the co-occurrence data for ambiguous Turkish words, 

since they are obtained from dictionaries and from the linguistic knowledge of the author 

instead of real Turkish corpora. In order to collect the complete co-occurrence data for 

ambiguous Turkish words, a detailed corpus analysis for Turkish is necessary. 

The Azeri equivalents of a small number of the Turkish derivational suffixes can not be 

determined from the linguistic references. These suffixes are the following: 

-(y)Adur, -(y)Agel, -(y)Agor, -(y)Akoy, -(y)Iver, -(y)Ayaz, -cAs InA, 

-trilyon, -cAgIz, -(I)z (for numbers), -sIzIn, -(y)IlAn, -(y)InAn, 

-(y)AlI, -(y )AsIy A 



94 

The translator treats these suffixes as if they are the same with their Azeri equivalents. 

Since the translator diagnoses the ambiguities using the results obtained from the Turkish 

morphological parser developed at Bogazi~i University, all of its shortcomings cause 

problems in the translator, e.g. wrong parses. If a word can be morphologically parsed 

in more than one way, it is identified as ambiguous. Hence, in case of wrong parses, the 

Turkish word is incorrectly identified as ambiguous. Since there exists no information to 

resolve the ambiguity, it can not be resolved and the result of the translation is given as 

alternative translations, which is actually not the case. 

The translator does not handle expressions and idioms appropriately. Although some 

expressions are placed in the root lexicon, it simply ignores them. This may cause wrong 

translation as in the following example. The Azeri equivalent of the Turkish expression 

ho§a gitmek is xo§a giilmilk. The translator first translates the word ho§a as xo§a and then 

the word gitmek is translated as getmilk, since the Azeri equivalent of the Turkish word 

gitmek is getmilk. So in this way the expression ho§a gitmek is wrongly translated as xo§a 

getmiik. 

Another shortcoming of the translator is about the concept structure. In the current 

implementation only root words are allowed to activate the concepts. This causes the 

following problem. If a derived word activates a concept even though its root does not 

activate the same concept, this information can not be coded into the translation lexicon. 

These words should be treated separately. They should be determined and stored in a 

separate lexicon, and should be allowed to activate the related concepts. 

Another shortcoming of the translator is related to proper nouns. It does not handle 

ambiguities caused by proper nouns. It simply assumes that words beginning with a 

capital letter are proper nouns, and therefore it requires all other words to begin with 

the lower case letters, even for the first word of a sentence. So, in the sentence dun 

Aydm geldi., Aydm is treated as a proper noun, as in the sentence Aydm bir to plum 



95 

o!mallYlz. This causes incorrect translation for the second sentence. Therefore to avoid 

this kind of wrong translations, it should be ensured that the input text does not contain 

any capital1etters except for proper nouns. This restriction can be released by checking 

the first word of the sentence to identify whether it is an ambiguous word of this kind 

or not. In case of an ambiguity, it can be resolved using the concept and collocation info 

structures. 

Finally, we should mention the following limitation of the translator. The current 

implementation expects at most 10 words in a sentence. This is due to the limit imposed 

on accessible main memory by the Turbo Pascal 6.0 compiler, in comparison with the 

enormous amount of code and data size of the translator. 

6.2. Performance Evaluation 

As we discussed in Section 2.1, there exist some performance measures proposed for 

evaluating the quality of machine translation systems. Since, we did not test our translator 

using real Turkish corpora, we could not perform a thorough performance evaluation. 

However, the performance evaluation of the translator considering the results obtained 

so far (see Appendix F) according to the performance metrics presented in Section 2.1 

is as follows: 

1. Linguistic generality: The translator involves just one source and the target 

language. The extent of coverage in the vocabulary is 6900 words, and the idioms are not 

taken into consideration. 

2. Application domain generality: The translator does not involve the use of any 

sublanguages, and the subject domain covers all the language. 

3. Degree of automation: Although, it does not involve any human intervention 

during the translation process, the results produced may in some cases need postediting. 

However, we did not measure the amount of time required for human intervention. 



96 

4. Semantic accuracy: The results produced by the translator were not examined 

by an Azeri native speaker, so its semantic accuracy is not tested. 

5 Jntelligibility: Since, the results of the translator were not examined by an Azeri 

native speaker, its intelligibility is not tested. 

6. Appropriateness: The translator is not tested according to this criterion. 

7. Domain and language portability: Because of its modular structure, other Turkic 

languages can be integrated into the translator without much difficulty. 

8. Extensibility: The lexical coverage of the translator for unambiguous words can 

be extended easily, since the structure of the lexicons and the interrelation among the 

information in the lexicons are clear. However, addition of ambiguous words may need 

extra treatment, e.g. defining new semantic features, defining new concepts, and 

determining collocation information of the ambiguous words. 

9. Improvability: As the lexical knowledge improves, the quality of the translator 

also improves without any redesign effort. 

10. Ergonomics: Since the translator already has a relatively simple user interface, 

it seems quite ergonomic. 

11. Integrability: The translator can be integrated into other information processing 

applications without much difficulty. 

12. Software portability: The translator can be ported to other hardware platforms 

as long as its minimum hardware requirements are met. 

In addition to these criteria, we would like to say a couple of things about the speed of 

the translator, since a machine translator should also be able to translate in a reasonable 

amount of time. The basic factor influencing the speed of the translator is the Turkish 

morphological parser embedded in it. The words in the input text are first 

morphologically parsed using this parser. So, if the time it takes for the morphological 

parser to find the morphological parses of a word is tmp 1, and the rest of the process 

takes a time of tmp2, then the translation time for this word is tmpl + tmp2. 



97 

The second factor is the number of ambiguities in the input text. If a word is not 

ambiguous, then the time it takes for its translation is slightly more than tmpl. However, 

in case of ambiguity translation time increases considerably, especially if the resolution 

process involves the use of collocation info structure. The critical routine employed in 

the resolution of ambiguities is the check collocation routine which implements the 

collocation info structure. The time needed for resolving ambiguity is highly dependent 

on this routine. 

The final factor affecting the speed of the translator is its memory requirement. The 

main program is 270 K bytes together with the Turkish morphological parser. In the 

current implementation, in the case of loading all the data files into main memory, the 

memory requirements for the static and the dynamic variables are approximately as given 

in Table 6.1. 

Table 6.1. Memory requirement of the translator 

The structure Size (in K bytes) 

Turkish root words lexicon 690 

Turkish proper nouns lexicon 600 

translation lexicon 280 

word sense ambiguous root words lexicon 125 

morphologically ambiguous root words lexicon 120 

bilingual suffix lexicon 10 

identical suffixes lexicon 9 

parse results for the sentence under translation 6 

macro collocation info definitions lexicon 4 

root words lexicon and proper nouns lexicon indexes 4 

miscellaneous 1 



98 

So, in case of full memory utilization the translator needs approximately 2MB memory 

for its data files. Since, we have implemented the translator using Turbo Pascal 6.0 

compiler, we can not achieve full memory utilization. So, we are restricted to use file 

access. This restriction causes a considerable amount of time loss during data access 

which lowers the speed of the translator. 

In order to determine the real speed of the translator, it should be checked with a large 

enough sample text. However, we tested the translator with simple sentences that contain 

just the ambiguities we introduce to check the correctness of the translator. Sample runs 

for the translator listed in Appendix F were obtained using an IBM compatible computer 

with a 80386 processor running at 25 Mhz. The following is an example of these sample 

runs: 

Turkish text: [25] 

yatagm ba§mdan ucuna kadar uzanan mavi damah yorgamn 

engebeleri g61geli vadileri ve mavi yumu§ak tepeleriyle Brtiilii 

tath ve lhk karanhkta riiya yiizii koyun uzanml§ uyuyordu. 

dl§andan kI§ sabahlmn ilk sesleri geliyordu. 

Azed text: 

uyadakm ba§mdan ucuna qadar uzanan mavi damah yorgamn eni§-yoxu§lan kBlgali 

vadilari va mavi yum§ag tapaIariyIa hBrtiilii dadh va ihg garanhkda rB'ya ( yiiz / iiz 

) (goyun / gatl - m / buxta - m / buxta - mn) uzanml§ uyurdu. dl§andan gl§ 

saharinin ilk sasIari galirdi . 

We have separated the input text into 10 words sentences before the translation process. 

Since the translation is carried out sentence by sentence, all the collocation info in the 

first sentence can not be utilized in the translation. This causes semantic information loss 



99 

for the ambiguity resolution process. The words in the Turkish expression yiizu koyun are 

translated one by one, since they are written separately in the input text. Translator 

identified the Turkish word yuzu as ambiguous, since the root word yuz has two word 

senses, hundred and face. Since it could not resolve the ambiguity, the two alternatives 

are given in the translation. Although the word raya is used as proper noun in the input 

text, since its first letter is not a capital letter, it is not treated as a proper noun and 

translated incorrectly. The word koyun is also identified as ambiguous, since it has the 

following five morphological parses: 

koyun( sheep) 

koyu(dense) - n(2nd singular possessive) 

koy(inlet) - un(2nd singular possessive) 

koy(inlet) - un (genitive) 

koy(to put) - un (2nd plural person) 

Since the translator could not achieve to resolve the ambiguity, all the alternatives are 

given in the translation. Since, the Azeri equivalents of the first and the fifth parses are 

the same, four distinct alternatives are presented in the translation. 

6.3 Further Improvements for the Translator 

As we stated previously, in some cases syntactic analysis may help in resolving 

ambiguities. For example, if the subject and the verb of the sentence are determined, the 

subject-verb agreement rule may be utilized in ambiguity resolution. Therefore, a 

syntactic analyzer for Turkish may be developed and embedded into the translator to 

improve its performance on resolving ambiguities. 

In the current implementation,the translator checks all the previous sentences together 

with the current sentence to resolve the ambiguity. Another improvement for the 



100 

translator may be to check succeeding sentences in the input text to resolve ambiguities. 

For instance in the Turkish text altz gUzel degil. yediyi seftim., the Turkish word altz is 

ambiguous as alt(bottom) - z(accusativel3rd singular possessive) and altz(six). The 

ambiguity can not be resolved with the semantic information obtained from the first 

sentence. However, if the second sentence is also utilized in ambiguity resolution, altz(six) 

would be identified as the correct meaning. 

An additional routine to automate the addition of a Turkish word into translator's 

lexicons may help to reduce the time needed for this process, and decreases the 

possibility of introducing errors. In case of such an addition, first the word should be 

checked for word sense ambiguity and then it should be checked against all the root 

words lexicon in order to decide whether it causes any multiple root words ambiguity or 

not. If it involves an ambiguity, the related information for the disambiguation process 

should be provided. This may involve defining new semantic features, and determining 

the collocation information of the word. Then, the new word should be checked to decide 

whether it activates any concept or not, and the necessary information should also be 

provided accordingly. If a new concept should be defined and associated with the word, 

then all the words in the root words lexicon that would activate this concept should be 

determined, and this information should be added to the lexicon. Finally, the semantic 

features, parts of speech and the morphological characteristics of the word should be 

added to the root words lexicon. 

An intelligent routine may be designed and embedded into the translator to learn the co

occurrence information when ambiguities could not be resolved by the translator. In this 

manner, the linguistic content of its lexicons can be automatically augmented. 



101 

7. FURTHER DEVELOPMENTS AND CONCLUSION 

Using the translator implemented in this work and the proposed approach, a machine 

translation system from Azeri to Turkish, and a machine translation system from Turkish 

to all the other Turkic languages can be realized as further developments. 

7.1. Conclusion 

Since the existing approaches are not suitable for the problem of machine translation 

from Turkish to other Turkic languages, we propose a lexicon-based approach. As the 

sentence syntax is similar for both languages we do not employ a syntactic analysis. 

Morphological and semantic analysis are carried out for the translation. The translation 

is performed as a word for word translation of sentences using the disambiguation 

techniques used in transfer-based and interlingua-based translation approaches. 

As this is the first attempt in this field the problems of the subject and possible ways to 

handle them are put forward. The ambiguity subject in translation from Turkish to other 

Turkic languages is explored, different sorts of ambiguities are investigated, and the 

lexical data that cause those ambiguities are identified. Possible ways for ambiguity 

resolution are investigated. So, the translation is achieved by direct translation of 

unambiguous words and with a special treatment of the ambiguous ones. The contents 

of the lexicons in the translation system are determined, and possible lexicon structures 

are investigated. Finally, a practical translation system is developed with the proposed 

approach to evaluate its feasibility. 

Even though the results seemed satisfactory for the feasibility of the approach, 

improvements might be implemented to improve the performance and the quality of the 

program. Moreover for its testing, a detailed performance analysis is needed by applying 

real input texts. 



102 

7.2. Lexicon Formation by Corpus Analysis 

The most essential part of a translator is its lexicons. A translation system should have 

well designed lexicons with complete linguistic data. The most suitable way to collect co

occurrence information of words is corpus analysis. So, an important task in constructing 

a translation system for Turkish is forming a lexicon by analyzing real Turkish corpora. 

A corpus analyzer may be designed and implemented to automate this process. In this 

way, co-occurrence information for ambiguous words may be obtained from the Turkish 

texts in a structured manner. 

7.3. Towards a Machine Translation System from Azeri to Turkish 

We have actually worked on the problem of machine translation from Turkish to Azeri, 

and not dealt with translation from Azeri to Turkish. Consequently, the translator 

developed does translation in one direction, only from Turkish to Azeri. 

However, a translator from Azeri to Turkish can easily be implemented using the same 

method. First, an Azeri root words lexicon should be constructed together with its 

corresponding translation lexicon for Turkish words. Then the ambiguous Azeri words 

should be determined and treated in the same manner. The Turkish morphological parser 

can be used to parse Azeri words with small modifications. Finally, the same translator 

program can be used for translation from Azeri to Turkish, with the lexicons prepared 

for the Azeti language. 

A machine translation system from Azeri to Turkish can be utilized to test the semantic 

accuracy of the translator developed in this work. 



103 

7.4. Towards a Machine Translation System from Turkish to Other Turkic Languages 

Since in the translation system the data and the code is separated as much as possible, 

and it is designed in a modular structure, another Turkic language can be integrated into 

it without much difficulty. 

First, the bilingual suffix lexicon should be modified to include the suffixes of the new 

language, and the morphophonemic rules of the language should be determined. A 

translator lexicon, in the same way as for the Azeri language, should be constructed for 

its root words. 

Then the ambiguous Turkish words stored in the lexicons of the translator and the ones 

that have been ignored in translation from Turkish to Azeri should be checked to 

eliminate the ambiguities that can be ignored in the disambiguation process. Using the 

remaining ambiguous words the related lexicons for the ambiguity resolution process 

should be constructed. 

Finally, the translator program should be modified to process the new lexicons developed 

for the new language, and a routine for affixing suffixes to stems using the 

morphophonemic rules of the language should be added to it. 

In this way, with the integration of all the Turkic languages into the current translation 

system, a machine translation system from Turkish to other Turkic languages can be 

realized. 



104 

APPENDIX A. LIST OF WORD SENSE AMBIGUOUS WORDS 

alay a§l ayar bagh 
baskI ba§lbo§ ben bez 
cereyan cetvel cevher cilt 
ciimle ~agda§ ~apa ~at 

~atal ~ekim ~er~ap ~evir 

~lrp <$igne daire dal 
dal darbe dava dayak 
dayl degerlendir deneme denk 
derece derman dik divan 
diye diyet dizi dog 
don dosya duvar dii§ 
diizen efendim ege egitim 
eglen egreti ek el 
emsal en er esne 
e§ etek fail fen 
fener flkIrda flkra fi§ 
fi§ek garip gebe gabek 
gavde gazle gii'S hak 
han har'S hava havale 

haYIr hesaph hoca horla 
hortum hiicre i~ik ramiye 
iktidar ilahi ilik illet 
i§let mekalm kalkan kalp 

kanun kap kara kavra 

kIy koca kol kompleks 
kon kredi kUf§un kurum 

ku§ak kuyruk lisans makam 
A • metin muhtar nasIlsa mam 

neden nefis not ocak 

olgun olumlu olumsuz oyna 

oyun pek pirin'S pi§kin 

pul saf sap satIr 

saz sessiz slfat slra 

SIva sinir §ekerleme §lk 

taban tabir takIm tekne 

temsil tezgah tokmak tulum 

tu§ iinlii vasat vekalet 

vur yaka yah yap 1 

yargI yazI yiiz yiizmek 

zar 



105 

APPENDIX B. LIST OF MORPHOLOGICALLY AMBIGUOUS WORDS 

B.l. List of Root Words that are Similar in Form to Stems with Inflectional Sufllxes 

The ambiguous root words for each suffix is presented below. The symbol (v) is used to 

denote the verbs. 

