s TR B S AR T,

NSLATION FROM TURKISH TO OTHER TURKIC LANGUAGES
AND

AN IMPLEMENTATION FOR THE AZERI LANGUAGE

by
[lker Hamzaoglu

B.S. in Computer Engineering, Bogazi¢i University, 1991

Submitted to the Institute for Graduate Studies in
Science and Engineering in partial fulfillment of
the requirements for the degree of
Master of Science
in
Computer Engineering
Bogazici University Library
i NN~

Bogazici University

1993

i

ACKNOWLEDGEMENTS

I would like to thank my thesis advisor Prof. Dr. Selahattin Kuru for giving me the initial
idea and for his encouragement during all the steps involved in the preparation of this
thesiS; Dr. Sumru Ozsoy and Dr. Cem Say for taking time out of their extremely busy
schedules to participate on thesis jury. I would also like to thank the following individuals.
Tunga Giingdr for his valuable comments about Turkish morphology; and the members of
the Spelling Checker and Corrector project team Dr. Levent Akin, Tunga Giing6r and
Duygu Arbath for participating in the development of the Turkish morphological parser

used in this thesis.

iv

ABSTRACT

Machine translation is the application of computers to the translation of texts from one
natural language into another. There are three different approaches proposed for machine
translation; direct translation, transfer-based translation and interlingua-based translation.
Since none of these approaches are suitable for the problem of machine translation from
Turkish to other Turkic languages, we propose a lexicon-based approach. As the sentence
syntax is similar for Turkish and the Azeri language, chosen as a representative of Turkic
vlanguages, we do not employ any syntactic analysis. Morphological and semantic analyses
are carried out for the translation. Translation can not be viewed as a word for word
translation even though the source and the target languages have a similar syntactic
structure. This is due to the existence of ambiguous words with multiple meanings. The
subject of the ambiguity in translation from Turkish to Azeri is explained and possible ways
to resolve the ambiguities are put forward. A translator from (Turkish to Azeri is
implemented using the proposed approach. The results obtained from the translator show
that the proposed approach is feasible for machine translation from Turkish to the Azeri

language.

OZET

Makine cevirisi bilgisayarlarin dogal bir dilden bir digerine metin cevirimine
uygulanmasidir. Makine c¢evirisi i¢in Onerilmis ii¢ degisik yaklagim vardir; dolaysiz
cevirim, aktarma temelli g¢evirim, gegis dili temelli ¢evirim. Bu yaklasimlarin hi¢ biri
Tirk¢geden diger Tiirk dillerine makine cevirisi i¢in uygun olmadigindan biz sozliik
temelli bir metot Onerdik. Tiirk¢e ve diger Tiirk dillerinin temsilcisi olan Azeri dilinin
sOzdizimi yapiarnt benzer oldugundan sOzdizimi analizi yapmadik. Ceviri igin
bicimbilimsel ve anlamsal analizler gergeklestirildi. Kaynak ve hedef dillerin sdzdizimi
yapilari benzer olsa bile makine ¢evirisi kelimeden kelimeye olarak diistintilemez. Bunun
sebebi birden ¢ok anlami olan belirsiz kelimelerdir. Tirkgeden Azericeye c¢eviride
belirsizlik konusu agiklandi ve bu belirsizlikleri ¢tzmek igin muhtemel yollar ortaya
kondu. Onerilen yaklagim tarzi kullanilarak Tiirkceden Azericeye bir ¢eviri programi

gerceklestirildi. Ceviri programmdan alman sonuglar Onerilen yaklagimin Tiirkgeden

Azericeye ceviri icin uygulanabilir oldugunu gosterdi.

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS.......cotttesestesenmisnesissassssisssosssssesssasssssssssesssssssssssessssesssessssssessssesssssses iii
ABSTRACTtiscssiscnncnensessassassssstesessesssssssssssssssssssssssssassssassssassstassssssssssssssssstosssassasassns iv
OZET ettt essasss s ssssnss s essssesassasssesassasssssnsesssssssssssssasasssssssssssssssssasasasssssssesssssasassnn v
TABLE OF CONTENTScsiiiitnencsssosissississssessenseasessessesstssasessensenstassassessstssstssstsssasssssses vi
LIST OF FIGURES ... stcctnisecsscninsassascnsasessesssssesssasesssesssssssssssssssesssssosssssessessesssssssssses X
LIST OF TABLESinrctsnnscascnsensensissassassnssssasesssssnsastasasessssessssssssessssassssssssssassssesssssssassssans xii
1. INTRODUCGTION ...ccuiiiiinininisissicsiscsisssssesssssisissssecsssssssssessesssssssnssssssessmssessssassssesssasssssesess 1
2. MACHINE TRANSLATION .uiicscninsenncniscsnressesessesssensestssessessssssesssessssssssmssssassssssssssas 4

2.1. Machine Translation within the Context of Natural Language Processing 4
2.2. Methods of Machine Translation ... ciscieeaesesecresseessesesssnens 8
2.2.1. Direct Translationeinnsiisieiniesssscsesseesessssssseserssensns 8
2.2.2. Transfer-based Translationecuciccncceeenseseeeninneenccsenncsessenesesaecenes 9
2.2.3. Interlingua-based Translation ... ceenesssseeneneeas 10
2.2.3.1. Knowledge-based Translationueeeeceececnneerenssccsesenenees 12
2.3. Machine Translation Research on Turkishccevceecnincniicnenccinencneniesceneannnne 13
3. MORPHOLOGICAL PARSING ...coovrrirtreirininecrnisiisisisisssiesseseessassssesssessssossasssosssasensns 15
3.1. Morphological Parsing in Agglutinative Languagesco.cooemvvveeenivcnricrcnccnnen 15
3.2. Research on Morphological Parsing of Turkishc.ccmeevivincncccnnnnreneeereenneens 17
4. MACHINE TRANSLATION FROM TURKISH TO OTHER
TURKIC LANGUAGESceresirerinsissiissnsienssssssssssssssissssssssscssssssssssssssssssessssessssssssssssss 18
4.1. Turkish and the Azeri Lgnguage ... 19
4.1.1. Alphabet, Lexicon and PhONOIOZY «......cceveeerserrmmusnissrsrssrsssnstsssnsesnssaenens 19

4.1.2. MOTPROIOZY vevvereererarasrsnsssisssscrensnsenusissssssssssssasassssassssssssassssssassssasssasssssssssnnes 21

4.2. Translation From Turkish to the Azeri Languagecocoecemeninecevnnniscsicncnaee 25
4.3. NO ADIGUILY CaSE .eucrremmiirimsnrsiencrsesncnsesercnscssissssssssssssssssssssssesssssssancasmsssessesssssescassas 27
4.4. Ambiguity in TTANSIALION weuuecerrrerrrencrreseensseenescnsescesnscsssseecsnnssessasessssssssssesessssssssanenas 27
4.4.1. Word Sense AMDIGUILY ..ccovemrereiencnnnrersenirinenisiaeenensecsecsesssasasssssssnssssnens 30
4.4.2. Morphological AMDIGUILIEScwreervveresciarsiscsisisnanisessssssssescnsesssssssissesens 32
4.4.2.1. Root Words that are Similar in Form to Stems with
Inflectional SUfIXEScececerrcorsererincrcncnnncscniareasneesesessennecsanseae 32
4.4.2.2. Root Words that are Similar in Form to Stems with
Derivational SUfiXesccveevevoceniriiereanerrenncsecieseeninnenensacanacscas 35
4.4.2.3. Suffixes with Multiple Surface Formscccoveveninnccnnance. 37
4.4.2.4. Similar SUFFIXES ...ccococrrrererceirnccernsiessinieesscnecenet s sesessccseenesens 39
4.4.2.5. 1dentical SUFLIXEScoveerrecrerermrecneceenenrineeeeecsscenessaesasnensscseerasaens 41
4.5. Methods Used in Resolving AMDIGUILIESeveerereerecerivcrnnrensnereeessessesseresseesssssssens 46
4.5.1. Semantic FEAtuTIEs ...ttt estn s essassasnesseses 46
TSI ©e) 161 o1 AN] 1107 113 (O 48
4.5.3. Collocation Info StrucCtureecvciccciicniiceceeccneerecene et 50
4.6. Resolving AMDIGUILIES ...overerrerereieissinieneiesstessstsnes sttt sen s s sssessnans 54
4.6.1. Word Sense AMDIGUILYccccocrvrrnirinniaiininniiseneceseeraseesesesesssesessnns 55
4.6.2. Morphological AMDIGUILIES ...cccereeissersesssersrersnssinsenersnssssesssensesssssessssasseseaes 57
4.6.2.1 Multiple ROOt WOILAS ...coceinnrererritensnennininsiiissnssssssssasssessssenns 57
4.6.2.2 Identical SULFIXESccvvirervmrinmirnnrieiniece e eeseseeresereesseseessseasasaesens 59
5. A TRANSLATOR FROM TURKISH TO THE AZERI LANGUAGE ...ccccecvevveene. 60
5.1. Overview Of the TTANSIAtOT ciciccnrececrvcisisniiseseissssissssisesssensessesssesesssssessasesssessaseses 60
5.2. LLEXICOMIS 1erecrerenrerrrssssnscscssscssnsessssrensasisissssasisessasssnsisnssssssssssssssracsssssssssssssnsasssseossasasasnsssases 64
5.2.1. Turkish ROOt WOIdS LEXICOM uvrrecrerreeririrmeresnreeesaceeeseaseesesssssesessassssessssses 66
5.2.2. Translation LEXICOM .uuvcnerisirisisreisiseisessisisnssessnnesseesessensaresmssesssssesessessons 67
5.2.3. Morphologically Ambiguous Root Words Lexiconce.ccveeereemsersesanene 69
5.2.4. Word Sense Arﬁbiguous Root Words Lexiconoeeerncenvceerccirnenens 70

5.2.5. Macro Collocation Info Definitions LexiCOmn wuuuuvvevvccererrseeeneeesnerrneeceenens 72

5.2.6. Identical SUfIXES LEXICOM ...cuururerusreerermsersernessensensescrsssssssessssnsssssnesassessense 72

5.2.7. Bilingual SuffiX LexiCOM wc.ccoseurerermsemsereccneecnessnsesisssssssnsmssssesssssseassanassenns 73

5.2.8. Turkish Proper Nouns LEXICONccveurenereesresserersnrnsresseseesssssessenerssasssescnee 74

5.3, AlGOTILIINS wu.eucuriairineiisesencaerncnenensessensessnsssssssessssssssasssssasassesssesssasssssssosssesesssssassosasaes 75
5.3.1. Main AIZOTItRIN cucerseenieececnccnsensenrienesnsesasesnsessessssassasesssssssssssnsssssssasssssenes 77

5.3.2. Modifying Translator LEXiCOMScecoerrerereressnsnescssasssssesesssosscassssansessesnns 80

5.3.3. Turkish MOTPhOIOIiCal PAISErccveerueseresurressessensenssesassessnssesassesssssssns 80

5.3.4. AffiXing SUFTIXESccovereusersernmscrussssensusesensesesrnsnssseasissnasissssssnssssssassssssssssarassns 81
5.3.4.1. AfiXing @ SUEIX .cvueeveriniccreemreeneenecseenseseeeeseseneenssesesesesnssnsenns 81

5.3.5. NO AmDIGUILY CASE w.cuvrircrercnruseassenrenrassesrasasesessessensersssssassassassssassssssassasssasses 82

5.3.6. Finding Collocation INAEXcueeenesersuemserscnseisnesescssessessessecsecnnsnsenses 82

5.3.7. Checking CollOCAtiOncueeuiuecesisniscsicsceeiinensessensssssssssssessasssssassassanas 85

5.3.8. Checking Macro Collocation Definitionc.ccccveeerereerresssereereessesesencens 89

5.3.9. Resolving Word Sense AmbDIGUILIES ...c.cccveeerereevereesesenensinsressassassensreennns 90

5.3.10. Resolving Morphological AMDIGUItIEScccoevvrmrmrrecrenceceneccrsesesssassersessene 91

5.3.11. Resolving Identical Suffix AMbIGUIIEScccerreeeeererersrrrerereernereerecrennnes 92

6. DISCUSSION AND EVALUATIONoinieiinnicenisissestsessusencasesescssssesssesssssessassasssssssaseas 93
6.1. Shortcomings of The Translator .. 93
6.2. Performance Evaluationemniiciiincnissesessssscssecnsasesssnsssssssessens 95
6.3. Further Improvements for the Translator ... 99
7. CONCLUSION AND RECOMMENDATIONScoiiecncccrmreeseseniessssessssssssssessesseses 101
7. 1. CONCIUSION ..currrcnceencsenssiriecnsncsssetsmiresssesiassesesssemssssssssssssasasssssesessenssesnesssesasaessesssssseseens 101
7.2. Lexicon Formation by Corpus Analysiscccveereisieniecsiecescneneneneeesescscesreesensons 102
7.3. Towards a Machine Translation System From Azeri to Turkishcocecereeennene 102

7.4. Towards a Machine Translation System From Turkish to Other

TUrkic LANGUAZES .cvveeeereveerenerssessssensssssssisinssssissetsssssssssessesssssssssssssssasasssasasssases 103

APPENDIX A. List of Word Sense Ambiguous WOTGSeeeseeeeeessrsessessssesesessssssssaressens 104
APPENDIX B. List of Morphologically Ambiguous WOIdScecceeeueeecsereeeseessessssesseessssesnns 105

B.1. List of Root Words that are Similar in Form to Stems with
Inflectional SULFIXESucrerrrmecernrmrereeserecennrmesneseassesssessessssasensesenssssenses 105

B.2. List of Root Words that are Similar in Form to Stems with

Derivational SUffiXescceuecsreeivceisnsnuncnimsescsneseseensencsssnssecsescssasans 113

B.3. List of Ambiguous Words due to Similar SUffiXeseeeeeesereeescnrresasssserssaencs 115
APPENDIX C. List of Morphological Parses Produced by Identical Suffixescceueene 116
APPENDIX D. List of the Specific Semantic FEAturesceunreerneeerernreencnereseneresssassssesenes 120
APPENDIX E. Listing Of the LEXICONS w..vueurieimrmrarnscnsesserenseressinsescnsescnsesssssssssessssssssasesssssnses 123
E.1. Representative Listing of the Turkish Root Words Lexiconceceeeveeeeersenenns 123

E.2. Representative Listing of the Translation LeXiCOnceceeecereverrreesrerennesrasnnerens 128

E.3. Morphologically Ambiguous Root Words LexiCom w...ceuevreceeenerreeneeerresinennns 132

E.4. Word Sense Ambiguous Root Words LexiComnccceeeveeeeenrerenniessseeesesessnenens 150

E.5. Macro Collocation Info Definitions LEXIiCOM «..ccverrereeersencrencneenenesenesserensesensnns 162

E.6. Identical SUfiXes LEXICOM wouvuuiiriuiiiinienccsireaiseacecseesesseseeeensssssssassesnssssesaneannns 163

E.7. Representative Listing of the Bilingual Suffix Lexiconccvuveveecreeecereruecncenene 165

E.8. Representative Listing of the Turkish Proper Nouns Lexiconcoeeeceveereeeecne 170
APPENDIX F. Sample Runs for the Translator ...t 173
REFERENCESovrrnseeesesenrecnsieneesisssssssisssssssasssessiossssssssssessinssensssasssassesssssssssssnssantsassassasns 177

REFERENCES NOT CITED ..ot ssssstsassessscsssseessesmesssssessssesessasssssnens 180

Figure 2.1.
Figure 2.2.
Figure 2.3.

Figure 4.1.

Figure 4.2.
Figure 5.1.
'Figure 5.2.
Figure 5.3.
Figure 5.4.
Figure 5.5.
Figure 5.6.
Figure 5.7.

Figure 5.8.

LIST OF FIGURES

Direct Translation
Transfer-based Translation
Interlingua-based Translation

Three ambiguous interpretations of the noun phrase

sicak et reyonu saucis

Algorithm for Finding Identical Suffixes

Overall Structure of the Translator

The Overall Algorithm of the Translator

Main Algorithm

Algorithm for Modifying the Translator Lexicons
Algorithm for Affixing a Suffix

Algorithm for No Ambiguity Case

Algorithm for Finding Collocation Index

Algorithm for Checking Collocation

Page

11

28

43

61

76

77

30

81

82

82

85

Figure 5.9. Algorithm for Checking Macro Collocation Definition
Figure 5.10. Algorithm for Resolving Word Sense Ambiguity
Figure 5.11. Algorithm for Resolving Multiple Root Words Ambiguity

Figure 5.12. Algorithm for Resolving Identical Suffix Ambiguity

39

90

91

92

LIST OF TABLES

Table 4.1. The appearance of a sentence in Turkic languages

Table 4.2. The usage of the suffix -1A in the Azeri language

Table 4.3. Examples of ambiguous words that can be ignored

in translation from Turkish to Azeri

Table 4.4. Examples of ambiguous words that can be ignored

in translation from Turkish to Azeri

Table 4.5. Semantic features for nouns, pronouns and proper nouns

Table 4.6. Subcategories of parts of speech

Table 4.7. Symbols used in collocation info definitions

Table 4.8. Generic suffix names

Table 5.1. The content of the translator’s lexicons

Table 6.1. Memory requirement of the translator

Page
18

22

34

36

46

47

52

53

65

97

it

1. INTRODUCTION

The motivation for Machine Translation(MT) is very clear. Translation among languages
is economically and politically vital in the modern world. Translation among European
languages, for instance, is a requirement for the European Community (EC). The
EUROTRA project [1] of the Commission of European Countries for machine
translation between European languages proves this argument with its grant of 16 million
ECU (about 12 million dollars) by the Council of Ministers for a five and a half year
program of research and development. The U.S. and Japanese economies rely on export
markets in a large number of languages, where English alone does not suffice. The
emergence of new Turkish Republics in Central Asia following the collapse of the former
Soviet Union created a potential market for machine translation between Turkish and

the other Turkic languages.

Scientists, technologists, engineers, economists, agriculturalists, administrators,
industrialists, businessmen and many others have to read documents and have to
communicate in languages that they do not know. In addition to the high cost and
unavoidable delays of human translation, human translators are also unable to cope with
the ever increasing volume of material which has to be translated. With this indisputable
need for massive, timely and inexpensive translation, the dream of many computational

linguists and computer scientists has been to achieve fully automated machine translation.

Translation between Turkic languages is a new area possibly with interesting problems,
e.g. seeing if conventional approaches will work for the problem, investigating different
sorts of ambiguities in Turkish, inveStigating appropriate lexicon structures, and seeing
how the close relationships among the Turkic languages can contribute to reduce the
complexity of translation process. Moreover, Natural Language Processing(NLP) of

Turkish is an emerging area in Turkish NLP research communities, and translation

system is a good testbed for NLP applications.

2

In this respect we studied the problem of machine translation from Turkish to other
Turkic languages. Since Turkic languages are agglutinative languages, we have actually
worked on the problem of translation from an agglutinative language to another one.
Although there is a considerable amount of literature on the problem of machine
translation, almost none is related with this problem. To the best of our knowledge this

work has been the first attempt in this field.

This thesis discusses the problem of machine translation from Turkish to other Turkic
languages. Up to now, three major approaches were proposed in the literature for
machine translation, direct translation, transfer-based translation and interlingua-based
translation. These approaches differ in the scope of translation they cover. Since none
of these traditional approaches is suitable for our problem, we propose a lexicon-based
approach to achieve the translation. We have compiled those techniques of the
conventional approaches that can be utilized in this approach and incorporated them into

the approach.

As the sentence syntax is similar for Turkish and the Azeri language, representative of
other Turkic languages, we do not employ any syntactic analysis. Even though the source
and the target languages have similar syntactic structure, translation can not be viewed
as a word for word translation. This is due to the existence of ambiguous words
conveying multiple meanings. The subject of ambiguity in translation from Turkish to
Azeri is investigated, different sorts of ambiguities and lexical data that cause those
ambiguities are identified, and possible ways to resolve them are put forward. A practical

machine translation system for translation from Turkish to Azeri is developed using the

proposed approach.

The second chapter includes the discussion of machine translation, and practical machine
translation systems developed for Turkish. The third chapter discusses the problem of
morphological parsing for agglﬁtinative languages which is especially critical for this thesis

work. Chapter 4 presents the characteristics of Turkish and the Azeri language from

3

translation perspective and discusses the approach proposed for solving the problem of
machine translation from Turkish to Azeri. Chapter 5 describes the implementation of
the translator in terms of the contents and structures of its lexicons, and the algorithms.
Chapter 6 puts forward the shortcomings of the translator, its performance evaluation
and further improvements. The last chapter gives an idea of further developments and

summarizes the work accomplished in a final conclusion section.

Throughout the thesis, all the Turkish and Azeri expressions are given in italics, and the
meaning in English immediately follows in brackets, e.g. ayak (foot). The suffixes are
given together with the symbol -, and capital letters and the symbol () are utilized to
represent the allomorphs of the suffixes as explained in Section 4.1.2, e.g. -(y)A
(dative). The symbol - coming just after a Turkish word represents a verb, e.g. gel-(to
come) and kosg-(to run). Since, in this thesis we deal with machine translation from
Turkish to Azeri, the terms "translation" and "machine translation from Turkish to Azeri"

are going to be used interchangeably.

2. MACHINE TRANSLATION

Machine translation is the application of computers to the translation of texts from a
natural language into another. There are three different approaches proposed for MT.

Machine translation and the proposed approaches are discussed in this chapter.

2.1. Machine Translation within the Context of Natural Language Processing

Natural language processing 1is an area of artificial intelligence that deals with
automating the various language-oriented tasks that are currently performed
predominantly by humans. The domain of NLP includes applications such as machine
translation, language understanding, language generation, natural language interface to
databases and expert systems, morphological and syntactic parsing, spelling checking,

grammar checking and thesaurus.

One of the first linguistic applications of computers to be envisaged and funded was
machine translation. The general task of machine translation can be described very simply

as follows [2]:

"Feed a text in one language (SL, for source language) into a computer and, using
a computer program, produce a text in another language (TL, for target language)
such that the meaning of the TL text is the same as the meaning of the SL text."

The history of machine translation goes back to late 1940s. Starting with the so-called
Weaver Memorandum [2] which was claiming the feasibility of MT, different scientific

groups in Europe and USA worked on the field. Through the 1950s and into the

following decade, research in MT continued and grew.

5

The first generation machine translation programs were constructed on rudimentary
linguistic theories. They ignored the fact that meaning was essentially involved in the
translation process, and employed word-by-word substitution to achieve the translation.
Because of these reasons, their results were disappointing. This caused the release of
famous ALPAC (Automatic Language Processing Advisory Committee) report [2] in USA
in 1966, evaluating the practicality of contemporary MT research. The negative comments

of this report drastically reduced the level of support for MT research.

Together with the failure of first generation machine translation programs, it was realized
that machine translation is not a trivial process. It needs well-formed linguistic theories
and supporting products provided by other natural language processing applications such
as morphological analysis, syntactic analysis, semantic analysis, language understanding

and language generation.

The most obvious deficiency of any word for word translation is that the order of words
in the resulting target language text is more often wrong than correct. The solution of this

problem demands some kind of syntactic analysis of the input texts.

The second problem is that there are rarely one to one correspondences in the
vocabularies of natural languages. In most cases, a particular SL word may correspond
to a number of different TL words. MT systems either print out all the possibilities or
attempt to select the one which is most appropriate for the specific text under
translation. Some kind of morphological, syntactic or semantic analysis or a combination

of these should be taken into account to resolve this kind of ambiguities.

The number of ambiguous words in the source language text can be easily restricted by
choosing a sufficiently narrow subject domain. This attitude in MT is known as the
sublanguage approach. In this way, instead of the general language, MT translation

systems are designed for a specified subfield of the language.

6

Despite the ALPAC report, considering these facts MT research and development
continued in Europe and later in Japan. Notable MT achievements, with the SYSTRAN
and EUROTRA projects in Europe and the Mu project at Kyoto University in Japan,
gradually led to a revival of MT research in USA.

Until very recently, most MT systems necessitate postediting, improvement of the results
of machine translation by a human. To decrease the postediting requirement, some MT
systems allow human interaction during translation process, which is known as human
assisted machine translation. One of the main research and development objectives in this
field is to enhance the power of MT systems so that the extent of postediting is reduced

and, eventually the need for it is eliminated.

Together with the spectacular advances in computer technology and computational
linguistics, MT researchers and supporters are now optimistic about reaching the ultimate

goal of machine translation, constructing a fully automated machine translation system.

Although the major objective of MT researchers is to achieve fully automated machine
translation, many of the methods, techniques, and tools of machine translation can be
used to build sophisticated tools for human translators, e.g. terminology banks, spelling
and grammar checkers, text production facilities. Human translation with the use of these

sophisticated tools is known as machine aided translation.

In machine translation there have been several efforts to develop procedures for
evaluating the quality of the results produced by machine translation systems. Some
quality and performance measures were proposed for this purpose. The following is a set

of these performance metrics [2] :

2.

. Linguistic generality: the number of source and target languages covered by the

system and the extent of coverage in the grammar and the general vocabulary.

Application-domain generality: the number of subject domains covered by the
system and the extent of coverage of each domain.

. Degree of automation: the extent to which human must intervene in the

translation.

. Semantic accuracy: the degree to which the translated text expresses the same

meaning as the source text.

. Intelligibility: the degree to which the translated text is easily understandable by

readers of the target language without access to the source text.

6. Appropriateness: the degree to which the target text is stylistically appropriate

for its intended audience.

7. Domain and language portability: the ease with which additional subject domains

9.

10.

11.

12.

and languages can be added.

. Extensibility: the degree to which an MT system provides for seamless and

incremental extensions to the grammatical and lexical coverage of the languages
and subject domains already in the system.

Improvability: the degree to which a system permits changes and enhancements
to the level of automation as domain or lexical knowledge improves, without
significantly compromising the quality of the translation.

Ergonomics: the extent to which the user interface provides maximum
communication bandwidth, maximal clarity and minimal opportunity for
EITOorS.

Integrability: the extent to which an MT system can be an integral component
of a complete authoring and document-production facility.

Software portability: the ease with which the MT software can be ported to other
hardware platforms, other operating systems and so on.

2.2. Methods of Machine Translation

Machine Translation methods fall into three major categories [1,2,3] :
1. direct translation
2. transfer-based translation

3. interlingua-based translation

The central point of difference among them is on the depth of source and target

language analysis. These methods are discussed below.

2.2.1 Direct Translation
Direct MT systems are the first generation machine translation systems [1,3]. They
translate from a specific source language to a specific target language without any

intermediate steps as shown in Figure 2.1.

Translation

»
»

Text in Text in
Source Language Target Language

Figure 2.1. Direct Translation

They realize word for word translation relying on the assumption of finding direct
correspondences between all the lexical items of the source and the target language. They
assume that the SL texts need not be analyzed any more than strictly necessafy for
resolution of ambiguities. They have been highly criticized for their ad hoc techniques to

resolve the ambiguities and they lost their scientific standing.

9

Although some of the current commercial MT systems, notably SYSTRAN, were built
using the direct MT technology, they are currently being converted to employ the other

approaches.

2.2.2 Transfer-based Translation

Transfer-based MT systems also translate from a specific language to another specific
language [1,2,3]. However, they accomplish the translation process in three steps as
illustrated in Figure 2.2.

1. source language analysis

2. source-to-target language transfer

3. target language generation

Source language Target language
dependent dependent syntactic
syntactic representation representation
Transfer
A
Analysis Generation
\4
Text in Text in

Source Language Target Language

Figure 2.2. Transfer-based Translation

In the first step, syntactic analysis is performed on the source language text to transform
it into a syntactic representation using the source language lexicon and the grammar.
Then, source language dependent syntactic representation is transferred into a

corresponding syntactic representation specific to the target language. This stage of

10

transforming standard syntactic structures is implemented through a bilingual lexicon and
the grammars of both languages. In the last step, target language text is produced from
the syntactic representation of the target language by utilizing the target language

dictionary and the grammar.

In the transfer approach only those ambiguities inherent in the source language are
tackled in source language analysis. Differences between languages are handled during

transfer.

2.2.3 Interlingua-based Translation

Transfer systems are not suitable for multilingual translation, since a different transfer
unit is necessary for each pair of languages. If there are n languages involved and
translation is to be from and into each of them, then a system would need n(n-1) binary
transfer units. The solution of this problem is to separate the source and the target
languages in the translation process. This idea is the basis of inferlingua approach [1,2,3].
In the interlingua approach, the translation system for n languages would need just 2n
transfer units, since source and target languages are never in contact. Interlingua systems

basically involve two stages for translation as shown in Figure 2.3.

1. source language analysis

2. target language generation

11

»
»

Representation in
Interlingua
Analysis Generation

Source Language Target Language

Figure 2.3. Interlingua-based Translation

In the first stage the meaning of the source language text is represented in an
unambiguous formal artificial language, interlingua. Then in the second stage this
meaning is expressed in target language using the lexical units and syntactic constructions
of the target language. Procedures for source language analysis are intended to be SL
specific and not devised for any particular TL in the system. Similarly, target language

generation is intended to be target language specific.

The major distinction between the interlingua-based and the transfer-based systems is the
attitude toward comprehensive analysis of meaning. Transfer-based systems achieve
translation without deep understanding of the source language text. However, interlingua
approach necessarily requires complete resolution of all ambiguities and anomalies of SL

texts so that translation should be possible into other languages.

The most famous example of interlingua-based machine translation systems is the Eurotra
project [1]. Eurotra, started in 1978, is an ambitious, well-supported project aiming to
provide MT among all official European Community languages (Danish, Dutch, English,
French, German, Greek, Italian, Portuguese and Spanish) . The project is still under

development, and it represents a mile stone in MT research.

12

2.23.1 Knowledge-based Translation

In the last few years, knowledge-based approach is proposed as a descendant of
interlingua oriented machine translation [2]. This new approach is developed in the
Center for Machine Translation at Carnegie Mellon University. The central principle
underlying this approach is the stress on functionally complete understanding of the
meaning of the source text as a prerequisite to successful translation. Thus, it requires
a much deeper level of source language analysis in order to be able to translate between

a number of languages.

Since it belongs to the class of interlingua-based systems, translation within knowledge-

based systems is also a two step process, analysis and generation.

The main difference between the interlingua-based approach and the knowledge-based
approach is on the depth of source language analysis and the reliance of knowledge-
based systems on explicit representation of world knowledge. Knowledge-based machine
translation systems must be supported by world knowledge. They utilize a model of the
world, an ontology, including knowledge about basic types of objects and events in the
physical world, e.g. a car is a kind of vehicle, relationships among them, e.g. "is-a",
"part-of", and particular instances of object types, e.g. IBM is an instance of the object
type "corporation", and election of Bill Clinton as president of the United States is an

instance of the complex action "to_elect”.

With special attention paid to acquisition of large knowledge bases and with the advent
of new tools the practicality of the knowledge-based approach is growing steadily. Since
a totally comprehensive analysis of meaning is not yet feasible, and the attainment of this
goal will remain an objective of computational linguistics for years to come, a practical

knowledge-based system will attain a lesser depth of understanding.

13

2.3. Machine Translation Research on Turkish

Up to now, there have been several works on the machine translation problems involving
Turkish either as a source language or as a target language. We examined the following

two works of this kind.

The work of Ozgiiven and Tsujii [3] is about MT from English to Turkish restricted in
the domain of the news reports sublanguage. They employ a kind of transfer-based
method for translation. The translation is carried out by translating phrases as a whole,
and then assembling them. The translator first locates the phrases in the input text with
Phrase Analysis module, and then translates each phrase with the Phrase Translation
module. Finally, they form the Turkish sentences by assembling the translations of
phrases in the correct syntactic structure with the Structural Translation module. The
major shortcoming of the translator is the fact that they don’t attempt to resolve the
lexical and structural ambiguities. Although they state that the results obtained from the
translator were good, they also remind that these results were produced by only a small

model of the actual design.

Another work on the problem of machine translation involving Turkish is the Transit
(Translation System Into Turkish) project started in September 1985 in the Department
of Computational Linguistics of the University of Nijmegen [4,5]. It is a large scale
project aiming to achieve machine translation from Dutch to Turkish. They utilize
transfer-based method. In this respect, they develop several programs to realize each
phase of the translation. The programs called AMAZON and CASES are responsible for
the source language analysis. They syntactically and semantically analyze the Dutch
sentences and provide the semantic representations for them. On the other hand,
programs called AMATUMOR (Automatic Turkish Morphological Analyzer),
AMATURKA (Automatic Turkish Syntactic Analyzer) and ATMACA (Semantic
Analyzer for Turkish) are responsible for the same processes for Turkish. They are

currently working on the integration of these two groups of by-products to achieve the

14

translation.

As far as we know no results are published on their translator yet. However, the results
obtained from ATMACA are available. Their Turkish morphological analyzer
AMATUMOR determines the morphological ambiguities and ATMACA tries to resolve

them by utilizing semantic features.

Since Turkish and its dialects are agglutinative languages, we have actually worked on the
problem of translation from an agglutinative language to another one. The translation
systems explained above do not involve agglutinative languages (see Chapter 3) as both
the source and the target language. In both systems only the target language, Turkish, is
agglutinative. To the best of our knowledge, there is no work done on machine
translation research where both the source and the target languages are agglutinative, and
on the problem of machine translation from Turkish to other Turkic languages. Therefore
this work is the first attempt on machine translation from Turkish to other Turkic

languages as well as from an agglutinative language to another one.

15

3. MORPHOLOGICAL PARSING

Morphological parsing is an area of natural language processing as stated in Section 2.1.

It is utilized to determine the constituents of a word, its root and affixes.

3.1. Morphological Parsing in Agglutinative Languages

Morphological parsing is especially critical for agglutinative languages like Turkish, Finnish,

Hungarian, Quechua and Swabhili.

In agglutinative languages words are combinations of several morphemes. There is a root
and several suffixes are affixed to this root to form new words, either modifying or
extending its meaning. In agglutinative languages stem formation by affixation to
previously derived stems is extremely productive. A given stem, even though itself quite
complex, can serve as a basis for even more complex words. Consequently, agglutinative
languages contain words of considerable complexity, and parsing such languages requires

a detailed morphological analysis.

The phonemes and morphemes are two basic constituents of the morphology in
agglutinative languages. Their definitions are as follows. A phoneme is the unit of sound,
and allophones of a phoneme are its variant forms as conditioned by position or adjoining
sounds, e.g. the allophones of the Turkish phoneme 1 are 1, i, u, &. A morpheme is the
smallest unit of speech bearing a meaning, and the allomorphs of a morpheme are its
different forms it might take according to the context it appears, e.g. the allomorphs of

the Turkish morpheme -lAr are -lar and -ler.

16

In agglutinative languages, morphotactic rules determine the way morphemes are ordered
to form a word. A given morpheme may take a shape, one of its allomorphs, dependent
on its morphological and phonological environment. The morphophonemic alternation

rules determine the surface form of the morpheme, namely its allomorph.
Morphological aﬁalysis methods fall into two major categories:

1. Listing methods

2. Computational methods

Listing methods are not suitable for agglutinative languages as discussed by Hankamer[6]

and Kibaroglu[7]. Computational methods are divided into two categories:

1. Left-to-right parsing (Root matching method)

2. Right-to-left parsing (Suffix stripping method)

Left-to-right parsing is more suitable for agglutinative languages than right-to-left parsing,

as stated by Hankamer[6] and Kibaroglu[7].

In the computational methods, there are two representations of the language, lexical and
morphological. While lexical representation includes the vocabulary of the language,
morphological representation contains the rules of the language which determine the way

morphological compounds come together.

In left-to-right parsing, the parser employs a finite state transition network representation
of morphotactics and a treatment of morphophonemic alternations. Parsing proceeds as
follows. Roots are sought in the lexicon that match initial substrings of the word, and the
grammatical category of the root determines what class of suffixes may follow. When a
suffix in the permitted class is found to match a further substring of the word,

grammatical information in the lexical entry for that suffix determines once again what

17

class of suffixes may follow. If the end of the word can be reached by iteration of this
process, and if the last suffix analyzed is one which may end a word, the parse is

successful.

3.2. Research on Morphological Parsing of Turkish

Morphological parsing has attracted relatively little attention in computational linguistics
until recently. The reason seems to be the fact that virtually all parsing research has been
concerned with English, or with other languages morphologically similar to English. Since
in these languages words contain only a small number of affixes or none at all, almost
all of the parsing models for them assume either that there is no real need for
morphological parsing or that any such morphological parsing, recognizing this small

number of affixes, will be trivial.

However, as explained in above section, this is not the case with agglutinative languages,
hence for Turkish. Agglutinative structure of Turkish requires an extensive analysis of its
morphology to build a morphological parser for parsing Turkish words. So far, several
researchers worked on the problem of morphological parsing of Turkish and produced
morphological parsers for parsing Turkish words. Kibaroglu[7}, Akin et. alL[8],
Hankamer[9] and Solak and Oflazer[10] are among those researchers. In all of these
works, the parsers employ left-to-right parsing method. The morphological parser
produced in the project "A Spelling Checker and Corrector for Turkish" [8] is adapted

and used in the translator developed in this work.

18
4. MACHINE TRANSLATION FROM TURKISH TO OTHER TURKIC
LANGUAGES

This chapter discusses machine translation from Turkish to other Turkic languages. Since
Turkic languages are agglutinative languages, this discussion is actually about the problem

of machine translation from an agglutinative language to another one.

Azeri Language is chosen as a representative of the other Turkic languages, since it is
closer to Turkish more than all the others. The example in Table 4.1 illustrates this

similarity [11]. Note that capital letters represent characters not available in the Latin

alphabet.
Table 4.1. The appearance of a sentence in Turkic languages
Sentence Language
abla-s1 Yildiz-la telefon-da konus-uyor. (Turkish)
boyiik baci-s1 Yildiz-]a telefon-da danig-ir. (Azeri Language)
eceke-si Yildiz bilen telefon-da giirles-Yar. (Turkmen Language)
apa-si Yildiz bilAn telefon-Da s6zlAs-AyApti. (Uzbek Language)
apa-s1 Yildiz-ben telefon-da styles-ip tur. (Kazakh Language)
ece-si Yildiz menen telefon-da siiylég-up catti. (Kirghiz Language)
apa-s1 Yildiz bilAn telefon-da s6ylAs-A. (Tatar Language)

Of the three major approaches to machine translation, namely direct translation,
transfer-based translation and interlingua-based translation, none fits this problem alone.

So we propose a lexicon-based approach to achieve the translation.

19

4.1. Turkish and The Azeri Language

In this section we discuss the key features of Turkish and the Azeri Language. Turkish
is an agglutinative language in which syntactic relations between words are expressed
through discrete suffixes. Turkish is a subject-object-verb language, however the order of
phrases may be changed to emphasize certain constituents of the sentence. The main
constituent of a Turkish sentence is verb. The usage of other constituents is optional and
dependent on the properties of verb [12]. Azeri is also an agglutinative language with a
similar syntactic structure. Thus the discussion is given in terms of the alphabets, the

lexicons, the phonology and the morphology.

4.1.1. Alphabet, lexicon and phonology

Turkish uses an alphabet of 29 letters in its current orthography using Latin characters.
There are 8 vowels: a, e, 1, i, u, i, 0, 8, and 21 consonants: b, ¢, ¢, d, e, f, g, 8, h, j, k,
Lm,np,r,s, st v,y 2. On the other hand, Azeri has 9 vowels and 23 consonants. It
has the vowel a, and the consonants x and q, in addition to letters of the Turkish
alphabet [13,14]. Azeri has many words common with Turkish. About 1100 of the 6900
Azeri words, approximately 1/6, in the "Comparative Dictionary of Turkish Dialects" [13]
are the same with their Turkish equivalents. Azeri also has many words borrowed from
various other languages such as Greek, English, and Russian. Velosiped(bicycle),
lampocka(lamp), prodyiiser(producer), prospekt(sireet), and respublika(republic) are

examples of those words.

Some Azeri words are phonological variations of Turkish words. The domain of some
phonological variation rules covers all the Azeri words, whereas some of them can
influence only a group of Azeri words. The phonological variation rules valid for all the

Azeri words are the following:

20
1.the consonant k at the end of the polysyllabic words corresponds to g if the last

vowel of the word is in the set {a,,0,u}.
2.the consonant k at the beginning of the words corresponds to g if the first vowel

of the word is in the set {a,,0,u}.

About 190 of the first 1100 Azeri words, approximately 1/5, in the "Comparative
Dictionary of Turkish Dialects" [13] obey the second type of rules. The phonological

variation rules valid only for some Azeri words are the following:

1. the vowels a, e, i correspond to a.
2. the vowels u, @i correspond to o, 6, respectively.
3. the consonant y at the beginning of the word is deleted and the following
consonant 1 corresponds to i or u.
4. the vowel 1 at the beginning of the word corresponds to i.
5. the consonant h is attached to the words beginning with ii or 6.
6. the vowels a and e correspond to o and 9, respectively, if they come just before
the consonant v in the word.
7. the consonant k corresponds to x.
8. the consonants §, d, g, k and y correspond to §s, dd, gg, kk and yy, respectively.
9. the consonant k at the end of the word corresponds to y.
10. the consonants g, v between two vowels corresponds to y.
11. the consonants pr and vr correspond to rp and rv, respectively.

12. the consonants p, ¢, t and k at the end of the word correspond to b, ¢, d and

g, respectively.

21

4.1.2. Morphology

As agglutinative languages Turkish and Azeri use derivational and inflectional suffixes to
form new words. Derivational suffixes alter the meaning of the word, whereas inflectional

suffixes do not.

There is a one-to-one correspondence between the inflectional suffixes of Turkish and

Azeri, either in the same form or in a different form, except the following two:

1. The Turkish suffix -mlg forming past indefinite tense has two equivalents in
Azeri, -mls and -Ib, e.g. the meaning of the Turkish word gelmis can be expressed with
either galmis or galib in Azeri.

2. The Turkish suffix -mAIl forming the necessitative modal has two equivalents
in Azeri, -mAll and -Asl. The word gdrdk together with the suffix -(y)A is also used for
this modal, e.g. the meaning of the Turkish word gelmeli can be expressed in three ways

in Azeri: galmali, gdldsi, and gdrdk gald.

Since, for both tenses, all the equivalent Azeri suffixes give the same meaning, only one

of them is considered in the translation process.

However, the same is not true for derivational suffixes. Some of the derivational suffixes
of Turkish do not exist in Azeri. The suffixes -sAl, -giller, -6lcer and -(i)k are the
examples of this kind of suffixes. Moreover, some of them which have equivalents in

Azeri, may not be applicable to all Azeri words. The suffixes -1A, -kir and -hane

exemplify this kind of suffixes.

This situation for the suffix -IA (derivational suffix from noun to verb) is illustrated in
Table 4.2. For instance, the Turkish word bag (string) can be used as a stem in the
derivation of the word bagla- (to tie) with the suffix -1A. Since the Azeri equivalent of

bagla- can be derived from the Azeri equivalent of bag with the suffix -1A, the suffix is

22

applicable for this word. However, the same is not valid for the Turkish words sergi
(exhibition) and sergile- (to exhibit). Although sergile- can be derived from sergi with the
suffix -1A in Turkish, its Azeri equivalent sdrgiyd goy- can not be derived from the Azeri

equivalent of sergi with the suffix -1A. This implies that the suffix -1A is not applicable for

this word.
Table 4.2. The usage of the suffix -l1A in the Azeri Language
status Turkish word Azeri equivalent
applicable bag(string) bag
bagla-(to tie) bagla-
applicable dilim(slice) dilim
dilimle-(to slice) dilimla-
applicable hesap(calculation) hesab
hesapla-(to calculate) hesabla-
not harman(blend) xirman
applicable harmanla-(to blend) ganisdir-
not sergi(exhibition) sargi
applicable sergile-(to exhibit) sdrgiyd goy-

Turkish has the vowel harmony rule and the consonant harmony rules defining the
morphophonemics of the language and some morphotactic rules determining the orders

of morphemes [7,8,10].

Vowel harmony is a process by which the vowels in all syllables of a word except the first
assimilate to the preceding vowels with respect to certain phonetic features. The Turkish
vowels a, e, 0, 6 are classified as low vowels, and the ones 1, i, u, i as high vowels.
Except the present tense suffix -Iyor, there are no suffixes in which the low vowels o and
o appear. Therefore in citing suffixes, the letter A is used for low vowels and I for high
vowels. When a suffix is affixed to a stem, the first vowel in the suffix changes according
to the last vowel of the stem. Succeeding vowels in the suffix change according to the

vowel preceding them. So the two classes of vowels are resolved as follows:

23
A = a if the previous vowel is in the set {a, 1, u, o}

= ¢ if the previous vowel is in the set {e, i, U, 6}

I = 1 if the previous vowel is in the set {a, 1}
= i if the previous vowel is in the set {e, i}
= u if the previous vowel is in the set {o, u}

= 1 if the previous vowel is in the set {0, i}

The following examples illustrate the usage of vowel harmony rule. gel (to come) + -DI
(past definite tense) = geldi, kos (to run) + -Iyor (present tense) = koguyor, and defter
(notebook) + -1Ar (plural suffix) = defterler.

Because of their different phonetic structures, some words borrowed from other
languages do not obey vowel harmony rule during agglutination, e.g. saar (watch) +

-(y)A (dative) = saate.

Besides vowel harmony rule, there exist another morphophonemic rule involving vowels
of the morphemes, which is known as elision. Morphemes beginning with a vowel are
affixed to stems ending with a vowel with the deletion of their first vowel, e.g. masa
(table) + -(I)m (1st singular possessive) = masam. The first vowels of these suffixes are

shown with the symbol (), as in this example.

Turkish consonants are classified in two sets: the consonants ¢, f, t, h, s, s, k, p as
voiceless consonants and b, ¢, d, g, &, j, I, m, n, r, v, y, z as voiced consonants. The

consonant harmony rules listed below are based on this classification [12,15,16].

1. consonant mutation rule: In multi-syllabic words and in certain mono-syllabic
roots, the final voiceless consonants p, ¢, t, k are mostly changed to b, ¢, d, g,

respectively, when a suffix beginning with a vowel is attached to the word, e.g. kitap

(book) + ~(y)I (accusative) = kitabt.

24

2. consonant assimilation rule: In some suffixes beginning with one of the
consonants ¢, d, or g, this consonant might change to ¢, t, k, respectively, if the last
phoneme of the stem to which one of such suffixes is attached is a voiceless consonant,
e.g. gel (1o come) + -DI (past definite tense) = geldi, but kog (to run) + -DI (past
definite tense) = kogtu. These consonants are shown as C, D and G, as in the example.

3. phoneme insertion rule: Some morphemes beginning with a vowel are affixed to
the stems ending with a vowel with the insertion of one of the consonants n, s, or y, e.g.
ev (house) + -(s)I (3rd singular possessive) = evi, but kapt (door) + -(s)I (3rd singular

possessive) = kapisi, and the consonants inserted are shown as (n), (s), and (y).

Azeri has similar morphotactic rules with Turkish, but not the same morphophonemic
rules. Vowel harmony rule exists in Azeri including the vowel a. The vowel e is not used
in Azeri suffixes, and the vowel a is treated the same as the Turkish vowel e in the

application of the vowel harmony rule.

Consonant harmony rules exist in Azeri with some modifications. Since the voiceless
consonants p, ¢, t, k already appear as b, ¢, d, g as the last letters of Azeri root words,
the first consonant harmony rule is not utilized in the Azeri. The second consonant
harmony rule is not valid for the consonant d, which is always used as d. However it is
valid for the consonants ¢ and g with the following two exceptions. The derivational
suffixes -CI, -Clk deriving nouns from noun root words always appear as -¢I and -cIK,
respectively. The phoneme insertion rule is the same with the Turkish equivalent with the

exception that, instead of inserting letter y letter n is inserted as auxiliary letter with

accusative suffix.

Azeri has an additional consonant harmony rule that does not exist in Turkish. The
consonant k, which will be shown as K, in the suffixes changes according to its preceding

vowel. Tt takes one of its allophones k or g according to the following rule:

25

K = g if the previous vowel is in the set {a, 1, u, o}

k if the previous vowel is in the set {4, e, i, 4, 6}

4.2. Translation From Turkish to The Azeri Language

None of the approaches discussed in Chapter 2 is suitable for machine translation from
Turkish to the Azeri language. Since translation from Turkish to Azeri requires a detailed
morphological analysis and detailed processing for ambiguous words, direct translation
alone is not suitable for this purpose, as it is not for many other translation problems.
Transfer based approach requires a detailed syntactic analysis. Since the syntactic
structures of Turkish and Azeri are similar, there is no need for such a detailed syntactic
analysis for this problem. The aim of the interlingua-based approach is to achieve
multilingual translation among completely different languages and this is quite different
from this problem. Therefore the construction of a formal interlingua language to express
the meaning is redundant for our problem. Knowledge-based approach requires a much
deeper analysis to get the complete meaning of the input text, and it is also redundant
for our problem. Therefore we have proposed a lexicon-based approach and incorporated
some of the techniques used in conventional approaches into it in order to solve the

problem of translation from Turkish to other Turkic languages.

With this approach we claim that translation from Turkish to Azeri can be achieved
without completely understanding the input text, and the translation process can be
viewed as a word for word translation of sentences. Because the number of words that
can be translated into Azeri with one-to-one correspondence of the words is much larger
than the number of ambiguous words that needs additional processing to be translated
correctly. We determined 750 of 6900 Turkish words in our root lexicon as ambiguous
in the context of machine translation from Turkish to Azeri. Therefore representing the
meaning of each Turkish word seems unnecessary for this problem. Only the ambiguous

words that should be disambiguated in the translation process are taken into account.

f\\‘{\ Jidmten

26

The ambiguities that do not cause any problem are ignored in the translation. All the
information for the ambiguity resolution process is stored in the lexicons, and the

disambiguation is carried out in a lexicon-based manner.

Moreover, as the sentence syntax is similar for both languages, there is no need to
employ syntactic analysis to find out the syntactic structures of the Turkish sentences.
However, we note that syntactic analysis may help to resolve the ambiguities in the
semantic level. Even though we did not employ syntactic analysis, we utilize some of the

syntactic rules of Turkish in resolving ambiguities.

Thus, we get the idea of word for word translation from direct translation approach, the
techniques for morphological and semantic analyses from the transfer-based and

interlingua-based translation approaches. Translation is achieved in 4 steps :

1. morphological analysis
2. semantic analysis
3. resolving the ambiguities

4. word generation by replacing the Turkish root word and the suffixes with their

Azeri equivalents

Translation starts with the morphological analysis phase. At the end of the morphological
analysis, all possible parses for a single word are obtained. For each parse of the word
the Azeri equivalent of the root word and the suffixes involved in the parse are also kept.
Semantic analysis is performed concurrently with morphological analysis, and the
necessary information to be used in a possible disambiguation process is obtained. The
characteristics of this information is explained in Section 4.5. Then the lexical item is
disambiguated using the semantic information if there exists any ambiguity. Finally, the

word is translated into Azeri by replacing the Turkish root word and the suffixes with

their Azeri equivalents.

27

During the translation if a word can not be morphologically parsed in any way, it means
that the word does not exist in the translator’s lexicons. In this case the Turkish word is
given as the result of the translation together with the message "No Information". Proper

nouns are translated into Azeri without any modification.

4.3. No Ambiguity Case

In the simplest case no ambiguity exists. The word can be parsed in just one way and the
root word has just one equivalent in Azeri. In this case, the word is translated into Azeri
directly by replacing the root word and the suffixes with their Azeri equivalents. For
instance, the Turkish word konusuyorum (I am speaking) has a single parse:

konus(to speak) - uyor(present tense) - um(Ist single person)

and it is translated into Azeri by a one-to-one substitution as danig-ir-am.

As another example consider the Turkish sentence arabayr yikadr (He/she washed the

car). The result obtained from the morphological parsing of this sentence is:

araba(car) - yi(accusative) yika(to wash) - di(past definite tense)

Since no ambiguity exists, it is directly translated into Azeri as araba-yr yu-du.

4.4. Ambiguity in Translation

With the disappointing results of the first generation machine translation systems, it is
literally accepted that machine translation can not be considered as word for word

translation without any additional processing. As discussed in the previous sections,

28

machine translation in general involves three levels:

1. morphological analysis
2. syntactic analysis

3. semantic analysis

In each of these analyses, there exist cases in which the analysis yields multiple solutions.
The major problem in machine translation is the selection of the correct solution in these

ambiguous cases.

In the case of syntactic analysis, ambiguity exists when a sentence or phrase can be
represented with more than one syntactic structure, which is called parse tree. The
following example illustrates this fact [17]. Turkish noun phrase sicak et reyonu saticist
(the hot/warm meat stand seller) can be interpreted in three ways as shown in Figure 4.1,

and additional analysis is needed to identify the correct one.

NP NP
NP saticisi(N) NP v
— saticisi(N)
NP NP
reyonu (N) sicak (A)
sicak (A) et(N) et (N) reyonu(N)
(a) (b)
NP
NP
sicak(A) NP

saticisi(N)

et (N) reyonu(N)
(c)

Figure 4.1. Three ambiguous interpretations of the noun phrase sicak er reyonu
sancist

29

In this case the problem is to identify the modifiers and the way they modify the other
nouns in the noun phrase. However, this does not introduce a problem in translation
from Turkish to Azeri, since the sentence syntax is similar for both languages. The
syntactic ambiguity is preserved in the output text in the same way as the input text.

Therefore, trying to resolve syntactic ambiguities is useless for our problem.

On the other hand, ambiguities involved in morphological and semantic analyses should
be resolved for translation from Turkish to Azeri. Words that can be morphologically
analyzed in more than one way due to several reasons are morphologically ambiguous.
We have examined the characteristics of these words and categorized them according to

reasons causing the ambiguity.

In the case of semantic analysis, words with multiple word senses cause the ambiguity.
Some root words do not convey a single meaning. They can be used for as many different
meanings as the number of their word senses. Therefore in order to find the correct

equivalent of a Turkish word in Azeri, the word sense ambiguity should be resolved.

Another phenomena causing ambiguity in semantic analysis is pronominal anaphora [18].
In written discourse people may use certain instruments for pointing back in the discourse
context to individuals, objects, events, times and concepts mentioned previously. The use
of such a pointing device is called anaphora. Short constituents such as pronouns and
definite noun phrases referring to more detailed descriptions elsewhere in the text are
called anaphors. As an example consider the Turkish sentence, Ali Ayse’ye arabasin
sordu. It can be interpreted in two ways: Ali asked Ayse about Ali’s(his) car. or Ali asked
Ayse about Ayse’s(her) car. In order to identify the correct meaning expressed by the
sentence, the pronominal anaphora should be resolved with semantic information
obtained from the surrounding text. However, the disambiguation is not necessary for
translation from Turkish to Azeri. When the sentence is translated into Azeri, the

resulting text preserves the same anaphoric relation. Therefore, resolution of pronominal

anaphora can be ignored in our problem.

30

We then should deal with the ambiguities resulting from morphological and semantic

analysis. Thus, we have classified ambiguous Turkish words into two major categories:

1. word sense ambiguous words

2. morphologically ambiguous words

The Turkish words and their characteristics in both categories are presented below.

4.4.1. Word Sense Ambiguity

Word sense ambiguity exists in Turkish as there are words with multiple word senses.
So, in this case, the Turkish word can be morphologically parsed in just one way, but the

root word has multiple word senses causing multiple equivalents in Azeri.

Linguists distinguish between homonyms and polysemes [1]; homonyms are words like
bank which have two or more distinct and unrelated meanings (geological feature or
financial institution); polysemes are words like face which reflect different shades of
meaning according to context. They distinguish also between homophones (words which
sound the same but have different meanings) such as pear, pair, and pare, and
homographs (words which are spelled the same but have different meanings) such as tear
(crying versus ripping). Fortunately, the homophone problem is irrelevant since MT deals
only with written texts. For resolving the ambiguities it is also immaterial whether the
source langvage word is homograph or polyseme, since in both cases the ambiguous word
has multiple equivalents in the target language, and the problem is to select the correct

equivalent for its current usage.

Sometimes the target language vocabulary makes finer sense distinctions than source
language. For instance, the verb know may be conveyed by wissen or kennen in German;

similarly the English word river may be either Fluss or Sirom in German. In either case

31

English words do not have more than one meaning. Instead, German makes distinctions
which English does not. Nevertheless, in the context of a MT system the problem of
selecting the correct target language form is much the same as when source language
form is a genuine homograph or polyseme. Therefore we refer to all of these words as
word sense ambiguous and treat them in the same manner in order to resolve the

ambiguity.

In this case, the problem is to find the correct equivalent of the root word in Azeri for
its current usage. For instance, the Turkish word alay(regiment | mockery) has two word

senses, and the word alaya has a single parse :

alay(regiment | mockery) - a(dative)

The word is ambiguous, since the root word itself is ambiguous. Thus, the word sense

ambiguity has to be resolved in order to translate the Turkish word alaya into Azeri.

However, if the equivalent of a Turkish word is the same in Azeri for each word sense,
there is no need to resolve this ambiguity in translation from Turkish to Azeri. For
example, the Turkish word don- has two word senses to revolve and fo return, and its
Azeri equivalent is ddn- for both senses. So, trying to resolve the word sense ambiguity
is unnecessary in this case. The Turkish words hat(feature / line), pazar(Sunday | bazaar)
and uyus-(to get along together | to get numb) are some other examples of this kind of

words.

The list of word sense ambiguous words in the "Comparative Dictionary of Turkish
Dialects" [13] that should be disambiguated in the translation process is given in

Appendix A.

32

4.4.2. Morphologicali Ambiguities

Morphological ambiguity is the major ambiguity category in machine translation involving
agglutinative languages, and it results from words with multiple morphological parses.
Different types of morphological ambiguities exist in Turkish resulting from its

agglutinative structure. We have so far identified 5 types of them :

. root words that are similar in form to stems with inflectional suffixes
. root words that are similar in form to stems with derivational suffixes
. suffixes with multiple surface forms

. similar suffixes

v B W N

. identical suffixes

These cases are discussed below together with illustrative examples.

4.4.2.1. Root Words that are Similar in Form to Stems with Inflectional Suffixes

In this case, the Turkish word has multiple parses with different root words. For instance,

the Turkish word halka has two morphological parses:

halka(ring)

(ring)
halk(people) - a(dative)
(to the people)

Another example of this kind is the Turkish word ilim, which has also two morphological

parses:

33
ilim(science)
(science)
il(city) - im(Ist singular possessive)

(my city)

So, the reason of this type of morphological ambiguity is the existence of a Turkish root

word that is similar in form to another root word with inflectional suffixes.

The close relation between Turkish and Azeri allows us to ignore some of the ambiguous
words of this kind in the translation process. For example, the Turkish word eser is an

ambiguous word of this kind, and it has the following two morphological parses:

eser(work of art)
asdr
es(to blow) - er(aorist suffix)

ds - dr

Since, the Azeri equivalents are the same for both parses, eser can be translated into
Azeri as dsdr without any disambiguation process. The Turkish words altrus/alt, arka/ark,
kizar-fkaz-, oku-/ok, yarasajyara- are also examples of these words as illustrated in Table

4.3.

Table 4.3. Examples of ambiguous words that can be ignored in translation from

Turkish to Azeri

34

Turkish word Azeri equivalent
altmis(sixty) altmig
alt(bottom) - mis(past indefinite tense) alt - mis
arka(the back) arxa
ark(canal) - a(dative) arx - a
kizar(to turn red) gizar
kiz(to be angry) - ar(aorist) g1z - ar
oku(to read) oxu
ok(arrow) - u(accusative/2nd singular possessive) 0X -1
yarasa(bat) yarasa
yara(to be useful) - sa(desiderative) yara - sa

We have determined the ambiguous Turkish root words of this kind by parsing each

Turkish word with the Turkish morphological parser developed at Bogazi¢i University

[8]. Those with multiple morphological parses are identified as ambiguous. We have

categorized these words according to the suffixes causing the ambiguity, in order to

resolve the ambiguities effectively. These suffixes are the following:

-(y)I (accusative)

-(s)I (3rd singular possessive)
-(y)A (dative, optative modal)
-DA (locative)

-(Dn (2nd singular possessive, 2nd single person for imperative modal)

-()m (1st singular possessive)
-(y)Iz (1st plural person)

-DI (past definite tense)
-mls (past indefinite tense)
-Ar (aorist suffix)

-mA (negation suffix, nominating participle)

35
A (clitic)
-sA (desiderative modal, compound conditional tense)

-mAk (infinitive suffix)

Ambiguous Turkish words of this kind that should be disambiguated in translation from
Turkish to Azeri are given in Section B.1 in Appendix B according to the above

categorization.

4,4.2.2. Root Words that are Similar in Form to Stems with Derivational Suffixes

There exist Turkish root words that are similar in form to other root words with
derivational suffixes, and they naturally convey absolutely different meanings. For

example, the word kayis has two morphological parses:

kayis(belt)

(belt)

kay(to slide) - 15(derivational suffix from verb to noun)
(sliding)

Even though the word kays is similar in form to word kay-15 the meaning belt has no
relation with sliding. The word kayis may be assumed to be word sense ambiguous, since
it may be thought of as having two word senses, belt and sliding. However this is not the
case in the "Comparative Dictionary of Turkish Dialects” [13]. Namely, the meaning
sliding is not given as a word sense of the word kayis. Therefore, we prefer to accept the
words kayis and kay-i§ as two diffefent words, and classify them as ambiguous due to

the reason introduced in this section.