Suffix: -(y)I -(s)I 

The Ambiguous Words: 

bilegi 
bilek 

koru 
kor 

resmi 
resim 

dizi 
diz 

kan 
kar 

martl 
mart 

duyu 
duy 

koyu 
koy 

solu(v) 
sol 

askeri 
asker 

eri(v) 
er 

katl 
kat 

sall 
sal 



Suffix : -(y)A 

The Ambiguous Words: 

ada 
ad 

bana 
ban(v) 

boga 
bog(v) 

dene(v) 
de(v) 

devre 
devir 

hale 
hal 

ilke 
ilk 

kaya 
kay(v) 

kota 
kot 

kuma 
kum 

ova 
ov(v) 

rehine 
rehin 

ata 
at 

benze(v) 
beniz 

~lta 

~lt 

deve 
dev 

dog a 
dog 

ele(v) 
el 

halka 
halk 

kala 
kal(v) 

kma 
km 

koza 
koz 

kilfe 
kilf 

ate 
at(v) 

semere 
semer 

106 



sure 
sur (v) 

ture 
tur 

vezne 
vezin 

)'lka(v) 
)'lk(v) 

Suffix: -DA 

The Ambiguous Words: 

hasta 
has 

iste(v) 
is 

sapta(v) 
sap 

Suffix : -(I)n 

The Ambiguous Words: 

baSIn 
bas (v) 

havan 
hava 

tarife 
tarif 

ufala(v) 
ufal(v) 

yaka 
yak(v) 

hatta 
hat 

g6zde 

g6z 

demin 
dem 

halen 
hale 

kahn 
kal(v) 

107 



kalkm(v) 
kalk(v) 
---------------
memnun 
memnu 
---------------
pe§in 
pe§ 
---------------
somun 
sam 
---------------
sultan 
sulta 
---------------
tOren 
tOre 
---------------
yazm 
yaz(v) 
---------------

Suffix : -(I)m 

The Ambiguous Words: 

devrim 
devir 

dogum 
dogu 

hamm 
han 

kalem 
kale 

kesim 
kes(v) 

kaym 
kay(v) 
---------------
odiin 
od 
---------------
sahan 
saha 
---------------
sorun 
sor(v) 
---------------
tosun 
tos 
---------------
tiitiin 
tiit(v) 
---------------

dilim 
dil 

doniim 
don(v) 

ilim 
il 

kaslm 
kas 

ko§um 
ko§(v) 

108 



meram 
mera 

terim 
ter 

Suffix: -(y)Iz 

The Ambiguous Words: 

filiz 
fil 

otuz 
ot 

Suffix: -DI 

The Ambiguous Words: 

girdi 
gir(v) 

uydu 
uy(v) 

Suffix: -mI§ 

The Ambiguous Words: 

dolmu§ 
dol(v) 

yetmi§ 
yet (v) 

rabm 
rab 

verim 
veri 

hIrslZ 
hIrs 

tiiredi 
tiire(v) 

yedi 
ye(v) 

yemi§ 
ye(v) 

109 



Suffix: -Ar 

The Ambiguous Words: 

der(v) 
de (v) 

eger 
eg(v) 

uyar 
uy(v) 

Suffix: -rnA 

The Ambiguous Words : 

'51zme 
giz(v) 

kIyma 
kIy(v) 

yagma 
yag(v) 

Suffix: -lA 

The Ambiguous Words : 

agla(v) 
ag 

'5at1a(v) 
'5at 

yer 
ye(v) 

kagar 
kag(v) 

yakar 
yak(v) 

inme 
in (v) 

sagma 
sag(v) 

atla(v) 
at 

emekle(v) 
emek 

110 



giiUe 
giil 
---------------
kelle 
kel 
---------------
salla(v) 
sal 

---------------
taklaya 
takya 
---------------

Suffix: -sA 

The Ambiguous Words: 

ense 
en 

lassa 
las (v) 

Suffix: -mAk 

The Ambiguous Words : 

<;akmak 
<;ak 

oymak 
oy 

inle(v) 
in 
---------------
sagla(v) 
sag 
---------------
sapla(v) 
sap 
---------------
salda(v) 
sak 
---------------

hassa 
has 

kaymak 
kay 

111 



112 

Ambiguous words for miscellaneous suffixes : 
--------------- ---------------
arahk a§ama 
ara a§(v) 
--------------- ---------------
bildik gekici 
bil(v) gekig(v) 
--------------- ---------------
degi§im desen 
deg(v) de (v) 
--------------- ---------------
dolandlr elli 
dol (v) el 
--------------- ---------------
etken gegende 
et gege 
--------------- ---------------
giri§im igi§leri 
gir(v) ig(v) 
--------------- ---------------
kahp kapah 
kal(v) kap(v) 
--------------- ---------------
kaplan kaptan 
kap kap 
--------------- ---------------
kaYIP kelime 
kay(v) kel 
--------------- ---------------
ko§ul olu§um 
ko§(v) ol(v) 
--------------- ----------_ .. _--
seclye seksen 
seci sek(v) 
--------------- ---------------
tandlr tarihge 
tan tarih 
--------------- ----------.. _---
telsiz ya§asm 
tel ya§a(v) 
--------------- ---------------
yoksun zarfmda 
yok zarf 
--------------- ---------------



113 

B.2. List of Root Words that are Similar in Form to Stems with Derivational Suffixes 

Suffix : -(I)k 

The Ambiguous Words : 

buruk 
bur (v) 

kaytk 
kay(v) 

Suffix : -(I)§ 

The Ambiguous Words: 

bulu§(v) 
bul(v) 

degi§(v) 
deg(v) 

kayt§ 
kay(v) 

olu§(v) 
ol(v) 

yakI§(v) 
yak(v) 

yatl§(v) 
yat(v) 

yth§(v) 
ytl(v) 

kasIk 
kas(v) 

yaytk 
yay(v) 

buru§(v) 
bur(v) 

eri§(v) 
er(v) 

konu§(v) 
kon(v) 

tartl§(v) 
tart (v) 

yapl§(v) 
yap (v) 

yeti§(v) 
yet (v) 



Suffix: -CA 

The Ambiguous Words : 

karaca 
kara 

Suffix : -(y)An 

The Ambiguous Words: 

alan 
al(v) 

diken 
dik(v) 

kalkan 
kalk(v) 

sapan 
sap (v) 

Yllan 
Yll(v) 

sivi1ce 
sivil 

bakan 
bak(v) 

esen 
es(v) 

kapan 
kap(v) 

uyan(v) 
uy(v) 

114 



115 

B.3. List of Ambiguous Words due to Similar Suffixes 

The ambiguous words with the suffixes causing the ambiguity are presented below. Even 

though, in some cases there may actually more than one suffix causing ambiguity for the 

same words, only one of them is presented below and the rest is eliminated. 

ajans 
ajan 

asil 
asi 

deli 
del 

derle 
de 

kalas 
kal 

kurmay 
kur 

oy 
a 

saray 
sara 

-a 
-sa 

-i 
-Ii 

-Ill 

-Ill 

-r 
-r -ler 

-Ill 

-a -SIll 

-a 
-rna -ya 

-sa 
-ysa 

-a 
-ya 

ors -e 
or(v) -se 

alGI 
ak 

dem 
de 

deney 
dene 

eksi 
ek(v) 
ek 

kap1 
kap(v) 

lisans 
lisan 

pirin<5 
pir 

saglam 
sagla(v) 

-1 

-11 

-e 
-me 

-e 

-ye 

-Ill 

-SIll 

-SIll 

-Ill 

-Ill 

-a 
-sa 

-e 
-in -ce 

-a 
-rna 



116 

APPENDIX C. LIST OF MORPHOLOGICAL PARSES PRODUCED BY 

IDENTICAL SUFFIXES 

The morphological parses for identical suffixes obtained from the Turkish morphological 

parser are presented below. In each parse, first the artificial root word, the word after 

affixing the suffix, and the root word category are given. Then the parses obtained for 

the word are given as transitions between word categories in the transition network 

representation. - corresponds to a free jump, and a suffix name between two word 

categories denotes the transition between them with this suffix:. Each transition is 

represented with the final word category and the suffix: causing the transition, e.g. nl -

means the transition from previous word category to nl with free jump. 



a alan nO 
nl - v9 Ian 
aD - v8 aI vlO - vl6 - vl8 - d2 yan 
aD - v8 al vlO - vl6 - vl8 - v73 - vl9 - v24 - v25 - a5 yan 

ad adl nO 
nl - n6 - n7 - n9 - nl8 - nll - n20 YI 
nl - n6 - n7 - n9 - n22 - nl7 Sl 

at atun nO 
nl - n6 - n7 - n9 - nlO un 
nl - n6 - n7 - n9 - nl8 - nll - nl6 - v44 - v45 - v48 YIm 

1 mlZ nO 
nl - n6 - n7 - n9 - nlO lruZ 
nl - n6 - n7 - n9 - nlO m nl8 - nll - nl6 - v44 - v45 - v48 YIz 
nl - n6 - n7 - n9 - nl8 - nll - nl5 nm nl6 - v44 - v45 - v48 YIz 

at atm nO 
nl - n6 - n7 - n9 - nlO III 

nl - n6 - n7 - n9 - nl8 - nll - nl5 run 

a arun nO 
nl - n6 - n7 - n9 - nlO m nl8 - nll - nl5 run 
nl - n6 - n7 - n9 - nl8 - nll - nl5 run 

ed eden nO 
aD - d2 dan 
nl - n6 - n7 - n9 - nl8 - nll - nl6 dan 

ad adIf v2 
v3 If 
vl6 - vl8 - v73 - vl9 - v24 - v25 - nO If 
vl6 - vl8 - v73 - vl9 - v24 - v25 - v42 If 
---------------------------------------------------
ad adm v7 

vl2 III 
vl6 - vl8 - v73 - vl9 - v24 - v25 - v79 YIn 
---------------------------------------------------
ad adI§ v7 
v13 I§ 
vl6 - vl8 - v73 - v72 - v53 YI§ 
---------------------------------------------------

117 



a agm vI 
vl6 - aO gm 
vl6 - nO gl nl - n6 - n7 - n9 - nlO m 

at atlc1 
vlO - vl6 - nO 1 a3 CI 

vlO - vl6 - nO 1 n5 CI 

vlO - vl6 - a3 ytCI 

v3 

at atlm vI 
v16 - nO 1 nl - n6 - n7 - n9 - nlO 1m 
vl6 - vl8 - nO 1m 

a ama vI 
vl6 - vl8 - nO 1m nl - n6 - n7 - n9 - nl8 - nIl - nl4 ya 
vl6 - vl8 - v72 rna 
v16 - vl8 - v73 - vl9 - v21 - v54 rna 
vl6 - vl8 - v73 - vl9 - v24 - v25 - v30 rna 

e eyen vI 
vl6 - vl8 - d2 yan 
v16 - vl8 - v73 - v19 - v24 - v25 - a5 yan 

e eye vI 
v16 - v18 - v73 - v19 - v21 ya v78 -
v16 - v18 - v73 - v19 - v24 - d2 ya 
v16 - v18 - v73 - v19 - v24 - v25 - v69 ya 
v16 - vl8 - v73 - vl9 - v24 - v25 - v77 ya 

e eyesiye vI 
vl6 - v18 - v73 - vl9 - v24 - d2 yaslya 
v16 - vl8 - v73 - v19 - v24 - v25 - a5 yasI n6 - n7 - n9 - n18 - nIl - nl4 ya 

a af vI 
v16 - v18 - v73 - v19 - v24 - v25 - nO If 
vl6 - v18 - v73 - v19 - v24 - v25 - v42 If 
---------------------------------------------------
a adlk vI 
vl6 - vl8 - v73 - vl9 - v24 - v25 - v29 dIk 
v16 - v18 - v73 - v19 - v24 - v25 - v32 dI v34 k 
---------------------------------------------------

118 



119 

a amakta vi 
v16 - v18 - v73 - v19 - v24 - v25 - v43 makta 
v16 - v18 - v73 - v19 - v24 - v25 - v31 mak nO - nl - n6 - n7 - n9 - nl8 - nll - n12 da 
---------------------------------------------------
a amah vi 
vl6 - v18 - v73 - v19 - v24 - v25 - v43 mall 
vl6 - v18 - v73 - v19 - v24 - v25 - v30 rna nO - nl - n6 - aO 11 

a aml§ vi 
vl6 - v18 - v73 - v19 - v24 - v25 - aO ml§ 
vl6 - v18 - v73 - v19 - v24 - v25 - v36 ml§ 
vl6 - v18 - v73 - v19 - v24 - v25 - v43 ml§ 

e eyecek vi 
vl6 - v18 - v73 - v19 - v24 - v25 - a5 yacak 
v16 - v18 - v73 - v19 - v24 - v25 - v43 yacak 

at atmca v3 
vlO - v16 - nO 1 nl - n6 - n7 - n9 - nlO m a5 ca 
vlO - v16 - nO 1 nl - n6 - n7 - n9 - nlO m d2 ca 
vlO - v16 - v18 - v73 - v19 - v24 - v25 - d2 ymca 

at atm1z v2 
v16 - nO 1 nl - n6 - n7 - n9 - nlO m1Z 
vl6 - nO 1 nl - n6 - n7 - n9 - nlO m n18 - nll - n16 - v44 - v44 - v45 - v48 YIZ 
vl7 - vl8 - v73 - v19 - v24 - v25 - v79 YImz 

at atm v3 
vlO - vl6 - nO 1 nl - n6 - n7 - n9 - nlO m 
vlO - v16 - v18 - v73 - v19 - v24 - v25 - v79 YIn 

ad adlz s3 
s3 - s4 - s24 - a3 1Z 
s3 - s4 - s24 - a3 - nO - nl - n6 - n7 - n9 - n18 - nll - nl6 - v44 - v45 - v48 ylZ 



120 

APPENDIX D. LIST OF THE SPECIFIC SEMANTIC FEATURES 

Specific semantic features defined and used in the current implementation of the 

translator are presented below together with the numeric codes assigned to them. These 

codes are used in the translator's lexicons in order to refer to them. Since, in the lexicons, 

the numeric codes for these semantic features and the concepts are stored together in 

the same field, their numeric codes are assigned as a whole. Therefore, the numeric 

codes for them are not sequentially ordered. 



121 

Semantic feature Numeric code 

adjustable device 4 
press 6 
instrument to tie two concrete objects 7 
trend 11 
object that can be bound 12 
drink 22 
fu~ n 
place like street, alley or region 28 
press that can be criticized 29 
sewing or material that can be sewed 31 
name of a place that can be tidied up 32 
object that can rise like sun and moon 33 
object with a wall like a garden 35 
time unit 36 
food that can be cooked 46 
fish or fish names 49 
mode 50 
object with an handle 51 
word that the word mature can modify in a noun phrase 52 
word that the words positive or negative can modify in a noun phrase 53 
game played with a team 54 
word that the word complex can modify in a noun phrase 55 
object that can be weaved with a loom like carpet 57 
place in which a queue of people may exist 59 
device with keys like piano 60 
gun 61 
place that can be trampled down 63 
animate or inanimate that can fly 65 
inanimate that can not fly 66 
objects that can be hard 67 
ministry 69 
weapon 70 
foot and f00twear 72 
Object that has a foot like mountain 73 
water or container to warm water 74 
human characteristic 75 
rank name 76 
fist type 77 
clothes with a collar 78 
food that can be beaten like egg 79 
place that can be official 81 
place that can be military 82 



material that can melt 
thing that can be performed in a grove 
word that the word civil can modify in a noun phrase 
object that can fill up 
money unit 
word that the word efficient can modify in a noun phrase 
synonym of saying 
type of science 
places that can be measured with donilm (a land measure of 1000 square 
meters) 
thing that can blow like wind 
thing that can be said 
object that can be sliced 
object that can be driven 
object that can be washed 
object that can be demolished 
object that may have an opening like door 
thing that has an answer like question or problem 
thing that has a measurement unit like length 
religion name 
thing that can bleed 
object that can be winded like watch or that can be set up like table 
place characteristic 
thing that can be turned into like road 
material that can be used in sling 
synonym of going or coming 
object that can be ground like a knife 
object that can be broken down 
synonym of throwing 
goods that can be sold in the market 
writing type or writing characteristic 
cliff characteristic 
idea characteristic 
object that can be worn away 

122 

84 
85 
86 
89 
90 
93 
94 
95 

96 
98 
99 

102 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
121 
122 
123 
124 
125 
126 
127 



123 

APPENDIX E. LISTING OF THE LEXICONS 

E.l. Representative Listing of the Turkish Root Words Lexicon 

A representative listing of the Turkish root words lexicon, including its first ISO entries, 

is presented below in text form. Fields in an entry are separated by commas, and the 

information for each entry is given in a single line. The fields in each entry are in the 

following order: 

1. Turkish word 

2. parts of speech 

3. flags 

4. noun and pronoun semantic features 

S. subcategories 

o and 1 represent the false and true boolean values, respectively. Noun semantic features 

are in the following order: 

animate, inanimate, human, animal, plant, 

concrete(O) / abstract(1), countable(O) / uncountable(l) 

The third entry also serves for the pronoun semantic feature human interchangeably. The 

symbols used for subcategories are as follows: 

reflexive pronoun(pl), personal pronoun(p2), demonstrative pronoun(p3), indefinite 

pronoun(p4), interrogative pronoun(pS), pronominal pronoun(p6), qualificative 

adjective( al), demonstrative adjective( a2), interrogative adjective( a3), numeral 

adjective( a4), indefinite adjective( as), time adjective( a6), time adverb( dl), place 



124 

adverb( d2), quantity adverb ( d3), quality adverb ( d4), interrogative adverb ( d5), 

demonstrative adverb( d6), transitive(v1), intransitive(v2), dative(v4) 

Qualificative adjective (a1) is the default value for adjectives. If no other subcategory 

information is specified for an adjective, it is understood that its subcategory is al. 