The close relation between Turkish and Azeri also allows us to ignore some of the

ambiguous words of this kind in the translation process. The Turkish word dolan is an

36

example of these words. It has two morphological parses:

dolan(to wander around)
dolan
dol(to fill up) - an(derivational suffix from verb to adjective)

dol - an

Since, the Azeri equivalents are the same for both parses, dolan can be translated into
Azeri as dolan without any disambiguation process. The Turkish words kayik/kay-, kirg-

Jkar-, gelisg-/gel- are other examples of these words as illustrated in Table 4.4.

Table 4.4. Examples of ambiguous words that can be ignored in translation from
Turkish to Azeri

Turkish word Azeri
equivalent

kayik(boat) gayig
kay(to slide) - 1k(derivational suffix from verb to adjective) gay - 1g
kirig(to become wrinkled) giris
kir(to break) - 15(derivational suffix from verb to noun) gir - 1§
gelis(to develop) galis
gel(to come) - ig(derivational suffix from verb to noun) gal - is

Ambiguous Turkish root words of this kind are already determined together with the
ones presented in Section 4.4.2.1. We have identified them, and categorized them in the

same manner. Suffixes causing this kind of ambiguity are the following:

-(Dk (derivational suffix from verb to adjective)
-(Ds (derivational suffix from verb to noun)
-CA (derivational suffix from noun to adjective or adverb)

-(y)An (derivational suffix from verb to adjective)

37

The ambiguous Turkish words of this kind that should be disambiguated in translation
from Turkish to Azeri are given in Section B.2 in Appendix B according to the above

categorization.

4.4.2.3. Suffixes with Multiple Surface Forms

Some suffixes in Turkish have multiple surface forms depending on the surface structure
of the words that they would be affixed. For instance, the dative suffix -(y)A has the
forms -yA and -A, two of its allomorphs, depending on the last character of the word it
would be affixed. It is affixed to the word masa(table) as masa-ya, whereas to the word
bisiklet(bicycle) as bisiklet-e. This may cause morphological ambiguity for words like
ada(island) and aday(candidate), when the word adaya is to be translated into Azeri. It

has two morphological parses :

ada(island) - ya(dative)
(to the isiand)
aday(candidate) - a(dative)

(to the candidate)

The suffixes affected by the morphophonemic rules of phoneme insertion and elision
cause this kind of ambiguity. We have determined this kind of suffixes for each part of

speech. For example, the following suffixes that can be affixed to nouns are of this kind.

derivational suffixes:

(AL, -(D)k, -(i)st, -(i)zm

inflectional suffixes:
-(Dm, -(Dmlz, -(n, -(Dnlz, -(m)In, «(s)I
(A, -()L -(y)IIAn, ~(y)InAn, -(y)IA

38

The letters that may be deleted due to morphophonemic rules are I, A, n, y and s.
Therefore nouns that differ one letter in length are ambiguous, if the last letter of the
longer one is among these letters and the suffix is affixed to the other one without any
letter deletion, e.g. the words elmas (diamond) and elma (apple) in the word elmas:
(his/her apple | hisfher diamond). So we identify ambiguous nouns by searching the root
words lexicon for nouns satisfying this condition. The same process is repeated for each
part of speech. The set of letters that might be deleted due to morphophonemic rules

are I and A for adjectives, and I, A and y for verbs.

The ambiguous words of this kind that are caused by the deletion of the vowels I and A
are also identified in the case of words that are similar in form to stems with inflectional
suffixes. This is because an ambiguous word with length n ending with one of these
vowels can be derived from its pair whose length is n-1 with either the accusative suffix

-(y)I or the dative suffix -(y)A, e.g. the words agt (vaccination) and as (cooked food).

The following is the list of the ambiguous words of this kind according to the letters

causing the ambiguity, excluding those explained above:

(s) (the only example -(s)I)
elma hala hassa kisa kiime

elmas halas hassas kisas ktmes

(v) (like -(y)IA)

ada kala ne

aday kalay ney

.39

4.4.2.4. Similar Suffixes

Some Turkish suffixes have similar surface forms, and this may cause morphological
ambiguities when they are affixed to root words with similar surface forms. For instance,
the suffix -DAn(ablative) and -(y)An(derivational suffix from verb to adjective) have

similar surface forms, and they cause morphological ambiguity in the word devreden:

devre (period | circuit) - den(ablative)

(from the period / circuit)

dovra - din

devret(transfer) - en(derivational suffix from verb to adjective)
(the one who is transferring)

tahvil ver - an

For some of the ambiguous Turkish words of this kind, there is no need to resolve the
ambiguity in order to achieve the translation, since the corresponding Azeri words and
the suffixes are also identical. For example, the Turkish word gemin has three

morphological parses:

gem(bit) - in(2nd singular possessive)
(your bit)

gam - in

gem(bit) - in(genitive)

(of the bit)

gam - in ;
gemi(ship) - n(2nd singular possessive)
(your ship)

I

gami - n

40

However, the Azeri equivalents of all parses are the same. So, the ambiguity is ignored

in the translation process.

Each word category has a fixed set of suffixes that can be affixed to the words in it. We
have determined these sets of suffixes for each word category. Then using this
information we have affixed all possible suffixes to each Turkish word and
morphologically parsed them. In this way the ambiguous Turkish words of this kind are

determined.

In this exclusive search, since we have also used the suffixes with multiple surface forms,
the words determined as ambiguous due to these suffixes are also found in this case.
Moreover, some of the words determined as ambiguous due to the previously explained
two other reasons are also found in this case, since they are also ambiguous due to this
reason. For example consider the Turkish word altan (gold) and the suffix -(s)I (3rd
singular possessive). When the suffix is affixed to the word, the resulting Turkish word

has the following five parses:

alan (gold) - 1(3rd singular possessive)

(his/her gold)

altn (gold) - 1(accusative)

(the gold)

altr (six) - n(2nd singular possessive) - i(accusative)
(vour six)

alt (bottom) - in(2nd singular possessive) - 1(accusative)
(your bottom,)

alt (bottom) - 1(3rd singular possessive) - ni(accusative)

(his/her bottom)

Therefore the Turkish words alfin, aln and alt are ambiguous words of this kind.

However, they were also determined as ambiguous when the Turkish word altin is tested

41

in the case of words that are similar in form to stems with inflectional suffixes. This is

because it can be morphologically parsed in four ways:

alan (gold)
aln (six) - n(2nd singular possessive)
alt (bottom) - in(2nd singular possessive)

alt (bottom) - in(genitive)

So, in this case the Turkish words with more than one morphological parse, excluding
those that are already determined due to reasons explained in the above sections, are
identified as ambiguous words of this kind. They are presented in Section B.3 in

Appendix B.

4.4.2.5. Identical Suffixes

In this case the Turkish word has multiple morphological parses with a single root word.
The reason of the ambiguity is the existence of identical suffixes. Identical Turkish

suffixes can be classified into two groups:

1. Suffixes with multiple meanings

2. Suffixes that become identical due to different surface forms

Some Turkish suffixes have more than one meaning. For instance, the suffix -(I)m could

be used as both 1st singular possessive and 1st single person, as in the following example:

benim(my) giizel(beauty) - im(Ist singular possessive)
(my beauty)

ben(l) giizel(beautiful) - im(1st single person)

(I am beautiful)

42

The Azeri equivalent of the Turkish word giizelim in the first utterance is gozalim,
whereas in the second one gozalam. Therefore the ambiguity should be resolved to find

the correct translation.

Some other Turkish suffixes become identical depending on words with different surface
forms. For instance the suffixes -(y)I(accusative) and -(s)I(3rd singular possessive) become
-I when they are affixed to a word ending with a consonant. For instance, the word

bisikleti is ambiguous :

bisiklet(bike) - i(3rd singular possessive)
(his/her bike)

bisiklet(bike) - i(accusative)

(the bike)

Since the Azeri equivalent of the word bisiklet is velosiped, which also ends with a
consonant, there is no need to resolve the ambiguity. However, this is not valid for the

Turkish word erik(plum), as erigi has two morphological parses :

erik(plum) - i(3rd singular possessive)
(his/her plum)
erik(plum) - i(accusative)

(the plum)

Since the Azeri equivalent of erik is al¢a, the ambiguity should be resolved to decide
whether to translate the word erigi as algam or algasi. So, for these two suffixes the
morphological ambiguity should be resolved if the Azeri equivalent of the Turkish word

ends with a vowel.

43

The ambiguous identical suffixes are determined in the following way. First, we form a
list of generic words that includes all the morphophonemic alternations to be used as a

test set. The words in this set are the following:

ed ad id id ud id od od

et at it 1t ut it ot ot

Next, for each root word category we determine the word categories a root word in this
category can reach with free jumps in the transition network representation of the
morphotactic rules. Then for each word category in the transition network, we identify
the root word categories from which these categories can be reached with free jumps.

Finally, the identical suffixes were found using the following algorithm given in Figure 4.2.

for all word categories in the transition network do
{the one under translation is shown as category(i)}
for all suffixes that can be affixed to words in the category(i) do
{the suffix under consideration is shown as suffix(i)(j)}
for all possible root word categories from which the category(i) can be reached with free jumps do
{the root word category under consideration is shown as rcategory(k)}
for all artificial test words do
{tword(m)}
form the word to be tested as tword(m) + suffix(i)(j) and its category is rcategory(k)
find morphological parses of the word
if number of parses > 1 then
store the related information in the ambiguity file
end for
end for
end for
end for
Figure 4.2. Algorithm for Finding Identical Suffixes

44

After manual postprocessing the parses obtained from the above algorithm, the
ambiguous identical suffixes are found. Postprocessing involves the elimination of the
redundant parses. The parses produced by the identical suffixes are presented in

Appendix C.

Tracing the algorithm above for the word category v2, which is a verb category, may help
to illustrate this complicated process. The only suffix that can be affixed to the words in
the category v2 is -Ir, and it can be reached by free jumps from the root word categories
v2 and v81. Therefore the following words are formed and morphologically parsed in

order to find the ambiguous identical suffixes with -Ir.

eir edir etir
air adir atir
ur dir it
iir idir itir
our odur otur
Glir Odir Ootir
uur udur utur

ilir dddr Gtir

The categories of these words are v2 and v81. At the end of the testing the following
parse is found for the words 1idur, ttir, idir, itir, odur, otur, 0dir, 6tiir, udur, utur, tdiir,

Utiir.

v2-v3-1r ‘
v2 -v16 - v18 - v73 -v19 - v24 -v25 - n0 1r
v2 - v16 - v18 - v73 -v19 - v24 - v25 -v42 1r

All of them except the first one are eliminated in the postprocessing, since they are the

redundant copies having the same information. The one maintained can be seen in

45

Appendix C. In this way the ambiguous identical suffixes are found for the suffix -Ir in

the word category v2.

By using the algorithm presented in this section only two suffixes or a suffix with a suffix
sequence can be identified as identical. However, a suffix sequence can be identical with
another suffix sequence as well. For instance, the suffix sequence -(s)I (3rd singular
possessive) and -(n)I (accusative) become identical with the suffix sequence -(I)n (2nd
singular possessive) and -(y)I (accusative), when both are affixed to a word ending with
a consonant. The Turkish word defterini which has the following two morphological parses

illustrates this fact.

defter(notebook) - i(3rd singular possessive) - ni(accusative)

defter(notebook) - in(2nd singular possessive) - i(accusative)

The algorithm presented in this section can also be used to determine the identical suffix
sequences by allowing the affixation of two or more suffixes. Although we did not carry
out this process, we manually find out some obvious identical suffix sequences. The

following is the list of these suffix sequences:

-s)I -(m)A
-DOn -(y)A
-(s)I -(m)l
-(Dn -1
-(s)I -(n)In
-Dn -(n)In
-(s)I -(n)dA
-(Dn -DA
-(s)I -(n)dAn

On -DAn

46

4.5. Methods Used in Resolving Ambiguities

Ambiguities can be resolved using the semantic information obtained from the text.
Different kinds of semantic information at various levels may be used to resolve the
ambiguities in translation. This depends on what is used as semantic information and in
what structure. There are different types of semantic information and structures to

represent them.

We utilize semantic features similar to those presented by Stoop [4], Boguraev et al. [19]
and Sowa [20], the concept structure similar to those presented by Tomabechi [21] and
Nogier et al. [22], and the collocation info structure similar to those presented by
Nirenburg et al. [2] and Boguraev et al. [19] in order to resolve ambiguities. These

structures are discussed below.

4.5.1. Semantic Features

Semantic features convey semantic information about words. Semantic features used for

nouns, pronouns and proper nouns are displayed in Table 4.5.

Table 4.5. Semantic features for nouns, pronouns and proper nouns

part of speech Semantic feature

noun animate, inanimate, human, animal, plant, concrete/abstract,
countable/uncountable

pronoun human

proper noun human, nation, country, city(town, village, region), sea(ocean,
lake, river), mountain, language

47

We also use subcategories of the parts of speech as semantic features. The subcategories

for each part of speech is displayed in Table 4.6.

Table 4.6. Subcategories of parts of speech

part of speech Subcategories

pronoun reflexive pronoun, personal pronoun, demonstrative pronoun,
indefinite pronoun, interrogative pronoun, pronominal pronoun

adjective qualificative adjective, demonstrative adjective, interrogative
adjective, numeral adjective, indefinite adjective, time adjective

adverb time adverb, place adverb, quantity adverb, quality adverb,
interrogative adverb, demonstrative adverb

verb transitive, intransitive, dative

Moreover, we define some other semantic features specific to a small range of words.
The full list of these features is given in Appendix D and the following are the examples

excerpted from this list:

time unit

weapon

object that can be bound
object that can be driven

organ of a human or an animal

All the semantic features presented in this section are utilized in collocation info structure

to resolve ambiguities.

We do not intend to define semantic features to represent the world knowledge in a
specific domain. Instead, in order to resolve an ambiguity if we need to identify whether
a word has a certain property -or not, we define this property as a semantic feature. For

example, the Turkish word cilt has two word senses skin and binding. In order to resolve

48

this word sense ambiguity, we need to know whether an object can have a binding or not.
Therefore, we have defined a semantic feature object that can be bound and identified
all the words having this feature. So the ambiguity is tried to be resolved using this

information.

4.5.2. Concept Structure

Concept structure is made up of the so-called concepts. To utilize the concept structure
- for an ambiguous word, a concept is defined and associated with it. In this way, the word
becomes dependent on this concept. If an ambiguous word is dependent on a concept
it means that the utterance under translation denotes this word if the related concept is
active. In order for a concept to be active, at least one of the words that are related to
it should have been used in the currently analyzed text. Therefore, together with each
word, the numeric codes of the concepts it can activate are stored. The concepts that we

have defined are as follows:

military, medicine, agriculture, device, electricity, mine,
grammar, navigation, mathematics, government, science, house,
space, weapon, religion, education, law, file, company, shop,

press, apartment house, architecture

We do not intend to define concepts to represent the complete world knowledge. Instead,
we define concepts and associate the related words with them just to resolve the
ambiguities. In this sense, our work is different from Schank’s Concepmual Dependency
Notation(CD) [23], which was devised to serve as semantic representation of the world
knowledge. CD has its vocabulary for its specific domain, namely the sets of predicates,
functions, and constants. However, we do not employ such a vocabulary, since our aim

was not to represent the world knowledge.

49

Before translating a sentence, all the words in the sentence are allowed to activate their
related concepts. By means of this, one sentence lookahead is performed in concept

structure.

Concept 0 is utilized to indicate that if none of the other alternatives is identified as the
correct meaning denoted by the utterance under translation, the ambiguous word

associated with concept 0 is valid.

A concept is assumed passive if it is not activated. Once a concept is activated, it stays
active during the analysis of the whole text. A concept may be sentence-active or
text-active depending on whether or not the word activating it is used in the currently
analyzed sentence. The priority of a sentence-active concept is higher than the text-active

one.

For example, the Turkish word uydu is ambiguous due to root words that are similar in

form to stems with inflectional suffixes. It has two morphological parses:

uydu(satellite)
uy(to fit) - du(past definite tense)

We have defined space as a concept, and the word uydu is associated with this concept.
Consider the Turkish sentence Uydu ydriingede déniiyor. It has the following

morphological parses:

uydu(satellite) yoriinge(orbit) - de(locative) don(to revolve) - tiyor(present tense)
uy(to fit) - du(past definite tense) yoriinge(orbit) - de(locative) don(to revolve) - iiyor(present

tense)

The word uydu is ambiguous since it has two equivalents in Azeri as peyk(satellite) and

uydu(fitted). For this case, since the word ydriinge has activated the concept space, peyk

50

is selected as the equivalent Azeri word as it is dependent on the concept space. So the

sentence is translated into Azeri as

Peyk orbitada déniir.

4.5.3. Collocation Info Structure

In the collocation info structure, co-occurrence information of words is used to resolve
ambiguities. To utilize the collocation info structure for an ambiguous word, those words
that are used together with it are stored as collocations of the word in the syntactic forms
it might appear in Turkish. A special notation is employed to express these syntactic
structures. The symbols used in this notation are presented in Table 4.7 and the generic
suffix names that we introduce for referring to the suffix meanings are presented in Table
4.8. This notation is also used in the examples presented in the following sections. The
utterance under translation denotes this word if one of the collocations of the word is
true, which means that the word is found to be used with its collocation in the correct

syntactic form.

Other than the co-occurrence information of specific words, some other generic co-
occurrences of words are also utilized in the collocation info structure. These are the

following:

1. Simple syntactic rules of Turkish, e.g. an adjective precedes a noun and an
adverb precedes a verb. |

2. The subcategory information of verbs as transitive, and intransitive, and in the
case of transitive verbs dative objects, €.g. problem-i diistin- (to think about the problem),
yalanci-ya kan- (to be persuaded by the liar).

3. The possessive, genitive and case agreements in noun phrases, e.g. senin kitab-

m (your book), bu at-a (to this horse).

51

Collocations valid for more than one ambiguous word are defined as macro collocations.
In this way, words with these collocations just refer to macro collocation definitions
instead of explicitly defining them. This structure is mostly utilized for the ambiguous
words that are similar in form to stems with inflectional or derivational suffixes. This is
because the ambiguous words caused by the same suffix mostly have same collocations

resulting from the nature of the suffix.

Collocations of the alternative meanings of an utterance should be specific to each
meaning. This means that the collocations that can be used with more than one
alternative ambiguous word can not be stored as collocations of these alternatives, since
they can not be utilized to resolve the ambiguity. Therefore the collocation information

for alternative ambiguous words should be mutually exclusive.

In locating the correct equivalent of a root word in Azeri, the hints obtained from
collocation info structure are given a priority higher than those obtained from concept

structure. One sentence lookahead is performed in the collocation info structure as well.

Table 4.7. Symbols used in collocation info definitions

52

collocation info definition element symbol
word with the part of speech ca(a..z)
word with the specific semantic feature ¢(0..99)
word with the noun semantic feature 0.9
word with the proper noun semantic feature 0(0..9)
word with the adjective subcategory a(0..9)
word with the adverb subcategory d(0..9)
word with the pronoun subcategory p(0..9)
word with the verb subcategory v(0..9)
macro collocation info definition c0(0..99)
the ambiguous word or the suffix -
(constant suffixes may be affixed to this word)
a generic suffix name follows (the word should have the suffix) +
(if no suffix name follows, the word should have at least one suffix)
no suffixes can be affixed to the word (n)
alternative collocations (,)
sentence with the mood mood()

(int for interrogative, exc for exclamation and sta for statement)

possible(not restricted) collocation

Table 4.8. Generic suffix names

53

Suffix Generic Name
locative (-DA) loca
ablative (-DAn) abla
genitive (-(n)In) geni
dative (-(y)A) dati
accusative (-(y)I) accu
any of the case endings case
pronominal (-ki) pron
negation (-mA / -mAz) negp
potential (-Abil) cyet
aorist (-Ir / -Ar) tite
past definite tense (-mlg) pate
present tense (-mAKtA) ptte
necessitative modal (-mAll) nete
past indefinite tense (-DI) pite
desiderative modal (-sA) dete
present tense (-Iyor) prte
optative modal (-(y)A) opte
future tense (-(y)AcAk) fute
imperative modal (-) imte
interrogative particle (-ml) intp
compound imperfect tense (-DI) eech
compound narrative tense (-mlg) eecr
compound conditional tense (-SA) eecs
predicative (-DIr) eecg
clitic { -(0)1A) iles
infinitive (-mAk) infs
nominating particle (-mA) noms
plural (-1Ar) plrp
x.th singular/plural possessive psxs / psxp
x.th singular/plural personal ending pexs / pexp
any of the possessive suffixes / personal endings ps / pe
x.th derivational suffix from word category a to b dsabx

54
For example, the Turkish word uydu is ambiguous as explained in the previous section.

This time consider the Turkish sentence Bu anahtar kapiya uydu. It can be

morphologically parsed in two ways:

bu(this) anahtar(key) kapi(door) - ya(dative) uydu(satellite)
bu(this) anahtar(key) kapi(door) - ya(dative) uy(to fit) - du(past definite tense)

So, the word wydu is ambiguous, and its Azeri equivalents are peyk(satellite) and
uydu(fitted). That means the ambiguity should be resolved. This time the concept space
is not active, whereas one of the collocations of wuy- is true. uy- has the following 3

collocations:

-an ca(n)

ca(n)+dati [ca(d)] -

ca(a)+dati -

The second collocation ca(n)+dati [ca(d)] - is true for this sentence as
ca(n)(kapt)+dati(ya) -(uydu). Therefore the correct morphological parse of the word is
decided as uy(to fit) - du(past definite tense). So the Turkish sentence is translated into

Azeri as:

Bu agar gapya uydu.

4.6. Resolving Ambiguities

This section explains resolving each kind of ambiguity using the methods explained above.

55

4.6.1. Word Sense Ambiguity

To translate the word sense ambiguous words into Azeri, the ambiguity should be
resolved. We employ the concept structure and the collocation info structure to resolve
this kind of ambiguity. For each sense of the word sense ambiguous word either the

concept structure or the collocation info structure is used to resolve the ambiguity.

As an example, consider the following Turkish sentence and its output obtained from the

morphological parser:

Komutan bu alaya tayin edildi.
(The commander was appointed to this regiment)
Komutan(The commander) bu(this) alay(regiment)-a(dative)

tayin et(to appoint)-il(derivational suffix from verb to verb)-di(past definite tense)

The words komutan and tayin edildi are translated as komandir and ta’yin edildi,
respectively. However the word alay is ambiguous since it has two equivalents in Azeri
as alay(regiment) and lag(mockery). For this case, since regiment word sense of the
Turkish word alay is dependent on concept army and the word komutan has activated the
concept army, alay is selected as the equivalent Azeri word. So the sentence is translated

into Azeri as:
Komandir bu alaya td’yin edild..
As a second example consider the Turkish sentence

Komutan askerle alay etti.

(The commander mocked the soldier)

The words komutan and asker are translated as komandir and dsgdr, respectively.

56

However the word alay is again ambiguous. In this case, although the word komutan is
activated the concept army, alay is translated as lag since the following collocation of the

word sense mockery is true

ca(n)+iles -(n) (etmek,gecmek)

as ca(n)(asker)+iles(le) -(n)(alay) etmek. So the sentence is translated into Azeri as:

Komandir dsgarla lag etdi.

This example also illustrates the fact that collocation info structure has a higher priority

in comparison with concept structure.

Some of the word sense ambiguities can not be disambiguated by using either the
concept structure or the collocation info structure. As an example of this kind consider
the Turkish sentence Alaydan hi¢ hosglanmaz.(He/she does not like the regiment/mockery

at all). The morphological parse of this sentence is:

Alay(regiment/mockery) - dan(ablative) hig(at all) hoglan(io like) - maz(negation)

The words hi¢ and hoglanmaz are translated as he¢ and xoglanmaz, respectively. However
the word alay is ambiguous since it has two equivalents in Azeri alay(regiment) and
lag(mockery). In this case, since neither the concept army is active, nor any of the
collocations of regiment is used with it, the ambiguity can not be resolved. Therefore the

sentence is translated into Azeri as:

(Alay / lag) he¢ xoglanmaz.

57

4.6.2. Morphological Ambiguities

This kind of ambiguities can be divided into two groups according to their treatment in

the disambiguation process:

1. Ambiguities involving multiple root words

2. Ambiguities involving identical suffixes

4.6.2.1 Multiple Root Words

All the morphologically ambiguous Turkish words due to reasons other than identical
suffixes have multiple morphological parses with different root words. Therefore for all
the cases, the correct root word should be decided for the current usage of the Turkish

word in order to resolve the ambiguity.

Collocation info structure and concept structure is also utilized for these ambiguities. The
related collocation info or concept structure information is collected and assigned to each

root word of this kind.

As an example, consider the Turkish sentence Pastan bamim. It can be morphologically

parsed in two ways:

pas(rust) - tar(ablative) bat(to soil) - n(past definite tense) - m(Ist single person)
pasta(cake) - n(2nd singular possessive) bat(to soil) - a(past definite tense) - m(Ist single

person)

Since the Azeri equivalents of all the word senses of the Turkish word bar- are the same,
this word sense ambiguity is ignored in the translation. But, the words pasta and pas are

ambiguous due to similar suffixes, and their Azeri equivalents are forr and pas,

58

respectively. This means that the ambiguity should be resolved. Collocation info structure

is used for both words. The following collocation of the word pas is true for this case

-tan (batmak,gecilmez olmak)+ (pels,pelp,pe2s,pe2p,pe3p)

as -tan bat+pels. Therefore the correct morphological parse of the word is decided as

pas(rust) - tan(ablative). So the Turkish sentence is translated into Azeri as:

Pasdan batdim.

As another example, consider the Turkish sentence Yermis tane elbise sattik. It can be

morphologically parsed in two ways:

yetmig(seventy) tane(piece) elbise(dress) sat(io sell) - ti(past definite tense) - k(Ist plural
person)
yet(to suffice) - mis(past indefinite tense) tane(piece) elbise(dress) sat(to sell) - t(past

definite tense) - k(Ist plural person)
The words yetmis and yet- are ambiguous due to words that are similar in form to stems
with inflectional suffixes. Since their Azeri equivalents are yefinig and yetis-, respectively,

the ambiguity should be resolved. Collocation info structure is utilized for both words.

The following collocation of the word yesmis is true for this case

- (tane, adet)

as - tane. Therefore the correct morphological parse of the word is yermis(seventy), and

the Turkish sentence is translated into Azeri as:

Yetmis dand paltar satdig.

59

4.6.2.2 Identical Suffixes

The ambiguous Turkish words in this category have multiple morphological parses due
to identical suffixes. The root words for all the possible parses are the same. So the

problem is to decide among the alternative suffixes.

Collocation info structure is used for these ambiguities. Collocation information is
collected for the words derived with the ambiguous suffixes or suffix sequences. This
information is used to resolve the ambiguities resulting from the words affixed with these

ambiguous suffixes.

As an example, consider the Turkish sentence Bu senin arabanmn kapisi. It has the

following two morphological parses:

bu(this) sen(you) - in(2nd singular possessive/genitive) araba(car) - nin(genitive)
kapi(door) - s1(3rd singular possessive)

bu(this) sen(you) - in(2nd singular possessive/genitive)

araba(car) - n(2nd singular possessive) - 1n(genitive) kapi(door) - si(3rd singular

possessive)
The word senin and arabanmin are morphologically ambiguous due to identical suffixes.
The suffix genitive is true for the word senin, since the collocation - ¢(n)+ps is true for

it as - ¢(n)(araba)+ps(n). For the word arabamn, the following collocation of the suffix

sequence -(Dn (2nd singular possessive), -(n)In (genitive)
senin [ca(a)] -
is true as senin -. Therefore the Turkish sentence is translated into Azeri as:

Bu sdnin arabamn gapist.

60

S. A TRANSLATOR FROM TURKISH TO THE AZERI LANGUAGE

This chapter explains the translator from Turkish to Azeri which is designed and
implemented in Pascal in this study. The implementation is presented in terms of the

contents and the structures of the lexicons and the algorithms.

5.1. Overview of the Translator

Translation is performed sentence by sentence. The translator first reads a sentence, and
calls the Turkish morphological parser to realize the morphological analysis phase. In
this way, it obtains all possible parses for all words of the sentence. Translation starts
after all of the words in the sentence are morphologically parsed, since the information
obtained from the morphological analysis is likely to be used in ambiguity resolution

process. The overall structure of the translator is illustrated in Figure 5.1.

For each word one of the following three cases is true depending on the result obtained

from the morphological parser:

1. no morphological parse
2. single morphological parse

3. multiple morphological parses

The translator assumes that the text is free of spelling errors. Therefore, before running
the translator, the input text‘ should be checked with a spell checker. We are using the
one developed in Bogazi¢i University [8]. So, during the translation if a word can not be
morphologically parsed in any way, it means that the word does not exist in the
translator’s lexicons. In this case the Turkish word is given as the result of the translation

together with the message "No Information”.

Turkish root
words lexicon

Turkish proper
nouns lexicon

Bilingual
suffix lexicon

A

Turkish
sentence

v

no morphological
parse

A

1l ” ™
v v v

Turkish
morphological
parser

v
No information

no ambiguity

For each word
in the sentence

ambiguity

v v
Translation
Translation|« > lexicon « » |Check to ignore
ambiguity
v No Yes
Azeri
word l
v \ 4
Azeri
Ambiguity word
l Resolution
v
Azeri word or A A A
alternatives
v v ﬂ
Word Sense Morphologically Identical
ambiguous words ambigucus root suffixes
lexicon words lexicon lexicon

Figure 5.1.

Overall Structure of the Translator

61

62

In case of a single morphological parse, if the word does not involve word sense
ambiguity, it is translated into Azeri by replacing the Turkish root word and the suffixes
with their Azeri equivalents. Proper noun root words are translated into Azeri without
any modification. If it involves word sense ambiguity, it is tried to be disambiguated in
the Resolve Word Sense Ambiguity routine by utilizing the concept and collocation info

structures.

In case of multiple parses, translator first checks whether the ambiguity can be ignored
or not. The check is performed by finding the Azeri equivalents of each parse and then
comparing them. If the Azeri equivalents for each parse of the Turkish word are the
same, then the ambiguity is simply ignored. However, it should be noted that if any one
of the Turkish root words is word sense ambiguous, the ambiguity can not be ignored,

since the Turkish word has alternative equivalents in Azeri at least for this parse.

If the word has more than one morphological parse, it is identified as ambiguous either
due to multiple root words or due to identical suffixes. Resolve Multiple Root Words
Ambiguity routine, which employs the concept and collocation info structures, is called
to resolve the multiple root words ambiguity and Resolve Identical Suffix Ambiguity

routine, which utilizes only the collocation info structure, is called to resolve the identical

suffix ambiguity.