abajur ,n ,000000100001001000000000000000000001000 ,0100000000 , 
abart ,v4 ,1000100000100000100 ,0000000000 ~1 v4 
abdest ,n ,000000000001000000000000000000000000000 ,0000010000 , 
abide ,n ,000000100001001000000000000000000001000 ,0100000000 , 
abla ,n ,000000000001001000000000000000000000000 ,1010000000 , 
abluka ,n ,000000000000000000000000000000000000000 ,0000011000 , 
abone ,n ,000000000001000000000000000000000000000 ,1010000000 , 
acayip ,1 ,1000000000000000000 ,0000000000 , 
acayip ,a ,000000000001000000000000000000000000000 ,0000000000 
acele ,n a ,000000100000000000000000000000000001000 ,10 1 0000000 , 
acele ,d ,1000000000000000000 ,0000000000 ,d1 
acemi ,a ,000000000001000000000000000000000001000 ,0000000000 
aC1 ,v5 ,1010000000000000100 ,0000000000 ,v2 
aC1 ,n a ,000000000001000000000000000000000001000 ,0000011000 , 
aClk ,v4 ,1100000000000000100 ,0000000000 ,v2 
aClkh ,a ,000000000000000000000000000000000000000 ,0000000000 , 
aClmaS1Z ,a ,000000000001000000100100000000000000000 ,0000000000 , 
aClt ,v4 ,1000000000000000100 ,0000000000 ,v2 
ad ,n ,000000000000011001000000000000000000000 ,0000010000 , 
ada ,v5 ,1000000000000000000 ,0000000000 ~1 v4 
ada ,n ,000000000000000000000000000000000000000 ,0100000000 , 
ada1e ,n ,000000000000001001000000000000000001000 ,0100000000 , 
adalet ,n ,000000000000000000000000100000000000000 ,0000010000 , 
adam ,n ,000000000101001000000000000000000001000 ,1010000000 , 
aday ,n ,000000000000000000000000000000000000000 ,1010000000 , 
ada§ ,n ,000000000001000000000000000000000000000 ,1010000000 , 
adi ,a ,000000000001000000000000000000000000000 ,0000000000 , 
adil ,a ,000000000000000000000000000000000000000 ,0000000000 , 
adres ,n ,000000000000001011000000000000000000000 ,0000010000 , 
adlm ,n ,000000000001001010000000000000000000000 ,0000010000 , 
af ,n ,000000000001011000000000001000000000000 ,0000010000 , 

aferin ,n ,000000000000001000000000000000000000000 ,0000010000 , 



125 

aferin ,i ,1000000000000000000 ,0000000000 , 
afet ,n ,000000000001001000000000100000000000000 ,0000010000 , 
affet ,v4 ,1000000000000100000 ,0000000000 ,v2 
afiyet ,n ,000000000000000000000000100000000000000 ,0000010000 , 
afi§ ,n ,000000100001001000000000000000000001000 ,0100000000 , 
afyan ,n ,000000100000001000000000000000000001000 ,0100001000 , 
ahenk ,n ,000000000001000000000000010000000000000 ,0000010000 , 
ahize ,n ,000000100001001000000000000000000000000 ,0100000000 , 
ahlak ,n ,000000110000000000000000100000000000000 ,0000010000 , 
ahmak ,a ,000000000001000000000000000000000000000 ,0000000000 , 
ahret ,n ,000000000001000000000000100000000000000 ,0000010000 , 
ahlr ,n ,000000100000001000000000000000000001000 ,0100000000 , 
aile ,n ,000000010001001000000000000000000001000 ,1010000000 , 
ait ,e ,1000000000000000000 ,0000000000 , 
ajan ,n ,000000000001001000000000000000000001000 ,1010000000 , 
ajans ,n ,000000000001001000000000000000000000000 ,0100000000 , 
ak ,v6 ,1000001000110000000 ,0000000000 ,vI 
ak ,n a ,000000000001000000000000100000000000000 ,0000010000 , 
akciger ,n ,000000100000001000000000000000000001000 ,0100000000 , 
akla ,v5 ,1010000000000000000 ,0000000000 ,v2 
akraba ,n ,000000000001001000000000000000000001000 ,1010000000 , 
akrep ,ll ,000000000000000000000000000000000000000 ,1001000000 , 
aksa ,v5 ,1000000001000000000 ,0000000000 ,vI 
aksakal ,ll ,000000000000000000000000000000000000000 ,0100001000 , 
akset ,v4 ,1000000000000100000 ,0000000000 ;.'1 'r4 
aksi ,a ,000000000001000001100000000000000000000 ,0000000000 , 
akslr ,v8 ,1000000001000000100 ,0000000000 ,vI 
aktar ,v3 ,1000000000100000100 ,0000000000 ;.'2 'r4 
aktarma yap ,v4 ,1000000000000000000 ,0000000000 ;.'1 'r4 
aktif ,a II ,000000000000000000000000000000000000000 ,1010000000 , 
aktris ,ll ,000000000000000000000000000000000000000 ,1010000000 , 
aktiialite ,ll ,000000000000000000000000000000000000000 ,0000011000 , 
aktor ,n ,000000000001000000000000000000000000000 ,1010000000 , 
akvaryum ,n ,000000000000000000000000000000000000000 ,0100000000 , 
akIbet ,ll ,000000000000000000000000100000000000000 ,0000011000 , 
akIbet ,d ,1000000000000000000 ,0000000000 ,d1 
akII ,TI ,000000100000000000000000000100000000000 ,0000011000 , 
akIm ,n ,000000000000000000000000000000000000000 ,0100001000 , 
akIn ,n , 000000100000000000000000000000000000000 ,0000000000 , 
ak§am ,TI ,000000100001000010000000000000000000000 ,0000010000 , 
ak§am ,d ,1000000000000000000 ,0000000000 ,d1 
al ,v7 ,1110000000110000100 ,0000000000 }'2 \4-

al ,ll a , 000000000001000001000000000000000000000 ,0000010000 , 
alaca ,ll a , 000000000001000011000000000000000000000 ,0000010000 , 



126 

alacak ,a ,000000000000000000000000000000000001000 ,0000000000 , 
alaka ,n ,000000000000000000000000000000000000000 ,0000011000 , 
alamet ,n ,000000000000000000000000100000000000000 ,0000010000 , 
alan ,n ,000000000000000000000000000000000000000 ,0100000000 , 
alarm ,n ,000000000000000000000000000000000000000 ,0000011000 , 
alay ,n ,000000100101000000000000000000000000000 ,1010010000 , 
aldan ,v4 ,1000000000000000100 ,0000000000 ~1 v4 
aldat ,v4 ,1000000000000000100 ,0000000000 ,v2 
alet ,n ,000000000000000001000000100000000000000 ,0100000000 , 
alev ,n ,000000000000000001000000000000000000000 ,0000001000 , 
aleykiimselam,i ,1000000000000000000 ,0000000000 , 
alfabe ,n ,000000000000000000000000000000000000000 ,0100010000 , 
alg1la ,v5 ,1010000000000000000 ,0000000000 ,v2 
alkol ,n ,000010000010000100000001000000000000000 ,0100000000 , 
alkI§ ,n ,000000100000000011010000000000000000000 ,0000001000 , 
alt ,n a ,000000000001000010000000100000000000000 ,0100000000 , 
altm1§ ,s2 ,1000000000000000000 ,0000000000 , 
altI ,sO ,1000000000000000000 ,0000000000 , 
altm ,n a ,000000000000000000000000000000000000000 ,0100001000 , 
al~ak ,a ,000000000001000000100100000000000001000 ,0000000000 , 
al~al ,v8 ,1000000000000000100 ,0000000000 ,vI 
al~l ,n ,000000100000000011000000000000000000000 ,0100001000 , 
ahkoy ,v4 ,1000000000000000000 ,0000000000 ,v2 
aIm ,n ,000000000000000000000000000100000000000 ,0100000000 , 
aIm ,v13 ,1000010000000000100 ,0000000000 ,vI v4 
ahngan ,a ,000000000001000000100100000000000001000 ,0000000000 , 
almtI ,n ,000000000001000000000000000000000001000 ,0000010000 , 
ah§ ,v4 ,1001000101100000100 ,0000000000 ,vI v4 
ah§veri§ ,n ,000000000000000000000000000000000000000 ,0000000000 , 
ama ,c ,1000000000000000000 ,0000000000 , 
aman ,1 ,1000000000000000000 ,0000000000 
amator ,a n ,000000000001000000100000000000000000000 ,1010000000 , 
ama~ ,n ,000000000000000011000000000000000000000 ,0000010000 , 
ambalaj ,n ,000000100000000011010000000000000000000 ,0100000000 , 
ambar ,n ,000000100000000010000000000000000000000 ,0100000000 , 
amblem ,n ,000000000000000000000000000000000000000 ,0100000000 , 
ambulans ,n ,000000000000000000000000000000000000000 ,0100000000 , 
amca ,n ,000000000001000000100000000000000000000 ,1010000000 , 
ameliyat ,n ,010000000000000000000000100000000000000 ,0000000000 , 
amir ,a n ,000000000001000000000000000000000000000 ,1010000000 
ampul ,n ,000000000000000000000001000000000000000 ,0100000000 , 
an ,v9 ,1101100010000000001 ,0000000000 ,v2 

an ,n ,000000000001000011110000000000000000000 ,0000010000 , 
ana ,a n ,000000000001000000000000000000000000000 ,1010000000 , 



127 

anadili ,n ,000000000000000000000000000000100000000 ,0000010000 , 
anahtar ,n ,000000100001000000000000000000000000000 ,0100000000 , 
anane ,n ,000000000000000000100000000000000000000 ,0000010000 
anaokulu ,n ,000000000000000000000000000000100000000 ,0100000000 , 
anavatan ,n ,000000000000000000000000000000000000000 ,1000000000 , 
anayasa ,n ,000000100000000000100010000000000000000 ,0000010000 , 
ancak ,e ,1000000000000000000 ,0000000000 , 
ancak ,c d ,1000000000000000000 ,0000000000 ,d1 
ani ,a ,000000000000000000000000000000000000011 ,0000000000 , 
ani ,d ,1000000000000000001 ,0000000000 ,d1 
anket ,n ,000000100001000000000000100000000000000 ,0000010000 , 
anlam ,n ,000000010000000000000000000000000000000 ,0000010000 , 
anne ,n ,000000000001000000000000000000000000000 ,1010000000 , 
anSlzm ,d ,1000000000000000000 ,0000000000 ,d1 
ant ,n ,000000000000000000100000000000000000000 ,0000010000 , 
anten ,n ,000000000000000000000000000000000000000 ,0100000000 , 
antetli kaglt ,n ,000000000000000000000000000000000000000 ,0100000000 , 
antika ,n a ,000000100001.000000100000000000000000000 ,0100000000 , 
antla§ma ,n ,000000010000000000000000000000000001000 ,0000010000 , 
am ,n ,000000000000000000000000000000000000000 ,0000010000 , 
amt ,il ,000000110101001000100000100000000001000 ,0100000000 , 
apartmail ,n ,000000000000000000000000000000000000000 ,0100000000 , 
aptal ,a ,000000000001000000100000000000000000000 ,0000000000 , 
aptal ,i ,1000000000000000000 ,0000000000 
ara ,il ,000000100000000011010000000000000000000 ,0000010000 , 
ara ,v5 ,1010000000000000000 ,0000000000 ,v2 
araba ,il ,000000100001000000000000000000000000000 ,0100000000 , 
arabulucu ,il ,000000000001000000000000000000000000000 ,1010000000 , 
arahk ,n ,000000000000000000000000000000000000000 ,0000010000 , 



128 

E.2. Representative Listing of the Translation Lexicon 

A representative listing of the Translation lexicon, including its first 150 entries, is 

presented below in text form. Information for each entry is given in a single line. The 

fields in each entry are in the following order: 

l. Azeri word 

2. specific semantic features or concept activation information 

3. index of the morphologically ambiguous root words entry 

"ws" appearing as the Azeri word means that the corresponding Turkish word is word 

sense ambiguous. If the Azeri word field is empty that means the Azeri equivalent of the 

corresponding Turkish word is identical to it. 

,66 123 
artIr 
abdast 

b6yiik bac! 
miihasira 
abuna 
acaib 
acaib 
acaIa 
acaIa 
acami 

,2 
,1 

ac 
kadarli 
marhamatsiz 
incit 

, ,7 

nazir et ,9 

,17 ,8 



az~ila 

adaliit 

namizad 

addlm 
afv 
afarin 
afarin 
afat 
bagl§la 
afiyat 
afi§a 
tiryak 
ahang 
telefon dastayi 
iixlag 
axmag 
3xiriit 
axur 
aila 

agent 
agentlik 
ag 
bayaz 
agciyar 
baraat qazandlrmag 
aqraba 
aqrab 
axsa 
agsaggal 
akset 
aksi 
asglr 
k6<;iir 
naqliyyat deyi§ 
aktiv 
aktrisa 
aktualhg 
aktyor 

,10 
,11 

,12 

,19 
,20 
,22 
,21 

129 



akvarium 
aqibat 
aqibat 
agli 
carayan 
axm 
ax§am 
ax§am 

ala-bazak 

alaqa 
aIamat 
meydan 
hayacan signah 
ws 

amt 
alov 
aleykassalam 
alifba 
dark et 
spirt 
alg1§ 

altun 

gips 
yubat 

nazikiirakli 
iqtibas 

amma 

havaskar 

,5 

,4114 

,5 

,13 

,23 
,24 

,25 
,26 

,27 

,30 

,31 
,32 

,28 
,29 

130 



baglama 
anbar 
emblem 
tacili yardlm ma§ITIl 
ami 
amaliyyat 

lampo'5ka 

a'5ar 
anana 
u§ag bag'5asl 
ana vatan 
konstitutsiya 

mana 
ana 

antena 
blank 
antiqa 
mugaviIa 
xatira 
abida 
'5ox martabali ev 
abdal 
abdal 

araduzaIdan 
dekabr 

,94 

,121 123 

,64 
,75 

,51 81 82 87 106 121 123 

,33 
,34 
,35 

,36 

,37 
,38 

,39 

131 



132 

E.3. Morphologically Ambiguous Root Words Lexicon 

Full listing of the morphologically ambiguous root words lexicon is presented below in 

text form. The fields in each entry are in the following order: 

1. ambiguous Turkish word 

2. flag to represent whether it is also word sense ambiguous or not 

3. collocation info definition 

4. concepts that the word is dependent on 

An ambiguous word may have only collocation info definition or concept codes or both 

of them at the same time. 0 and 1 represent the false and true boolean values, 

respectively. "ci" means a collocation definition follows, whereas "co" means concept codes 

follow. In a collocation definition, collocations are separated with semicolons, and it ends 

with a period. The numeric concept codes are as follows: 

Concept Numeric code 

army 1 
medicine 2 
agriculture 3 
device 5 
electricity 10 
metal 13 
grammar 15 
navigation 17 
mathematics 24 
government 25 
science 26 
house 34 
space 37 
weapon 40 
religion 42 
education 43 
law 44 



133 

file 45 
company 47 
shop 58 
press 62 
apartment house 64 
architecture 71 

aCl 0 ci c(a) -;- ca(a)[ + (dsav,dsnv)];- ca(n). 
aCl 0 ci ca( d) -. 
ac; 0 ci co18. 
ac; 0 ci - ca(n);ca(n) -[ +dsav];- (doyurmak,beslemek);p2 -+pe. 
ac; 0 ci - ca(v). 
aC;l 0 ci (radyanllk,derecelik) -;- ca(s) (derece,radyan)[ +dsna];p2+ps -+ps. 
ad 0 ci -a c94;co19. 
ada 0 ci ca(a) -(n);-(n) ca(a)[ +dsav];-ya (c118,C;lkmak,ayak basmak);-yt 
(diizeniemek, imar etmek);co19. 

co 17 
ada 0 ci ca(n)+accu -ya. 
adam 0 ci co2. 
aday 0 ci 3+ps -l;-a (oy vermek,rey vermek,guvenmek). 
adlm 0 ci - atmak;co3. 
ag 0 ci -a (takIlmak,doldurmak,bo§altmak);co22. 
aga 0 ci C02;-C1 3;3 -C1;-ca b6yIe+te. 
agac; 0 ci coll;-a (C;1kmak,tIrmanmak). 
agla 0 ci co2l. 
agn 0 ci ca(a) -;- ca(a)[ + (dsav,dsnv)]. 
agn 0 ci ca( d) -. 
ajan 0 ci co2. 
ajans 0 co 47 
ak 0 ci -11 [ca(a)] 2;benim -1m. 
ak 0 ci ca(d) -. 
akIl 0 ci 3+ps3s -1. 
akIm 0 ci ca(a) -;cll -1. 

al 0 ci co20. 
al 0 ci ca(a) -;- ca(a)[ + (dsav,dsnv)];- ca(n). 
alan 0 ci ca(a) -. 
aIm 0 ci ca(a) -;- ca(a)[ + (dsav,dsnv)]. 
aIm 0 ci ca( d) -. 
alt 0 ci ca(n)+geni -1. 
alb 0 ci - ca(n);- ca(s);- (tane,adet). 
altm 0 co 13. 



an 
an 
ana 
am 
ara 
ara 
arahk 
art 
art 
as 
asIl 
asi 
asil 
asker 
askeri 
a§ 
a§ 
a§ama 
a§1 
a§In 
at 
at 
ata 
ata 
atla 
atlas 
az 
az 
az 
aza 
bagda§ 
bagda§ 
bagrr 
baglr 
bak 
bakan 
ban 
bana 
ban§ 
ban§ 
bas 
basIn 
beniz 
benze 

o ci 3+accu -a;6t+accu -a;ca( d) -. 
o ci -a (yakl§mak,uymak);ci -1 (hatlrlamak,unutmamak). 
o ci co2. 
o ci - 3 i<sin ca( a );3 i<sin ca( a) -. 
o ci c109 -l;-hktan (bakmak,girmek). 
o ci - ca(d). 
o ci - aYI;ca(s) [yIh] -l;ca(s) -. 
o ci co18. 
o ci co17. 
o ci ca( d) -11. 
o ci - ca(n);ca(n) -[ +dsav]. 
o ci - [ca(a)] c130. 
o ci -i ca(v). 
o co 0 
o ci - c82;c82 -[ +dsav]. 
o ci co14;- pi§irmek. 
o ci ca(n)+accu -;ca(d) -;ca(n)+accu -In. 
o ci ca(a) -. 
1 ci . 
o ci el27 -;-+dsva el27. 
o ci co5;-a (binmek,vurmak,ko§mak,baglrmak);co22;sen -lasIn. 
o ci o2+accu -;ca(n)+abla -. 
o ci - (yadigan,hatIrasl). 
o ci o3+accu -. 
o ci co21;ca(n)+abla -;ca( d) -. 
o ci senin -In;-l (oku,incele,ver,al). 
o ci ca( d) -a. 
o ci - ca(n);-a kana at etmek. 
o ci - ca(v). 
o ci ca(a) -;- ca(a)[ +dsav];co3. 
o ci ca(a) -;- ca(a)[ + (dsav,dsnv)]. 
o ci ca(d) -. 
o ci ca(a) -;- ca(a)[+(dsav,dsnv)]. 
o ci ca(d) -;c(n)+dati -. 
o ci co20;ca(n)+dati -an. 
o ci ca(a) -;c69 -1. 

o ci ca(d) -;ca(n)+dati -. 
o ci - ca(v). 
o ci ca(a) -;- ca(a)[ + (dsav,dsnv)]. 
o ci ca(d) -. 
o ci co23. 
o co 62 
o ci ca(a) -. 
o ci ca(d) -. 