In case of multiple root words ambiguity, if any one of the root words is also word sense
ambiguous, then Resolve Word Sense Ambiguity routine is also utilized to resolve the
ambiguity. In case of identical suffix ambiguity, even if the ambiguity is resolved, the root
word itself may be word sense ambiguous. If this is the case Resolve Word Sense

Ambiguity routine is utilized to resolve the ambiguity.

Moreover, there exist some words which involve multiple root words and identical suffix
ambiguity at the same time, e.g. the Turkish word kalemi as kalem(pen) + -(y)I

(accusative), kalem(pen) + -(s)I(3rd singular possessive) or kale(castle) + -(I)m (1st

63

singular possessive) + -(y)I(accusative). If this is the case, since the Turkish word involves
identical suffix ambiguity, it is treated as ambiguous due to this reason and Resolve
Identical Suffix Ambiguity routine is utilized to resolve the ambiguity. If the ambiguity can
not be resolved by this routine, and it also involves the multiple root words ambiguity
then Resolve Multiple Root Words Ambiguity routine is employed to resolve the

ambiguity.

If the ambiguity is resolved the equivalent Azeri word, otherwise the alternative

translations are given as the result of this word’s translation.

Translator employs 8ylexicons in the translation process. The Turkish root words lexicon,
the Turkish proper nouns lexicon, and the bilingual suffix lexicon are used in the
morphological analysis of Turkish words. The translation lexicon is utilized to find the
Azeri equivalents of Turkish words, and their specific semantic features. The
morphologically ambiguous root words lexicon, the word sense ambiguous root words
lexicon, the identical suffixes lexicon, and the macro collocation info definitions lexicon

are used in resolving ambiguities.

64

5.2. Lexicons

A translator must employ complete lexicons and well-designed structures to effectively

access them. We have employed the following 8 lexicons in the translator:

. Turkish root words lexicon

. translation lexicon

. morphologically ambiguous root words lexicon
. word sense ambiguous root words lexicon

. identical suffixes lexicon

. macro collocation info definitions lexicon

. bilingual suffix lexicon

0 N N U AW N

. Turkish proper nouns lexicon

The contents and the structures of each lexicon are discussed below. The entries in each
of these lexicons, except the suffix lexicon which has a considerably complex structure,
are presented in Table 5.1. Since the translator is implemented using Turbo Pascal 6.0
compiler and it involves considerably large lexicons, it has not been possible to load the
contents of these lexicons into main memory for fast access. Therefore all the lexicons
except the suffix lexicon are kept in disk, and the information in them is obtained by file

access.

Table 5.1. The content

of the translator’s lexicons

65

Lexicon

Number of
entries

Information in each entry

Turkish root words lexicon

6900

W oW N e

. Turkish word

. its_part_of_speech

. flags

. semantic_features_for_nouns_and_pronouns
. semantic_features_as_part_of speech_

subcategories

Translation lexicon

6900

. Azeri_equivalent
. concept_activation_information_or_semantic_

features

3. index_of_the_morphologically ambiguous_root_

words_lexicon_if any

Morphologically ambiguous
root words lexicon

595

A B W

. Turkish_word

. concept_structure_array

. collocation_info_linked _list
. wsflag

. conceptf

. colinfof

Word sense ambiguous root
words lexicon

157

N e

. Turkish_word
. WSno
. array_of_word_sense_records

3.1. Azeri_equivalent

3.2. concept_structure_array
3.3. collocation_info_linked_list
3.4. conceptf

3.5. colinfof

Macro collocation info
definitions lexicon

25

. collocation_info_linked_list

Identical suffixes lexicon

49

DO

. suffix
. collocation_info_linked _list

Turkish proper nouns lexicon

10000

[y

. Turkish_proper_noun
. flags
. semantic_features_for_proper_nouns

66

5.2.1. Turkish Root Words Lexicon

Part of the data in the Turkish root words lexicon necessary for the morphological
analysis of Turkish, which includes the Turkish words, their parts of speech and a series
of flags, is obtained from Department of Computer Engineering, Bogazici University [8].
If a certain flag is set for a word it means that either the word has the property
represented by that flag or the suffix represented by that flag can be affixed to the word.
In the current implementation 56 flags are used, 38 for nouns and adjectives, and 18 for
verbs and adverbs. For a detailed description of these flags see "Intermal Design

Specification, A Spelling Checker and Corrector for Turkish" [24] .

Turkish words derived using derivational suffixes that do not exist in Azeri and those
derived by the suffixes that are not applicable to some Azeri words, about 1000, and their
related information are also added to the lexicon. Thus, the lexicon totally contains about
6900 words. If a Turkish word derived by a suffix that is applicable to some Azeri words
is not stored in the lexicon, the suffix is assumed to be applicable to its root word.
Moreover, it should be noted that if a Turkish word derived by the suffixes that are .
applicable to some Azeri words is added to the lexicon, the flags that allow the affixation

of the suffixes deriving it should be set to 0.

The semantic features presented in Section 4.5.1 are added to all the words in the root

lexicon. So, the structure of the lexicon is a file of records with the following definition:

rootrecord = record
Turkish_word : string[maxwordlength];
its_parts_of speech : array [1..5] of categorytype;
flags : array [1..38] of boolean;
semantic_features_for_nouns_and_pronouns : array [1..10] of boolean;
semantic_features_as_part_of_speech_subcategories : array [1..5] of subcategorytype;

end;

67

In this definition, maxwordlength denotes the maximum length of a Turkish word,
categorytype is a user defined type to represent the word categories in the transition
network, and subcategorytype is also a user defined type to represent the subcategories
of the parts of speech. The same notation is used for all the record definitions in this

chapter.

The current implementation uses an index of array type, each element of which is
pointing to the first word in the group of words whose first two letters are the same. A
representative listing of the lexicon including the first 150 entries is given in Section E.1

in Appendix E.

5.2.2. Translation Lexicon

The Azeri equivalents of Turkish words are obtained from "Comparative Dictionary of
Turkish Dialects" [13]. About 400 of these words are not included in the root lexicon,
since they can be derived from existing root words with derivational suffixes. The entries
of this lexicon are in one-to-one correspondence with the entries of Turkish root words
lexicon. Therefore, the Azeri words in this lexicon are the equivalents of the Turkish
words located in the same entries in Turkish root words lexicon. So, this lexicon has also
about 6900 entries. The Azeri equivalent for a word sense ambiguous Turkish word is
stored as "ws" to indicate that it is word sense ambiguous. If an unambiguous Turkish

word has multiple equivalents in Azeri only one of them is selected arbitrarily.

A flag (azerif) is employed to denote whether the equivalent of the Turkish word in
Azeri is exactly the same as the Turkish word or not. By means of this flag, duplication
of the Azeri equivalents of the Turkish words that are the same with the Turkish words,

which are about 1100, is eliminated.

68

The Azeri equivalents of the Turkish words that are affected by the phonological
variation rules, valid for all the Azeri words, are not stored in the lexicon, instead the
same flag azerif is utilized. Therefore, while locating the Azeri equivalent of a Turkish
word, if its Azeri equivalent is not explicitly stored in the lexicon, these phonological

variation rules are automatically applied to the Turkish word.

Actually, we have attempted to utilize the phonological variation rules that are valid for
some Azeri words in storing the Azeri equivalents of Turkish words. Our idea is the
following. If the Azeri equivalent of a Turkish word is its phonological variation
depending on certain phonological rules , instead of storing the Azeri word explicitly, only
the flags representing these rules may be stored. However, since the number of Azeri
words that are affected by these rules are quite low, this strategy seemed to be

inefficient. Thus, it is not used in the current implementation.

As another attribute, concept activation information and specific semantic features are
stored together with each word in an array containing 5 entries. These entries are either
the numbers representing the concepts that the usage of the word activates or the
numbers representing the specific semantic features that the word satisfies. The last
attribute is the index of the corresponding entry in the morphologically ambiguous root

words lexicon for the words that may cause morphological ambiguities.
So, the structure of the lexicon is file of records with the following fields:

translationrecord = record
Azeri_equivalent : string[maxwordlength];
Azerif : boolean; '
concept_activation_information_or_specific_semantic_features : array [1..5] of integer;
Index_of_the_morphologically_ambiguous_root_w6rds_lexicon_ent;y_if_any : integer;

end;

69
No index is employed for this lexicon, since the entries are in one-to-one correspondence
with the entries of the Turkish root words lexicon, and they are not accessed without
accessing to that lexicon. A representative listing of the lexicon including the Azeri

equivalents of the Turkish words in Section E.1 of Appendix E is given in Section E.2.

5.2.3. Morphologicaily Ambiguous Root Words Lexicon

In the morphologically ambiguous root words lexicon an array to implement the concept
structure and a linked list to implement the collocation info structure are stored for each
entry corresponding to a morphologically ambiguous word in the translation lexicon.
Instead of all the collocations of the ambiguous words, only the collocations specific to
the resolution of the ambiguities are stored in the lexicon. We have identified only those
morphologically ambiguous words that exist in our root words lexicon. The lexicon

contains disambiguation information for 595 morphologically ambiguous words.

The concept array has 3 entries since in the current implementation a Turkish word is
expected to depend on 3 different concepts at the same time. In each array entry, the
numeric code of the concept on which the Turkish word is dependent is stored. The
collocation info header pointer points to a linked list of nodes, each containing a
collocation of the ambiguous Turkish word. If one of the collocations is used together
with the word in the correct syntactic form, the corresponding Azeri word in the
translation lexicon is chosen as the result of the translation. The semantic information in
each entry is used in the disambiguation process involving the corresponding word in the

translation lexicon.

A flag (wsflag in the declaration below) is employed to denote whether the Turkish word
is also word sense ambiguous or not, and two additional flags are employed to speed up
the process of checking whether the concept (conceptf) and collocation info structures

(colinfof) are used in the disambiguation process of the word or not.

70

So, the structure of this lexicon is file of records with the following fields:

colinfopointer = ~ colinforecord;

colinforecord = record
collocation : string[maxcollocationlength];
next : colinfopointer;

end;

morphambiguouswordrecord = record
Turkish_word : string[maxwordlength];
concept_structure_array : array [1..3] of integer;
collocation_info_linked_list : colinfopointer;
wsflag, conceptf, colinfof : boolean;

end;

Colinfopointer is a linked list structure to store the collocation definitions, and
maxcollocationlength denotes the maximum length of a collocation definition. Since the
entries of this lexicon are accessed via the translation lexicon, and the entry numbers are
stored in it, no index is employed for this lexicon. The full listing of this lexicon is given

in Section E.3 in Appendix E.

5.2.4. Word Sense Ambiguous Root Words Lexicon

Turkish words with multiple equivalents in Azeri, due to multiple word senses are stored
in a separate lexicon in order to handle them effectively. We have identified only those
word sense ambiguous words that exist in our root words lexicon. The lexicon contains

157 word sense ambiguous Turkish words, and disambiguation information for them.

An array implementing the concept structure, a linked list implementing the collocation

info structure, the Azeri equivalent of the Turkish word, and two flags to represent

71
whether the concept and the collocation info structures are used in the disambiguation
process of the word sense or not are stored for each word sense. The concept structure
array and collocation info linked list are the same with the ones explained in Section

5.2.3. So, disambiguation information for each word sense is stored as a record with the

following attributes:

wordsenserecord = record
Azeri_equivalent : string[maxwordlength];
concept_structure_array : array {1..3] of integer;
collocation_info_linked_list : colinfopointer;
conceptf, colinfof : boolean;

end;

An array of word sense records including these fields are stored together with each word
and the number of its word senses. This array has 4 entries since the Turkish words in

our root words lexicon have at most 4 word senses. So, the structure of this lexicon is file

of records with the following fields:

wordsenseambiguouswordrecord = record
Turkish_word : string[maxwordlength];

array_of word_sense_records : array [1..4] of wordsenserecord;
wsno : integer;

end; -

The current implementation uses an index of array type, each element of which is
pointing to the first word in the group of words whose first two letters are the same. The

full listing of the lexicon is given in Section E.4 in Appendix E.

72

5.2.5. Macro Collocation Info Definitions Lexicon

Collocations that are valid for more than one ambiguous word are defined as macro
collocations. This lexicon contains these macro collocation definitions. In the current
implementation we use 25 macro collocation definitions. So the structure of the lexicon
is file of collocation info linked list. Since the macro collocation info definitions are
referred with their entry numbers, no index is associated with this lexicon. The full listing

of the lexicon is given in Section E.5 in Appendix E.

5.2.6. Identical Suffixes Lexicon

The identical suffixes lexicon is utilized in order to resolve the morphological ambiguities
resulting from identical suffixes. A suffix may be identical with another suffix as well as

with a suffix sequence. The lexicon currently contains 49 identical suffixes.

Generic names for each identical suffix is stored in an array of suffixes, because of the
existence of identical suffix sequences. A pointer array used to implement the collocation
info structure for each suffix or suffix sequence is also stored. So, the structure of the file

is file of records with the following attributes:

identicalsuffixrecord = record

suffix : array [1.3] of generic_suffix_symbols;
collocation_info_linked_list : colinfopointer;

end;

Generic_suffix_symbols is a user defined type to represent the generic names of the
suffixes. (see Section 4.5.3) The suffixes are stored in sorted order. The full listing of the

lexicon is given in Section E.6 in Appendix E.

73

5.2.7. Bilingual Suffix Lexicon

Morphological parsing has special importance in translation between agglutinative
languages. The key feature of morphological parsing is the suffix lexicon, which mirrors
the transition network representation of the morphotactics of the language. The suffix
lexicon employed in the morphological analysis of Turkish is also obtained from Bogazici

University [8]. It is refined in order to be used in the translation process.

The morphophohemic and morphotactic rules of the Azeri are taken from the
"Comparative Dictionary of Turkish Dialects" [13] and "The Language of Turks" [14].
Some of the information about these rules and derivational suffixes that does not exist
in these references was extracted from the Azeri words and Azeri texts by analyzing
them. Derivational suffixes that do not exist in Azeri were excluded from the suffix
lexicon. The meanings of the suffixes as generic suffix names and their Azeri equivalents
were added to it. A representative listing of the suffix lexicon, including the transitions
for nouns and adjectives is given in Section E.7 in Appendix E. For a detailed discussion
of this lexicon see "Internal Design Specification, A Spelling Checker and Corrector for -

Turkish" [24].

The data structure employed is a bucket structure. The bucket is an array of nodes, each
belonging to a word state, which is the initial state of a transition. Each node in the
bucket includes the name of the state, information on whether the words in this state are
valid or not, and a pointer to the linked list of nodes holding information about the

suffixes that can be affixed to the words in this state. Each node in the linked list

contains the following information:

74

1. a Turkish suffix

2. its meaning as a generic suffix name

3. its Azeri equivalent

4. the final state of the word if this suffix is affixed to it

5. the flag number used to decide whether the suffix can be affixed to the word or not

6. the information whether the suffix is affixed to the end of the word or affixed separately

7. a pointer to the next node

The suffix lexicon is actually stored in a file and it is loaded into the bucket structure

before the translator is run.

5.2.8. Turkish Proper Nouns Lexicon

The proper nouns lexicon was also obtained from Bogazici University [8]. It contains
about 10000 Turkish proper nouns together with 13 flags for each that are used in their
morphological analysis. For a detailed description of these flags see "Internal Design
Specification, A Spelling Checker and Corrector for Turkish" [24]. The semantic features
for the proper nouns are added to the lexicon. The structure of the proper nouns lexicon

is file of records with the following fields:

propernounrecord = record
Turkish_proper_noun : string{maxwordlength];
flags : array [1..13] of boolean;
semantic_features_for_proper_nouns : array [1..10] of boolean;

end;

The same index structure as the Turkish root words lexicon is utilized for this lexicon. A
representative listing of the lexicon including the first 100 entries is given in Section E.8

in Appendix E.

5.3. Algorithms

The algorithms necessary to implement the translator are listed below. The main
algorithm is followed by the others. Whenever appropriate and helpful for a better
understanding, a brief trace of the algorithm is given with specific examples. The overall
algorithm of the translator is illustrated in Figure 5.2. The symbol nop in the figure

denotes the number of parses for a word. The list of the algorithms for the translator is

as follows:

O 0 3 N v Bl WD e

e Y
N = O

. Main Algorithm

. Modifying Translator Lexicons

. Turkish Morphological Parser

. Affixing Suffixes

. Affixing a Suffix

. No Ambiguity Case

. Finding Collocation Index

. Checking Collocation

. Checking Macro Collocation Definition
. Resolving Word Sense Ambiguities

. Resolving Morphological Ambiguities
. Resolving Identical Suffix Ambiguities

76

Turkish
sentence
v
Turkish
Morphological Parser
Unit
For each word
in the sentence
nop > 1 nop = 0
v
nop = 1 No
information
\4 v
Check to Yes Check multiple
ignore the word senses
ambiguity l
v
Azeri
word Yes No
No | |
v v v
Identical Resolve No
suffixes word sense ambiguity
ambiguity case
Yes No
| x \
v v Azeri
word
Resolve Resolve
identical multiple
suffix root words
ambiguity ambiguity
v v v
Azeri word
or
alternatives

Figure 5.2. The Overall Algorithm of the Translator

77

5.3.1. Main Algorithm

The main algorithm initially checks the request for supervisor options. In case of such a
request, if the user supplies the correct password, it allows the user to modify the
translator’s lexicons. The translator then loads the suffix lexicon into main memory and
creates indexes for the Turkish root words, the Turkish proper nouns and the word sense

ambiguous root words lexicons.

It begins the translation process by reading the Turkish text that will be translated into
Azeri. Translation is performed sentence by sentence. First, it finds all the morphological
parses of the words in the sentence by using Turkish morphological parser. Then depending
on the result obtained form the parser, it determines whether the word involves any
ambiguity or not, and the kind of the ambiguity if any. Finally, for each word of the
sentence it calls appropriate routines to perform the translation. Figure 5.3 gives the

algorithm in structured English.

ask the user for supervisor options
if gets a positive request then
call Modifying Translator Lexicons routine
while not end of the Turkish text do
read the sentence
jor each word in the sentence do
call Turkish Morphological Parser unit and get the number of parses of the word and the related information
Jor each parse
activate the concepts related with the word if any
end for
{ translation }
Jor each word in the sentence do

set okay to faise

Figure 5.3. Main Algorithm

{ check to ignore ambiguity }

if number of parses is greater than one then
form the Azeri equivalent for each parse

if all of them are the same then

if none of them is word sense ambiguous then

output the translation as the Azeri equivalent of one of the parses since all are the same
set okay to true

end if
end if
end if
if not okay then
{ No information }
if number of parses is zero then
perform no translation process and output the Turkish word itself with the prompt "No information"

{ nop = 1 and not a proper noun }

else if number of parses is one and not a proper noun then

if the root word is not word sense ambiguous then

call No Ambiguity Case
output the translation
else
call Resolve Word Sense Ambiguity
if Resolved then
output the translation
else
output the alternative translations
end if
end if
{ nop = 1 and proper noun }

else if number of parses is one and a proper noun then

call No Ambiguity Case

output the translation

Figure 5.3. Main Algorithm (continued)

78

{ multiple root words ambiguity }
else if number of parses is greater than one and no identical suffix ambiguity then
call Resolve Multiple Root Words Ambiguity
if Resolved then
output the translation
else
output the alternative translations
end if
{ identical suffix ambiguity }
else if number of parses is greater than one and identical suffix ambiguity then
call Resolve Identical Suffix Ambiguity
if Resolved then
output the translation
else if not resolved then
if the word also involves multiple root word ambiguity then
call Resolve Multiple Root Words Ambiguity
if resolved then
output the translation
else
output the altematz:ve translations
end if
else
output the alternative translations
end if
end if
end if
end if
end for

end while

Figure 5.3. Main Algorithm (continued)

79

80

5.3.2. Modifying Translator Lexicons

In this routine, if the user supplies the correct password for a supervisor, he can modify the
translator’s lexicons. Namely, he modifies the lexicons in text file format, and transfers them

into suitable file- format with this routine. The algorithm is given in Figure 5.4.

request the password

if correct password then

read the name of the lexicons to be modified

for each lexicon read do
_ call the appropriate routine to transfer the lexicon from text file format into suitable file format that can be used
by the translator

end for

end if

Figure 5.4. Algorithm for Modifying the Translator Lexicons

5.3.3. Turkish Morphological Parser

The Turkish morphological parser obtained from Bogazi¢i University [8] is refined, and

used as a separate unit which can be called by the translator.

This unit receives a Turkish word, and produces all of its morphological parses together
with the related information. For each parse of the word the following information is

obtained:

1. the Turkish root word

2. its location in the Turkish root words lexicon
. its part of speech,

. its subcategories,

. its semantic features,

. the Turkish suffixes affixed to the word,

[~ R

81

7. their related information for the vowel harmony rule and the consonant harmony rules,
8. the generic names of the suffixes,
9. their Azeri equivalents,
10. the related information of the Azeri equivalents for the vowel harmony rule and the consonant harmony
rules,
11. a flag to denote whether the root word is a proper noun or not,

12, a flag to denote whether the word involves identical suffix ambiguity or not.

This information is utilized to diagnose the kind of ambiguity the word involves and to
resolve the ambiguity. For a detailed algorithm of this unit see "Internal Design

Specification, A Spelling Checker and Corrector for Turkish" [24] .

5.3.4. Affixing Suffixes

The routine receives an Azeri root word and the Azeri suffixes that will be affixed to it. It
forms the equivalent Azeri word by affixing the suffixes to the root. In order to affix a suffix

to an Azeri word it uses Affix a Suffix routine defined inside it.

5.3.4.1. Affixing a Suffix

This routine affixes an Azeri suffix to an Azeri word applying the morphophonemic rules

of Azeri. The algorithm is given in Figure 3.5.

modify the root word and the suffix by applying the following morphophonemic rules
apply the vowel harmony rule |

" apply the consonant harmony rules

affix the suffix to the root word

return the new form of the word

Figure 5.5. Algorithm for Affixing a Suffix

82

5.3.5. No Ambiguity Case

In case of no ambiguity, if the Turkish word is not a proper noun its equivalent Azeri word
is found. If it is a proper noun, it is directly used as the Azeri equivalent. Then the
translation is performed by affixing the Azeri equivalents of Turkish suffixes to the

equivalent Azeri root word. The algorithm is given in Figure 5.6.

if the root word is not a proper noun then

find the Azeri equivalent of the Turkish root word from Translation lexicon

else

use the Turkish proper noun as the equivalent Azeri root word without any modification

end if

call Affix Suffixes in order to affix the Azeri equivalents of the Turkish suffixes identified for the Turkish word to

the Azeri root word.

Figure 5.6. Algorithm for No Ambiguity Case

5.3.6. Finding Collocation Index

‘This routine receives the first element of a collocation definition from Check Collocation.
It finds the places of the words in the sentence that satisfy this element. The algorithm is
given in Figure 5.7. In the algorithm, each possible case for the collocation element is
represented with its symbol (see Section 4.5.3). X denotes any possible value for the place

it appears.

set all entries of the collocation index array to zero
if the collocation element is a macro collocation definition then
{coX}

set the next collocation index array entry to minus one

Figure 5.7. Algorithm for Finding Collocation Index:

else if it is a word with the part of speech then
{ca(X) }

Jor all words of the sentence do

if the part of speech of the root word for any parse of it is the same as the part of speech X then

store the place of the word in the sentence to the next collocation index array entry
end for

end if
else if it is a word with the specific semantic feature then
{eX}
for all words of the sentence do
if the root word for any parse of it has the semantic feature X then

store the place of the word in the sentence to the next collocation index array entry
end for

end if
else if it is a word with the proper noun semantic feature then
{oX}
for all words of the sentence do
if the root word for any parse of it has the proper noun semantic feature X then

store the place of the word in the sentence to the next collocation index array entry
end for

end if
else if it is a word with the noun semantic feature then
{X}
for all words of the sentence do
if the root word for any parse of it has the semantic feature X then

store the place of the word in the sentence to the next collocation index array entry
end for

end if
else if it is a word with the specified subcategory then
{ a(X) or d(X) or p(X) or v(X) }
for all words of the sentence do
if the root word for any parse of it belongs to the specified subcategory then
store the place of the word in the sentence to the next collocation index array eniry

end for

Figure 5.7. Algorithm for Finding Collocation Index (continued)

end if
else if it is the ambiguous word then
{-}
for all words of the sentence do
if the word is the same as the ambiguous word then
if the location of the word in the sentence is equal to the collocation index then

store the place of the word in the sentence to the next collocation index array eniry
end for

end if
else if it is a sentence with the mood then
{ mood(X) }
if the mood of the sentence is the same with the specified mood X then
- Set the next collocation index array entry to minus one
else if it is alternative collocation then
{c,)1
find each alternative collocation
for each alternative collocation do
for all words of the sentence do
if the collocation is true then
store the place of the word in the sentence to the next collocation index array eniry
end for
end for
end if
else if it is a constant word then
{ eg giizel, geldi }
for all words of the sentence do
- if the word is the same as the constant word then

store the place of the word in the sentence to the next collocation index array entry
end for

end if

" return the collocation index array

Figure 5.7. Algorithm for Finding Collocation Index (continued)

84

85

Here a couple of traces might be useful to understand the algorithm better. Consider the
Turkish sentence Ali bir kalem ve silgi aldr (Ali bought a pencil and an eraser). Assume that
the first element of the collocation that is currently analyzed is ca(n) which means a word
with part of speech noun. In this case, since the Turkish sentence has two words (kalem,
silgi) satisfying this element, find collocation index routine returns their locations in the
sentence, namely 3 and 5. These are the possible places from which the collocation can be

started to check.

Another example might be the Turkish sentence Beni seviyor (He/she loves me). If the first
element of the collocation is ca(p)+accu , which means a pronoun with an accusative suffix,
only 1 is returned by the routine. This is because only the word beni in the sentence

satisfies this element.

5.3.7. Checking Collocation

This routine checks whether the current sentence satisfies a collocation or not. If it satisfies
returns true, otherwise returns false. The algorithm is given in Figure 5.8. In the algorithm,
each possible case for the collocation element that is to be checked is represented with its

symbol (see Section 4.5.3). X denotes any possible value for the place it appears.

find the distinct elements in the collocation
call Find Collocation Index to find the places of the words, that satisfy the first element of the collocation, in the
sentence
set satisfied to false
for each word found and while not satisfied do
set okay to true
- set collocation index as the location of the next word in the sentence

for all the distinct elements of the collocation beginning from the second one and while okay do

Figure 5.8. Algorithm for Checking Collocation

86
if it is a macro collocation definition then
{coX}
call Check Macro Collocation Definition
if it returns false then
set okay to false
end if
" else if it is a word with the part of speech then
{ca(X) }
if none of the parses of the word located in the current collocation index has a root word with part of speech
X then
set okay to false
end if
else if it is a word with the specific semantic feature then
{cX}
if none of the parses of the word located in the current collocation index has a root word with semantic feature
X then
set okay fo false
end if
else if it is a word with the proper noun semantic feature then
{oX}
if none of the parses of the word located in the current collocation index has a root word with semantic feature
X then
set okay to false
end if
else if it is a word with the noun semantic feature then
{X}
if none of the parses of the word located in the current collocation index has a root word with semantic feature
X then
set okay to false
end if
else if it is a word with the specified subcategory then

{ a(X) or d(X) or p(X) or v(X) }

Figure 35.8. Algoritﬁm for Checking Collocation (continued)

87

if none of the parses of the word located in the current collocation index has a root word which belongs to
the specified subcategory then
set okay to false
end if
else if it is the ambiguous word then
{-1
if the word located in the current collocation index is not same as the ambiguous word or if the location of
the word in the sentence is not equal to the collocation index then
set okay to false
end if
else if it is the sentence with the mood then
{ mood(X) }
if the mood of the sentence is not the same with the specified mood X then
set okay to false
end if
else if it is alternative collocation then
{(,)}
find each alternative collocation
if none of the alternative collocations is true for the word located in the collocation index then
set okay to false
end if
else if it is a constant word then
{ e.g. guizel, geldi }
if the word located in the current collocation index is not the same as the constant word then
set okay to false
end if
end for
if okay then
set satisfied to true
end for
return satisfied

end if

Figure 5.8. Algorithm for Checking Collocation (continued)

88
As an example for the trace of this routine, consider the Turkish sentence yarnn sabah

gelecekler. (They will come tomorrow mormning) In this sentence the ambiguous word is yann

as it has five morphological parses:

yar(abyss) + in(2nd singular possessive)
yar(abyss) + n(genitive)

yar(to split) + wn(2nd singular person)
yan(half) + n(2nd singular possessive)

yann(tomorrow)

The following collocation of the word yarnn will be checked by this routine to decide

whether the Turkish sentence satisfies it or not:

- (sabah, igle, aksam, gece)

Firstly, the elements of the collocation is determined. In this case there exist two elements: -

and (sabah, dgle, aksam, gece).

Next, Find Collocation Index routine is called with the Turkish sentence and the collocation
element -. It returns 1 since the ambiguous word yarnn exist only as the first word of the

sentence.

Finally, the remaining elements of the collocation are checked beginning from the second
word of the sentence. The next element is (sabah, dgle, aksam, gece) which is an alternative
collocation, and the second word of the sentence satisfies this collocation element. Since
there exist just 2 elements in the collocation, the collocation definition is satisfied by the

check collocation routine. Thus it returns true.