134 



bez 
bez 
beze 
bil 
bildik 
bile 
bile 
bilegi 
bilek 
bir 
birim 
bit 
bit 
bog 
boga 
boya 
boya 
boz 
boz 
boza 
b6giir 
b6giir 
bul 
bulu§ 
bur 
buruk 
buru§ 
biiyii 
biiyii 
<;ak 
<;akmak 
<;ap 
<;apa 
<;ekici 
<;eki<; 
<;Ikar 
<;Ikar 
<;IkI§ 
<;lkI§ 
<;It 
<;Ita 
<;iz 
<;izme 
dal 

o ci ca(n)+abla -e. 
1 ci ca(a) -e. 
o ci ca(n)+accu -. 
o ci ca( d) -dik;ca(n)+accu -dik;c120+accu -. 
o ci - ca(n). 
o ci ca(n)(n) -. 
o ci c119+accu -. 
o co 5 
o ci co3. 
o ci benim -im. 
o ci (ca(s),ka<;) -;cll1 -i. 
o ci ca(a) -;- ca(a)[+(dsav,dsnv)]. 
o ci ca(d) -. 
o ci ca(d)-. 
o ci co5. 
o ci ca(a) -;- ca(a)[ + (dsav,dsnv)]. 
o ci ca(d) -. 
o ci co18;ci ca( d) -a;c121 +accu -a. 
o ci co17. 
o ci co9. 
o ci ca(a) -;- ca(a)[ + (dsav,dsnv)]. 
o ci ca(d) -. 
o ci co17. 
o ci col8. 
o ci co18;-uk 2. 
o ci - [ca(a)] tad;tadl [ca(a)] -. 
o ci co17. 
o ci ca(a) -;- ca(a) [ + (dsav,dsnv)]. 
o ci ca(d) -. 
o ci ca(d) -. 
o ci ca(a) -. 
o co 24 
o co 17 
o ci - ca(n). 
o ci -i ca(v). 
o ci ca(a) -;- ca(a)[ +dsav]. 
o ci ca(d) -. 
o ci ca(a) -;- ca(a)[ +dsav]. 
o ci ca(d) -. 
o ci -a (d6nmek,bakmak). 
o co 5 
o ci col8. 
o ci co17. 
1 ci co18. 

135 



dal 
dala 
damla 
damla 
de 
deg 
degin 
degin 
degi§ 
degi§im 
del 
deli 
dem 
demin 
dene 
deney 
der 
dere 
deri 
derin 
ders 
desen 
dey 
deve 
devir 
devir 
devre 
devrim 
dik 
dik 
diken 
dil 
dil 
dile 
dilim 
din 
din 
dinlen 
di§ 
di§i 
diz 
diz 
dizi 
dizin 

1 ci co17;aZ -a;ca(a) -a. 
o ci 4[ + dati] -. 
o ci ca(a) -;- ca(a)[ + (dsav,dsnv)]. 
o ci ca(d) -. 
o ci 3+dati -;c99+accu -;ca( d) -sen. 
o ci ca(d) -in;ca(n)+accu -in;co17;benim -im;ca(n)+dati -i§im. 
o ci dl + dati -. 
o ci ca(d) -. 
o ci col8. 
o ci ca(a) -. 
o ci ca(d) -in;ca(n)+accu -in. 
o ci senin -n;-n ca(v);ca(a) -. 
o ci coZ4;-e [ca(n)] ca(v). 
o ci - ca(v). 
o ci ca(n)+accu -;ca( d) -yeo 
o ci ca(a) -e. 
o ci c3Z+accu -. 
o ci ca(a) -;- ca(a)[ +dsav]. 
o ci senin -n;co3. 
o ci - ca(n). 
o ci ca(a) -e;-e ca(v). 
o ci ca(a) -;-[ca(d)] ca(a) -[ +dsav]. 
o ci -e dogm. 
o ci coS. 
o ci benim -im;-e kadar. 
o ci ca(d) -. 
o co 0 
o ci - yapmak;yapmak+dsva -. 
1 ci coI8;co20;ca(n)+accu -en. 
o ci - ca(n);ca(n) -. 
o ci ca(a) -;4+geni -i. 
o ci c102+accu -e. 
o ci co3;co19. 
o ci ca(n)+abla -;2(n) -;6t(n) -. 
o ci cl02 -i;-i yemek;- c102. 
o ci col8. 
o ci coI7;3+ps -i;a2 -i;c1l2 -i;-len [ca( d)] ca(v). 
o ci ca(d) -. 
o ci co3; 1 +ps3s -i. 
o ci - 1;1 -[ +dsnav]. 
o ci coI7;ca(d) -in;ca(n)+accu -in;siz -in. 
o ci coI8;co3. 
1 ci . 
o ci c6+geni -i. 

136 



dog 
doga 
dogan 
dogu 
dogurn 
doku 
doku 
dol 
dolandlr 
dolrnu§ 
don 
don 
don 
doniirn 
duy 
duy 

duyu 
dii§ 
dii§ 
dii§iin 
dii§iinee 
edip 
efendi 
efendirn 
eg 
ege 
eger 
ehli 
ehil 
ek 
ek 

ekin 
eksen 
eksi 
ek§i 
ek§i 
el 
ele 
elli 
elrna 
elmas 
ernek 

137 

I ci -an 3;-an bebek;ca( d) -. 
o ci senin -n;ca(a) -(n);-(n) ca(a)[dsav]. 
o ci co6. 
o ci benirn -rn. 
o ci ca(a) -. 
o ci ca(a) -;- ca(a)[+(dsav,dsnv)]. 
o ci ca(d) -. 
o ci ea(n)+loca -andlr;c87 -;-rnu§ [ca(a)] c87. 
o ci 3+accu -. 
o ci ea(a) -;- [ca(d)] ca(v);- [bir] dolrnu§. 
o ci ca(a) -;- ca(a)[ + (dsav,dsnv)]. 
o ci ca(d) -. 
o ci ca(s) - (yaptl,tarnarnladl). 
o ci ca(s) -liik;ca(s) - c96;c96 ca(s) -. 
o ci col8. 
o ci col7. 

co 10. 
o ci co3. 
1 ci ca(n)+abla -;ca(n)+dati -. 
o ci 3 -iinde;3+ps -iince;-iinde (gormek,konu§rnak,soylernek,ya§arnak). 
o ci ca(n)+accu -. 
o ci c126 -;- c126[ +dsnv]. 
o ci ca(a) -;- ca(a)+dsav. 
o ci benim -m;co2. 
o ci - [ca(d)] c94. 
o ci ca(d) -;ca(n)+accu -. 
1 ci ca(a) -;- ca(a). 
o ci - ca(v)+dete. 
o ci - 4;4 -[ +dsav]. 
o ci 2+geni -. 
o ci ca(d) -;5[ +accu] -;ca(n)+dati -. 
o ci senin -in;sen [ca(n)+loca] -sin. 

co 15 
o ci colI. 
o ci co37;co24. 
o ci senin ca(s) -no 
o ci ca(a) -;- ca(a)[+(dsav,dsnv)];- ca(n). 
o ci ea(d) -. 
o ci -Ii [ca(a)] l;ca(a) -en). 
o ci ea(d) -;ca(n)+accu -. 
o ci - ca(s);- (tane,adet);- 2. 
o ci coll;co14~ 
o co 13. 
o ci eo22. 



emekle 
en 
ense 
er 
er 
er 
eri 
eri§ 
eri§te 
ermi§ 
es 
esen 
eski 
eski 
e§ 
e§ 
e§in 
et 
et 
etken 
fil 
file 
filiz 
ge~ 

ge~ 

ge~ 

ge~e 

ge~e 

ge<;ende 
gerek 
gerek 
gereksin 
ger 
geri 
geri 
gerin 
gir 
girdi 
giri§im 
go~ 

g6~ 

gander 
gander 
g6z 

o ci co21. 
I ci eger -se. 
o ci p2+ps -+ps;[p3] - [ca(d)] ca(v). 
o ci ca(d) -. 
I ci col7. 
o ci - ca(v). 
o ci c84 [ca(d)] -+. 
o ci col8. 
o ci ca(a) -;coI4. 
o ci co2. 
o ci -en c98. 
o ci - kalmak. 
o ci ca(a) -;- ca(a)[ + (dsav,dsnv)];- ca(n). 
o ci ca(d) -. 
I ci co24. 
o ci ca(d) -. 
o ci ca(d) -;ca(n)+accu -. 
o ci dl -ken. 
o ci yaplp edip;ca(n) -. 
o ci (onemli,asll,ger~ek,tek,ca(s)+dsna2) -. 
o ci (biz,hepimiz,topumuz) -iz;co5;-e dogm. 
o ci - (almak,satmak,doldurmak). 
o ci ca(a)-;col1. 
o ci ca(n)+abla -e. 
o ci - ca(v). 
o ci - ca(n);ca(n) -[ +dsav]. 
o ci (ca(s),biraz,az) [c36] -. 
o ci - ca(v). 
o co 0 
o ci ca(n)(n) -sin. 
o ci sen -sin. 
o ci ca(n)+dati -. 
o ci ca(n)+accu [ca(d)] -in. 
o ci senin -in. 
o ci - ca(v). 
o ci 3 -. 
o ci I [ca(d)] -di;ca(n)+dati -i§im. 
o ci ca(s) c89+dsna6 -. 
o ci ca(a) -;- ca(a). 
o ci ca(a) -;- ca(a)[+(dsav,dsnv)]. 
o ci ca(d) -. 
o ci ca(a) -;- ca(a)[ + (dsav,dsnv)]. 
o ci ca(d) -. 
o ci -+loca [ca(a)] ca(n) (var,yok). 

138 



g6zde 
giil 
giil 
giiIle 
giire§ 
giire§ 
giiven 
giiven 
hac 
haCI 
hal 
hala 
halas 
hale 
hal en 
halk 
halka 
han 

o ci - [ca(d)] ca(v). 
o ci -la (beraber,birlikte). 
o ci ca(d) -. 
o ci - (atmak,fIrlatmak,savurmak). 
o ci ca(a) -;- ca(a)[+(dsav,dsnv)]. 
o ci ca(d) -. 
o ci ca(a) -;- ca(a)[+(dsav,dsnv)]. 
o ci ca(d) -. 
o ci c36+pron -m;-m [ca(a)] ca(n)+accu. 
o ci senin -no 
o ci -e (mal,sebze,meyve gelmek). 
o ci co2;3+ps -SI. 
o ci 6t+ps -I;6t 3+ps -1. 

o ci co24;- (olu§mak,gormek). 
o ci - [ca(n)] ca(v). 
o ci -a c94;c94+dsva -a. 
o ci - (takmak,ge'5irmek). 
1 ci co19. 

hamm 0 ci 3 + geni -. 
hIrs 0 ci (biz,hepimiz,topumuz) -IZ. 
hlrs1z 0 ci ca(a) -;- ca(n)+dati girmek;- (yakalanmak,'5almak). 
has 0 ci -ta ca(n)+dsnn7 var;ca(p) -ta ca(p);benim -1m;p2 -sa+ps;-sa 
(ca(p ),ca(n)). 
hassa 0 ci p2+ps -+ps;p3 [ca(d)] ca(v). 
hassas 0 ci -1 [daha] ca(a);ca(n)+abla [daha] -1. 
hasIm 0 ci ca(a) -. 
hasret 0 ci ca(a) -;- ca(a)[+(dsav,dsnv)]. 
hasret 0 ci ca( d) -. 
hasta 0 co 2 
hat 0 ci -ta +. 
hatta 0 ci ca(v) - [ca(d)] ca(v);ca(n) - ca(n);ca(a) - ca(a). 
hava 0 ci co24. 
havan 0 ci -da (dovmek,tavlamak). 
i'5 0 ci co17;senin -in ca(a)[+dsav]. 
i'5 1 ci co18;ca( d) -in;ca(n)+accu -in;ca( d) -i§leri;c22 -i§leri. 
i'5in 0 ci ca(n)+geni -. 
i~i§leri 0 ci - (bakam,miiste§an,bakanhg1,memuru,biirokrat1,binas1). 
il 0 ci co19;o4 -;ca(a) -e. 
ile 0 ci ca(n) - ca(n). 
ilim 0 ci c95 ca(a) -. 
ilk 0 ci -e ca(v)+dsw15. 
ilk 0 ci - ca(v). 
ilke 0 ci - (edinmek,kabul etmek). 
III 0 ci co17;co22. 

139 



140 

in 0 ci col8. 
inle 0 ci c02l. 
inme 0 ci co17;c134+dati - inmek; 
is 0 ci ca(a) -(n);benim -im. 
isim 0 ci ca(a) -;- ca(a)[ +dsav]. 
iste 0 ci ca( d) -. 
1§ 0 ci - [ca(d)] ca(v). 
i§te 0 ci - a2 ca(n). 
it 0 ci colS. 
it 0 ci co17. 
kaba 0 ci colS. 
ka~ 0 ci ca( d) -. 
ka~ ° ci ca(a) -;- ca(n). 
ka~ar 0 ci - ka~ar;- (tane,adet,ca(n)). 
kal 0 ci ca(d) -;ca(n)+loca -;c023. 
kala 0 ci (ca(s),yanm) -;c36 -;(ca(s),yanm) c36 -ya;c;eyrek -ya. 
kalas 0 ci senin -m;ca(a) -m;-m ca(v). 
kalay 0 co c13 
kale ° ci co19. 

co 1 
kalem ° ci -Ie (yazmak,c;izmek,boyamak);-(n) ca(v)+pe. 
kahn 1 ci - ca(n). 
kallp 0 ci ca( a) -. 
kalk 0 ci c020;ca(n)+abla -m. 
kalkan 1 ci . 
kalkm 0 ci (03,02) -. 
kan 0 ci ca(n)+dati -a. 
kan 0 ci ca(a) -(n);- (akmak,plhtlla§mak,durmak);(a,b,O,ab) gurubu -;rh 
(pozitif,negatif) -. 
kana 0 ci c1l3+accu -;ca(d) -t. 
kanarya 0 ci c06;- (otmek,§akimak). 
kanat 0 ci - takmak;ca(a) -;- [ca(d)] ca(a)[ +dsav]. 
kam 0 ci 6t+ Ioca +pron -;hakkIndaki -. 
kap 1 ci -a (dokmek,koymak,bo§altmak);-lan (beraber,birlikte);-lan ca(n) 
ca(v);ca(a) [ca(a)] -sa;-tan (bir§ey olmaz,haYIr gelmez). 
kap 0 ci ca(d) -;ca(n)+accu -;c020;1 ca(n)+accu -sa;ci ca(n)+accu -sam;ben 
-sam;ca( d) -sam;eger -sa(n). 
kapah 0 ci - ca(n). 
kapan 0 ci - kurmak;-a (takilmak,yakalanmak);colO. 
kapi 0 ci senin -n;ca(a) -no 
kaplan 0 ci coS. 
kapsa 0 ci 6t+accu -;. 
kapsam 0 ci ca(a) -;- ca(a)[ +dsav]. 
kaptan 0 ci co2. 



141 

kar 0 ci ca(d) -a;ca(n)+accu -a;ca(d) -m;siz -m;ca(n)+accu -m;ea(n)+aceu 
-mca;ea(d) -mca;ca(d) -l§lm;ca(n)+accu -l§lm. 
kar 0 ci -a (bakmak,basmak,dokunmak);-l (siipiirmek,tuzlamak);-m yagmak. 
kara 1 ci -ca [ca(a)] ca(n);ca(n) [ca(d)] -car +dsav]. 
karaea 0 ci eo18. 
karar 0 ci ca(a) -;- ca(a)[ +dsnv]. 
karar 0 ci ca(n)(n) -. 
kan 0 ci 3+ps -1;c02;senin -n;senin -nca. 
kann 0 ci e03. 
kannca 0 ci ca(a) -;- ca(a)[ +dsnv]. 
kan§ 0 ci ca(n)+dati -. 
kan§ 0 ci benim -Im;c03;ca(s) -. 
kan§lm 0 ci ca(a) -;- ca(a)[ +dsnv]. 
kas 0 ci ca( d) -a;ca(n)+accu -a;-lk ca(n). 
kas 0 ci c03. 
kasa 0 co 5 
kasaba 0 ci cll5 -;- cll5. 
kasap 0 ci co2. 
kaslk 0 ci c03. 
kaslm 0 ci - ap;-da ca(v);ca(s) [ph] -l;ca(s) -. 
kat 0 ci ca(s)+dssa2 -;(zemin,bodrum,giri§,ilk,alt,iist) -;3+ps -1. 

kat 0 ci ca( d) -. 
kat! 0 ci - [ca(a)] c83;c83 [ca(d)] - [+dsav]. 
kat} 0 ci - ca(v). 
kay 0 ci c023;ca(d) -lp;ca(n)+abla -lp;ca(n)+abla -;ca(n)+loca -;ca(d) 
-;ca(n)+abla -;-lk ca(n). 
kaya 0 ci ca(a) -. 
kayIk 0 co 17 
kayIn 0 ci coIl. 
kayIp 0 ci ca(a) -;c36+abla beri -;c36+eeeg -. 
kayI§ 0 ci c04. 
kaymak 0 ci ca(a) -. 
kaz 0 ci c05. 
kaz 0 ci -an 3. 
kaza 0 ci senin -n;c175 -;trafik -;-n 04. 
kazan 0 ci co15. 
kazan 0 ci ea(n)(n) -. 
kel 0 ci benim -ime;-ime (dokunmak,laf soylemek);-le (beraber,birlikte );-le 

ugra§mak;kafa + -. 
kelle 0 ci - (pi§irmek,yemek,satmak);(pi§irilen,yenilen,satllan) 
-; (yedigi,satt!gl,pi§irdigi) + ps. 
kelime 0 co 15 
kes 0 ci ca( d) -;ca(n)+accu -;(4,4) -. 
kese 0 ci ca(a) -;- ca(a)[ +dsnv]. 



142 

kesin o ci - ca(n);- ca(v). 
kesim o ci ca(s)+dssa2 -;c75 -. 
kIl o ci ca(a) -;- ca(a)[+(dsav,dsnv)]. 
kIl o ci ca(d) -. 
kIn o ci c123+accu -a (koymak,geC5irmek). 
kIna o ci -siirmek;ba§+ - koymak. 
kIna o ci ca(d) -. 
kIr o ci ca(a) -;- ca(a)[ + (dsav,dsnv)];- ca(n). 
kIf o ci ca(d) -. 
kIs o ci ca( d) -;ke§ke -sa. 
kIsa o ci -Sl [daha] ca(a);ca(n)+abla [daha] -Sl. 
kIsa o ci - ca(v). 
kIsas o ci -I uygulamak;-lnI (~6zmek,unutmak). 
kIssa o ci ca(a) -;- ca(a). 
kIy o ci col8. 
kIyma o ci co17. 
kIz o ci ca(a) -;- ca(a)[+(dsav,dsnv)];- ca(n). 
kIz o ci ca(d) -. 
koca o ci ca(a) -;- ca(a)[+(dsav,dsnv)];- ca(n). 
koca o ci ca(d) -. 
kon o ci co17. 
konu o ci benim -urn. 
konum o ci ca(a) -;ca(n)+geni -u;3+ps -u. 
konu§ o ci col8. 
kor o ci ate§in -;- ate§;a2 - [ca( d)] vI. 
koru o ci -da c85. 
koru o ci ca(d) -. 
ko§ o ci 4 ca(n)+dati -ul;benim -urn. 
ko§ul o ci ca(a) -. 
ko§um o ci - (takImlan,aletleri). 
kot o ci -a (bakmak,siiriinmek,d6kiilmek). 
kota o ci - (uygulamak,koymak). 
kov o ci ca(n)+abla -a;ca(d) -a;-an ca(n). 
kova o ci ca(a) -;- ca(a);senin -no 
kovan o ci an -1;- bah;-da (bal,an) (var,yok). 
koy o ci senin -un. 

co 27 
koy o ci ca(n)+dati -un;ca(d) -un. 
koyu o ci - [renk] [ca(a)] ca(n);rengi [ca(a)] -. 
koyun o ci coS. 
koz o ci -a giivenmek. 
koza o ci - (toplamak,d6kiilmek,olmak,olgunla§mak). 
kum o ci -a (yatmak,uzanmak,bo§altmak). 
kuma o ci - (gelmek,getirmek,olmak). 



kur 
kura 
kurmay 
kuru 
kuru 
kiif 
kiife 
kiime 
kiimes 
kiip 
kiipe 
kiis 
kiis 
laf 
laflz 
lisan 
lisans 
mart 
martl 
memnu 
memnun 
mera 
meram 
nal 
nalm 
ne 
ne 
neden 
nedense 
ney 
neyse 
oda 
o 
01 
olu§ 
olu§um 
on 
onar 
ora 
oran 
orta 
ortam 
ot 
otuz 

o ci c114+accu -a;ca( d) -a;ca( d) -maya. 
o ci - c;ekmek;c;ekilen -;ca( a) -. 
o co 1 
o ci ca(a) -;- ca(a)[+(dsav,dsnv)];- ca(n). 
o ci ca(d) -. 
o ci -e (bulanmak,bula§mak). 
o co 5 
o co 24 
o ci 4 -i;- 4. 
o ci -e (koymak,doldurmak,bo§altmak,vurmak). 
o ci - (takmak,almak,satmak). 
o ci - ca(a)[+(dsav,dsnv)];- ca(n). 
o ci ca(d) -. 
o ci (biz,hepimiz,topumuz) -IZ. 

o co 0 
o ci c2l -sa;-sa (onu,bunu) halletmek. 
lci. 
o ci ca(s) YIh -1;- aYI. 
o ci c06. 
o ci c024. 
o ci - [ca(a)] -. 
o ci col9;-mda otlatmak. 
o ci -1 c94. 
o ci senin -In. 

o ci - (almak,takmak,giymek,satmak). 
o ci -ye ca(v) mood(int). 
o ci -ye ca(v) mood(int). 
o ci eger -se;ca(n) [bir] -. 
o ci her -;- sent. 
o ci eger -se;col2. 
o ci - ca(v). 
o ci ca(a) -;- ca(a)[ +dsav]. 
o ci c02;eger -ysa;ca(v)+dsva -ysa;ben -yum. 
o ci col7;ca(n)+dati -u§um;(oyle,boyle) -u§um. 
o ci col8. 
1 ci ca(a) -;- ca(a)[ +dsav]. 
o ci -ar onar;-ar (tane,adet);-ar ca(n). 
o ci ca( d) -;ca(n)+accu -. 
o ci senin -na;-na burana. 
o ci a2 -a;ca( a) -a. 
o ci benim -rna. 
o ci a2 -[a];ca(a) -[a]. 
o ci (biz,hepimlz,topumuz) -uz. 
o ci - ca(n);- ca(s);- (tane,adet). 

143 



144 

ov 0 ci ca(d) -. 
ova 0 ci ca(a) -;- ca(a). 
oy 0 ci ca(n)+accu -(un,sa);ca(d) -. 
oy 0 ci senin -un;-a (baglanmak,iimit baglamak);benim -um;-um 3+dati;eger 
-sa. 
oya 
oymak 
oysa 
oyun 
od 
odiin 
ogiit 
ogut 
ors 
or 
ot 
ote 
ozen 
ozen 
pas 
pasta 
peki 
pekiyi 
pe§ 
pe§in 
pe§in 
pir 
pir 
pire 
pirin<; 
rahibe 
rahip 
rab 
rabm 
rehin 
rehine 
resim 
resmi 
sa<; 
sa<; 
sa<;ma 
sag 
sag 
sagla 

o ci - (6rmek,dikmek,i§lemek). 
o ci ca(a) -. 
o ci ca(v)+dsva -. 
1 ci ca(a) -. 
o ci co24;-iin (kopmak,patlamak). 
o ci - (vermek,almak). 
o ci ca(a) -;- ca(a) [ +dsav]. 
o ci ca(d) -. 
o ci -e ca(v);ca(a) -e. 
o ci c3l -se;ca( d) -se. 
o ci ca( d) -;c10S -. 
o ci ca(n)+abla -. 
o ci ca(a) -;- ca(a)[ +dsav]. 
o ci ca(d) -. 
o ci -tan (batmak,gec;ilmez 0Imak)+(pels,pelp,pe2s,pe2p,pe3p). 
o ci senin -n;col4. 
o ci -yi [hiC;] c94. 
o ci - (almak,vermek);not+ps -. 
o ci c024;-inde ca(n) (var,yok). 
o ci - para;- [ca(a)] ca(n). 
o ci - ca(v). 
o ci co2;senin -ince. 
o ci - ca(v). 
o ci coS. 
1 ci a2 -e. 
o ci -oS. 
o ci - 07 -e. 
o ci col9;c09. 
o ci (03,04,oS,06)+geni -l;ca(s) -11k. 
o ci -e bakmak;ca(n)+accu -e ca(v). 
o ci - (olmak,tutmak,saklamak). 
o ci 3+ps -;- +ps. 
o ci - [ca(a)] cSl;cSl -[ +dsav]. 
o ci colS. 
o ci col7. 
o ci co17. 
o ci co22. 
o ci ca(d) -. 
o ci c02l;ca(n)+accu -ma;ca(d) -rna. 



saglam 
saglam 
saha 
sahan 
sal 
sal 
saldIr 
salI 
salIn 
salla 
sap 
sap 
sapa 
sapan 
sapIa 
sapta 
sara 
saray 
sava§ 
sava§ 
say 
saYI 
saYIll 
sayman 
seci 
seciye 
sek 
seksen 
sel 
sele 
semer 
semere 
ser 
serin 
sersem 
SIg 
SIg 
slva 
slva 
sivil 
sivi1ce 
sol 
sol 
solu 

145 

o ci - ca(n)+dati;ca(a) -a. 
o ci - ca(v). 
o ci co24;-nda oynamak. 
o ci - ca(n) (pi§irmek,yemek). 
o ci co18;ca(n)+accu -Ill. 
o ci co17;ca(a) -;co22;3+ps -l[ +dsnv];- vl;senin -Ill. 
o ci ca(d) -;ca(n)+dati -. 
o ci - giin(ii,leri);- v2. 
o ci ca(n)(n) -. 
o ci co2l. 
o ci ca(n)+abla -;co20;ca( d) -ana;c116+abla -ana. 
1 ci ca(a) -;co22;c5l+1oca+pron -ta;5+loca+pron -tao 
o ci - ca(n)ca(n) [ca(a)] -. 
o ci colO;-a ta§ (koymak,ip baglamak);ca(a) -a;c117+abla -a. 
o ci co2l. 
o ci ca(n)+accu [ca(d)] -. 
o co 2 
o ci -a c11S. 
o ci ca(a) -;- ca(a)[+(dsav,dsnv)]. 
o ci ca(d) -. 
o ci ca(n)+accu -;ca( d) -Ill. 
o ci senin -no 
o ci -3. 
o ci co2. 
o ci (ahenkli,uyumlu,kafiyeli) [bir] -yeo 
o ci col. 
o ci ca(n)+abla -sen;ca(d) -sen. 
o ci - ca(s);- tane;- ca(n). 
o ci -e (tutulmak,kapllmak,yakalanmak,engel olmak). 
o co 5 
o ci -e (oturmak,binmek,kurulmak). 
o ci - (vermek,almak). 
o ci ca(n)+dati -;ca(n)+accu -. 
o ci - ca(n);ca(n) -[ +dsav]. 
o ci col. 
o ci - ca(n);ca(a) -. 
o ci ca(d) -. 
o ci ca(a) -;- ca(a)[ + (dsav,dsnv)]. 
o ci ca(d) -. 
o ci -ce [ca(a)] c86;c86 -ce[ +dsav]. 
o co 2 
o ci ca(a) -;2+ps -U. 

o ci ca(d) -. 
o ci 3 [d2+abla] [dl] -;ca(d) -. 



som 
somun 
sor 
sorun 
soy 
soy 
sulta 
sultan 
sur 
sure 
suru 
suru 
surum 
§i§ 
§i§ 
§i§e 
tak 
tak 
takIm 
takla 
tan 
tandlr 
tam 
tamm 
tammla 
tarif 
tarife 
tarih 
tarih~e 

tart 
tartl§ 
ta§ 
ta§ 
tat 
tat 
tavla 
tavla 
tel 

telin 
telsiz 
ter 
terim 
tos 

o ci - ca(n);ca(n)+accu -. 
o co 5 
o ci co23. 
o ci - (yapmak,olu§turmak). 
o ci ca(a) -;- ca(a)[+(dsav,dsnv)];- ca(n). 
o ci ca(d) -. 
o ci co24. 
o ci co2. 
o ci c106+accu -. 
o ci ca(a) -. 
o ci ca(d) -. 
o ci benim -m;-mii (otlatmak,beslemek). 
o ci c123+1oca -;c12+geni -ii;- c123. 
o ci -e (takmak,ge~irmek);co1. 
o ci ca(d) -. 
o ci - c22;co9;- kIrmak. 
o ci ca(d) -;ca(n)+dati -. 
o ci -la (beraber,birlikte );-la (siislemek,donatmak). 
1 ci ca(a) -;- ca(a)[ +dsav]. 
o ci - atmak;(atIlan,attlg+ps) -. 
o ci (agaran,dogan) -;- (agarmak,dogmak). 
o ci - (yanmak,pi§irmek). 
o ci ca(d) -;ca(n)+accu -. 
o ci a2 -la;ca(a) -lao 
o ci ca(n)+accu -;ca(d) -. 
o ci -e bakmak. 
o ci - (almak,sormak). 
o ci -~e ca(n) ca(v). 
o ci - (yazmak,okumak). 
o ci co17. 
o ci co18. 
o ci ca(a) -;- ca(a)[ +dsav]. 
o ci ca(d) -. 
o ci ca(a) -;- ca(a)[ +dsav]. 
o ci ca(d) -. 
o ci ca(a) -;- ca(a)[ +dsav]. 
o ci ca(d) -. 
o ci senin -in;-siz ca(v)+negp. 

co 10 
o ci - etmek. 
o co 5 
o ci co19;ci -imi (silmek,YJkamak,kurulamak);-im (sogumak,kurumak). 
o co 24 
o ci co24;-un [ca( d)] (hlrpalamak,acltmak,61diirmek). 

146 



tosun 
tore 
toren 
tiir 
tiire 
tiiredi 
tiit 
tiitiin 
tiiy 
tiiy 
u<; 
u<; 
ufal 
ufala 
ugra§ 
ugra§ 
ulu 
ulu 
uy 
uyan 
uyar 
uydu 
var 
var 
veri 
verim 
vezin 
vezne 
kalabahk) -, 
yag 
yag 
yagma 
yak 
yaka 
yakar 
yakm 
yakm 
yakm 
yakJ.§ 
yama 
yam a 
yan 
yan 
yan 

147 

o ci coS. 
o ci co24;-ne bagh+dsav. 
o ci - (yapmak,kutlamak). 
o ci ca(a) -. 
o ci ca( d) -;ca(n)+abla -. 
o ci - [ca(a)] ca(n). 
o ci co23. 
o ci - (i<;mek,sarmak);coll. 
o ci ca(a) -;- ca(a)[ +dsav]. 
o ci ca(d) -. 
o ci ca(a) -;- ca(a) [ +dsav]. 
o ci ca(d) -. 
o ci ca(n) -. 
o ci ca(n)+accu -. 
o ci ca(a) -;- ca(a)[ +dsav]. 
o ci ca(d) -. 
o ci - ca(n);ca(a) -. 
o ci ca(d) -. 
o ci -an ca(n);ca(n)+dati [ca(d)] -;ca(a)+dati -. 
o ci dl -. 
o ci I +accu -. 
o co 37 
o ci ca(a) -;- ca(a)[ + (dsav,dsnv)];- ca(n). 
o ci ca(d) -. 
o ci col9 
o ci c93+geni -i;-(li,siz) c93. 
o ci -e (uymak,dikkat etmek). 
o ci - memuru;- [ca(a)] (me§gul,dolu,yogun,kalabahk);(me§gul,dolu,yogun, 

o ci ca(a) -;- ca(a)[ +dsav]. 
o ci colS. 
o ci co17. 
o ci ca(n)+accu -;ca(n)+accu -m;ca(d) -;coI7. 
I ci ca(a) -. 
o ci ca(n)+dati -. 
o ci - ca(n);ca(n) -[ +dsav]. 
o ci - ca(v). 
o ci ca(d) -;-[+dsva] ca(n). 
o ci colS. 
o ci ca( d) -;c31 +accu -. 
o ci ca(a) -;c31+loca+pron -. 
o ci ca(a) -;- ca(n). 
o ci ca(d) -. 
o ci - ca(v). 



yap 
yapl§ 
yar 
yar 
yara 
yara 
yaran 
yarar 
yan 
yan 
yanm 
yann 
yann 
yan§ 
yan§ 
yasak 
yasalda 
ya§a 
ya§a 
ya§asm 
yat 
yatl§ 
yay 
yay 
yaya 
yayan 
yayan 
yaylk 
yaym 
yayla 
yaz 

148 

o ci co17. 
o ci colS. 
o ci ca(n)+accu -;-an ca(n). 
o ci c125 -;-[(lm,m)]a cU8. 
o ci ca(n)+dati -. 
o ci oIiimciil -;1 +Ioca+pron -;senin -no 
o ci 3+dati -. 
o ci - (gormek,ummak,beldemek);ca(a) -. 
o ci - ca(n);- ca(n)+loca. 
o ci - ca(v). 
o ci - ca(n);- c36. 
o ci - (sabah,ogle,ak§am,gece);- ca(v)+(pels,pelp,pe3s,pe3p,pe2p). 
o ci - ca(v). 
o ci ca(a) -;- ca(a)[ +dsav]. 
o ci ca(d) -. 
o ci co22. 
o ci co2l. 
o ci ca( d) -sm; 1 -sm. 
o ci - (de,diye bagtr). 
o ci mood(exc). 
o ci co17. 
o ci colS. 
o ci -a ok takmak;senin -m;colO;-Ia ok c122. 
o ci ca(n)+accu -;-an 3;ca(n)+dati -;-lk ca(n);ca(n) -lk. 
o ci - (yiiriimek,ko§mak). 
o ci - 3;3 -. 
o ci - ca(v). 
o ci ca(a) -;-+cases ca(v). 
o ci - yaymlamak. 
o ci c175 -;- c175( +dsav];cllS+dsav -. 
o ci colS. 

yaz o ci co23;co17;-1 ca(n) + Ioca ge~irmek;(slcak,giine§li,yagmurlu,soguk,lhk) 
-. 
yazl 0 ci - yazmak;3+ps -;c124 -;- c124[ +dsav]. 
yazm 0 ci - ca(v). 
ye 0 ci c23[ +aeeu] [ea(d)] -. 
yedi 0 ei - ea(n);- ea(s);- (tane,adet). 
yemi§ 0 ci e041. 
yen 0 ci eo17;ea(s) -;(ka~,nekadar) -. 
yen 0 ci colS. 
yer 0 ci ea(a) -;- ea(a)[ +dsav]. 
yer 0 ci ea( d) -. 
yet 0 ci eo17;ea(n)+dati [ea(d)] -. 
yeti§ 0 ci eo1S. 



yetmi§ 
)'1k 

)'lka 
)'11 

)'11 

)'llan 
)'1h§ 

yok 
yok 
yoksun 
yol 
yol 
yiiz 

o ci - ca(n);- ca(s);- (tane,adet). 
o ci cl08+accu -. 
o ci clO?+accu -. 
o ci co20. 
o ci col? 
o ci co? 
o ci col8. 
o ci 3 [ca(n)+loca] -sun. 
o ci - ca(v). 
o ci - ca(n);ca(n) -[ +dsav]. 
o ci ca(a) -;- ca(a)[ +dsav]. 
o ci ca(d) -. 
lci. 

yiiz I ci . 
yiizde 0 ci co24. 
yiizden 0 ci p3 -. 
zarf 0 ci senin -m;(mektubun,kartm) -mda;-mda (pul,miihiir,adres,damga) 
(yok,var,olmak). 
zarfmda 0 ci c36 -;siire -. 