89

5.3.8. Checking Macro Collocation Definition

This routine gets a macro collocation definition number, and reads the collocation definition
located in this entry of the Macro Collocation Info Definitions lexicon. It then checks
whether any one of the collocations of this definition is satisfied by the Turkish sentence

or not. Figure 5.9 gives the algorithm.

set satisfied to false
for each collocation designated in the specified macro collocation definition in the Macro Collocation Definitions
Lexicon do
. if Check Macro Collocation Definition returns true then
Set satisfied to true

return satisfied

Figure 5.9. Algorithm for Checking Macro Collocation Definition

90

5.3.9. Resolving Word Sense Ambiguity

This routine tries to resolve the word sense ambiguity by utilizing the concept and
collocation info structures. It first checks the collocation info structure, because of its high
priority in comparison with the concept structure. It returns true if accomplishes to resolve

the ambiguity, and returns false if not. The algorithm is given in Figure 5.10.

set resolved to false
for all word senses of the word and while not resolved do
if collocation info structure is utilized for the word sense then
for all the collocations of the word sense do
call Check Collocation to check whether the Turkish sentence satisfies the collocation or not
if it returns true then
set resolved to true
end for
end if
.end for
for all word senses of the word and while not resolved do
if concept structure is utilized for the word sense then
for all concepts the word sense is dependent on do
if the concept is active then
set resolved to true
end for
end if
end for

return resolved

Figure 5.10. Algorithm for Resolving Word Sense Ambiguity

91

5.3.10. Resolving Multiple Root Words Ambiguity

This routine tries to resolve the multiple root words ambiguity by utilizing the concept and
collocation info structures. It first checks the collocation info structure, because of its high
priority in comparison with the concept structure. If any of the ambiguous root words is also
word sense ambiguous, then it calls Resolve Word Sense Ambiguity routine to resolve the
ambiguity. It returns true if it accomplishes to resolve the ambiguity, and returns false if

not. Figure 5.11 gives the algorithm.

set resolved to false
for all morphological parses of the word and while not resolved do
find the corresponding entry in the Morphologically Ambiguous Root Words lexicon for the Turkish root word
of the parse
if the root word is word sense ambiguous then
call Resolve Word Sense Ambiguity
else if collocation info structure is utilized for the word then
for all the collocations of the word do
if Check Collocation returns true
set resolved to true
end if
end for
for all morphological parses of the word and while not resolved do
find the corresponding entry in the Morphologically Ambiguous Root Words lexicon for the Turkish root word
of the parse
if concept structure is utilized for the word then
if any of the concepts that the word is dependent on is active then
set resolved to frue
end for

return resolved

Figure 5.11. Algorithm for Resolving Multiple Root Words Ambiguity

92

5.3.11. Resolving Identical Suffix Ambiguity

This routine tries to resolve the identical suffix ambiguity by utilizing the collocation info
structure. It returns true if it accomplishes to resolve the ambiguity, and returns false if not.
Even though the identical suffix ambiguity is resolved, the root word may be word sense
ambiguous. In this case, if the identical suffix ambiguity is resolved, then the word sense

ambiguity is treated accordingly. Figure 5.12 gives the algorithm.

set resolved fo false
for all morphological parses of the word and while not resolved do
find the corresponding entry in the Identical Suffixes lexicon for the ambiguous suffixes involved in the parse
for all the collocations do
call Check Collocation to check whether the Turkish sentence satisfies the collocation or not
if it returns true then
set resolved fo true
end for
end for
if resolved then
if the root word is word sense ambiguous then
call Resolve Word Sense Ambiguity
end if

return resolved

Figure 5.12. Algorithm for Resolving Identical Suffix Ambiguity

93

6. DISCUSSION AND EVALUATION

In this chapter the shortcomings and the performance of the translator implemented in

this work are discussed, and proposals to improve its performance are put forward.

6.1. Shortcomings of the Translator

We are aware of the following shortcomings of the translator:

. incomplete linguistic data

. shortcomings of the Turkish morphological parser
. translation of idioms and expressions

. shortcoming about the concept structure

. ambiguities caused by proper nouns

N U s W N e

. restriction on the number of words of a sentence

The most obvious shortcoming of the translator is its incomplete linguistic data. It covers
6900 Turkish words and their Azeri equivalents. The information used to resolve the
ambiguities does not include all the co-occurrence data for ambiguous Turkish words,
since they are obtained from dictionaries and from the linguistic knowledge of the author
instead of real Turkish corpora. In order to collect the complete co-occurrence data for

ambiguous Turkish words, a detailed corpus analysis for Turkish is necessary.

The Azeri equivalents of a small number of the Turkish derivational suffixes can not be

determined from the linguistic references. These suffixes are the following:

-(y)Adur, -(y)Agel, -(y)Agdr, -(y)Akoy, -(y)Iver, -(y)Ayaz, -cAsInA,
-trilyon, -cAglz, -(I)z (for numbers), -slzln, -(y)IlAn, -(y)InAn,
(VAL -(y)AslyA

94

The translator treats these suffixes as if they are the same with their Azeri equivalents.

Since the translator diagnoses the ambiguities using the results obtained from the Turkish
morphological parser developed at Bogazici University, all of its shortcomings cause
problems in the translator, e.g. wrong parses. If a word can be morphologically parsed
in more than one way, it is identified as ambiguous. Hence, in case of wrong parses, the
Turkish word is incorrectly identified as ambiguous. Since there exists no information to
resolve the ambiguity, it can not be resolved and the result of the translation is given as

alternative translations, which is actually not the case.

The translator does not handle expressions and idioms appropriately. Although some
expressions are placed in the root lexicon, it simply ignores them. This may cause wrong
translation as in the following example. The Azeri equivalent of the Turkish expression
hosa gitmek is xosa gilmak. The translator first translates the word hoga as xosa and then
the word gitmek is translated as getmadk, since the Azeri equivalent of the Turkish word
gitmek is getmdk. So in this way the expression hosa gitmek is wrongly translated as xosa

getmak.

Another shortcoming of the translator is about the concept structure. In the current
implementation only root words are allowed to activate the concepts. This causes the
following problem. If a derived word activates a concept even though its root does not
activate the same concept, this information can not be coded into the translation lexicon.
These words should be treated separately. They should be determined and stored in a

separate lexicon, and should be allowed to activate the related concepts.

Another shortcoming of the translator is related to proper nouns. It does not handle
ambiguities caused by proper nouns. It simply assumes that words beginning with a
capital letter are proper nouns, and therefore it requires all other words to begin with
the lower case letters, even for the first word of a sentence. So, in the sentence diin

Aydin geldi., Aydin is treated as a proper noun, as in the sentence Aydmin bir toplum

95

olmalyiz. This causes incorrect translation for the second sentence. Therefore to avoid
this kind of wrong translations, it should be ensured that the input text does not contain
any capital letters except for proper nouns. This restriction can be released by checking
the first word of the sentence to identify whether it is an ambiguous word of this kind
or not. In case of an ambiguity, it can be resolved using the concept and collocation info

structures.

Finally, we should mention the following limitation of the translator. The current
implementation expects at most 10 words in a sentence. This is due to the limit imposed
on accessible main memory by the Turbo Pascal 6.0 compiler, in comparison with the

enormous amount of code and data size of the translator.

6.2. Performance Evaluation

As we discussed in Section 2.1, there exist some performance measures proposed for
evaluating the quality of machine translation systems. Since, we did not test our translator
using real Turkish corpora, we could not perform a thorough performance evaluation.
However, the performance evaluation of the translator considering the results obtained
so far (see Appendix F) according to the performance metrics presented in Section 2.1

is as follows:

1. Linguistic generality: The translator involves just one source and the target
language. The extent of coverage in the vocabulary is 6900 words, and the idioms are not
taken into consideration.

2. Application domain generality: The translator does not involve the use of any
sublanguages, and the subject domain covers all the language.

3. Degree of automation: Although, it does not involve any human intervention
during the translation process, the results produced may in some cases need postediting.

However, we did not measure the amount of time required for human intervention.

96

4. Semantic accuracy: The results produced by the translator were not examined
by an Azeri native speaker, so its semantic accuracy is not tested.

S.Intelligibility: Since, the results of the translator were not examined by an Azeri
native speaker, its intelligibility is not tested.

6. Appropriateness: The translator is not tested according to this criterion.

7. Domain and language portability: Because of its modular structure, other Turkic
languages can be integrated into the translator without much difficulty.

8. Extensibility: The lexical coverage of the translator for unambiguous words can
be extended easily, since the structure of the lexicons and the interrelation among the
information in the lexicons are clear. However, addition of ambiguous words may need
extra treatment, e.g. defining new semantic features, defining new concepts, and
determining collocation information of the ambiguous words.

9. Improvability: As the lexical knowledge improves, the quality of the translator
also improves without any redesign effort.

10. Ergonomics: Since the translator already has a relatively simple user interface,
it seems quite ergonomic.

11. Integrability: The translator can be integrated into other information processing
applications without much difficulty.

12. Software portability: The translator can be ported to other hardware platforms

as long as its minimum hardware requirements are met.

In addition to these criteria, we would like to say a couple of things about the speed of
the translator, since a machine translator should also be able to translate in a reasonable
amount of time. The basic factor influencing the speed of the translator is the Turkish
morphological parser embedded in it. The words in the input text are first
morphologically parsed using this parser. So, if the time it takes for the morphological
parser to find the morphological parses of a word is tmpl, and the rest of the process

takes a time of tmp2, then the translation time for this word is tmpl + tmp?2.

97

The second factor is the number of ambiguities in the input text. If a word is not
ambiguous, then the time it takes for its translation is slightly more than tmp1l. However,
in case of ambiguity translation time increases considerably, especially if the resolution
process involves the use of collocation info structure. The critical routine employed in
the resolution of ambiguities is the check collocation routine which implements the
collocation info structure. The time needed for resolving ambiguity is highly dependent

on this routine.

The final factor affecting the speed of the translator is its memory requirement. The
main program is 270 K bytes together with the Turkish morphological parser. In the
current implementation, in the case of loading all the data files into main memory, the

memory requirements for the static and the dynamic variables are approximately as given

in Table 6.1.

Table 6.1. Memory requirement of the translator

The structure ‘ Size(in K bytes)
Turkish root words lexicon 690
Turkish proper nouns lexicon 600
translation lexicon 280
word sense ambiguous root words lexicon 125
morphologically ambiguous root words lexicon 120
bilingual suffix lexicon 10

identical suffixes lexicon

parse results for the sentence under translation

root words lexicon and proper nouns lexicon indexes

9
6
macro collocation info definitions lexicon 4
4
1

miscellaneous

98

So, in case of full memory utilization the translator needs approximately 2MB memory
for its data files. Since, we have implemented the translator using Turbo Pascal 6.0
compiler, we can not achieve full memory utilization. So, we are restricted to use file
access. This restriction causes a considerable amount of time loss during data access

which lowers the speed of the translator.

In order to determine the real speed of the translator, it should be checked with a large
enough sample text. However, we tested the translator with simple sentences that contain
just the ambiguities we introduce to check the correctness of the translator. Sample runs
for the translator listed in Appendix F were obtained using an IBM compatible computer
with a 80386 processor running at 25 Mhz. The following is an example of these sample

runs:
Turkish text: [25]

yatagin basindan ucuna kadar uzanan mavi damali yorganin
engebeleri golgeli vadileri ve mavi yumusak tepeleriyle Ortiili
tath ve ik karanlikta riiya ylizii koyun uzanmis uyuyordu.

digaridan kis sabahmn ilk sesleri geliyordu.

Azeri text:

uyadakin bagindan ucuna qdddr uzanan mavi damal yorganin enig-yoxuslar kolgdli
vadildri vd mavi yumsag tépilérijlléi hortiili dadh vé ihg garanlhkda ré’ya (yiiz / iiz
) (goyun / gat1 - 1n / buxta - m / buxta - mn) uzanmg uyurdu. digaridan gis

sdhdrinin ilk sdsldri galirdi .

We have separated the input text into 10 words sentences before the translation process.
Since the translation is carried out sentence by sentence, all the collocation info in the

first sentence can not be utilized in the translation. This causes semantic information loss

99

for the ambiguity resolution process. The words in the Turkish expression yiizii koyun are
translated one by one, since they are written separately in the input text. Translator
identified the Turkish word yiizii as ambiguous, since the root word yiiz has two word
senses, hundred and face. Since it could not resolve the ambiguity, the two alternatives
are given in the translation. Although the word riiya is used as proper noun in the input
text, since its first letter is not a capital letter, it is not treated as a proper noun and
translated incorrectly. The word koyun is also identified as ambiguous, since it has the

following five morphological parses:

koyun(sheep)

koyu(dense) - n(2nd singular possessive)
koy(inlet) - un(2nd singular possessive)
koy(inlet) - un(genitive)

koy(to put) - un(2nd plural person)

Since the translator could not achieve to resolve the ambiguity, all the alternatives are
given in the translation. Since, the Azeri equivalents of the first and the fifth parses are

the same, four distinct alternatives are presented in the translation.

6.3 Further Improvements for the Translator

As we stated previously, in some cases syntactic analysis may help in resolving
ambiguitiés. For example, if the subject and the verb of the sentence are determined, the
subject-verb agreement rule may be utilized in ambiguity resolution. Therefore, a
syntactic analyzer for Turkish may be developed and embedded into the translator to

improve its performance on resolving ambiguities.

In the current implementation, the translator checks all the previous sentences together

with the current sentence to resolve the ambiguity. Another improvement for the

100

translator may be to check succeeding sentences in the input text to resolve ambiguities.
For instance in the Turkish text alti giizel degil. yediyi sectim., the Turkish word alf is
ambiguous as alt(bottom) - i(accusative/3rd singular possessive) and alti(six). The
ambiguity can not be resolved with the semantic information obtained from the first
sentence. However, if the second sentence is also utilized in ambiguity resolution, alti(six)

would be identified as the correct meaning.

An additional routine to automate the addition of a Turkish word into translator’s
lexicons may help to reduce the time needed for this process, and decreases the
possibility of introducing errors. In case of such an addition, first the word should be
checked for word sense ambiguity and then it should be checked against all the root
words lexicon in order to decide whether it causes any multiple root words ambiguity or
not. If it involves an ambiguity, the related information for the disambiguation process
should be provided. This may involve defining new semantic features, and determining
the collocation information of the word. Then, the new word should be checked to decide
whether it activates any concept or not, and the necessary information should also be
provided accordingly. If a new concept should be defined and associated with the word,
then all the words in the root words lexicon that would activate this concept should be
determined, and this information should be added to the lexicon. Finally, the semantic
features, parts of speech and the morphological characteristics of the word should be

added to the root words lexicon.

An intelligent routine may be designed and embedded into the translator to learn the co-
occurrence information when ambiguities could not be resolved by the translator. In this

manner, the linguistic content of its lexicons can be automatically augmented.

101

7. FURTHER DEVELOPMENTS AND CONCLUSION

Using the translator implemented in this work and the proposed approach, a machine
translation system from Azeri to Turkish, and a machine translation system from Turkish

to all the other Turkic languages can be realized as further developments.

7.1. Conclusion

Since the existing approaches are not suitable for the problem of machine translation
from Turkish to other Turkic languages, we propose a lexicon-based approach. As the
sentence syntax is similar for both languages we do not employ a syntactic analysis.
Morphological and semantic analysis are carried out for the translation. The translation
is performed as a word for word translation of sentences using the disambiguation

techniques used in transfer-based and interlingua-based translation approaches.

As this is the first attempt in this field the problems of the subject and possible ways to
handle them are put forward. The ambiguity subject in translation from Turkish to other
Turkic languages is explored, different sorts of ambiguities are investigated, and the
lexical data that cause those ambiguities are identified. Possible ways for ambiguity
resolution are investigated. So, the translation is achieved by direct translation of
unambiguous words and with a special treatment of the ambiguous ones. The contents
of the lexicons in the translation system are determined, and possible lexicon structures
are investigated. Finally, a practical translation system is developed with the proposed

approach to evaluate its feasibility. -

Even though the results seemed satisfactory for the feasibility of the approach,
improvements might be implemented to improve the performance and the quality of the

program. Moreover for its tesﬁng, a detailed performance analysis is needed by applying

real input texts.

102

7.2. Lexicon Formation by Corpus Analysis

The most essential part of a translator is its lexicons. A translation system should have
well designed lexicons with complete linguistic data. The most suitable way to collect co-
occurrence information of words is corpus analysis. So, an important task in constructing
a translation system for Turkish is forming a lexicon by analyzing real Turkish corpora.
A corpus analyzer may be designed and implemented to automate this process. In this
way, co-occurrence information for ambiguous words may be obtained from the Turkish

texts in a structured manner.

7.3. Towards a Machine Translation System from Azeri to Turkish

We have actually worked on the problem of machine translation from Turkish to Azeri,
and not dealt with translation from Azeri to Turkish. Consequently, the translator

developed does translation in one direction, only from Turkish to Azeri.

However, a translator from Azeri to Turkish can easily be implemented using the same
method. First, an Azeri root words lexicon should be constructed together with its
corresponding translation lexicon for Turkish words. Then the ambiguous Azeri words
should be determined and treated in the same manner. The Turkish morphological parser
can be used to parse Azeri words with small modifications. Finally, the same translator
program can be used for translation from Azeri to Turkish, with the lexicons prepared

for the Azeri language.

A machine translation system from Azeri to Turkish can be utilized to test the semantic

accuracy of the translator developed in this work.

103

7.4. Towards a Machine Translation System from Turkish to Other Turkic Languages

Since in the translation system the data and the code is separated as much as possible,
and it is designed in a modular structure, another Turkic language can be integrated into

it without much difficulty.

First, the bilingual suffix lexicon should be modified to include the suffixes of the new
language, and the morphophonemic rules of the language should be determined. A
translator lexicon, in the same way as for the Azeri language, should be constructed for

its root words.

Then the ambiguous Turkish words stored in the lexicons of the translator and the ones
that have been ignored in translation from Turkish to Azeri should be checked to
eliminate the ambiguities that can be ignored in the disambiguation process. Using the
remaining ambiguous words the related lexicons for the ambiguity resolution process

should be constructed.

Finally, the translator program should be modified to process the new lexicons developed
for the new language, and a routine for affixing suffixes to stems using the

morphophonemic rules of the language should be added to it.

In this way, with the integration of all the Turkic languages into the current translation

system, a machine translation system from Turkish to other Turkic languages can be

realized.

APPENDIX A. LIST OF WORD SENSE AMBIGUOUS WORDS

alay
baski
cereyan
ciimle
catal
¢up
dal
day1
derece
diye
don
diizen
eglen
emsal
€3
fener
fisek
gbvde
han
hayir
hortum
iktidar
islet
kanun
kiy
kon
kusak
mani
neden
olgun
oyun
pul
saz
siva
taban
temsil
tug
vur
yargi
zar

asl
basibos
cetvel
Gagdas
cekim
cigne
darbe
degerlendir
derman
diyet
dosya
efendim
egreti
en

etek
fikirda
garip
gozle
harg
hesaph
hiicre
ilahi
mekalin
kap
koca
kredi
kuyruk
metin
nefis
olumiu
pek

saf
sessiz
sinir
tabir
tezgdh
tinl
yaka
yazi

ayar
ben
cevher
capa
gergop
daire
dava
deneme
dik

dizi
duvar
ege

ek

er

fail
fikra
gebe
gli¢
hava
hoca
icik

ilik
kalkan
kara
kol
kursun
lisans
muhtar
not
olumsuz
piring
sap
sifat
sekerleme
takim
tokmak
vasat
yali

yiz

bagh
bez
cilt
cat
cevir
dal
dayak
denk
divan
dog

diig
egitim

el

esne

fen

fig
gbbek
hak
havale
horla
ramiye
illet

kalp
kavra
kompleks
kurum
makam
nasilsa
ocak
oyna
piskin
satir

sira

sik
tekne
tulum
vekalet
yapi
yiizmek

104

105

APPENDIX B. LIST OF MORPHOLOGICALLY AMBIGUOUS WORDS

B.1. List of Root Words that are Similar in Form to Stems with Inflectional Suffixes

The ambiguous root words for each suffix is presented below. The symbol (v) is used to

denote the verbs.

Suffix : (y) ~(s)I

The Ambiguous Words :

bilegi duyu
bilek duy
koru koyu
kor koy
resmi solu(v)
resim sol
act askeri
ag asker
asl disi

as dis
dizi eri(v)
diz er
kari katt
kar kat
marti sali

106

Suffix : -(y)A

The Ambiguous Words :

ada ata
ad at
bana benze(v)
ban(v) beniz
boga clta
bog(v) cit
dene(v) deve
de(v) dev
devre doga
devir dog
ege ele(v)
eg(v) el
hale halka
hal halk
ilke kala
ilk kal(v)
kaya kina
kay(v) kin
kota koza
kot koz
kuma kiife
kum kiif
ova Ote
ov(v) 6t(v)
rehine semere

rehin semer

Suffix : -DA

The Ambiguous Words :

sapta(v)
sap

Suffix : -(I)n

The Ambiguous Words :

107

tarife
tarif

ufal(v)

108

kalkln(v) kay1n
kalk(v) kay(v)
memnun 6diin
memnu 6d
pesin sahan
pes saha
somun sorun
som sor(v)
sultan tosun
sulta tos
toren . tutin
tére tiit(v)
yazin

yaz(v)

Suffix : -(Dm

The Ambiguous Words :

devrim dilim
devir dit
dogum déniim
dogu don(v)
hanim ilim
han il
kalem kasim
kale kas
kesim kosum

Suffix : -(y)Iz

- The Ambiguous Words :

Suffix : -DI

The Ambiguous Words :

Suffix : -mls
The Ambiguous Words :

tiire(v)

109

Suffix : -Ar

The Ambiguous Words :

Suffix : -mA

The Ambiguous Words :

Suffix : -1A

The Ambiguous Words :

emekle(v)
emek

110

sal

Suffix : -sA

The Ambiguous Words :

Suffix : -mAk

The Ambiguous Words :

111

112

Ambiguous words for miscellaneous suffixes :

aralik asama
ara ag(v)
bildik cekici
bil(v) gekig(v)
degisim desen
deg(v) de(v)
dolandir elli
dol(v) el
etken gecende
et geee
girigim icisleri
gir(v) ig(v)
kalip kapah
kal(v) kap(v)
kaplan kaptan
kap kap
kayip kelime
kay(v) kel
kosul olusum
kos(v) ol(v)
seciye seksen
seci sek(v)
tandir tarihge
tan tarih
telsiz yasgasin
tel yasa(v)
yoksun zarfinda

yok - zarf

113

B.2. List of Root Words that are Similar in Form to Stems with Derivational Suffixes

Suffix : -(Dk

The Ambiguous Words :

buruk kasik
bur(v) kas(v)
kayik yayik
kay(v) yay(v)

Suffix : -(I)s

The Ambiguous Words :

bulug(v) burug(v)
bul(v) bur(v)
:i-é;;ég;;---n eris(v)
deg(v) er(v)
;;;é --------- konug(v)
kay(v) kon(v)
;)-1-1-1;(;3 ------ tartig(v)
ol(v) tart(v)
yak1§(v) - yapis(v)
yak(v) yap(v)
yatis(v) yetis(v)
yat (V) yet(v)
yilig(v)

Suffix : -CA

The Ambiguous Words :

karaca
kara

Suffix : -(y)An

The Ambiguous Words:

kalk(v)

sivilce
sivil

114

B.3. List of Ambiguous Words due to Similar Suffixes

115

The ambiguous words with the suffixes causing the ambiguity are presented below. Even

though, in some cases there may actually more than one suffix causing ambiguity for the

same words, only one of them is presented below and the rest is eliminated.

ajans -a
ajan -sa
asil -i
asi -li
deli -1
del -in
derle -r
de -r -ler
kalas -1n
kal -a -sIn
kurmay -a
kur -ma -ya
oy -sa
0 -ysa
saray -a
sara -ya
Ors -€
or(v) -se

akil -1
ak -h
dem -€
de -me
deney -€
dene -ye
eksi -1n
ek(v) -sin
ek -sin
kapi -1n
kap(v) -m
lisans -a
lisan -sa
piring -€
pir -in -ce
saglam -a
sagla(v) -ma

116
APPENDIX C. LIST OF MORPHOLOGICAL PARSES PRODUCED BY
IDENTICAL SUFFIXES

The morphological parses for identical suffixes obtained from the Turkish morphological
parser are presented below. In each parse, first the artificial root word, the word after
affixing the suffix, and the root word category are given. Then the parses obtained for
the word are given as transitions between word categories in the transition network
representation. - corresponds to a free jump, and a suffix name between two word
categories denotes the transition between them with this suffix. Each transition is
represented with the final word category and the suffix causing the transition, e.g. nl -

means the transition from previous word category to nl with free jump.

a alan n0

nl - v9 lan

a0 - v8 al v10 - v16 - v18 - d2 yan

a0 - v8 al v10 - v16 - v18 - v73 - v19 - v24 - v25 - a5 yan

ad adi n0
nl-n6-n7-n9-n18 - nll - n20 y1
nl-n6-n7-n9-n22-nl17st

at atim n0
nl - n6 - n7 - n9 - n10 1m
nl -n6-n7-n9-nl18 - nll - n16 - v44 - v45 - v48 yim

1 mz n0

nl - n6 - n7 - n9 - n10 miz
nl-n6-n7-n9-nl10 1 nl8 - nll - nl6 - v44 - v45 - v48 y1z
nl - n6 - n7 - n9 - nl18 - nl1l - n15 nin n16 - v44 - v45 - v48 yi1z

at atin n0
nl-n6-n7-n9-n10m
nl - n6 - n7 - n9 - n18 - n11 - n15 nin

a anin n0
nl -n6 -n7-1n9 -nl10 m nl8 -nll - n15 nin
nl -n6é-n7-n9-nl18 - nll - nl5 nin

ed eden n0
a0 - d2 dan
nl -n6 -n7-n9 -nl8 - nll - nl6 dan

ad adir v2
v3ir

v16 - v18 - v73 -v19 -v24 -v25 - n0 1r
v16 - v18 - v73 -v19 -v24 -v25 - v42 1r

ad - adm v7

vl12 m

v16 - v18 - v73 - v19 - v24 - v25 - V79 ym
ad adig v7

vl3 15

v16 - v18 - v73 - v72 - v33 y1§

117

118

a agin vl
v16 - a0 gin
vl6 -n0 ginl-n6-n7-n9-nl0m

at atici v3
vi0-vi6-n01a3 a
vi0-vi6-n01nS a

v10 - v16 - a3 yici

at atim vl
vl6 -n01nl-n6-n7-n9-nl10m
v16 - v18 - n0 m

a ama vl

v16 - vi8 - n0 1m nl - n6 - n7 - n9 - nl18 - nll - n14 ya
v16 - v18 - v72 ma

v16 - v18 - v73 - v19 - v21 - v54 ma

v16 - v18 - v73 - v19 - v24 - v25 - v30 ma

e eyen vl
v16 - v18 - d2 yan
v16 - v18 - v73 - v19 - v24 - v25 - a5 yan

e eye vl
v16 - v18 - v73 - v19 - v21 ya V78 -

v16 - v18 - v73 - v19 - v24 - d2 ya

v16 - v18 - v73 - v19 - v24 - v25 - v69 ya
v16 - v18 - v73 - v19 - v24 - v25 - v77 ya

e eyesiye vl
v16 - v18 - v73 - v19 - v24 - d2 yasiya
v16 - v18 - v73 - v19 - v24 - v25 - a5 yasi n6 - n7 - n9 - n18 nll - n14 ya

a ar vl
vi6 -v18 -v73 -v19-v24 -v25- n01r
v16 - v18 - v73 - v19 - v24 - v25 - v42 1t

a adik vl
v16 - v18 - v73 - v19 - v24 - v25 - v29 dik
v16 - v18 - v73 - v19 - v24 - v25 - v32 di1 v34 k

119

a amakta vl
v16 - v18 - v73 - v19 - v24 - v25 - v43 makta
v16 - v18 - v73 - v19 - v24 - v25 - v31 mak n0 - n1 - n6 - n7 - n9 - nl18 - n1l - ni12 da

a amali vl
v16 - v18 - v73 - v19 - v24 - v25 - v43 mah
v16-v18-v73-v19-v24-v25-v30man0-nl-n6-a0h

a amis vl

v16 - v18 - v73 - v19 - v24 - v25 - a0 mug
v16 - v18 - v73 - v19 - v24 - v25 - v36 mus
v16 - v18 - v73 - v19 - v24 - v25 - v43 mig

e eyecek vl
v16 - v18 - v73 - v19 - v24 - v25 - a5 yacak
v16 - v18 - v73 - v19 - v24 - v25 - v43 yacak

at atinca v3

vi0-vi6-n01nl-n6-n7-n9-nl0m adca
vi0-vl6-n01nl-n6-n7-n9-n10mm d2ca
v10 - v16 - v18 - v73 - v19 - v24 - v25 - d2 yinca

at atimniz v2

v16 - n01nl - n6 - n7 - n9 - n10 mz

v16 -n01nl -n6-n7-n9 -nl101n nl8 - nll - n16 - v44 - v44 - v45 - v48 yiz
v17 - vi8 - v73 - v19 - v24 - v25 - v79 ymiz

at atin v3
vl10-v16-n01nl-n6-n7-n9-n10m
v10 - v16 - vI8 - v73 - v19 - v24 - v25 - V79 ym

ad adiz s3

s3-s4-524-a31z
s3-s4-524-2a3-n0-nl1-n6-n7-n9-n18-nill-nl6-vdd - v45 - v48 y1z

120

APPENDIX D. LIST OF THE SPECIFIC SEMANTIC FEATURES

Specific semantic features defined and used in the current implementation of the
translator are presented below together with the numeric codes assigned to them. These
codes are used in the translator’s lexicons in order to refer to them. Since, in the lexicons,
the numeric codes for these semantic features and the concepts are stored together in
the same field, their numeric codes are assigned as a whole. Therefore, the numeric

codes for them are not sequentially ordered.

Semantic feature

adjustable device

press

instrument to tie two concrete objects
trend

object that can be bound

drink

food

place like street, alley or region

press that can be criticized

sewing or material that can be sewed
name of a place that can be tidied up
object that can rise like sun and moon
object with a wall like a garden

time unit

food that can be cooked

fish or fish names

mode

object with an handle

word that the word mature can modify in a noun phrase
word that the words positive or negative can modify in a noun phrase
game played with a team

word that the word complex can modify in a noun phrase
object that can be weaved with a loom like carpet
place in which a queue of people may exist
device with keys like piano

gun

place that can be trampied down

animate or inanimate that can fly
inanimate that can not fly

objects that can be hard

ministry

weapon

foot and feotwear

object that has a foot like mountain

water or container to warm water .

human characteristic

rank name

fist type

clothes with a collar

food that can be beaten like egg

place that can be official

place that can be military

121

Numeric code

material that can melt

thing that can be performed in a grove

word that the word civil can modify in a noun phrase
object that can fill up

money unit

word that the word efficient can modify in a noun phrase
synonym of saying

type of science

places that can be measured with doniim (a land measure of 1000 square

meters)

thing that can blow like wind

thing that can be said

object that can be sliced

object that can be driven

object that can be washed

object that can be demolished

object that may have an opening like door
thing that has an answer like question or problem
thing that has a measurement unit like length
religion name

thing that can bleed

object that can be winded like watch or that can be set up like table
place characteristic

thing that can be turned into like road
material that can be used in sling

synonym of going or coming

object that can be ground like a knife

object that can be broken down

synonym of throwing

goods that can be sold in the market

writing type or writing characteristic

cliff characteristic

idea characteristic

object that can be worn away

84
85
86
89
90
93
94
95

96

98

99
102
106
107
108
109
110
111
112
113
114
115
116
117
118
119
121
122
123
124
125
126
127

122

123

APPENDIX E. LISTING OF THE LEXICONS

E.1. Representative Listing of the Turkish Root Words Lexicon

A representative listing of the Turkish root words lexicon, including its first 150 entries,
is presented below in text form. Fields in an entry are separated by commas, and the
information for each entry is given in a single line. The fields in each entry are in the

following order:

1. Turkish word
2. parts of speech
3. flags

4. noun and pronoun semantic features

5. subcategories

0 and 1 represent the false and true boolean values, respectively. Noun semantic features

are in the following order:

animate, inanimate, human, animal, plant,

concrete(0) / abstract(1), countable(0) / uncountable(1)

The third entry also serves for the pronoun semantic feature human interchangeably. The

symbols used for subcategories are as follows:

reflexive pronoun(pl), personal pronoun(p2), demonstrative pronoun(p3), indefinite
pronoun(p4), interrogative pronoun(p5), pronominal pronoun(p6), qualificative
adjective(al), demonstrative adjective(a2), interrogative ‘adjective(a3), numeral

adjective(ad), indefinite adjéctive(aS), time adjective(a6), time adverb(dl), place

124

adverb(d2), quantity adverb(d3), quality adverb(d4), interrogative adverb(dS),

demonstrative adverb(d6), transitive(vl), intransitive(v2), dative(v4)

Qualificative adjective (al) is the default value for adjectives. If no other subcategory

information is specified for an adjective, it is understood that its subcategory is al.

abajur q ,000000100001001000000000000000000001000 ,0100000000
abart ,v4 ,1000100000100000100 ,0000000000 N1 w4
abdest I ,00000000000100000000000000000000000000G ,0000010000 ,
abide n ,000000100001001000000000000000000001000 ,0100000000 ,
abla n ,000000000001001000000000000000000000000 ,1010000000 |,
abluka Nl ,000000000000000000000000000000000000000 ,0000011000 ,
abone q ,000000000001000000000000000000600000000 ,1010000000 |,
acayip i ,1000000000000000000 ,0000000000 ,
acayip ,a ,000000000001000000000000000000000000000 ,0000000000 |,
acele ,na ,000000100000000000000000000000000001000 ,1010000000
acele ,d ,1000000000000000000 ,0000000000 ,d1
acemi ,a ,000000000001000000000000000000000001000 ,0000000000 |,
act ,v5 ,1010000000000000100 ,0000000000 ,v2
act ,na ,000000000001000000000000000000000001000 ,0000011000
acitk v4 ,1100000000000000100 ,0000000000 ,v2
acikli ,a ,000000000000000000000000000000000000000 ,0000000000
acimasiz ,a ,000000000001000000100100000000000000000 ,0000000000
acit ,v4 ,1000000000000000100 ,0000000000 ,v2
ad B} ,000000000000011001000000000000000000000 ,0000010000
ada ,v5 ,1000000000000000000 ,0000000000 ¥ w4
ada ,n ,000000000000000000000000000000000000000 ,0100000000
adale ,n ,000000000000001001000000000000000001000 ,0100000000
adalet Jq ,000000000000000000000000100000000000000 ,0000010000
adam , ,000000000101001000000000000000000001000 ,1010000000
aday ,a ,000000000000000000000000000000000000000 ,1010000000
adag ,n ,000000000001000000000000000000000000000 ,1010000000 ,
adi ,a ,000000000001000000000000000000000000000 ,06000000000 ,
adil ,a ,000000000000000000000000000000000000000 ,0000000000 ,
adres 8] ,000000000000001011000000000000000000000 ,0000010000
adim ,q ,000000000001001010000000000000000000000 ,0000010000
af n ,000000000001011000000000001000000000000 ,0000010000
aferin n ,000000000000001000000000000000000000000 ,0000010000

-

aferin
afet
affet
afiyet
afis
afyon
ahenk
ahize
ahlak
ahmak
ahret
ahir
aile

ait
ajan
ajans
ak

ak
akciger
akla
akraba
akrep
aksa
aksakal
akset
aksi
aksir
aktar
aktarma yap
aktif
aktris
aktiialite
aktor
akvaryum
akibet
akibet
akil
akim
akin
aksam
aksam
al

al
alaca

,1000000000000000000

,000000000001001000000000100000000000000
,1000000000000100000

,000000000000000000000000100000000000000
,000000100001001000000000000000000001000
,000000100000001000000000000000000001000
,000000000001000000000000010000000000000
,000000100001001000000000000000000000000
,000000110000000000000000100000000000000
,000000000001000000000000000000000000000
,000000000001000000000000100000000000000
,000000100000001000000000000000000001000
,000000010001001000000000000000000001000
,1000000000000000000

,000000000001001000000000000000000001000
,000000000001001000000000000000000000060
,1000001000110000000

,000000000001000000000000100000000000000
,000000100000001000000000000000000001000
,1010000000000000000

,000000000001001000000000000000000001600
,000000000000000000000000000000000000000
,1000000001000000000

,000000000000000000000000000000000000000
,1000000000000100000

,000000000001000001100000000000006000000
,1000000001000000100

,1000000000100000100

,1000000000000000000

,000000000000000000000000000000000000000
,000000000000000000000000000000000000000
,000000000000000000000000000000000000000
,000000000001000000000000000000000000000
,000000000000000000000000000000000000000
,000000000000000000000000100000000000000
,1000000000000000000

,000000100000000000000000000100000000000
,000000000000000000000000000000000000000
,000000100000000000000000000000000000000
,000000100001000010000000000000000000000
,1000000000000000000

,1110000000110000100
,000000000001000001000000000000000000000
,000000000001000011000000000000000000000

,0000000000
,0000010000
,0000000000
,0000010000
,0100000000
,0100001000
,0000010000
,0100000000
,0000010000
,0000000000
,0000010000
,0100000000
,1010000000
,0000000000
,1016000000
,0100000000
,0000000000
,0000010000
,0100000000
,0000000000
,1010000000
,1001000000
,0000000000
,0100001000
,0000000000
,0000000000
,0000000000
,0000000000
,0000000000
,1010000000
,1010000000
,0000011000
,1010000000
,0100000000
,0000011000
,0000000000
;0000011000
,0100001000
,0000000000
,0000010000
,0000000000
,0000000000
,0000010000
,0000010000

125

’

2w

alacak
alaka
alamet
alan
alarm
alay
aldan
aldat
alet
alev

,a ,000000000000000000000000000000000001000
N ,000000000000000000000000000000000000000
n ,000000000000000000000000100000000000000
n ,000000000000000000000000000000000000000
,n ,000000000000000000000000000000000000000
,n ,0000001001010000000000000006000000000000
,v4 ,1000000000000000100

,v4 ,1000000000000000100

n ,000000000000000001000000100000000000000
n ,000000000000000001000000000000000000000

aleykiimselam,i ,1000000000000000000

alfabe
algila
alkol
alkis

alt
altmis
alt1
altin
alcak
algal
algt
ahkoy
alm

alm
alimgan
almti
alis
alisveris
ama
aman
amator
amag
ambalaj
ambar
amblem
ambulans
amca
ameliyat
amir
ampul
an

an

ana

n ,000000000000000000000000000000000000000
,v5 ,1010000000000000000

n ,000010000010000100000001000000000000000
n ,000000100000000011010000000000600000000
,na ,000000000001000010000000100000000000000
,52 ,1000000000000000000

,s0 ,1000000000000000000

,na ,000000000000000000000000000000000000000
,a ,000000000001000000100100000000000001000
,v8 ,1000000000000000100

n ,000000100000000011000000000000000000000
-4 ,1000000000000000000

q ,000000000000000000000000000100000000000
,v13 ,1000010000000000100

,a ,000000000001000000100100000000000001000
q ,000000000001000000000060000000000001000
,v4 ,1001000101100000100

n ,000000000000000000000000000000000000000
C ,1000000000000000000

1 ,1000000000000000000

,an ,000000000001000000100000000000000000000
n ,000000000000000011000000000000000000000
n ,000000100000000011010000000000000000000
n ,000000100000000010000000000000000000000
n ,000000000000000000000000000000000000000
N ,000000000000000000000000000000000000000
,qn ,0000000000010000001000000000060000000000
n ,010000000000000000000000100000000000000
.an ,000000000001000000000000000000000000000
n ,000000000000000000000001000000000000000
v9 ,1101100010000000001)
q ,000000000001000011110000000000000000000
an ,0000000000010000000000000000000000006000

,0000000000
,0000011000
,0000010000
,0100000000
,0000011000
,1010010000
,0000000000
,0000000000
,0100000000
,0000001000
,0000000000
,0100010000
,0000000000
,0100000000
,0000001000
,0100000000
,0000000000
,0000000000
,0100001000
,0000000000
,0000000000
,0100001000
,0000000000
,0100000000
,0000000000
,0000000000
,0000010000
,0000000000
,0000000000
,0000000000
,0000000000
,1010000000
,0000010000
,0100000000
,0100000000
,0100000000
,0100000000
,1010000000
,0000000000
,1010000000
,0100000000
,0000000000
,0000010000
,1010000000

126

anadili
anahtar
anane
anaokulu
anavatan
anayasa
ancak
ancak
ani

ani
anket
anlam
anne
ansizin
ant
anten

antetli kagit

antika
antlagsma
ant

anit
apartman
aptal
aptal

ara

ara
araba
arabulucu
aralik

,n ,000000000000000000000000000000100000000
n ,000000100001000000000000000000000000000
,n ,000000000000000000100000000000000000000
n ,000000000000000000000000000000100000000
,n ,000000000000000000000000000000000000000
n ,000000100000000000100010000000000000000
,€ ,1000000000000000000

,cd ,1000000000000000000

,a ,000000000000000000000000000000000000011
,d ,1000000000000000001

q ,000000100001000000000000100000000000000
n ,000000010000000000000000000000000000000
q ,0000000000010000000000000000006000000000
,d ,1000000000000000000

q ,000000000000000000100000000000000000000
,n ,000000000000000000000000000000000000000
n ,00000000000000000060000000060000000000000
na ,000000100001000000100000000000000000000
n ,000000010000000000000000000000000001000
n ,000000000000000000000000000000000000000
n ,000000110101001000100000100000000001000
q ,000000000000000000000000000000000000000
a ,000000000001000000100000000000000000000
i ,1000000000000000000

n ,000000100000000011010000000000000000000
,v5 ,1010000000000000000

q ,000000100001000000000000000000000000000
n ,000000000001000000000000000000000000000
,n ,000000000000000000000000000000000000000

,0000010000
,0100000000
,0000010000
,0100000000
,1000000000
,0000010000
,0000000000
,0000000000
,0000000000
,0000000000
,0000010000
,0000010000
;1010000000
,0000000000
,0000010000
,0100000000
,0100000000
,0100000000
,0000010000
,0000010000
,0100000000
,0100000000
,0000000000
,0000000000
,0000010000
,0000000000
,0100000000
,1010000000
,0000010000

127

128

E.2. Representative Listing of the Translation Lexicon

A representative listing of the Translation lexicon, including its first 150 entries, is
presented below in text form. Information for each entry is given in a single line. The

fields in each entry are in the following order:

1. Azeri word
2. specific semantic features or concept activation information

3. index of the morphologically ambiguous root words entry

"ws" appearing as the Azeri word means that the corresponding Turkish word is word
sense ambiguous. If the Azeri word field is empty that means the Azeri equivalent of the

corresponding Turkish word is identical to it.

artir ;
abdast ,

boytk bac)
miihasira ,
abuna)
éicfub]
acaib ,
dcald)
éCélé s
acami)

ac ’
kadarli)
marhdmatsiz)
incit ;

O

nazir et s ’

dzald
adalat

namizad

bayag

addim
afv
afirin
aférin
afat
bagisla
afiyat
afisa
tiryak
ahing
telefon déstdyi
dxlag
axmag
axirat
axur
aila

agent
agentlik
ag
bidyaz
agciyar

bdrddt qazandirmag

dqraba
aqrab
axsa
agsaggal
dkset
dksi
asgir
ko¢tr
niqgliyyat deyis
aktiv
aktrisa
aktualhg
aktyor

,10
,11

129

akvarium
aqibat
aqibat
agl
cdrdyan
axin
axsam
axgsam

ala-bdzik

dlaqa

dlamat
meydan
hdyédcan signali
ws

alat

alov
dleykédssalam
dlifba

dark et

spirt

algis

altun

gips
yubat

nazikirakli
igtibas

amma

havaskar

31
32

130

baglama
anbar
emblem

tdcili yardim magimi

dmi
dmaliyyat

lampocka

agar
dndnd

usag bagcasi
ana vitin
konstitutsiya

mana
ana

antena

blank

dntiqd

miigavild

xatird

abida

¢ox martibali ev
abdal

abdal

aradiizildan
dekabr

51 81 82 87 106 121 123

b

b

37
,38

131

132

E.3. Morphologically Ambiguous Root Words Lexicon

Full listing of the morphologically ambiguous root words lexicon is presented below in

text form. The fields in each entry are in the following order:

1. ambiguous Turkish word
2. flag to represent whether it is also word sense ambiguous or not
3. collocation info definition

4. concepts that the word is dependent on

An ambiguous word may have only collocation info definition or concept codes or both
of them at the same time. 0 and 1 represent the false and true boolean values,
respectively. "ci" means a collocation definition follows, whereas "co" means concept codes
follow. In a collocation definition, collocations are separated with semicolons, and it ends

with a period. The numeric concept codes are as follows:

Concept Numeric code
army 1
medicine 2
agriculture 3
device 5
electricity 10
metal 13
grammar 15
navigation 17
mathematics 24
government 25
science 26
house 34
space 37
weapon 40
religion : 42
education 43

law 44

133

file 45
company 47
shop 58
press 62
apartment house 64
architecture 71
act 0 ci c(a) -;- ca(a)[+(dsav,dsnv)];- ca(n).
aci 0 ci ca(d) -.
ag 0 ci col8.
ag 0 ci - ca(n);ca(n) -[+dsav];- (doyurmak,beslemek);p2 -+pe.
ag 0 ci - ca(v).
agl 0 ci (radyanlik,derecelik) -;- ca(s) (derece,radyan)[+dsna];p2+ps -+ps.
ad 0 ci -a c94;co19.
ada 0 ci ca(a) -(n);-(n) ca(a)[+dsav];-ya (c118,¢cikmak,ayak basmak);-y1
(diizenlemek, imar etmek);co19.
co 17
ada 0 ci ca(n)+accu -ya.
adam 0 ci co2.
aday 0 ci 3+ps -;;-a (oy vermek,rey vermek,giivenmek).
adim 0 ci - atmak;co3.
ag 0 ci -a (takilmak,doldurmak,bosaltmak);co22.
aga 0 ci co2;-c1 3;3 -ci;-ca boyle+te.
agac 0 ci coll;-a (gikmak,tirmanmak).
agla 0 ci co2l.
agn 0 ci ca(a) -;- ca(a)[+(dsav,dsnv)].
agn 0 ci ca(d) -.
ajan 0 ci co2.
ajans 0 co 47
ak 0 ci -t [ca(a)] 2;benim -1m.
ak 0 ci ca(d) -
akil 0 ci 3+ps3s -1
akim 0 ci ca(a) -cll -1
al 0 ci co20.
al 0 ci ca(a) -;- ca(a)[+(dsav,dsnv)];- ca(n).
alan 0 ci ca(a) -.
alin 0 ci ca(a) -;- ca(a)[+(dsav,dsnv)].
alm 0 ci ca(d) -
alt 0 ci ca(n)+geni -1
alt 0 ci - ca(n);- ca(s);- (tane,adet).

altin 0 co 13.

an
an
ana
ani
ara
ara
aralik
art

art

as

asil
asi
asil
asker
askeri
as

as
asama
ast
asin
at

at

ata
ata
atla
atlas
az

az

az

aza
bagdas
bagdas

¥

bagir
bagir
bak
bakan
ban
bana
baris
baris
bas
basin
beniz
benze

0 ci 3+accu -a;6t+accu -a;ca(d) -.

0 ci -a (yakigmak,uymak);ci -1 (hatirlamak,unutmamak).
0 ci co2.

0 ci - 3 igin ca(a);3 icin ca(a) -.

0 ci 109 -;;-hktan (bakmak,girmek).

0 ci - ca(d).

0 ci - ayi;ca(s) [yih] -i;ca(s) -

0 ci col8.

0 ci col7.

0 ci ca(d) -1

0 ci - ca(n);ca(n) -[+dsav].

0 ci - [ca(a)] c130.

0 ci -i ca(v).

Oco O

0 ci - ¢82;c82 -[+dsav].

0 ci col4;- pisirmek.

0 ci ca(n)+accu -;ca(d) -;ca(n)+accu -1n.
0 ci ca(a) -.

lci.

0 ci ¢127 -;-+dsva c127.

0 ci co5;-a (binmek,vurmak,kosmak,bagirmak);co22;sen -lasin.
0 ci 02+accu -;ca(n)+abla -.

0 ci - (yadigar,hatirasr).

0 ci o3+accu -

0 ci co21;ca(n)+abla -;ca(d) -.

0 ci senin -n;-1 (oku,incele,ver,al).

0 ci ca(d) -a.
0 ci - ca(n);-a kanaat etmek.
0 ci - ca(v).

0 ci ca(a) -;- ca(a)[+dsav];co3.

0 ci ca(a) -;- ca(a)[+(dsav,dsnv)].
0 ci ca(d) -

0 ci ca(a) -;- ca(a)[+(dsav,dsnv)].
0 ci ca(d) -;c(n)+dati -.

0 ci co20;ca(n)+dati -an.

0 ci ca(a) -;c69 -

0 ci ca(d) -;ca(n)+dati -.

0 ci - ca(v).

0 ci ca(a) -;- ca(a)[+(dsav,dsnv)].
0 ci ca(d) -.

0 ci co23.

0 co 62

0 ci ca(a) -

0 ci ca(d) -.

134

bez
bez
beze
bil
bildik
bile
bile
bilegi
bilek
bir
birim
bit
bit
bog
boga
boya
boya
boz
boz
boza
bogiir
bogir
bul
bulug
bur
buruk
burus
biiyii
biiyll
cak
cakmak
cap
¢apa
¢ekici
gekig
gikar
¢ikar
gikig
Gikig
cit
cita
Giz
¢izme
dal

0 ci ca(n)+abla -e.
1 ci ca(a) -e.
0 ci ca(n)+accu -.

0 ci ca(d) -dik;ca(n)+accu -dik;c120+accu -.

0 ci - ca(n).

0 ci ca(n)(n) -.

0 ci c119+accu -.

Oco5

0 ci co3.

0 ci benim -im.

0 ci (ca(s),kag) -;c111 -i.

0 ci ca(a) -;- ca(a)[+(dsav,dsnv)].
0 ci ca(d) -.

0 ci ca(d)-.

0 ci cos.

0 ci ca(a) -;- ca(a)[+(dsav,dsnv)].
0 ci ca(d) -.

0 ci col8;ci ca(d) -a;c121+accu -a.
0 ci col7.

0 ci co9.

0 ci ca(a) -;- ca(a)[+(dsav,dsnv)].
0 ci ca(d) -.

0 ci col7.

0 ci cols.

0 ci col8;-uk 2.

0 ci - [ca(a)] tad;tad: [ca(a)] -.

0 ci col7.

0 ci ca(a) -;- ca(a)[+(dsav,dsnv)].
0 ci ca(d) -

0 ci ca(d) -.

0 ci ca(a) -.

0 co 24

0co 17

0 ci - ca(n).

0 ci -i ca(v).

0 ci ca(a) -;- ca(a)[+dsav].

0 ci ca(d) -. '

0 ci ca(a) -;- ca(a)[+dsav].

0 ci ca(d) -.

0 ci -a (donmek,bakmak).

Oco 5

0 ci cold.

0 ci col7.

1 ci col8.

135

dal
dala
damla
damla
de
deg
degin
degin
degis
degisim
del
deli
dem
demin
dene
deney
der
dere
deri
derin
ders
desen
dev
deve
devir
devir
devre
devrim
dik
dik
diken
dil

dil

dile
dilim
din
din
dinlen
dis

disi
diz

diz
dizi
dizin

1 ci col7;a2 -a;ca(a) -a.

0 ci 4[+dati] -.

0 ci ca(a) -;- ca(a)[+(dsav,dsnv)].

0 ci ca(d) -.

0 ci 3+dati -;¢99+accu -;ca(d) -sen.

0 ci ca(d) -in;ca(n)+accu -in;col7;benim -im;ca(n)+dati -igim.

0 ci d1+dati -.

0 ci ca(d) -

0 ci col8.

0 ci ca(a) -.

0 ci ca(d) -in;ca(n)+accu -in.

0 ci senin -n;-n ca(v);ca(a) -.

0 ci co24;-e [ca(n)] ca(v).

0 ci - ca(v).

0 ci ca(n)+accu -;ca(d) -ye.

0 ci ca(a) -e.

0 ci c32+accu -.

0 ci ca(a) -;- ca(a)[+dsav].

0 ci senin -n;co3.

0 ci - ca(n).

0 ci ca(a) -e;-e ca(v).

0 ci ca(a) -;-[ca(d)] ca(a) -[+dsav].
0 ci -e dogru.

0 ci cod.

0 ci benim -im;-e kadar.

0 ci ca(d) -

Oco O

0 ci - yapmak;yapmak+dsva -.
1 ci co18;c020;ca(n)+accu -en.
0 ci - ca(n);ca(n) -

0 ci ca(a) -;4+geni -i.

0 ci c102+accu -e.

0 ci co3;col9.

0 ci ca(n)+abla -;2(n) -;6t(n) -.
0 ci ¢102 -i;-i yemek;- c102.

0 ci col8.

0 ci co17;3+ps -i;a2 -i;c112 -i;-len [ca(d)] ca(v).
0 ci ca(d) -

0 ci co3;1+ps3s -i.

0 ci - 1;1 -[+dsnav].

0 ci col7;ca(d) -in;ca(n)+accu -in;siz -in.
0 ci col8;co3.

lci.

0 ci c6+geni -i.

136

dog
doga
dogan
dogu
dogum
doku
doku
dol
dolandir
dolmus
don
don
dén
doénim
duy
duy

duyu
diis

dis
disun
dusilince
edip
efendi
efendim
eg

ege
eger
ehli

ehil

ek

ek

ekin
eksen
eksi
eksi
eksi
el

ele
elli
elma
elmas
emek

1 ci -an 3;-an bebek;ca(d) -.

0 ci senin -njca(a) -(n);-(n) ca(a)[dsav].
0 ci coé.

0 ci benim -m.

0 ci ca(a) -. :

0 ci ca(a) -;- ca(a)[+(dsav,dsnv)].

0 ci ca(d) -.

0 ci ca(n)+loca -andir;c87 -;-mus [ca(a)] c87.

0 ci 3+accu -.
0 ci ca(a) -;- [ca(d)] ca(v);- [bir] dolmus.
0 ci ca(a) -;- ca(a)[+(dsav,dsnv)].
0 ci ca(d) -.
0 ci ca(s) - (yapt,tamamladi).
0 ci ca(s) -lik;ca(s) - ¢96;c96 ca(s) -.
0 ci col8.
0 ci col7.
co 10.
0 ci co3.
1 ci ca(n)+abla -;ca(n)+dati -.

137

0 ci 3 -iinde;3+ps -iince;-linde (gérmek,konusmak,sdylemek,yasamak).

0 ci ca(n)+accu -.

0 ci c126 -;- ¢126[+dsnv].

0 ci ca(a) -;- ca(a)+dsav.

0 ci benim -m;co2.

0 ci - [ca(d)] c94.

0 ci ca(d) -;ca(n)+accu -.

1 ci ca(a) -;- ca(a).

0 ci - ca(v)+dete.

0 ci - 4;4 -[+dsav].

0 ci 2+geni -.

0 ci ca(d) -;5[+accu] -;ca(n)+dati -.

0 ci senin -in;sen [ca(n)+loca] -sin.
co 15

0 ci coll.

0 ci co37;c024.

0 ci senin ca(s) -n.

0 ci ca(a) -;- ca(a)[+(dsav,dsnv)];- ca(n).

0 ci ca(d) -.

0 ci -li [ca(a)] 1;ca(a) -(n).

0 ci ca(d) -;ca(n)+accu -.

0 ci - ca(s);- (tane,adet);- 2.

0 ci coll;cold.

0 co 13.

0 ci co22.

emekle
en
ense
er

er

er

eri

eris
eriste
ermis
es
esen
eski
eski

c§

€§

esin

et

et
etken
fil

file
filiz
8¢
ges
ge¢
gece
gece
gegende
gerek
gerek
gereksin
ger
geri
geri
gerin
gir
girdi
girisim
g0¢
g0¢g
gonder
gonder
g6z

0 ci co2l.

1 ci eger -se.

0 ci p2+ps -+ps;[p3] - [ca(d)] ca(v).

0 ci ca(d) -

1 ci colT.

0 ci - ca(v).

0 ci c84 [ca(d)] -+.

0 ci col8.

0 ci ca(a) -;col4.

0 ci co2.

0 ci -en c98.

0 ci - kalmak.

0 ci ca(a) -;- ca(a)[+(dsav,dsnv)];- ca(n).
0 ci ca(d) -

1 ci co24.

0 ci ca(d) -.

0 ci ca(d) -;ca(n)+accu -.

0 ci d1 -ken.

0 ci yapip edip;ca(n) -.

0 ci (6nemli,asil,ger¢ek,tek,ca(s)+dsna2) -.

0 ci (biz,hepimiz,topumuz) -iz;co5;-¢ dogru.

0 ci - (almak,satmak,doldurmak).
0 ci ca(a)-;coll.

0 ci ca(n)+abla -e.

0 ci - ca(v).

0 ci - ca(n);ca(n) -[+dsav].

0 ci (ca(s),biraz,az) [c36] -.

0 ci - ca(v).

Oco O

0 ci ca(n)(n) -sin.

0 ci sen -sin.

0 ci ca(n)+dati -.

0 ci ca(n)+accu [ca(d)] -in.

0 ci senin -in.

0 ci - ca(v).

Oci3-

0 ci 1 [ca(d)] -di;ca(n)+dati -igim.
0 ci ca(s) c89+dsnab -.

0 ci ca(a) -;- ca(a).

0 ci ca(a) -;- ca(a)[+(dsav,dsnv)].
0 ci ca(d) -.

0 ci ca(a) =- ca(a)[+(dsav,dsnv)].
0 ci ca(d) -.

0 ci -+loca [ca(a)] ca(n) (var,yok).

138

gézde 0 ci - [ca(d)] ca(v).

giil 0 ci -la (beraber,birlikte).

giil 0 ci ca(d) -.

giille 0 ci - (atmak,firlatmak,savurmak).

glires 0 ci ca(a) -;- ca(a)[+(dsav,dsnv)].

giires 0 ci ca(d) -.

giiven 0 ci ca(a) -;- ca(a)[+(dsav,dsnv)].

giiven 0 ci ca(d) -

hac 0 ci c36+pron -in;-n [ca(a)] ca(n)+accu.

haci 0 ci senin -n.

hal 0 ci -e (mal,sebze,meyve gelmek).

hala 0 ci co2;3+ps -s1.

halas 0 ci 6t+ps -1;6t 3+ps -1

hale 0 ci co24;- (olugsmak,gdrmek).

halen 0 ci - [ca(n)] ca(v).

halk 0 ci -a c94;c94+dsva -a.

halka 0 ci - (takmak,gecirmek).

han 1 ci col9.

hanim 0 ci 3+geni -

hirs 0 ci (biz,hepimiztopumuz) -1z.

hirsiz 0 ci ca(a) -;- ca(n)+dati girmek;- (yakalanmak,calmak).
has 0 ci -ta ca(n)+dsnn7 var;ca(p) -ta ca(p);benim -1im;p2 -sa+ps;-sa
(ca(p).ca(m)).

hassa 0 ci p2+ps -+ps;p3 [ca(d)] ca(v).

hassas 0 ci -1 [daha] ca(a);ca(n)+abla [daha] -1.

hasim 0 ci ca(a) -.

hasret 0 ci ca(a) -;- ca(a)[+(dsav,dsnv)].

hasret 0 ci ca(d) -.

hasta Oco 2

hat 0ci-ta+.

hatta 0 ci ca(v) - [ca(d)] ca(v);ca(n) - ca(n);ca(a) - ca(a).
hava 0 ci co24.

havan 0 ci -da (dovmek,tavlamak).

i¢ 0 ci col7;senin -in ca(a)[+dsav].

i¢ 1 ci co18;ca(d) -in;ca(n)+accu -injca(d) -isleri;c22 -igleri.
icin 0 ci ca(n)+geni -.

icisleri 0 ci - (bakanimiistesar,bakanhgi,memury,biirokrati,binast).
il 0 ci co19;04 -;ca(a) -e.

ile 0 ci ca(n) - ca(n).

ilim 0 ci ¢95 ca(a) -.

ilk 0 ci -e ca(v)+dsvvls.

ilk Oci-ca(v).

ilke 0 ci - (edinmek,kabul etmek).

m 0 ci col7;co22.

139

140

in 0 ci col8.
inle 0 ci co2l.
inme 0 ci col7;c134+dati - inmek;
is 0 ci ca(a) -(n);benim -im.
isim 0 ci ca(a) -;- ca(a)[+dsav].
iste 0 ci ca(d) -.
is 0 ci - [ca(d)] ca(v).
iste 0 ci - a2 ca(n).
it 0 ci col8.
it 0 ci col7.
kaba 0 ci cols.
kag 0 ci ca(d) -.
kag 0 ci ca(a) -;- ca(n).
kacar 0 ci - kagar;- (tane,adet,ca(n)).
kal 0 ci ca(d) -;ca(n)+loca -;c023.
kala 0 ci (ca(s),yarim) -;¢36 -;(ca(s),yarim) c36 -ya;ceyrek -ya.
kalas 0 ci senin -in;ca(a) -1n;-m ca(v).
kalay 0cocl3
kale 0 ci col9.
co 1
kalem 0 ci -le (yazmak,¢izmek,boyamak);-(n) ca(v)+pe.
kaln 1 ci - ca(n).
kalip 0 ci ca(a) -.
kalk 0 ci co20;ca(n)+abla -n.
kalkan leci.
kalkin 0 ci (03,02) -.
kan 0 ci ca(n)+dati -a.
kan 0 ci ca(a) -(n);- (akmak,pihtilasmak,durmak);(a,b,0,ab) gurubu -;rh
(pozitif,negatif) -.
kana 0 ci c113+accu -;ca(d) -t.
kanarya 0 ci co6;- (6tmek,sakimak).
kanat 0 ci - takmak;ca(a) -;- [ca(d)] ca(a)[+dsav].
kam 0 ci 6t+loca+pron -;hakkindaki -.
kap 1 ci -a (dokmek,koymak,bosaltmak);-lan (beraber,birlikte);-lan ca(n)
ca(v);ca(a) [ca(a)] -sa;-tan (birsey olmazhayir gelmez).
kap 0 ci ca(d) -;ca(n)+accu -;c020;1 ca(n)+accu -sa;ci ca(n)+accu -sam;ben
-sam;ca(d) -sam;eger -sa(n).
kapal 0 ci - ca(n).
kapan 0 ci - kurmak;-a (takilmak,yakalanmak};co10.
kap: 0 ci senin -n;ca(a) -n.
kaplan 0 ci cos.
kapsa 0 ci 6t+accu -;
kapsam 0 ci ca(a) -;- ca(a)[+dsav].

kaptan 0 ci co2.