149 



150 

EA. Word Sense Ambiguous Root Words Lexicon 

Full listing of the word sense ambiguous root words lexicon is presented below in text 

form. For each entry the ambiguous Turkish word and the number of its word senses are 

given in the first line. The related information for each word sense is stored in the next 

lines. The fields in each word sense are in the following order: 

1. the equivalent Azeri word 

2. collocation info definition or the concepts that the word is dependent on 

A word sense may have only collocation info definition or concept codes or both of them 

at the same time. If it utilizes both of them, then the word sense is stored with each of 

them one by one. 0 and 1 represent the false and true boolean values, respectively. ltci" 

means a collocation definition follows, whereas "co" means concept codes follow. In a 

collocation definition, collocations are separated by semicolons, and it ends with a period. 

The same numeric codes presented in Section E.3 is used for concepts. 

alay 2 
alay co 1 
lag ei ca(n)+iles -en) (etmek, ge~mek);-a(n) (almak, vurmak);-la(n) 
(bakmak,siizmek);-cl. 
a§l 
peyvand 
calag 
ayar 
ayar 
daqiqlik 
bagh 
bagh 
aSlh 
baskI 
na§r 
tazyiq 
ba§lbo§ 

2 
co 2 
co 3 
2 
ei ca(s) - altm;altmm -I. 

ei 4+geni -I. 

2 
ei c7+iles -;2 2+dati [ca(a)] -[ +dsav]. 
ci 6t 6t+dati [ca(a)] -[ +dsav];l 1 + dati [ca(a)] -[ +dsav]. 
2 
ei 6+geni [(ca(s)+dssa2, ka~mcl)] -sl;ca(s) -. 
ei (3, 2+dati) (yapIlan, iizerindeki) -;(3, 2+dati) [ca(a)] - yapmak. 
2 



avaraci 
yiyasiz 
ben 
xal 
men 
bez 
baz 
bez 
cereyan 
carayan 
carayan 
hava axIm 
cetvel 
xatke§ 
cadval 
cevher 
cavhar 
cavahir 
cilt 
dari 
cild 
ciimle 
ciimIa 
biitiin 
~agda§ 

hamasr 
~agda§ 

~apa 

kiiliing 
I6vbar 

~at 

ba§-ba§a goy 
hiicum et 
~atal 

~angal 
aync 

~ekim 

tasriflanma 

~akma 

~er~6p 

~6r-<56p 

zir-zibil 
~evir 

tarciima et 

co 1 
ei - [ca(a)] 4+;4 [ca(d)] -. 
2 
co 2 
ei -rim] ca(a)+psls;- ca(v)+pels. 
2 
co 2 
ei -+iles ca(v);- dikmek. 
3 
co 10 
ei ell -1. 

ei - yapmak;hava -1. 
2 
co 5 
ei - (haz1rlamak, <51karmak). 
2 
co 13 
ci col. 
2 
ci 3+geni -i. 
ci c12+geni -i;-li [ca(a)] c12. 
2 
co 15 
ei - ca(n)+plrp. 
2 
ci . 
ei. 
2 
co 3 
co 17 
2 
ei ca(n)+accu [ca(d)] -. 
ei 3+dati [ca(d)] -. 
2 
ei -la yemek;-h (ytkamak, temizlemek, silmek). 
co 0 
2 
ci fiil[(in, inin)] -i;ca(v)+dsvv17+geni -i. 
co 0 
2 
ei -+accu yakmak. 
co 0 
3 
ci yaz1yt, metni -;o6+dati -;o6+abla -. 

151 



miihasiraya al 
~evirmek 

~lrp 

~arp 

al cal 
'" 

~igne 

~iyna 
~lgna 
daire 
daira 
idara 
manzil 
dal 
budag 
ixtisas 
dal 
uyguya dal 
dal 
cum 
darbe 
~evri1i§ 

zarba 
dava 
dava 
ideal 
dayak 
k6tak 
dayag 
daYl 
dayt 
arxa 
degerlendir 
ray yaz 
dayarlandir 
deneme 
esse 
tacriiba 
denk 
yiik 
tan 
derece 
termometr 
daraca 
derman 

co 1 
ci 2+accu -. 
2 
ci (c16, c79)+accu -. 
ci eI+ps+accu [ca(d)] -. 
2 
ci c23 [ca(d)] -. 
ci c63 [ca(d)] -;c72+i1es -. 
3 
co 24 
co 25 
co 64 
2 
co 3 
co 26 
3 
ci uykuya -. 
ci (dii§iinceye, hayaIe) -. 
ci c23+dati -. 
2 
co 25 
ci - (aIdl, yedi);( aIdlgl, yedigi) [ca( a)] -. 
2 
co 44 
ci (ulvi, yUce) [ca(a)] -;- i~in 3+accu feda etmek. 
2 
ci -en) (atmak, vurmak, yemek). 
ci -(1, la) [ca( d)] (koymak, yerJe§tirmek, slk1§t1rmak). 
2 
ci 01 +ps3s -Sl;-lm;-m. 
ci c28+geni -S1. 
2 
ci c29+accu -. 
ci . 
2 
co 30 
ci - [ca(d)] yapmak. 
2 
ci -i (yiiklemek, ta§lmak, kaldlrmak, slrtlanmak);ca(a) -. 
ci ca(s)+accu+loca -;hepsi -;- ca(n)+accu; 
2 
co 5 
ci ca( s) -;ka~ -. 
2 

152 



darrnan 
giic 
dik 
ak 
tik 
basdlrmak 
divan 
divan 
taxt 
diye 
deya 
ii<;iin 
diyet 
pahriz 
girov 
dizi 
seriya 
diiziirn 
dog 
dog 
dogul 
don 
trusu 
don 
dosya 
papka 
§axsi i§ 
duvar 
divar 
hasar 
dii§ 
dii§ 
yool 
diizen 
sis tern 
tartib 
efendirn 
bagl§laym 
bali 
bali beyirn 
ege 
gablrga 
yeya 
egitirn 

co 2 
ci. 
3 
ci 5 -;-+dsva 5. 
ci c31 -;-+dsva c31. 
ci (direk, diregi) [ca( d)] -. 
2 
ci - (okurnak, yazmak). 
ci -a (oturmak, yatrnak, uzanrnak);-dan kalkmak. 
2 
ci (ca(r), ca(a)) -. 
ci ca(v) -. 
2 
co 2 
ci -ini (6dernek, alrnak, verrnek). 
2 
co 24 
ci - [ca(a)] ca(n). 
2 
ci c33[ +geni] -+. 
co 2 
2 
ci -+ps;co4. 
ci - (yaprnak, yagrnak). 
2 
co 45 
co 44 
2 
ci ev+ps -I;ev[in] -I. 
ci c35+ps -1;c35[ +geni]-l. 
2 
ci. 
ci. 
2 
ci. 
ci . 
3 
ci. 
ci . 
ci. 
2 
ci - kernigi. 
co 5 
2 

153 



pedagogika 
dirbiya 
eglen 
laga goy 
ayIan 
egreti 
Dtari 
pozug 
ek 
§akil<;i 
go§ma 
el 
al 
el 
emsal 
amsalci 
niimuna 
en 
an 
en 
er 
asgar 
ki§i 
mard 
esne 
garilib ytgll 
asna 
e§ 
yolda§ 
tay 
etek 
tuman 
aHik 
fail 
fail 
miigasir 
fen 
tabHi t fanlari 
texnika 
fener 
mayak 
fanar 
flkIrda 
plggI1da 

co 26 
ci - vermek;-(siz, Ii) [ca(a)] 3;3+geni -i. 
2 
ci 3+iles -. 
co 0 
2 
ci - [ca(a)] c36. 
ci - [ca(a)] 2. 
2 
co 15 
ci. 
2 
co 7 
co 25 
2 
3 3+geni -. 
ci ca(n) [ca(a)] ca(n) -. 
2 
ci - ca(a). 
ci -+. 
3 
co 1 
ci . 
Cl • 

2 
ci 2 [ca(d)] -+. 
ci 1 [ca(d)] -+. 
2 
ci 3+ps -i. 
ci 2+ps3s -i. 
2 
co 16 
ci c73+geni -i. 
2 
co 15 
ci (eylem, cinayet, su<;, olay)+geni -i. 
2 
co 26 
ci. 
2 
ci deniz -i;-ci. 
co 0 
2 
ci c74 [ca(d)] -. 

154 



glmIlda 
okra 
o~erk 

Uitifa 
fi§ 
~ang~il 

~ek 
karto~ka 

fi§ek 
patron 
fi§ang 
garip 
qarib 
qariba 
gebe 
hamila 
bogaz 
g6bek 
gann 
g6bak 
g6vde 
as as 
g6vda 
g6zle 
g6zUi 
mii§ahida et 
gii~ 
giie 
~atin 
hak 
hagg 
hiigug 
han 
karvansaray 
xan 
har~ 

xare 
mahlul 
hava 
ahval-ruhiyya 
hava 
havale 
havaUi 
k6~iirma 

ei 3 [ea(d)] -. 
2 
co 30 
ci - anlatmak;-ya [ea(d)] giilmek;(komik, gii1iin~) [ea(a)] -. 
3 
co 10 
ei ea(s)+dsnn7 -;- vermek. 
ci -e (i§lemek, kaydetmek). 
2 
co 40 
ei havai fi§ek. 
2 
ci. 
ci. 
2 
ci - [ea(a)] 3;3 [ea(d)] - [+dsav]. 
ci - [ea(a)] 4+;4 [ea(d)] -[ +dsav]. 
2 
ei. 
co 0 
2 
co 15 
ci eo3;5[ +ps] -+ps. 
2 
ci. 
ci. 
2 
ei -Cps, loea, abla, geni, dati, aeeu, Iii, siiz);- kullanmak. 
ci -liik;- [ea(a)] ea(n);ea(d) -. 
2 
ci -1 tessis etmek. 
ei 3+geni -+ps;-+ps+accu vermek. 
2 
co 34 
ci co2. 
2 
ci - (toplamak, vermek, 6demek). 
ci - (kan§tlrmak, hazlrlamak, d6kmek). 
2 
ci -+ps. 
co 0 
2 
co 2 
ci - (gondermek, ~ekmek);- almak;- ea(d)+dati ula§mak. 

155 



haylr 
xeyr 
xeyir 
hesaph 
hesablanml§ 
tadbirli 
hoca 
xoca 
miiallim 
horla 
xorulda 
xorla 
hortum 
xortum 
§lang 
buragan 
hiicre 
hiiceyra 
hiicra 

i~ 
i~ 

2 
ci - [ca(d)] cevabl;negsen -. 
ci - yapmak;- dua etmek. 
2 
ci - [ca(a)] c22;c22 [ca(a)] -. 
ci - [ca(a)] 3;3 [ca(a)] -+te. 
2 
co 42 
co 43 
2 
ci 3 [ca(d)] -;uyku+loca -. 
ci 3+accu [ca(d)] -;3 [ca(d)] -no 
3 
ci fil[in] -u+. 
ci -la [ca(n)] (fl§kIrtmak, piiskiirtmek, sulamak). 
ci - [ca( d)] §iddetlenmek. 
2 
co 2 
ci . 
2 
ci c22[ +accu] -. 
ci (sigara, tiitiin, nargile) -. 
2 

156 

~ak 
ikramiye 
udu§ ci (piyango, ~ekili§)+(iles, abla) - (almak, kazanmak);(talihli, §ansh) 
- almak. 
miikafat ci ca(s) maa§ -;§irket [3+dati] - vermek;(i§~ilere, memurlara, 
personele, ~ah§anlara) [ca(a)] - (almak, vermek). 
iktidar 2 
h6kumat 
iqtidar 
ilahi 
dini mahm 
ilahi 
ilik 
ilik 
ilgak 
illet 
ilIat 
zahIatakan 
i§letme 
istehsah 
planla§dlrma 
miiassisa 
kahn 

co 25 
ci -(11, SIZ) [ca(a)] 3;- yetmek. 
2 
ci - (s6ylemek, ~almak, dinlemek, okumak);-yi. 
ci - [ca(a)] ca(n). 
2 
co 2 
ci - (dikmek, a~mak);-den ge~irmek. 
2 
co 2 
ci - [ca(a)] ca(n). 
2 

co 26 
co 47 
2 



galIn 
ba§hg 
kalkan 
galxana 
banzar bahg 
galxan 
kalp 
qalb 
saxta 
kanun 
kanon 
ganun 
kap 
gab 
iiz 
kara 
gara 
guru yer 
kavra 
tut 
gavra 
lay 
qiyma-qiyma 
dogramak 
gly 
koca 

boyiik 
kol 
gol 
gol 
§oba 
kompleks 
kompleks 
ruhi nogsanhg 
kon 
gon 
goyul 
kredi 
bore 
e'tibar 
kur§un 
giilla 
gurgu§un 

ci - [ca(a)] ca(n). 
ci - vermek. 
2 

157 

ci - bahg1;- (avlamak, yakalamak, yemek, temizlemek,aytklamak). 
co 1 
2 
ci co3. 
ci - para. 
2 
co 48 
co 44 
2 
ci -a (dokmek, koymak, aktarmak, koymak);c23 -1. 

ci ca(n)+geni -1;-(1, In1) ortmek. 
2 
ci - ca(n);-ca [ca(a)] ca(n). 
ci - pan;as1;-da ya§amak;-ya ayak basmak. 
2 
ci 6f [ca(d)] -;-+dsav 6f. 
ci 6t [ca(d)] -;-+dsav 6t. 
2 

ci c23+accu -. 
ci ca(n)+dati -. 
2 
ci o3+ps -+ps;-+dsnv. 
ci - ca(n). 
3 
ci c51[ +ps3s] -u;co3. 
ci -u (tutmak, ~ekmek, ~evirmek). 
ci (daire, §irket)+geni [ca(a)] -u;-unda ~ah§mak. 
2 
ci - [ca(a)] c55;c55 [ca(a)] -. 
co 2 
2 
ci c65 [ca(d)] -. 
ci c66 [ca(d)] -. 
2 
ci -(almak, vermek);- (miktan, limiti, haddi, izni) artmak. 
ci -+ps artmak;- kazanmak;3+geni [ca(a)] -. 
2 
co 40 
co 13 



kurum 
gurum 
dimiyyat 
ku§ak 
gUf§ag 
nasil 
kuyruk 
guyrug 
novba 
lisans 
ali tahsil 
diplom 
makam 
melodiya 
magam 
etmek). 
mani 
bayat1 
mane 
metin 
matn 
matin 
muhtar 
mahalla rahbarici 
mahalla dhbari 
muxtar 
nasIlsa 
haradansa 
albatta 
neden 
na u<;un 
sabab 
nefis 
nafs 
nafis 
not 
qiymat 
qeyd 
ocak 
yanvar 
ocag 
ocag 
olgun 
kamil 

2 
ci -lamak;- (bula§t1rmak, olmak). 
co 47 
2 
ei -+ps baglamak;co4. 
ci a6 - [ca(a)] c75. 
2 
ei 4[ +ps3s] -u. 
ei -da beklemek;-a girmek;- olmak;c59+loca+pron [ca(a)]-. 
2 
co 43 
ei -[ +ps][ +accu] (almak, g6stermek, var). 
2 
ei c50 -1. 

ei c76 -l;-mda (kar§Ilamak, ag1r1amak, misafir etmek, kabul 

2 
co 30 
ei - olmak. 
2 
ei. 
ei - olmak. 
3 
co 2. 
ei - muhtan. 
ei - [ca(a)] (y6netim, devlet, idare). 
2 
ci - ca(v)+(pate, pite). 
ci - ca(v)+(tlte, pite)+eech. 
2 
ci mood(int). 
ei c(n)+geni -i;c(a) -. 
2 
ci. 
ci - [ca(a)] ca(n). 
2 
co 43 
ci - (tutmak, almak); 
3 
ci -aYI;ca( s) YIh -1. 

co 5 
ci -da (pi§irmek, ISItmak). 
2 
ci col. 