141

kar 0 ci ca(d) -a;ca(n)+accu -a;ca(d) -m;siz -1n;ca(n)+accu -m;ca(n)+accu
-inca;ca(d) -inca;ca(d) -1s1m;ca(n)+accu -1gim.

kar 0 ci -a (bakmak,basmak,dokunmak);-1 (siipirmek,tuzlamak);-1in yagmak.
kara 1 ci -ca [ca(a)] ca(n);ca(n) [ca(d)] -ca[+dsav].

karaca 0 ci col8.

karar 0 ci ca(a) -;- ca(a)[+dsnv].

karar 0 ci ca(n)(n) -.

kan 0 ci 3+ps -1;co2;senin -n;senin -nca.

karm 0 ci co3.

karinca 0 ci ca(a) -;- ca(a)[+dsnv].

karis 0 ci ca(n)+dati -.

karig 0 ci benim -1m;co3;ca(s) -.

karigim 0 ci ca(a) -;- ca(a)[+dsnv].

kas 0 ci ca(d) -a;ca(n)+accu -a;-ik ca(n).

kas 0 ci co3.

kasa Oco 5

kasaba 0 ci c115 ;- c115.

kasap 0 ci co2.

kasik 0 ci co3.

kasim 0 ci - ayi;-da ca(v);ca(s) [yili] -1;ca(s) -.

kat 0 ci ca(s)+dssa2 -;(zemin,bodrum,girig,ilk,alt,list) -;3+ps -1.
kat 0 ci ca(d) -

kat1 0 ci - [ca(a)] c83;c83 [ca(d)] - [+dsav].

kati 0 ci - ca(v).

kay 0 ci co23;ca(d) -1p;ca(n)+abla -1p;ca(n)+abla -;ca(n)+loca -;ca(d)
-;ca(n)+abla -;-1k ca(n).

kaya 0 ci ca(a) -.

kayik 0 co 17

kayin 0 ci coll.

kayip 0 ci ca(a) -;c36+abla beri -;c36+eecg -.

kayig 0 ci cod.

kaymak 0 ci ca(a) -.

kaz 0 ci cos.

kaz 0 ci-an 3.

kaza 0 ci senin -n;c175 -;trafik -;-n 04.

kazan 0 ci cols.

kazan 0 ci ca(n)(n) -

kel 0 ci benim -ime;-ime (dokunmak,laf sdylemek);-le (beraber,birlikte);-le
ugrasmak;kafa+ -.

kelle 0 ci - (pisirmek,yemek,satmak);(pisirilen,yenilen,satilan)
-;(yedigi,sattig1, pisirdigi) +ps.

kelime O0co15 A

kes 0 ci ca(d) -;ca(n)+accu -;(4,4) -

kese 0 ci ca(a) - ca(a)[+dsnv].

kesin
kesim
kil

kil
kin
kina
kina

koyun
koz
koza
kum
kuma

0 ci - ca(n);- ca(v).

0 ci ca(s)+dssa2 -;c75 -.

0 ci ca(a) -;- ca(a)[+(dsav,dsnv)].

0 ci ca(d) -.

0 ci c123+accu -a (koymak,gecirmek).

0 ci -siirmek;bag+ - koymak.

0 ci ca(d) -.

0 ci ca(a) -;- ca(a)[+(dsav,dsnv)];- ca(n).
0 ci ca(d) -.

0 ci ca(d) -;keske -sa.

0 ci -s1 [daha] ca(a);ca(n)+abla [daha] -s1.

0 ci - ca(v).
0 ci -1 uygulamak;-m1 (¢6zmek,unutmak).
0 ci ca(a) -;- ca(a).
0 ci col8.
0 ci col7.
0 ci ca(a) -;- ca(a)[+(dsav,dsnv)];- ca(n).
0 ci ca(d) -.
0 ci ca(a) -;- ca(a)[+(dsav,dsnv)];- ca(m).
0 ci ca(d) -.
0 ci colT.
0 ci benim -um.
0 ci ca(a) -;ca(n)+geni -u;3+ps -u.
0 ci col8.
0 ci atesin -;- ateg;a2 - [ca(d)] v1.
0 ci -da c85.
0 ci ca(d) -.
0 ci 4 ca(n)+dati -ul;benim -um.
0 ci ca(a) -
0 ci - (takimlar,aletleri).
0 ci -a (bakmak,siirinmek,d¢kiilmek).
0 ci - (uygulamak,koymak).
0 ci ca(n)+abla -a;ca(d) -a;-an ca(n).
0 ci ca(a) -;- ca(a);senin -n.
0 ci an -1;- bal;-da (bal,ar1) (var,yok).
0 ci senin -un.
co 27 »
0 ci ca(n)+dati -un;ca(d) -un.
0 ci - [renk] [ca(a)] ca(n);rengi [ca(a)] -.
0 ci co5.
0 ci -a giivenmek.

0 ci - (toplamak,dokiilmek,olmak,olgunlagmak).

Oci-a (yatmak,uzanmak,bogaltmak).
0 ci - (gelmek,getirmek,olmak).

142

kur
kura
kurmay
kuru
kuru
kaf
kiife
kiime
kiimes
kiip
kiipe
kiis
kiis

laf
lafiz
lisan
lisans
mart
marti
memnu
memnun
mera
meram
nal
naln
ne

ne
neden
nedense
ney
neyse
oda

o]

ol

olus
olusum
on
onar
ora
oran
orta
ortam
ot

otuz

0 ci c114+accu -a;ca(d) -a;ca(d) -maya.
0 ci - cekmek;cekilen -;ca(a) -.

Oco 1

0 ci ca(a) -;- ca(a)[+(dsav,dsnv)];- ca(n).
0 ci ca(d) -.

0 ci -e (bulanmak,bulagmak).

Oco 5

0 co 24

0 ci 4 -i;- 4.

0 ci -e (koymak,doldurmak,bosaltmak,vurmak).

0 ci - (takmak,almak,satmak).

0 ci - ca(a)[+(dsav,dsnv)];- ca(n).

0 ci ca(d) -

0 ci (biz,hepimiz,topumuz) -1z.

Oco O

0 ci c21 -sa;-sa (onu,bunu) halletmek.
lci.

0 ci ca(s) yilt -3;- ay1.

0 ci coé.

0 ci co24.

0 ci - [ca(a)] -

0 ci co19;-mda otlatmak.

0 ci -1 c94.

0 ci senin -1n.

0 ci - (almak,takmak,giymek,satmak).
0 ci -ye ca(v) mood(int).

0 ci -ye ca(v) mood(int).

0 ci eger -se;ca(n) [bir] -

0 ci her -;- sent.

0 ci eger -se;col2.

0 ci - ca(v).

0 ci ca(a) -- ca(a)[+dsav].

0 ci co2;eger -ysa;ca(v)+dsva -ysa;ben -yum.

0 ci col7;ca(n)+dati -usum;(dyle,bdyle) -ugum.

0 ci col8.

1 ci ca(a) -;- ca(a)[+dsav].

0 ci -ar onar;-ar (tane,adet);-ar ca(n).
0 ci ca(d) -;ca(n)+accu -

0 ci senin -na;-na burana.

0 ci a2 -a;ca(a) -a.

0 ci benim -ma.

0 ci a2 -[a];ca(a) -[a].

0 ci (biz,hepimiz,topumuz) -uz.

0 ci - ca(n);- ca(s);- (tane,adet).

143

144

ov 0 ci ca(d) -.

ova 0 ci ca(a) -;- ca(a).

oy 0 ci ca(n)+accu -(un,sa);ca(d) -.
oy 0 ci senin -un;-a (baglanmak,iimit baglamak);benim -um;-um 3+dati;eger
-sa.

oya 0 ci - (6rmek,dikmek,islemek).
oymak 0 ci ca(a) -.

oysa 0 ci ca(v)+dsva -.

oyun 1 ci ca(a) -

od 0 ci co24;-iin (kopmak,patlamak).
6din 0 ci - (vermek,almak).

ogiit 0 ci ca(a) -;- ca(a)[+dsav].

ogiit 0 ci ca(d) -.

Ors 0 ci -e ca(v);ca(a) -e.

or 0 ci c31 -se;ca(d) -se.

ot 0 ci ca(d) -;c105 -.

Ote 0 ci ca(n)+abla -.

Gzen 0 ci ca(a) -;- ca(a)[+dsav].

Ozen 0 ci ca(d) -.

pas 0 ci -tan (batmak,gecilmez olmak)+(pels,pelp,pe2s,pe2p,pe3p).
pasta 0 ci senin -n;col4.

peki 0 ci -yi [hig] c94.

pekiyi 0 ci - (almak,vermek);not+ps -.
pes 0 ci co24;-inde ca(n) (var,yok).
pesin 0 ci - para;- [ca(a)] ca(n).

pesin 0 ci - ca(v).

pir 0 ci co2Z;senin -ince.

pir 0 ci - ca(v).

pire 0 ci col.

piring 1cia2-e.

rahibe 0 ci -08.

rahip 0ci- o7 -e.

raki 0 ci col9;co9.

rakim 0 ci (03,04,05,06)+geni -1;ca(s) -Iik.
rehin 0 ci -e bakmak;ca(m)+accu -e ca(v).
rehine 0 ci - (olmak,tutmak,saklamak).
resim 0 ci 3+ps -;- +ps.

resmi 0 ci - [ca(a)] c81;c81 -[+dsav].
sag 0 ci col8.

sag 0 ci col7.

sacma 0 ci col7.

sag 0 ci co22.

sag 0 ci ca(d) -.

sagla 0 ci co21;ca(n)+accu -ma;ca(d) -ma.

saglam
saglam
saha
sahan
sal

sal
saldir
sali
salin
salla
sap
sap
sapa
sapan
sapla
sapta
sara
saray
savas
savas
say
say1
sayimn
sayman
seci
seciye
sek
seksen
sel
sele
semer
semere
ser
serin
sersem
sig

s1g
siva
siva
sivil
sivilce
sol

sol
solu

0 ci - ca(n)+dati;ca(a) -a.

0 ci - ca(v).

0 ci co24;-nda oynamak.

0 ci - ca(n) (pisirmek,yemek).

0 ci col8;ca(n)+accu -1n.

0 ci col7;ca(a) -;c022;3+ps -1[+dsnv];- v1;senin -1n.
0 ci ca(d) -;ca(n)+dati -.

0 ci - giin(i,leri);- v2.

0 ci ca(n)(n) -.

0 ci co2l.

0 ci ca(n)+abla -;c020;ca(d) -ana;cl116+abla -ana.
1 ci ca(a) -;c022;c51+loca+pron -ta;5+loca+pron -ta.
0 ci - ca(n)ca(n) [ca(a)] -.

0 ci col0;-a tag (koymak,ip baglamak);ca(a) -a;c117+abla -a.
0 ci co2l.

0 ci ca(n)+accu [ca(d)] -.

Oco 2

0 ci -a c118.

0 ci ca(a) -;- ca(a)[+(dsav,dsnv)].

0 ci ca(d) -.

0 ci ca(n)+accu -;ca(d) -in.

0 ci senin -n.

0 ci-3.

0 ci co2.

0 ci (ahenkli,uyumlu,kafiyeli) [bir] -ye.

0 ci col.

0 ci ca(n)+abla -sen;ca(d) -sen.

0 ci - ca(s);- tane;- ca(n).

0 ci -e (tutulmak,kapilmak,yakalanmak,engel olmak).
Oco 5

0 ci -e (oturmak,binmek,kurulmak).

0 ci - (vermek,almak).

0 ci ca(n)+dati -;ca(n)+accu -.

0 ci - ca(n);ca(n) -[+dsav].

G ci col.

0 ci - ca(n);ca(a) -.

0 ci ca(d) -.

0 ci ca(a) - ca(a)[+(dsav,dsnv)].

0 ci ca(d) -.

0 ci -ce [ca(a)] c86;c86 -ce[+dsav].

Oco 2

0 ci ca(a) -;2+ps -u.

0 ci ca(d) -.

0 ci 3 [d2+abla] [d1] -;ca(d) -

145

som
somun
sor
sorun
SOy
SOy
sulta
sultan
SUr
siire
suri
siirii
strim
§i§

i
sise
tak
tak
takim
takla
tan
tandir
tani
tamm
tanimla
tarif
tarife
tarih
tarihce
tart
tartig
tag

tas

tat

tat
tavla
tavla
tel

telin
telsiz
ter
terim
tos

0 ci - ca(n);ca(n)+accu -.

Oco 5

0 ci co23.

0 ci - (yapmak,olusturmak).

0 ci ca(a) -;- ca(a)[+(dsav,dsnv)];- ca(n).
0 ci ca(d) -.

0 ci co24.

0 ci co2.

0 ci c106+accu -.

0 ci ca(a) -.

0 ci ca(d) -.

0 ci benim -m;-mii (otlatmak,beslemek).
0 ci c123+loca -;c12+geni -ij;- ¢123.

0 ci -e (takmak,gecirmek);col.

0 ci ca(d) -.

0 ci - ¢22;¢09;- kirmak.

0 ci ca(d) -;ca(n)+dati -.

0 ci -la (beraber,birlikte);-la (siislemek,donatmak).

1 ci ca(a) -;- ca(a)[+dsav].

0 ci - atmak;(atilan,attig+ps) -.

0 ci (agaran,dogan) -;- (agarmak,dogmak).

0 ci - (yanmak,pisirmek).

0 ci ca(d) -;ca(n)+accu -.

0 ci a2 -lajca(a) -la.

0 ci ca(n)+accu -;ca(d) -.

0 ci -e bakmak.

0 ci - (almak,sormak).

0 ci -ce ca(n) ca(v).

0 ci - (yazmak,okumak).

0 ci col7.

0 ci col8.

0 ci ca(a) -;- ca(a)[+dsav].

0 ci ca(d) -

0 ci ca(a) -;- ca(a)[+dsav].

G ci ca(d) -

0 ci ca(a) -;- ca(a)[+dsav].

0 ci ca(d) -.

0 ci senin -in;-siz ca(v)+negp.
co 10

0 ci - etmek.

Oco 5

0 ci col9;ci -imi (silmek,yikamak,kurulamak);-im (sogumak,kurumak).

0co24

0 ci co24;-un [ca(d)] (lurpalamak,acitmak,6ldiirmek).

146

tosun
tore
toren
tir
tlire
tiiredi
tiit
tiitiin
tity
tiy
ug

ug
ufal
ufala
ugras
ugras
ulu
ulu
uy
uyan
uyar
uydu
var
var
veri
verim
vezin
vezne
kalabalik) -.
yag
yag
yagma
yak
yaka
yakar
yakin
yakin
yakin
yakig
yama
yama
yan
yan
yan

0 ci cos.

0 ci co24;-ne bagh+dsav.

0 ci - (yapmak,kutlamak).

0 ci ca(a) -.

0 ci ca(d) -;ca(n)+abla -.

0 ci - [ca(a)] ca(n).

0 ci co23.

0 ci - (icmek,sarmak);coll.

0 ci ca(a) -;- ca(a)[+dsav].

0 ci ca(d) -.

0 ci ca(a) -;- ca(a)[+dsav].

0 ci ca(d) -.

0 ci ca(n) -.

0 ci ca(n)+accu -.

0 ci ca(a) -;- ca(a)[+dsav].

0 ci ca(d) -.

0 ci - ca(n);ca(a) -

0 ci ca(d) -.

0 ci -an ca(n);ca(n)+dati [ca(d)] -;ca(a)+dati -.
0cidl-

0 ci 1+accu -

0 co 37

0 ci ca(a) -;- ca(a)[+(dsav,dsnv)];- ca(n).
0 ci ca(d) -.

0 ci co19

0 ci ¢93+geni -i;-(li,siz) c93.
0 ci -e (uymak,dikkat etmek).

0 ci - memury;- [ca(a)] (mesgul,dolu,yogun,kalabalik);(mesgul,dolu,yogun

0 ci ca(a) -;- ca(a)[+dsav].

0 ci col8.

0 ci col7.

0 ci ca(n)+accu -;ca(n)+accu -m;ca(d) -;col7.
1 ci ca(a) -.

0 ci ca(n)+dati -.

0 ci - ca(n);ca(n) -[+dsav].

0 ci - ca(v). ‘

0 ci ca(d) -;-[+dsva] ca(n).

0 ci col8.

0 ci ca(d) -;c31+accu -

0 ci ca(a) -;c31+loca+pron -.
0 ci ca(a) -;- ca(n).

0 ci ca(d) -.

0 ci - ca(v).

147

2

yap
yapig
yar
yar
yara
yara
yaran
yarar
yari
yari
yarim
yarmn
yarin
yaris
yang
yasak
yasakla
yasa
yasa
yasasin
yat
yatis
yay
yay
yaya
yayan
yayan
yayik
yaym
yayla
yaz
yaz
yazi
yazn
ye
yedi
yemis
yen
yen
yer
yer
yet
yetis

148

0 ci col7.

0 ci col8.

0 ci ca(n)+accu -;-an ca(n).

0 ci c125 -;-[(1m,m)]a c118.

0 ci ca(n)+dati -.

0 ci oliimciil -;1+loca+pron -;senin -n.

0 ci 3+dati -.

0 ci - (gormek,ummak,beklemek);ca(a) -.
0 ci - ca(n);- ca(n)+loca.

0 ci - ca(v).

0 ci - ca(n);- c36.

0 ci - (sabah,0gle,aksam,gece);- ca(v)+(pels,pelp,pe3s,pe3p,pe2p).
0 ci - ca(v).

0 ci ca(a) -;- ca(a)[+dsav].

0 ci ca(d) -

0 ci co22.

0 ci co21.

0 ci ca(d) -sm;1 -sm.

0 ci - (de,diye bagir).

0 ci mood(exc).

0 ci col7.

0 ci col8.

0 ci -a ok takmak;senin -in;co10;-la ok c122.
0 ci ca(n)+accu -;-an 3;ca(n)+dati -;-1k ca(n);ca(n) -ik.
0 ci - (yliriimek,kogmak).

Oci-33-

0 ci - ca(v).

0 ci ca(a) -;-+cases ca(v).

0 ci - yaymlamak.

0 ci ¢175 -;- c175[+dsav];c118+dsav -.

0 ci col8.

0 ci c023;c017;-1 ca(n)+loca gecirmek;(sicak,giinesli,yagmuriu,soguk,ilik)

0 ci - yazmak;3+ps -;¢124 -;- c124[+dsav].
0 ci - ca(v).

0 ci c23[+accu] [ca(d)] -

0 ci - ca(n);- ca(s);- (tane,adet).
0 ci c041.

0 ci col7;ca(s) -;(kag,nekadar) -.
0 ci col8.

0 ci ca(a) -;- ca(a)[+dsav].

0 ci ca(d) - :

0 ci col7;ca(n)+dati [ca(d)] -.

0 ci col8.

yetmis 0 ci - ca(n);- ca(s);- (tane,adet).
yik 0 ci c108+accu -.

yika 0 ci c107+accu -.

yil 0 ci co20.

yil 0 ci col7.

yilan 0 ci co7.

yilig 0 ci col8.

yok 0 ci 3 [ca(n)+loca] -sun.
yok 0 ci - ca(v). ‘
yoksun 0 ci - ca(n);ca(n) -[+dsav].
yol 0 ci ca(a) -;- ca(a)[+dsav].
yol 0 ci ca(d) -.

yiiz lci.

yiiz lci.

yiizde 0 ci co24.

yizden 0cip3-.

zarf

(yok,var,olmak).

zarfinda

0 ci senin -in;(mektubun,kartin) -inda;-inda (pul,miihiir,adres,damga)

0 ci ¢36 -;siire -.

149

150

E.4. Word Sense Ambiguous Root Words Lexicon

Full listing of the word sense ambiguous root words lexicon is presented below in text
form. For each entry the ambiguous Turkish word and the number of its word senses are
given in the first line. The related information for each word sense is stored in the next

lines. The fields in each word sense are in the following order:

1. the equivalent Azeri word

2. collocation info definition or the concepts that the word is dependent on

A word sense may have only collocation info definition or concept codes or both of them
at the same time. If it utilizes both of them, then the word sense is stored with each of
them one by one. 0 and 1 represent the false and true boolean values, respectively. "ci"
means a collocation definition follows, whereas "co" means concept codes follow. In a
collocation definition, collocations are separated by semicolons, and it ends with a period.

The same numeric codes presented in Section E.3 is used for concepts.

alay 2

alay co 1

lag ci ca(n)+iles -(n) (etmek, ge¢mek);-a(n) (almak, vurmak);-la(n)
(bakmak,stizmek);-c1.

ast 2

peyvand co 2

calag co 3

ayar 2

ayar ci ca(s) - altin;altinin -1.

dégqiqlik ci 4+geni -1

bagh 2

bagh ci ¢7+iles -;2 2+dati [ca(a)] -[+dsav].

asili ci 6t 6t+dati [ca(a)] -[+dsav];1 1+dati [ca(a)] -[+dsav].

baski 2

nasr ci 6+geni [(ca(s)+dssa2, kagincr)] -si;ca(s) -.

tdzyiq ci (3, 2+dati) (yapilan, tizerindeki) -;(3, 2+dati) [ca(a)] - yapmak.

basibos 2

avaraci
yiydsiz
ben

xal

men

bez

baz

bez
cereyan
cérdyin
cirdyan
hava aximi
cetvel
xdtkes
cadval
cevher
cavhar
cavahir
cilt

déri

cild
ciimle
cimli
biitiin
cagdas
hamadsr
cagdag
¢apa
kiiliing
16vbar
cat
bas-basa goy
hiicum et
catal
céngil
ayric
¢ekim
tasriflinma
cakma
gercop
¢or-¢op
zir-zibil
cevir
tdrcimé et

co 1

ci - [ca(a)] 4+;4 [ca(d)] -
2

co 2

ci -[im] ca(a)+psls;- ca(v)+pels.

2

co 2

ci -+iles ca(v);- dikmek.

3

co 10

cicll -1

ci - yapmak;hava -1.

2

co 5

ci - (hazirlamak, gikarmak).
2

co 13

ci col.

2

ci 3+geni -i.

ci c12+geni -i;-li [ca(a)] c12.
2

co 15

ci - ca(n)+plrp.
2

ci.

ci.

2

co 3

co 17

2

ci ca(n)+accu [ca(d)] -
ci 3+dati [ca(d)] -.
2

ci -la yemek;-h (yikamak, temizlemek, silmek).

co 0
2

ci fiil[(in, inin)] -i;ca(v)+dsvv17+geni -i.

co 0

2

ci -+accu yakmak.
co0

3

ci yaziyl, metni -;06+dati -;06+abla -.

151

mithasirdya al
cevirmek
¢irp

carp

al cal
¢igne
¢iynd
¢igna
daire
daird
idard
méinzil

dal

budag
ixtisas

dal
uyguya dal
dal

cum
darbe
cevrilis
zarbd
dava

dava

ideal
dayak
kotak
dayag

day1

day1

arxa
degerlendir
Tdy yaz
dayéarlandir
deneme
esse
tacriibd
denk

yiik

tan

derece
termometr
ddraca
derman

co 1
¢i 2+accu -,
2

ci (c16, c79)+accu -.

ci el+ps+accu [ca(d)] -.

2

ci ¢23 [ca(d)] -.

ci c63 [ca(d)] -;c72+iles -.

3

co 24

co 25

co 64

2

co 3

co 26

3

ci uykuya -.

ci (diisiinceye, hayale) -.

ci c23+dati -.

2

co 25

ci - (aldy, yedi);(aldify, yedigi) [ca(a)] -.
2

co 44

ci (ulvi, yiice) [ca(a)] -;- i¢in 3+accu feda etmek.
2

ci -(n) (atmak, vurmak, yemek).
ci -(3, 1a) [ca(d)] (koymak, yerlestirmek, sikistirmak).
2

ci 01+ps3s -s1;-1m;-1n.

ci c28+geni -s1.

2

ci c29+accu -.

ci.

2

co 30

ci - [ca(d)] yapmak.
2

ci -i (yiiklemek, tagimak, kaldirmak, sirtlanmak);ca(a) -.

ci ca(s)+accu+loca -shepsi -;- ca(n)+accu;
2 :
co 5 ,

ci ca(s) -;kag -.
2

152

didrman
glc

dik

ak

tik
basdirmak
divan
divan
taxt
diye
deya
tglin
diyet
pahriz
girov
dizi
seriya
diiziim
dog
dog
dogul
don
trusu
don
dosya
papka
saxsi is
duvar
divar
hasar
diig

dis
yixil
diizen
sistem
tartib
efendim
bagislayin
bali
bali beyim
ege
gabirga
yeya
egitim

co 2

ci.

3

ci 5 -;-+dsva 5.

ci ¢31 -;-+dsva c31.

ci (direk, diregi) [ca(d)] -.
2

ci - (okumak, yazmak).

ci -a (oturmak, yatmak, uzanmak);-dan kalkmak.

2

ci (ca(r), ca(a)) -.
ci ca(v) -

2

co 2

ci -ini (6demek, almak, vermek).
2

co 24

ci - [ca(a)] ca(n).

2

ci ¢33[+geni] -+.
co 2

2

ci -+ps;cod.

ci - (yapmak, yagmak).
2

co 45

co 44

2

ci ev+ps -pev[in] -1
ci ¢35+ps -1;,¢35[+geni]-1
2

ci.

ci.

2

ci.

ci.

3

ci.

ci.

ci.

2

ci - kemigi.

co 3

2

153

pedagogika
tarbiya
eglen
laga goy
dylan
egreti
Otari
pozug
ek
sakilci
gosma
el

al

el
emsal
dmsalci
niimund
en

an

en

er
asgir
kisi
mérd
esne
garilib yigil
dsnd

c§
yoldag
tay

etek
tuman
atdk
fail

fail
miigésir
fen
tdbidt fanldri
texnika
fener
mayak
fAndr
fikirda
piggilda

co 26

ci - vermek;-(siz, 1i) [ca(a)] 3;3+geni -i.

2

ci 3+iles -.
co 0

2

ci - [ca(a)] c36.

ci - [ca(a)] 2.
2

ci ca(n) [ca(a)] ca(n) -.

co 15

ci.

2

co 7

co 25

2

3 3+geni -.
2

ci - ca(a).
ci-+.

3

co 1

ci.

ci.

2

ci 2 [ca(d)] -+.
ci 1 [ca(d)] -+.

2

ci 3+ps -i.
ci 2+ps3s -i.
2

co 16

ci ¢73+geni -i.

2
co 15

ci (eylem, cinayet, sug, olay)+geni -i.

2

€O 26

ci.
2

ci deniz -i;-ci.
co 0

2

ci ¢74 [ca(d)] -

154

gimilda
fikra
ogerk
latifa
fig
cdngil
cek
kartogka
fisek
patron
fising
garip
qgérib
qariba
gebe
hamild
bogaz
gbbek
garin
gobak
gbvde
dsas
govda
gozle
gozla
miisahidi et
glic
giic
cétin
hak
hagg
hiigug
han
kirvansaray
xan
harg
xarc
méhlul
hava
dhval-ruhiyya
hava
havale
havald
ko¢lirma

ci 3 [ca(d)] -.
2

co 30 :
ci - anlatmak;-ya [ca(d)] giilmek;(komik, giiliing) [ca(a)] -.
3

co 10

ci ca(s)+dsnn7 -;- vermek.

ci -e (islemek, kaydetmek).

2

co 40

ci havai fisek.

2

ci.

ci.

2

ci - [ca(a)] 3;3 [ca(d)] - [+dsav].

ci - [ca(a)] 4+;4 [ca(d)] -[+dsav].

2

ci.

co 0

2

co 15

ci co3;3[+ps] -+ps.

2

ci.

ci.

2

ci -(ps, loca, abla, geni, dati, accu, i, sliz);- kullanmak.
ci -lik;- [ca(a)] ca(n);ca(d) -.

2

ci -1 tessis etmek.

ci 3+geni -+ps;-+ps-+accu vermek.

2

co 34

ci co2.

2

ci - (toplamak, vermek, 6demek).

ci - (karistirmak, hazirlamak, dokmek).

2

ci -+ps.

co 0

2

co 2

ci - (gondermek, ¢cekmek);- almak;- ca(d)-+dati ulagmak.

hayir
Xeyr
xeyir
hesapli
hesablanmig
tadbirli
hoca
xoca
mudllim
horla
xorulda
xorla
hortum
xortum
slang
buragan
hiicre
hiiceyra
hiicrd

ig

i

cak
ikramiye
udusg

- almak.
miikafat

156

2

ci - [ca(d)] cevabynegsen -.

ci - yapmak;- dua etmek.

2

ci - [ca(a)] c22;c22 [ca(a)] -.

ci - [ca(a)] 3;3 [ca(a)] -+te.

2

co 42

co 43

2

ci 3 [ca(d)] -;uyku+loca -.

ci 3+accu [ca(d)] -;3 [ca(d)] -n.
3

ci fil[in] -u+.

ci -la [ca(n)] (fiskirtmak, piskiirtmek, sulamak).
ci - [ca(d)] siddetlenmek.

2

co 2

ci.

2

ci c22[+accu] -.

ci (sigara, tiitlin, nargile) -.

2

ci (piyango, gekilis)+(iles, abla) - (almak, kazanmak);(talihli, sansh)

ci ca(s) maas -;sirket [3+dati] - vermek;(iscilere, memurlara,

personele, ¢ahsanlara) [ca(a)] - (almak, vermek).

iktidar
héktmat
iqtidar
ilahi

dini mahm
ilahi

ilik

ilik

ilgdk

illet

illat
zahlatdkian
isletme
istehsali
planlasdirma
miidssisa
kalin

2

co 25

ci -(y, s1z) [ca(a)] 3;- yetmek.
2

ci - (s0ylemek, ¢almak, dinlemek, okumak);-yi.
ci - [ca(a)] ca(n).

2

co 2

ci - (dikmek, agmak);-den gegirmek.
2 ;

co 2

ci - [ca(a)] ca(n).

2

co 26

co 47

2

galin
bashg
kalkan
galxana
bénzér balig
galxan
kalp

qilb
saxta
kanun
kanon
ganun
kap

gab

iz

kara
gara
guru yer
kavra

tut

gavra

kiy
giymé-qiyma
dogramak
gy

koca

ar

boytik
kol

gol

gol

sobd
kompleks
kompleks
ruhi nogsanl:g
kon

gon
goyul
kredi
borc
e’tibar
kursun
giilla
gurgusun

157

ci - [ca(a)] ca(n).
ci - vermek.

2

ci - bahifs;- (avlamak, yakalamak, yemek, temizlemek,ayiklamak).
co 1

2

ci co3.

ci - para.

2

co 48

co 44

2

ci -a (dokmek, koymak, aktarmak, koymak);c23 -1.
ci ca(n)+geni -1;-(1, m1) Ortmek.

2

ci - ca(n);-ca [ca(a)] ca(n).

ci - parcasi;-da yasamak;-ya ayak basmak.

2

ci 6f [ca(d)] -;-+dsav 6f.

ci 6t [ca(d)] -;-+dsav 6t.