158 



yeti§mi§ 
olumlu 
tasdiq 
pozitiv 
olumsuz 
inkar 
negativ 
oyna 
gImIlda 
oyna 
oyun 
oyun 
tama§a 
pek 
~ox 

sart 
pirin~ 

biiriinc 
diiyii 
pi§kin 
utanmaz 
yax§l bi§mi§ 
pul 
pul 
marka 
saf 
saf 
saf 
sap 
saplag 
sap 
sabr 
~apacag 

<5apacag 
satir 
ba§lamak). 
saz 
saz 
gaml§ 
sessiz 
samit 
sakit 
slfat 
sifat 

ci - [ca(a)] c52;c52 [ca(d)] -[ +dsav]. 
2 
ci - (fiil, ciimle;fiil, ciimle) -. 
ci - [ca(a)] c53;c53 [ca(d)] -[ +dsav]. 
2 
co 15 
ci - (fii!, cumle;fiil, ciimle) -. 
2 
ci c22[yerinden] -. 
ci 3 [(parti, disco, dugiin, ni§an)]+loca [ca(d)] -;-yan 3. 
2 
ci. 
co 56 
2 
ci. 
ci - [bir] c67;c67 [ca(a)] -. 
2 
co 13 
co 41 
2 
ci col. 
ci - [ca(a)] c46;c46 [ca(a)] -. 
2 
ci c49[ +ps3s] -u. 
ci - (vermek, almak, saymak); 
2 
ci. 
ci . 
2 
ci 5[+ps] -si;5+loca+pron-. 
ci c51[+ps3s] -1;c51+1oca+pron-. 
3 
co 5 
ci -la (kesmek, dogramak, dilimlemek). 

159 

ci (alt, ust) -;-dan ba§lamak;-l okumak;-a (yazmak,ge~mek,<5izmek, 

2 
ci -harf;harf -. 
ci col. 
2 
co 15 
ci 3+ps -1. 

2 
co 15 



keyfiyyat 
Sira 
novba 
Sira 
Sira 
SIVa 
suva 
~irma 
sinir 
sinir 
asab 
§ekerleme 
konfet 
miingiilama 
§Ik 
§Ig 
alternativ 
taban 
daban 
do§ama 
tabir 
yazma 
ta'bir 
tabm 
dasta 
dast 
komanda 
tekne 
gami 
takna 
temsil 
tama§a 
tamsil 
tezgah 
dazgah 
pi§taxta 
tokmak 
toxco 
tokmak 
tulum 
kombinezon 
tulug 
tu§ 
toxmagclg 

co 7 
3 
ci -da beklemek;-a girmek;- olmak;c59+1oca+pron [ca(a)]-. 
ci -da oturmak; -dan kalmak. 
ci -ya sokmak;-lamak;-yla ca(v). 
2 
ci. 
ci. 
2 
co 2 
ci 3+ps -[ler]. 
2 
ci - (yemek, hazlrlamak, satmak). 
ci - yapmak. 
2 
ci - [ca(a)] 3. 
ci -i (se~mek, tercih etmek, uygulamak). 
2 
ci co3. 
co 34 
2 
ci -ci;- etmek;riiya -i. 
co 0 
3 
ci - [ca(a)] 3;3+plrp [ca(a)] -. 
ci - [ca(a)] 2;2+plrp [ca(a)] -. 
ci c54 -1. 

2 
co 17 
ci hamur -si. 
2 
co 56 
ci - etmek. 
2 
ci c57 -1. 

co 58 
2 
5 
ci kapl -1. 

2 
co 16 
ci 4[+ps3s] -u. 
2 
ci c60[ +ps3s] -u. 

160 



161 

giila§da kiirayi 
yere dayma ci - (olmak, yapmak);-la (yenmek, kazanmak, yenilmek,kaybetmek, 
galip gelmek, maglub olmak). 
iinlii 2 
sait 
§ohratli 
vasat 
orta 
§arait 
vekalet 
nazirIik 
vakaIat 
vur 
giillaIa 
vur 
yaka 
yaxa 
sahil 
yah 
sahildaki ev 
sahil 
yapl 
bina 
biinya 
yargl 
qarar 
mahkama i§lari 
yazl 
maktub 
re§ka 
yiiz 
yiiz 
iiz 
yiiz 
iiz 
soy 
zar 
zar 
zar 

ci - harf;harf -. 
ci - [ca(a)] 3. 
2 
ci - [ca(a)] ca(n);-(l, ml) (aI, ver);- olam (aI, ver). 
ci ca(a) -. 
2 
ci c69+dati - etmek;c69+geni -i. 
ci 3+dati - etmek;3+geni -i. 
2 
ci c61 +iles -. 
ci c70+iles -;c70+accu [ca( d)] -;c77 -. 
2 
ci c78 -Sl. 

co 27 
2 
co 34 
co 27 
2 
co 71 
ci 3+ps -. 
2 
ci -ya varmak;3 hakkmdaki -;- belli olmak. 
ci -ya intigal etmek;- (yiiriitmek, goriilmek);- i§i. 
2 
co 30 
ci paranm - (taraf!, yiizii). 
2 
ci - [(tane, adet)] 7f -ii. 
ci 3+ps;2+ps -ii;yiiziim;yiiziin. 
2 
co 27 
ci 4 (derisi[ni], postu[nu]) [ca(d)] -;derisi -+dsva 4. 
2 
co 2 
ci - [+accu] [ca(d)] atmak. 



162 

E.S. Macro Collocation Info Definitions Lexicon 

Macro collocation info definitions lexicon is presented below in text form. Each line 

contains a single definition. The same notation is used in the collocation definitions as 

in Sections E.3 and EA. 

- [ca(a)] 3;3 [ca(a)] - [+dsav]. 
c75 -; - c75[ +dsav];- (yemek,i~mek,oynamak,konu§mak,ko§mak). 

1 +ps -;- kanamak. 
- (giymek,ytkamak,silmek). 
- (avlamak,avlanmak,yemek,i~mek). 

- (u~mak,siiziilmek,avlanmak,yakalanmak). 

- (siiriinmek,avlanmak,avlamak,vurulmak). 
- (yazmak,okumak,ele§tirmek,incelemek). 
- i<;mek. 
-+iles (avlamak,vurmak,oldiirmek). 
- (ekmek,yemek,biiyiimek). 
- (~almak,dinlemek). 

- (oynamak,seyretmek,izlemek). 
- yemek. 
- (pi§irmek,lSltmak,hazlrlamak). 
benim -. 
ca(a) -. 
ca(d) -. 
benim -+psls. 
-an ca(n);ca( d) -an. 
ca(d) -. 
ca(a) -la;-la ca(v);-la (beraber,birlikte). 
ca( d) -+pe2p;-+pe2p (dedik,diye );siz -+pe2p. 
senin -+ps2s. 
- otmek. 



163 

E.6. Identical Suf'tlxes Lexicon 

The identical suffixes lexicon is presented below in text form. Each line contains the 

information for a single suffix or suffix sequence. In each entry the generic symbol for 

the suffix or the generic symbols for the suffixes in the suffix sequence, and its collocation 

info definition are stored. "ei" means a collocation definition follows. The same notation 

is used in the collocation definitions as in Sections E.3 and EA. 

accu ei p3 -;ca(n)+loca+pron -; 
dsavl dsva6 ei - ca(n);ca(n) -[ +dsav]. 
dsavl dsvdl ei - ca(v). 
dsnall ci - ca(n). 
dsnd3 ei - ca(v). 
dsnv3 ei ca(d) -. 
dssa3 ci - ca(n);ca(n) -. 
dsval ei - ca(n);ca(n) -. 
dsvp3 ei - ca(n);ca(n) -. 
dsva7 dati ei ca(a) -;- dogru. 
dsvd3 ei (3+accu,3+dati) - ca(v). 
dsvd6 ei ca(n)+accu -;3 -. 
dsvn3 ps2s ei senin -. 
dsvn5 dsna3 ei - ca(n);ca(n) -. 
dsvn5 dsnn2 ei co2. 
dsvn5 psIs ei benim [ca(a)] -. 
dsvn5 ps2s ei senin -;ca(a) -. 
dsvn5 ps2s dsnall ei senin -. 
dsvn5 ps2s dsnd3 ei senin -. 
dsvn5 ps2s pelp ci senin -;biz -. 
dsvn5 ps2p ei sizin -. 
dsvn7 ei p3 -. 
dsvn7 dati ei p3 -. 
dsvnll ci ca(a) -;- ca(a). 

dsvn12 ci - (olayt,durumu,hareketi). 

dsw2 ci ca(n)+accu -. 
dsw5 ci ca(n)+abla -. 
dsw6 ci ca(d) -. 



164 

dsvv7 ci ca(n)+abla -. 
dsvv8 ci ca(d) -. 
dsvv9 ci ca(d) -. 
dsvvll ci ca(n)+abla -. 
dsvvl2 ci ca(d) -. 
dsvv27 ci ca(a) -;- ca(a). 
dsvv30 ci ca(d) -. 
geni ci p3 -;ca(n)+loca+pron -;- ca(n)+ps. 
geni pelp ci p3 -;ca(n)+loca+pron -. 
negp ci ca(d) -;ca(n)+accu -. 
pels ci ben -. 
pelp ci biz -. 
pe2p ci siz -;ca(d) -;ca(n)+accu -. 
psIs ci benim -. 
ps2s ci senin [ca(a)] -. 
ps2s case ci senin [ca(a)] -. 
ps2s pelp ci senin [ca(a)] -. 
ps2p ci sizin -. 
ps3s ci onun [ca(a)] -. 
ps3s case ci onun [ca(a)] -. 
tlte ci ca(n)(n) -;ca(d) -. 



165 

E. 7. Representative Listing of the Bilingual Sufllx Lexicon 

A representative listing of the bilingual suffix lexicon is presented below. The lexicon 

contains the transitions for nouns and adjectives. The symbol # indicates that a word 

category follows, and the number 1/0 next to the word category indicates whether a word 

in this category can be a valid final word (1) or not (0). The suffixes that can be affixed 

to the words in this category are stored in the following lines. The information for each 

suffix is stored in two consecutive lines. The fields in the first line are in the following 

order: 

1. Turkish suffix (an empty suffix corresponds to a free jump) 

2. final state of the transition 

3. flag associated with the suffix 

4. flag to indicate whether the suffix is affixed to the stem separately (1) or not 

(0) 

5. flag to indicate whether the suffix is a derivational suffix (y) or an inflectional 

one (c) 

6. flag to indicate whether the last consonant of the suffix is affected by the 

consonant mutation rule (1) or not (0) 

7. Generic suffix name 

8. The equivalent Azeri suffix 

In the next line the information for the vowel harmony rule and the consonant harmony 

rules are stored for the Turkish suffix and its equivalent Azeri suffix, respectively. 



166 

#nO ,1 
c1k ,n4, 14,0 y 1 dsnn1 c1k 
110000 000000 011000 000000 
C1 ,a3, 6,0 yO dsna3 q 
110000 000000 
C1 ,n5, 6,0 yO dsnn2 <51 
110000 000000 010000 000000 
et ,v4 , 13,0 Y 1 dsnv1 q 
000000 000000 
hane ,nO, 1,0 y 0 dsnn4 xana 
000000 000000 000000 000000 
kar ,aO, 5,0 yO dsna5 q 
000000 000000 
11k ,a5 , 11,0 Y 1 dsna6 11k 
010000 000000 011000 000000 
11k ,n2 , 11,0 Y 1 dsnn7 11k 
010000 000000 011000 000000 
name ,nO, 2,0 y 0 dsnn8 nama 
000000 000000 000000 000000 
sa ,v5 , 12,0 Y 0 dsnv2 q 
010000 000000 

,aO, 0,0 
,n1, 0,0 

#n1,1 
Ian ,v9 , 17,0 Y 0 dsnv3 q 
010000 000000 
Ia§ ,v4 , 18,0 Y 0 dsnv4 q 
010000 000000 
Ia ,v5 , 16,0 Y 0 dsnv6 q 
010000 000000 

,n6, 0,0 
#n2,1 
c1k ,n1 , 14,0 Y 1 dsnn10 elk 

110000 000000 011000 000000 

C1 ,n3, 6,0 y 0 dsnn11 q 

110000 000000 
,nl, 0,0 

#n3,1 
11k ,n1, 0,0 y 1 dsnn12 11k 

010000 000000 011000 000000 

,n1, 0,0 



167 

#n4,1 
CI ,n5, 0,0 y 0 dsnn13 q 
110000 000000 

,n5, 0,0 
#n5,1 
11k ,n1, 0,0 y 1 dsnn14 11k 
010000 000000 011000 000000 

,n1, 0,0 
#n6,1 
11 ,aD, 0,0 y 0 dsna9 q 
010000 000000 
SIZ ,aD, 0,0 y 0 dsna10 q 
010000 000000 

,n7, 0,0 
#n7,1 

,n8, 0,0 
,n9, 0,0 

#n8,0 
lar ,n9, 0,0 c 0 plrp q 
010000 000000 
#n9,1 
ca ,d1 , 21,0 Y 0 dsnd1 q 
110000 000000 
ca ,n22, 0,0 yO dsnd2 q 
110000 000000 
Im1Z ,n10, 0,0 c 0 ps1p q 
101000 100000 
1m ,nlO, 0,0 c 0 psIs q 
100000 100000 
1mz ,n10, 0,0 c 0 ps2p q 
101000 100000 
In ,n10, 0,0 c 0 ps2s q 
100000 100000 

,n1S, 0,0 
,n22, 0,0 

#n10,1 
ca ,a5, 0,0 y 0 dsnall q 
110000 000000 . 
ca ,d2, 0,0 yO dsnd3 q 
110000 000000 
SIZ ,* , 0,0 y 0 dsnn15 q 
010000 000000 

,n1S, 0,0 



168 

#n11,l 
dan ,n16, 0,0 e ° abIa dan 
110000 000000 010000 000000 
da ,n12, 0,0 e ° IDea da 
110000 000000 010000 000000 
mn ,n15, 0,0 e ° geni q 
010000 100000 
ya ,n14, 0,0 e ° dati q 
010000 100000 

Y1 ,n20, 0,0 e ° aeeu m 
010000 100000 010000 100000 

,n15, 0,0 
#n12,1 
ki ,n13, 0,0 e 0 pran q 
000000 000000 

,v43 , 0,0 
#n13,1 

,nS, 0,0 
,n16, 0,0 
,n17, 0,0 

#n14,1 
da ,n2l, 0,0 e ° IDea q 
010000 000000 

,v49, 0,0 
#n15,1 
ki ,n13, 0,0 e ° pran q 
000000 000000 

,n16, 0,0 
#n16,1 
da ,n2l, 0,0 e 0 IDea q 
010000 000000 

,v44, 0,0 
#n17,1 
ndan ,n16, 0,0 e ° abla q 
001000 000000 
nda ,nI2, 0,0 e ° IDea q 
001000 000000 
mn ,nI5, 0,0 e ° geni q 
010000 000000 
na ,n14, 0,0 e ° dati q 
010000 000000 
m ,n20, 0,0 e ° aeeu m 

010000 000000 010000 100000 

,n19, 0,0 



169 

#n18,1 
,nll, 0,0 
,n19, 0,0 

#n19,1 
ytIan ,d2, 0,0 c 0 iles ? 
010100 100000 
ytnan ,d2, 0,0 c 0 iles ? 
010100 100000 
yla ,d2, 0,0 c 0 iles q 
001000 100000 
#n20,1 
da ,n21, 0,0 c Oloca q 
010000 000000 
#n21,1 
#n22,1 
Sl ,n17, 0,0 c 0 ps3s q 
010000 100000 
#aO ,1 
al ,v8 , 38,0 Y 0 dsav1 q 
100000 100000 
dan ,d2 , 37,0 Y 0 dsad1 dan 
110000 000000 010000 000000 
ca ,a3, 0,0 y 0 dsaa1 q 
110000 000000 
ca ,d2 , 21,0 Y 0 dsad2 q 
110000 000000 
en ,d2 , 36,0 Y 0 dsad3 an 
000000 000000 000000 000000 

,a1, 0,0 
#a1,1 

,a2, 0,0 
#a2,1 

,a3, 0,0 
#a3,1 
11k ,a4 , 11,0 Y 1 dsaa3 11k 
010000 000000 011000 000000 

,nO, 0,0 
#a4,1 
ma ,d2, 0,0 yO dsad4 q 
101000 100000 

,nO, 0,0 
#a5,1 

,n6, 0,0 

#a6,1 



170 

E.8. Representative Listing of the Turkish Proper Nouns Lexicon 

A representative listing of the Turkish proper nouns lexicon, including its first 100 entries, 

is presented below in text form. Fields in an entry are separated by commas, and the 

information for each entry is given in a single line. The fields in each entry are in the 

following order: 

1. Turkish proper noun 

2. semantic features 

3. flags 

o and 1 represent the false and true boolean values, respectively. Proper noun semantic 

features are in the following order: 

human, nation, country, city(town, village, region), sea( ocean, lake, river), mountain, 

language 

aba ,1000000, 0111111100100 
abaiang ,0000000, 0000001110100 
abak ,1000000, 0111111100100 

abakan ,1000000, 0111111100100 

abakay ,1000000, 0111111100100 

abamiislim ,1000000, 0111111100101 

abamiisliim ,1000000, 0111111100101 

abana ,0000100, 0000001110100 

abant ,0000100, 0000001110100 

abay ,1000000, 0111111100100 

abaza ,0100000, 0111111100110 

aba<; ,1000000, 0111111100100 

abbas ,1000000, 0111111100100 

abbasi ,0100000, 0000001101011 

abd ,0000000, . 0000001110100 

abdal ,1000000, 0111111100100 

abdi ,1000000, 0111111100101 



171 

abdullah ,1000000, 0111111100100 
abdiilalim ,1000000, 0111111100101 
abdiilazim ,1000000, 0111111100101 
abdiilaziz ,1000000, 0111111100101 
abdiilbaki ,1000000, 0111111100101 
abdiilbari ,1000000, 0111111100101 
abdiilbasir ,1000000, 0111111100101 
abdiilbasit ,1000000, 0111111100101 
abdiilcabbar ,1000000, 0111111100101 
abdiilcebbar ,1000000, 0111111100101 
abdiilcelil ,1000000, 0111111100101 
abdiilcemal ,1000000, 0111111100101 
abdiilcevat ,1000000, 0111111100101 
abdiilezel ,1000000, 0111111100101 
abdiilferit ,1000000, 0111111100101 
abdiilfettah ,1000000, 0111111100101 
abdiilgaffar ,1000000, 0111111100101 
abdiilgafur ,1000000, 0111111100101 
abdiilgani ,1000000, 0111111100101 
abdiilhadi ,1000000, 0111111100101 
abdiilhak ,1000000, 0111111100101 
abdiilhakim ,1000000, 0111111100101 
abdiilhalik ,1000000, 0111111100101 
abdiilhalim ,1000000, 0111111100101 
abdiilhamit ,1000000, 0111111100101 
abdiilkadir ,1000000, 0111111100101 
abdiilkahhar ,1000000, 0111111100101 
abdiilkerim ,1000000, 0111111100101 
abdiillatif ,1000000, 0111111100101 
abdiilmecit ,1000000, 0111111100101 

abdiilmelik ,1000000, 0111111100101 

abdiilmennan ,1000000, 0111111100101 

abdiilmesih ,1000000, 0111111100101 

abdiilmetin ,1000000, 0111111100101 

abdiilnaslr ,1000000, 0111111100101 

abdiilvahap ,1000000, 0111111100101 

abdiilvahit ,1000000, 0111111100101 

abdiirrahim ,1000000, 0111111100101 

abdiirrahman ,1000000, 0111111100101 

abdiirrauf ,1000000, 0111111100101 

abdiirrezzak ,1000000, 0111111100101 

abdiirre§it ,1000000, 0111111100101 

abdiissamet ,1000000, ·0111111100101 

abdiissami ,1000000, 0111111100101 



172 

abdiisselam ,1000000, 0111111100101 
abdiissemih ,1000000, 0111111100101 
abdiissettar ,1000000, 0111111100101 
abdiizzeki ,1000000, 0111111100101 
abha ,0000000, 0000001110100 
abid ,1000000, 0111111100101 
abide ,1000000, 0111111100111 
abidin ,1000000, 0111111100101 
abidjan ,0000000, 0000001110101 
abil ,1000000, 0111111100101 
abit ,1000000, 0111111100101 
ablak ,1000000, 0111111100110 
abra§ ,1000000, 0111111100100 
abuzer ,1000000, 0111111100101 
abuzettin ,1000000, 0111111100101 
abu§ka ,1000000, 0111111100100 
ablr ,1000000, 0111111100100 
aca ,1000000, 0111111100100 
acabay ,1000000, 0111111100100 
acabey ,1000000, 0111111100101 
acahan ,1000000, 0111111100100 
acapulco ,0001000, 0000001110100 
acar ,1000000, 0111111100100 

acaralp ,1000000, 0111111100100 
acarbey ,1000000, 0111111100101 
acarer ,1000000, 0111111100101 

acarkan ,1000000, 0111111100100 

acarlar ,0100000, 0000001110100 

acarman ,1000000, 0111111100100 

acarsoy ,1000000, 0111111100100 

acartiirk ,1000000, 0111111100100 

acaroz ,1000000, 0111111100101 

acatay ,1000000, 0111111100100 

accra ,0000000, 0000001110100 

acem ,0100000, 0111111100111 

ac1an ,1000000, 0111111100100 

acun ,1000000, 0111111100110 

acunal ,1000000, 0111111100100 

acunalan ,1000000, 0111111100100 



173 

APPENDIX F. SAMPLE RUNS FOR THE TRANSLATOR 

Two types of sample runs for the translator are given below. First examples of single 

sentence translations are presented, and then an example of text translation is given. 

For each Turkish sentence the time it takes for the morphological parser to parse 

each word in the sentence (mtime) are presented together with the total translation 

time. All the results are in seconds. 

Turkish sentence : Ali eve geldi. 
Azeri sentence : Ali eva galdi . 

mtime = 0.39 
mtime = 0.17 
mtime = 0.11 

total time for translation = 2.10 

Turkish sentence : ayagml YIkadl. 
Azeri sentence : ayagml yudu . 

mtime = 0.66 
mtime = 0.22 

total time for translation = 2.31 

Turkish sentence : uydu yoriingede doniiyor. 
Azeri sentence : peyk orbitada doniir . 

mtime = 0.11 
mtime = 0.16 
mtime = 0.11 

total time for translation = 2.42 



Turkish sentence: bu anahtar kaplya uydu. 
Azeri sentence : bu a'Sar gaplya uydu . 

mtime = 0.17 
mtime = 0.44 
mtime = 0.44 
mtime = 0.17 

total time for translation = 4.73 

Turkish sentence : komutan alaYI tefti§ etti. 
Azeri sentence : komandir alaYI tafti§ etdi . 

mtime = 0.27 
mtime = 0.44 
mtime = 0.28 
mtime = 0.17 

total time for translation = 6.43 

Turkish sentence : komutan askerle alay etti. 
Azeri sentence : komandir asgarla lag etdi . 

mtime = 0.27 
mtime = 0.22 
mtime = 0.27 
mtime = 0.22 

total time for translation = 6.20 

Turkish sentence: alaydan hi'S ho§lanmaz. 
Azeri sentence : ( alay / lag) he'S xo§lanmaz . 

mtime = 0.49 
mtime = 0.6 
mtime = 0.33 

total time for translation = 4.27 

174 



Turkish sentence : pastan battlm. 
Azeri sentence : pasdan batdlm . 

mtime = 0.38 
mtime = 0.17 

total time for translation = 1.93 

Turkish sentence : senin pastan batml§. 
Azeri sentence : sanin tordun batml§. 

mtime = 0.27 
mtime = 0.44 
mtime = 0.11 

total time for translation = 5.10 

Turkish sentence : yetmi§ tane elbise sattIk. 
Azeri sentence : yetmi§ dana paltar satdlg . 

mtime = 0.22 
mtime = 0.27 
mtime = 0.22 
mtime = 0.22 

total time for translation = 4.83 

Turkish sentence: bu senin arabamn kaplsl. 
Azeri sentence : bu sanin arabanm gaplSl . 

mtime = 0.6 
mtime = 0.33 
mtime = 0.38 
mtime = 0.44 

total time for translation = 5.87 

175 



Turkish sentence: Hasan elmasllll yedi. 
Azeri sentence : Hasan almasllll yedi . 

mtime = 0.38 
mtime = 0.77 
mtime = 0.16 

total time for translation = 3.35 

176 

An example of text translation is presented below. Translation time for each sentence 

in the text are given together with the overall translation time of the whole text. All 

the results are in seconds. 

Turkish text: 

sabah erkenden kalktlm. kahvaltldan sonra evden glktlm. arabamla i§e vardlm. 
oldukga yorucu bir giindii. ak§am saatleri yollar slkI§lktI. dolaytslyla eve geg 
gelebildim. b6ylece giin bitmi§ oldu. 

Azeri text: 

sahar erkandan galxdlm. qahvaaltldan sonra evdan glXdlm. arabamla i§a vardlm. 
oldugca yorucu bir giindii. ax§am saatlan yollar S1X1§lkdl. dolaytslyla eva gec 
gaIabildim. beIaca giin bitmi§ oldu. 

translation time for the 1st sentence = 2.90 
translation time for the 2nd sentence = 3.73 
translation time for the 3rd sentence = 5.06 
translation time for the 4th sentence = 6.21 
translation time for the 5th sentence = 7.30 
translation time for the 6th sentence = 3.19 
translation time for the 7th sentence = 3.57 

overall translation time for the text = 31.98 
avreage translation time for a sentence = 4.57 



177 

REFERENCES 

1. Hutchins, W. J., Machine Translation: Past, Present, Future, Ellis HOlwood, 1986 

2. Nirenburg, S., J. Carbonell, M. Tomita and K. Goodman, Machine Translation: A 

Knowledge-Based Approach, Morgan Kaufmann Publishers, California, 1992. 

3. OZgiiven, M. K. and J. Tsujii, "An Approach to Machine Translation," Proceedings \, 

of the First Turkish Symposium on Artificial Intelligence and Artificial Neural Networks, 

Ankara, 1992. 

4. Stoop, A. M., "Transit in the World of Machine Translation: Towards an 

Automatic Translator for Dutch and Turkish," Proceedings of the Third Conference on 

Turkish Linguistics, Tilburg, 1987. 

5. Stoop, A. M., "ATMACA: Semantic Analysis by the Computer," Proceedings of the 

Fourth Conference on Turkish Linguistics, Ankara, 1990. 

6. Hankamer, J., "Morphological Parsing and the Lexicon," Lexical Representations 

and Processing, ed. W.M. Wilson, MIT Press, 1988. 

7. Kibaroglu, M. Okan, "Spelling Checking in Agglutinative Languages and an 

Implementation for Turkish," M.S. Thesis, Bogazi~i University, 1991. 

8. AkIn, H. L., S. Kuru, T. Gungor, i. Hamzaoglu and D. Arbath, "A Spelling 

Checker and Corrector for Turkish," Proceedings of the Second Turkish Symposium on 

Artificial Intelligence and Artificial Neural Networks, istanbul, 1992. 

9. Hankamer, J., "Finite State Morphology and Left to Right Phonology," Proceedings 

of the West Coast Conference on Formal Linguistics, Vol. 5, Stanford University, 1986. 

) 



178 

10. Solak A. and K. Oflazer, "Parsing Agglutinative Word Structures and Its 

Application to Spelling Checking for Turkish," Proceedings of the Fifteenth International 

Conference on Computational Linguistics, Vol. 1, pp. 39-45, Nantes, 1992. 

11. Ozgiiven, M. K., personal communication. 

12. Ko~, N., Yeni Dilbilgisi (The New Grammar), inkIlap Yaymlan, istanbul, 1990 

(in Turkish). 

13. Ercilasun, A. B. and A. M. AIiyev, Kar~zla~tzrmall Turk Lehc;eleri sozluga 

(Comparative Dictionary of Turkish Dialects), Kiilti.ir Bakanhgl, Ankara, 1991 (in 

Turkish). 

14. Bozkurt, F., Turklenn Dili (The Language of Turks), Cem Yaymlan, istanbul, 

1992 (in Turkish). 

15. Gungor, T. and S. Kuru, "Representation of Turkish Morphology in ATN," 

Proceedings of the Second Turkish Symposium on Artificial Intelligence and Artificial Neural 

Networks, istanbul, 1992. 

16. Oflazer, K. "Two-Level Description of Turkish Morphlogy," Proceedings of the 

Second Turkish Symposium on Artificial Intelligence and Artificial Neural Networks, 

istanbul, 1992. 

17. Gung6rdu, Z. and K. Oflazer, "A Lexical Functional Grammar for a Subset of 

Turkish," Proceedings of the Second Turkish Symposium on Artificial Intelligence and 

Artificial Neural Networks, istanbul, 1992. 



179 

18. TIll, E. and V. Akman, "Resolution of Pronominal Anaphora in Turkish," 

Proceedings of the Second Turkish Symposium on Artificial Intelligence and Artificial Neural 

Networks, istanbul, 1992. 

19. Boguraev, B. and T. Briscoe, Computational Lexicography for Natural Language 

Processing, Longman, 1990. 

20. Sowa, J. F., "Logical Structures in the Lexicon," Knowledge-Based Systems, Vol. 5, 

No.3, 1992. 

21. Tomabechi, H., "Direct Memory Access Translation," Proceedings of the 10th 

International Joint Conference on AI(IJCAI87), pp. 722-725, Milano, 1987. 

22. Nogier, J. F. and M. Zock, "Lexical Choice as Pattern Matching," Knowledge-Based 

Systems, Vol. 5, No.3, 1992. 

23. Charniak, E. and D. McDermott, Introduction to Artificial Intelligence, Addison-

Wesley, 1985. 

24. Kuru, S. and H. L. Alan, Internal Design Specification, Spelling Checking 

Software for Turkish to be Integrated with Dec ALL-In-1 Office Automation Package, 

Department of Computer Engineering, Bogazi<;i University, 1992. 

25. Pamuk, 0., Kara Kitap (Black Book), Can YaYIlllafl, istanbul, 1990 (in Turkish) 



180 

REFERENCES NOT CITED 

Gazdar G. and C. Mellish, Natural Language Processing in Prolog, Addison-Wesley, 1989. 

Guenthner, F., H. Lehmann and W. Schonfeld, "A Theory for the Representation of 

Knowledge," IBM Journal of Research and Development, Vol. 30, No.1, 1986. 

Jacobs, P. S., "TRUMP : A Transportable Language Understanding Program," 

International Journal of Intelligent Systems, Vol. 7, pp. 245-276, 1992. 

Guo, c., "Interactive Vocabulary Acquisition in XTRA," Proceedings of the 10th 

International Joint Conference on AI(IlCAI87), pp. 715-717, Milano, 1987. 

Bookman, L. A., "A Microfeature Based Scheme for Modelling Semantics," Proceedings 

of the 10th International Joint Conference on AI(IJCAI87), pp. 715-717, Milano, 1987. 

Sezer, A., "Turkish Adjective Clauses on Computer," Studies on Turkish Linguistics, pp. 

565-577, Middle East Technical University, Ankara, 1988. 

Ko~, S., "Turkish Adverb Clauses on Computer," Studies on Turkish Linguistics, pp. 579-

596, Middle East Technical University, Ankara, 1988. 

Turkqe SozlUk (Turkish Dictionary), Cilt I, Turk Dil Kurumu, Ankara 1988 (in Turkish). 

Turkqe Sozluk (Turkish Dictionary), Cilt II, Turk Dil Kurumu, Ankara 1988 (in Turkish). 


	OTEZ364001
	OTEZ364002
	OTEZ364003
	OTEZ364004
	OTEZ364005
	OTEZ364006
	OTEZ364007
	OTEZ364008
	OTEZ364009
	OTEZ364010
	OTEZ364011
	OTEZ364012
	OTEZ365001
	OTEZ365002
	OTEZ365003
	OTEZ365004
	OTEZ365005
	OTEZ365006
	OTEZ365007
	OTEZ365008
	OTEZ365009
	OTEZ365010
	OTEZ365011
	OTEZ365012
	OTEZ365013
	OTEZ365014
	OTEZ365015
	OTEZ365016
	OTEZ365017
	OTEZ365018
	OTEZ365019
	OTEZ365020
	OTEZ365021
	OTEZ365022
	OTEZ365023
	OTEZ365024
	OTEZ365025
	OTEZ365026
	OTEZ365027
	OTEZ365028
	OTEZ365029
	OTEZ365030
	OTEZ365031
	OTEZ365032
	OTEZ365033
	OTEZ365034
	OTEZ365035
	OTEZ365036
	OTEZ365037
	OTEZ365038
	OTEZ365039
	OTEZ365040
	OTEZ365041
	OTEZ365042
	OTEZ365043
	OTEZ365044
	OTEZ365045
	OTEZ365046
	OTEZ365047
	OTEZ365048
	OTEZ365049
	OTEZ365050
	OTEZ365051
	OTEZ365052
	OTEZ365053
	OTEZ365054
	OTEZ365055
	OTEZ365056
	OTEZ365057
	OTEZ365058
	OTEZ365059
	OTEZ365060
	OTEZ365061
	OTEZ365062
	OTEZ365063
	OTEZ365064
	OTEZ365065
	OTEZ365066
	OTEZ365067
	OTEZ365068
	OTEZ365069
	OTEZ365070
	OTEZ365071
	OTEZ365072
	OTEZ365073
	OTEZ365074
	OTEZ365075
	OTEZ365076
	OTEZ365077
	OTEZ365078
	OTEZ365079
	OTEZ365080
	OTEZ365081
	OTEZ365082
	OTEZ365083
	OTEZ365084
	OTEZ365085
	OTEZ365086
	OTEZ365087
	OTEZ365088
	OTEZ365089
	OTEZ365090
	OTEZ365091
	OTEZ365092
	OTEZ365093
	OTEZ365094
	OTEZ365095
	OTEZ365096
	OTEZ365097
	OTEZ365098
	OTEZ365099
	OTEZ365100
	OTEZ365101
	OTEZ365102
	OTEZ365103
	OTEZ365104
	OTEZ365105
	OTEZ365106
	OTEZ365107
	OTEZ365108
	OTEZ365109
	OTEZ365110
	OTEZ365111
	OTEZ365112
	OTEZ365113
	OTEZ365114
	OTEZ365115
	OTEZ365116
	OTEZ365117
	OTEZ365118
	OTEZ365119
	OTEZ365120
	OTEZ365121
	OTEZ365122
	OTEZ365123
	OTEZ365124
	OTEZ365125
	OTEZ365126
	OTEZ365127
	OTEZ365128
	OTEZ365129
	OTEZ365130
	OTEZ365131
	OTEZ365132
	OTEZ365133
	OTEZ365134
	OTEZ365135
	OTEZ365136
	OTEZ365137
	OTEZ365138
	OTEZ365139
	OTEZ365140
	OTEZ365141
	OTEZ365142
	OTEZ365143
	OTEZ365144
	OTEZ365145
	OTEZ365146
	OTEZ365147
	OTEZ365148
	OTEZ365149
	OTEZ365150
	OTEZ365151
	OTEZ365152
	OTEZ365153
	OTEZ365154
	OTEZ365155
	OTEZ365156
	OTEZ365157
	OTEZ365158
	OTEZ365159
	OTEZ365160
	OTEZ365161
	OTEZ365162
	OTEZ365163
	OTEZ365164
	OTEZ365165
	OTEZ365166
	OTEZ365167
	OTEZ365168
	OTEZ365169
	OTEZ365170
	OTEZ365171
	OTEZ365172
	OTEZ365173
	OTEZ365174
	OTEZ365175
	OTEZ365176
	OTEZ365177
	OTEZ365178
	OTEZ365179
	OTEZ365180