2

ci c23+accu -,

ci ca(n)+dati -.

2

ci 03+ps -+ps;-+dsnv.

ci - ca(n).

3

ci c51[+ps3s] -u;co3.

ci -u (tutmak, cekmek, gevirmek).

ci (daire, sirket)+geni [ca(a)] -u;-unda ¢aligmak.

2

ci - [ca(a)] c55;c55 [ca(a)] -.
co 2

2

ci ¢65 [ca(d)] -

ci ¢66 [ca(d)] -

2

ci -(almak, vermek);- (miktar, limiti, haddi, izni) artmak.
ci -+ps artmak;- kazanmak;3+geni [ca(a)] -.

2

co 40

co 13

kurum
gurum
camiyyét
kusak
gursag
nésil
kuyruk
guyrug
novba
lisans

ali tdhsil
diplom
makam
melodiya
mégam
etmek).
mani
bayati
mane
metin
matn
matin
muhtar
méahdlld rahbarici
mahalld rahbari
muxtar
nasilsa
haradansa
dlbatta
neden
nd {iclin
sabdb
nefis
nafs
néfis
not
qiymaét
geyd
ocak
yanvar
ocag
ocag
olgun
kamil

158

2

ci -lamak;- (bulastirmak, olmak).

co 47

2

¢i -+ps baglamak;co4.

ci a6 - [ca(a)] c75.

2

ci 4[+ps3s] -u.

ci -da beklemek;-a girmek;- olmak;c59+loca+pron [ca(a)]-.
2

co 43

ci -[+ps][+accu] (almak, gdstermek, var).

2

ci ¢50 -1

ci ¢76 -;;-inda (karsilamak, agirlamak, misafir etmek, kabul

2

co 30

ci - olmak.
2

ci.

ci - olmak.
3

co 2.

ci - muhtar.
ci - [ca(a)] (yOonetim, devlet, idare).
2

ci - ca(v)+(pate, pite).

ci - ca(v)+(tlte, pite)+eech.
2

ci mood(int).

ci c(m)+geni -i;c(a) -

2

ci.

ci - [ca(a)] ca(n).

2

co 43

ci - (tutmak, almak);

3

ci -ayica(s) yi -1

co 5

ci -da (pigirmek, 1sitmak).
2

ci col.

yetismis
olumlu
tasdiq
pozitiv
olumsuz
inkar
negativ
oyna
gimilda
oyna
oyun
oyun
tamasa
pek

gox

sart
piring
biiriinc
diyt
piskin
utanmaz
yaxsl bismis
pul

pul
marka
saf

saf

saf

sap
saplag
sap
satir
capacag
capacag
satir
baslamak).
saz

saz
gamis
sessiz
samit
sakit
sifat
sifat

159

ci - [ca(a)] ¢52;¢c52 [ca(d)] -[+dsav].
2

ci - (fiil, ctimle;fiil, ciimle) -.

ci - [ca(a)] ¢53;c53 [ca(d)] -[+dsav].
2

co 15

ci - (fiil, ciimle;fiil, climle) -.

2

ci c22[yerinden] -.

ci 3 [(parti, disco, diigiin, nigan)]+loca [ca(d)] -;-yan 3.
2

ci.

co 56

2

ci.

ci - [bir] c67;c67 [ca(a)] -.
2

co 13

co 41

2

ci col.

ci - [ca(a)] c46;c46 [ca(a)] -.
2

ci c49[+ps3s] -u.

ci - (vermek, almak, saymak);

2

ci.

ci.

2

ci 5[+ps] -si;5+loca+pron -.

ci ¢51[+ps3s] -1,¢51+loca+pron -.

3

co 5

ci -la (kesmek, dogramak, dilimlemek).
ci (alt, ist) -;-dan baglamak;-1 okumak;-a (yazmak,ge¢mek,cizmek,

2

ci -harf;harf -.
ci col.

2

co 15

ci 3+ps -

) ;

co 15

keyfiyyit
sira
ndvba
sira

sira

siva

suva
¢irmd
sinir

sinir

asdb
sekerleme
konfet
miinglildma
stk

$1g
alternativ
taban
daban
dosama
tabir
yazma
ta’bir
takim
désta
dést
komanda
tekne
gami
takna
temsil
tamasa
tdmsil
tezgah
dazgah
pistaxta
tokmak
toxco
tokmak
tulum
kombinezon
tulug

tus
toxmagcig

co 7
3

ci -da beklemek;-a girmek;- olmak;c59+loca+pron [ca(a)]-.

ci -da oturmak;-dan kalmak.
ci -ya sokmak;-lamak;-yla ca(v).
2

ci.

ci.

2

co 2

ci 3+ps [ler].

2

ci - (yemek, hazirlamak, satmak).
ci - yapmak.

2

ci - [ca(a)] 3.

ci -i (se¢mek, tercih etmek, uygulamak).
2

ci co3.

co 34

2

ci -ci;- etmek;riiya -i.

co 0

3

ci - [ca(a)] 3;3+plrp [ca(a)] -.
ci - [ca(a)] 2;2+plrp [ca(a)] -.
ci c54 -

2

co 17

ci hamur -si.

2

co 56

ci - etmek.

2

ci c57 -1

co 58

2

5

ci kap1 -1

2

co 16

ci 4[+ps3s] -u.

) :

ci c60[+ps3s] -u.

160

giildsda kirdyi
yere ddyma

tinli
sait
sOhratli
vasat
orta
sdrait
vekalet
nazirlik
vakalit
vur
giillala
vur
yaka
yaxa
sahil
yal
sahilddki ev
sahil
yapi
bina
biinya
yargt
qdrar
mahkama islari
yazi
maktub
reska
yiiz

yliz

liz

ylz

iz

soy

zar

zar

zAr

161

ci - (olmak, yapmak);-la (yenmek, kazanmak, yenilmek,kaybetmek,
galip gelmek, maglub olmak).

2

ci - harf;harf -.

ci - [ca(a)] 3.

2

ci - [ca(a)] ca(n);-(1, m1) (al, ver);- olam (al, ver).
ci ca(a) -.

2

ci c69+dati - etmek;c69+geni -i.

ci 3+dati - etmek;3+geni -i.

2

ci c6l+iles -.

ci c70+iles -;c70+accu [ca(d)] -;c¢77 -.
2

ci c78 -s1.

co 27

2

co 34

co 27

2

co 71

ci 3+ps -

2

ci -ya varmak;3 hakkindaki -;- belli olmak.
ci -ya intigal etmek;- (yiiriitmek, goriilmek);- isi.
2

co 30

ci paranmn - (tarafi, yizii).

2

ci - [(tane, adet)] 7f -ii.

ci 3+ps;2+ps -i;yliziim;yliziin.

2

co 27

2

co 2
ci - [+accu] [ca(d)] atmak.

ci 4 (derisi[ni], postu[nu]) [ca(d)] -;derisi -+dsva 4.

162

E.S5. Macro Collocation Info Definitions Lexicon

Macro collocation info definitions lexicon is presented below in text form. Each line
contains a single definition. The same notation is used in the collocation definitions as

in Sections E.3 and E4.

- [ca(a)] 3;3 [ca(a)] - [+dsav].

c75 -; - c75[+dsav];- (yemek,icmek,oynamak,konusmak,kosmak).
1+ps -;- kanamak.

- (giymek,yikamak,silmek).

- (avlamak,avlanmak,yemek,i¢mek).

- (u¢mak,stiziilmek,avlanmak,yakalanmak).
- (stirinmek,avlanmak,avlamak,vurulmak).
- (yazmak,okumak,elestirmek,incelemek).
- igmek.

-+iles (avlamak,vurmak,oldiirmek).

- (ekmek,yemek,biiyiimek).

- (calmak,dinlemek).

- (oynamak,seyretmek,izlemek).

- yemek.

- (pisirmek,sitmak,hazirlamak).

benim -.

ca(a) -.

ca(d) -.

benim -+psls.

-an ca(n);ca(d) -an.

ca(d) -.

ca(a) -la;-la ca(v);-la (beraber,birlikte).
ca(d) -+pe2p;-+pe2p (dedik,diye);siz -+pe2p.
senin -+ps2s.

- 6tmek.

163

E.6. Identical Suffixes Lexicon

The identical suffixes lexicon is presented below in text form. Each line contains the
information for a single suffix or suffix sequence. In each entry the generic symbol for
the suffix or the generic symbols for the suffixes in the suffix sequence, and its collocation
info definition are stored. "ci" means a collocation definition follows. The same notation

is used in the collocation definitions as in Sections E.3 and E.4.

accu ci p3 -;ca(n)+loca+pron -;
dsavl dsvab ci - ca(n);ca(n) -[+dsav].
dsavl dsvdl ci - ca(v).

dsnall ci - ca(n).

dsnd3 ci - ca(v).

dsnv3 ci ca(d) -.

dssa3 ci - ca(n);ca(n) -.

dsval ci - ca(n);ca(n) -.

dsvp3 ci - ca(n);ca(n) -.

dsva7 dati ci ca(a) -;- dogru.

dsvd3 ci (3+accu,3+dati) - ca(v).
dsvd6 ci ca(n)+accu -;3 -.

dsvn3 ps2s ci senin -.

dsvn5 dsna3 ci - ca(n);ca(n) -.

dsvn5 dsnn2 ci co2.

dsvnd psls ci benim [ca(a)] -.

dsvnd ps2s ci senin -;ca(a) -.

dsvnS ps2s dsnall ci senin -.

dsvnS ps2s dsnd3 ci senin -.

dsvnd ps2s pelp ci senin -;biz -.

dsvnS ps2p ci sizin -.

dsvn7 cip3 -

dsvn7 dati ci p3 -.

dsvnll ci ca(a) -;- ca(a).

dsvnl2 ci - (olayl,durumu,hareketi).
dsvv2 ci ca(n)+accu -.

dsvv5 ci ca(n)+abla -.

dsvv6 ci ca(d) -.

164

dsvv7 ci ca(n)+abla -.

dsvv8 ci ca(d) -.

dsvv9 ci ca(d) -.

dsvv1l ci ca(n)+abla -.

dsvvi2 ci ca(d) -.

dsvv27 ci ca(a) -;- ca(a).

dsvv30 ci ca(d) -.

geni ci p3 -;ca(n)+loca+pron -;- ca(n)+ps.
geni pelp ci p3 -;ca(n)+loca+pron -.
negp ci ca(d) -;ca(n)+accu -.
pels ci ben -.

pelp ci biz -.

pe2p ci siz -;ca(d) -;ca(n)+accu -.
psls ci benim -.

ps2s ci senin [ca(a)] -.

ps2s case ci senin [ca(a)] -.

ps2s pelp ci senin [ca(a)] -.

psZp ci sizin -.

ps3s ci onun [ca(a)] -.

ps3s case ci onun [ca(a)] -.

tite ci ca(n)(n) -;ca(d) -.

165

E.7. Representative Listing of the Bilingual Suffix Lexicon

A representative listing of the bilingual suffix lexicon is presented below. The lexicon
contains the transitions for nouns and adjectives. The symbol # indicates that a word
category follows, and the number 1/0 next to the word category indicates whether a word
in this category can be a valid final word (1) or not (0). The suffixes that can be affixed
to the words in this category are stored in the following lines. The information for each
suffix is stored in two consecutive lines. The fields in the first line are in the following

order:

. Turkish suffix (an empty suffix corresponds to a free jump)
. final state of the transition

. flag associated with the suffix

da W e

. flag to indicate whether the suffix is affixed to the stem separately (1) or not
Q)
5. flag to indicate whether the suffix is a derivational suffix (y) or an inflectional
one (c)
6. flag to indicate whether the last consonant of the suffix is affected by the
consonant mutation rule (1) or not (0)
7. Generic suffix name

8. The equivalent Azeri suffix

In the next line the information for the vowel harmony rule and the consonant harmony

rules are stored for the Turkish suffix and its equivalent Azeri suffix, respectively.

#n0 ,1
cik ,n4 , 14,0 y 1 dsnnl
110000 000000
c1 a3, 6,0 y 0 dsna3
110000 000000
cl ,n5, 6,0y 0 dsnn2
110000 600000
et v4 , 13,0y 1 dsnvl
000000 000000
hane ,n0, 1,0y 0 dsnn4
000000 000000
kar ,a0, 5,0y 0 dsna5
000000 000000
Iik ,a5 , 11,0 y 1 dsnab
010000 000000
Iik ,n2, 11,0 y 1 dsnn7
010000 000000
name ,n0, 2,0y 0 dsnn8
000000 000000
sa V5, 12,0y 0 dsnv2
010000 000000

,a0, 0,0

,al, 0,0
#nl,1
lan V9, 17,0 y 0 dsnv3
010000 000000
las V4 , 18,0 y 0 dsnv4
010000 000000
la w5, 16,0 y 0 dsnvé
0100600 0600000

,n6, 0,0
#n2 ,1
cik ,nl, 14,0y 1 dsnnl0
110000 000000
c1 ,n3, 6,0y 0 dsnnll
110000 000000

,nl, 0,0
#n3,1
Iik ,nl, 0,0y 1dsnnl2

010000 000000
,al, 0,0

cik
011000 000000

q

¢l
(010000 000000

q

xana
000000 000000

q

ik

011000 000000
Iik

011000 000000
nama

000000 000000
q

cik
011000 000000

q

ik
011000 000000

166

#n4 ,1
c1 ,n5, 0,0y 0 dsnnl3
110000 000000

,nS, 0,0
#nS ,1
hik ,nl, 0,0y 1 dsnnld
010000 000000

,nl, 0,0
#n6 ,1
I ,al, 0,0 y 0 dsna9
010000 000000
S1Z ,a0 , 0,0 y 0 dsnal0
010000 000000

a7, 0,0
#n7,1

a8, 0,0

,n9, 0,0
#n8 ,0
lar ,n9, 0,0 c O plrp
010000 000000
#n9 ,1
ca ,dl, 21,0 y 0 dsndl
110000 000000
ca ,n22, 0,0y 0 dsnd2
110000 000000
1miz ,nl10, 0,0 ¢ 0 pslp
101000 100000
m ,n10, 0,0 c 0 psis
100000 100000
1mz ,n10, 0,0 c 0 ps2p
101000 100000
n ,n10, 0,0 ¢ 0 ps2s
100000 100000

,n18, 0,0

,n22, 0,0
#n10,1
ca ,a5, 0,0y 0 dsnall
110000 000000 -
ca ,d2, 0,0y 0 dsnd3
110000 000000
S1Z ;¥ , 0,0y 0 dsnnls

010000 000000
.n18, 0,0

167

ik
011000 000000

#nl1,1

dan ,n16,

110000 000000

da ,nl2,

110000 000000

nimn ,nl35,

010000 100000

ya ,nl4,

010000 100000

yi ,n20,

010000 100000
,nl5,

#n12,1

ki ,n13,

000000 000000
,v43,

#n13,1
,n8 ,
,n16,
,nl7,

#nl14,1

da ,n21,

010000 600000
,v49,

#n15,1

ki ,nl13,

000000 000000
,n16,

#n16,1

da ,n21,

010000 000000
,vdd,

#nl17,1

ndan ,n16,

001000 000000

nda ,nl2,

001000 000000

nimn ,n15,

010000 000000

na ,;nl4,

010000 000000

ni ,n20,

010000 000000
,n19,

0,0 ¢ 0 abla
0,0 ¢ 0 loca
0,0 ¢ 0 geni
0,0 ¢ 0 dati
0,0 ¢ 0 accu
0,0
0,0 ¢ 0 pron
0,0
0,0
0,0
0,0
0,0 ¢ 0 loca
0,0
0,0 ¢ 0 pron
0,0
0,0 ¢ 0 loca
0,0
0,0 ¢ 0 abla
0,0 ¢ 0 loca
0,0 ¢ 0 geni
0,0 ¢ 0 dati

0,0 ¢ 0 accu

0,0

dan

010000 000000
da

010000 000000

q

q

m
010000 100000

q

q

n
010000 100000

168

#n18,1

,nll, 0,0

,n19, 0,0
#n19,1
yilan ,d2, 0,0 c 0iles
010100 100000
yman ,d2, 0,0 c 0iles
010100 100000
yla ,d2, 0,0 ¢ Oiles
001000 100000
#n20,1
da ,n21, 0,0 ¢ 0loca
010000 000000
#n21,1
#n22,1
s1 ,n17, 0,0 c 0 ps3s
010000 100000
#a0 ,1
al 8, 38,0y 0 dsavl
100000 100000
dan ,d2, 37,0y 0 dsadl
110000 000000
ca ,a3, 0,0y 0 dsaal
110000 000000
ca ,d2, 21,0 y 0 dsad2
110000 000000
en ,d2 , 36,0 y 0 dsad3
000000 000000

,al, 0,0
#al,l

,a2, 0,0
#a2 ,1

a3, 0,0
#a3 ,1
hk ,a4 , 11,0 y 1 dsaa3
010000 000000 .

,n0, 0,0
#ad |1
ma ,d2, 0,0y 0 dsad4
101000 100000

,n0, 0,0
#a5 ,1

,n6, 0,0

#a6 ,1

q

dan
010000 000000

q

q

an
000000 000000

ik
011000 000000

169

170

E.8. Representative Listing of the Turkish Proper Nouns Lexicon

A representative listing of the Turkish proper nouns lexicon, including its first 100 entries,
is presented below in text form. Fields in an entry are separated by commas, and the
information for each entry is given in a single line. The fields in each entry are in the

following order:
1. Turkish proper noun
2. semantic features

3. flags

0 and 1 represent the false and true boolean values, respectively. Proper noun semantic

features are in the following order:

human, nation, country, city(town, village, region), sea(ocean, lake, river), mountain,

language

aba ,1000000, 0111111100100
abaiang ,0000000, 0000001110100
abak ,1000000, 0111111100100
abakan ,1000000, 0111111100100
abakay ,1000000, 0111111100100
abamiislim ,1000000, 0111111100101
abamiisliim ,1000000, 0111111100101
abana ,0000100, 0000001110100
abant ,0000100, 0000001110100
abay ,1000000, 0111111160100
abaza ,0100000, 0111111100110
abag ,1000000, 0111111100100
abbas ,1000000, 0111111100100
abbasi ,0100000, 0000001101011
abd ,0000000, - 0000001110100
abdal ,1000000, 0111111100100

abdi ,1000000, 0111111100101

abdullah
abdiilalim
abdiilazim
abdiilaziz
abdiilbaki
abdiilbari
abdiilbasir
abdiilbasit
abdiilcabbar
abdiilcebbar
abdiilcelil
abdiilcemal
abdiilcevat
abdiilezel
abdiilferit
abdiilfettah
abdilgaffar
abdiilgafur
abdiilgani
abdiilhadi
abdiilhak
abdiilhakim
abdiilhalik
abdtilhalim
abdilhamit
abdiilkadir
abdiilkahhar
abdilkerim
abdiillatif
abdiilmecit
abdiilmelik
abdiilmennan
abdiilmesih
abdiilmetin
abdilnasir
abdiilvahap
abdiilvahit
abdiirrahim
abdiirrahman
abdiirrauf
abdiirrezzak
abdiirresit
abdiissamet
abdiissami

,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
;1000000
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,

0111111100100
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101
0111111100101

0111111100101

0111111100101

171

abdiisselam
abdiissemih
abdiissettar
abdiizzeki
abha
abid
abide
abidin
abidjan
abil

abit

ablak
abras
abuzer
abuzettin
abugka
abir

aca
acabay
acabey
acahan
acapulco
acar
acaralp
acarbey
acarer
acarkan
acarlar
acarman
acarsoy
acartirk
acaréz
acatay
accra
acem
aclan
acun
acunal
acunalan

,1000000,
,1000000,
,1000000,
,1000000,
,0000000,
,1000000,
,1000000,
,1000000,
,0000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,0001000,
,1000000,
,1000000,
,1000000,
,1000000,
,1000000,
,0100000,
,1000000,
11000000,
,1000000,
,1000000,
,1000000,
,0000000,
,0100000,
,1000000,
,1000000,
,1000000,
,1000000,

0111111100101
0111111100101
0111111100101
0111111100101
0000001110100
0111111100101
0111111100111
0111111100101
0000001110101
0111111100101
0111111100101
0111111100110
0111111100100
(0111111100101
0111111100101
0111111100100
0111111100100
0111111100100
0111111100100
0111111100101
0111111100100
0000001110100
0111111100100
0111111100100
0111111100101
0111111100101
0111111100100
0000001110100
0111111100100
0111111100100
0111111100100
0111111100101
0111111100100
0000001110100
0111111100111
0111111100100
0111111100110
0111111100100
0111111100100

172

173

APPENDIX F. SAMPLE RUNS FOR THE TRANSLATOR

Two types of sample runs for the translator are given below. First examples of single
sentence translations are presented, and then an example of text translation is given.
For each Turkish sentence the time it takes for the morphological parser to parse
each word in the sentence (mtime) are presented together with the total translation

time. All the results are in seconds.

Turkish sentence : Ali eve geldi.
Azeri sentence : Ali evd gdldi .

mtime = 0.39
mtime = 0.17

mtime = 0.11

total time for translation = 2.10

Turkish sentence : ayagmi yikadi.
Azeri sentence : ayagim yudu .

mtime = 0.66
mtime = 0.22

total time for translation = 2.31

Turkish sentence : uydu yoriingede dontiyor.
Azeri sentence : peyk orbitada doniir .
mtime = 0.11

mtime = 0.16

mtime = 0.11

total time for translation = 2.42

Turkish sentence : bu anahtar kapiya uydu.
Azeri sentence : bu agar gapiya uydu .

mtime = 0.17
mtime = 0.44
mtime = 0.44
mtime = 0.17

total time for translation = 4.73

Turkish sentence : komutan alay teftig etti.
Azeri sentence : komandir alay: téiftis etdi .
mtime = 0.27

mtime = 0.44

mtime = 0.28

mtime = 0.17

total time for translation = 6.43

Turkish sentence : komutan askerle alay etti.
Azeri sentence : komandir dsgérld lag etdi .
mtime = 0.27

mtime = 0.22

mtime = 0.27

mtime = (.22

total time for translation = 6.20

Turkish sentence : alaydan hi¢ hoglanmaz.

Azeri sentence : (alay /lag) heg xoslanmaz .

mtime = 0.49
mtime = 0.6
mtime = 0.33

total time for translation = 4.27

174

Turkish sentence : pastan battim.
Azeri sentence : pasdan batdm .

mtime = 0.38
mtime = 0.17

total time for translation = 1.93
Turkish sentence : senin pastan batmus.
Azeri sentence : sénin tordun batmus.
mtime = 0.27

mtime = 0.44

mtime = 0.11

total time for translation = 5.10

Turkish sentence : yetmis tane elbise sattik.

Azeri sentence : yetmis ddnd paltar satdig .

mtime = 0.22
mtime = 0.27
mtime = 0.22
mtime = 0.22

total time for translation = 4.83

Turkish sentence : bu senin arabanin kapisi.
Azeri sentence : bu sdnin arabammn gapisi .

mtime = 0.6
mtime = 0.33
mtime = 0.38
mtime = 0.44

total time for translation = 5.87

175

176

Turkish sentence : Hasan elmasini yedi.
Azeri sentence : Hasan almasim yedi .

mtime = 0.38
mtime = 0.77
miime = 0.16

total time for translation = 3.35

An example of text translation is presented below. Translation time for each sentence
in the text are given together with the overall translation time of the whole text. All

the results are in seconds.

Turkish text:

sabah erkenden kalktim. kahvaltidan sonra evden c¢iktim. arabamla ise vardim.
oldukca yorucu bir giindii. aksam saatleri yollar sikisikti. dolayisiyla eve geg
gelebildim. boylece giin bitmis oldu.

Azeri text:

sdhir erkdnddn galxdim. gdhvdaltidan sonra evddn ¢ixdim. arabamla isd vardim.
oldugca yorucu bir giindil. axgam saatlar1 yollar smagtkdi. dolaysiyla evd gec
gdldbildim. belécd giin bitmis oldu.

translation time for the 1st sentence = 2.90
translation time for the 2nd sentence = 3.73
translation time for the 3rd sentence = 5.06
translation time for the 4th sentence = 6.21
translation time for the 5th sentence = 7.30
translation time for the 6th sentence = 3.19
translation time for the 7th sentence = 3.57

overall translation time for the text = 31.98
avreage translation time for a sentence = 4.57

177

REFERENCES

1. Hutchins, W. J., Machine Translation: Past, Present, Future, Ellis Horwood, 1986

2. Nirenburg, S., J. Carbonell, M. Tomita and K. Goodman, Machine Translation: A
Knowledge-Based Approach, Morgan Kaufmann Publishers, California, 1992. /\
3. Ozgiiven, M. K. and J. Tsujii, "An Approach to Machine Translation," Proceedings
of the First Turkish Symposium on Artificial Intelligence and Artificial Neural Networks, |
Ankara, 1992.

4. Stoop, A. M., "Transit in the World of Machine Translation: Towards an
Automatic Translator for Dutch and Turkish," Proceedings of the Third Conference on

Turkish Linguistics, Tilburg, 1987.

3. Stoop, A. M., "ATMACA: Semantic Analysis by the Computer," Proceedings of the
Fourth Conference on Turkish Linguistics, Ankara, 1990.

6. Hankamer, J., "Morphological Parsing and the Lexicon," Lexical Representations

and Processing, ed. W.M. Wilson, MIT Press, 1988.

7. Kibaroglu, M. Okan, "Spelling Checking in Agglutinative Languages and an
Implementation for Turkish," M.S. Thesis, Bogazi¢i University, 1991.

8. Akm, H. L., S. Kuru, T. Giingdr, I. Hamzaoglu and D. Arbatl, "A Spelling
Checker and Corrector for Turkish," Proceedings of the Second Turkish Symposium on
Artificial Intelligence and Artificial Neural Networks, Istanbul, 1992.

9. Hankamer, J., "Finite State Morphology and Left to Right Phonology," Proceedings

of the West Coast Conference on Formal Linguistics, Vol. 5, Stanford University, 1986.

178

10. Solak A. and K. Oflazer, "Parsing Agglutinative Word Structures and Its
Application to Spelling Checking for Turkish," Proceedings of the Fifteenth International
Conference on Computational Linguistics, Vol. 1, pp. 39-45, Nantes, 1992.

11. Ozgiiven, M. K., personal communication.

12. Kog, N., Yeni Dilbilgisi (The New Grammar), Inkilap Yaymlarn, Istanbul, 1990
(in Turkish).

13. Ercilasun, A. B. and A. M. Aliyev, Karsilastirmali Tiirk Lehgeleri Sozliigii
(Comparative Dictionary of Turkish Dialects), Kiiltiir Bakanh$i, Ankara, 1991 (in
Turkish).

14. Bozkurt, F., Tiirklerin Dili (The Language of Turks), Cem Yaymlari, Istanbul,
1992 (in Turkish).

15. Giing6r, T. and S. Kuru, "Representation of Turkish Morphology in ATN,"
Proceedings of the Second Turkish Symposium on Artificial Intelligence and Artificial Neural
Networks, Istanbul, 1992.

16. Oflazer, K. "Two-Level Description of Turkish Morphlogy," Proceedings of the
Second Turkish Symposium on Arificial Intelligence and Ariificial Neural Networks,
Istanbul, 1992.

17. Giingordii, Z. and K. Oflazer, "A Lexical Functional Grammar for a Subset of
Turkish," Proceedings of the Second Turkish Symposium on Arificial Intelligence and
Artificial Neural Networks, Istanbul, 1992.

179

18. Tm, E. and V. Akman, "Resolution of Pronominal Anaphora in Turkish,"
Proceedings of the Second Turkish Symposium on Artificial Intelligence and Artificial Neural
Networks, Istanbul, 1992.

19. Boguraev, B. and T. Briscoe, Computational Lexicography for Natural Language
Processing, Longman, 1990.

20. Sowa, J. F., "Logical Structures in the Lexicon," Knowledge-Based Systems, Vol. 5,
No. 3, 1992.

21. Tomabechi, H., "Direct Memory Access Translation," Proceedings of the 10th
International Joint Conference on AI(IJCAI87), pp. 722-725, Milano, 1987.

22. Nogier, J. F. and M. Zock, "Lexical Choice as Pattern Matching," Knowledge-Based
Systems, Vol. 5, No. 3, 1992.

23. Charniak, E. and D. McDermott, Introduction to Artificial Intelligence, Addison-

Wesley, 1985.
24. Kuru, S. and H. L. Akm, Internal Design Specification, Spelling Checking
Software for Turkish to be Integrated with Dec ALL-In-1 Office Automation Package,

Department of Computer Engineering, Bogazi¢i University, 1992.

25. Pamuk, O., Kara Kitap (Black Book), Can Yaymlan, Istanbul, 1990 (in Turkish)

180

REFERENCES NOT CITED
Gazdar G. and C. Mellish, Natural Language Processing in Prolog, Addison-Wesley, 1989.

Guenthner, F., H. Lehmann and W. Schonfeld, "A Theory for the Representation of
Knowledge," IBM Journal of Research and Development, Vol. 30, No. 1, 1986.

Jacobs, P. S, "TRUMP : A Transportable Language Understanding Program,”
International Journal of Intelligent Systems, Vol. 7, pp. 245-276, 1992.

Guo, C., "Interactive Vocabulary Acquisition in XTRA," Proceedings of the 10th
International Joint Conference on AI(IJCAI87), pp. 715-717, Milano, 1987.

Bookman, L. A., "A Microfeature Based Scheme for Modelling Semantics," Proceedings
of the 10th International Joint Conference on AI(IJCAI87), pp. 715-717, Milano, 1987.

Sezer, A., "Turkish Adjective Clauses on Computer,” Studies on Turkish Linguistics, pp.
565-577, Middle East Technical University, Ankara, 1988.

Kog, S., "Turkish Adverb Clauses on Computer,” Studies on Turkish Linguistics, pp. 579-
596, Middle East Technical University, Ankara, 1988.

Tiirkce Sézlitk (Turkish Dictionary), Cilt I, Tiirk Dil Kurumu, Ankara 1988 (in Turkish).

Tiirkge Sozlitk (Turkish Dictionary), Cilt II, Tiirk Dil Kurumu, Ankara 1988 (in Turkish).

	OTEZ364001
	OTEZ364002
	OTEZ364003
	OTEZ364004
	OTEZ364005
	OTEZ364006
	OTEZ364007
	OTEZ364008
	OTEZ364009
	OTEZ364010
	OTEZ364011
	OTEZ364012
	OTEZ365001
	OTEZ365002
	OTEZ365003
	OTEZ365004
	OTEZ365005
	OTEZ365006
	OTEZ365007
	OTEZ365008
	OTEZ365009
	OTEZ365010
	OTEZ365011
	OTEZ365012
	OTEZ365013
	OTEZ365014
	OTEZ365015
	OTEZ365016
	OTEZ365017
	OTEZ365018
	OTEZ365019
	OTEZ365020
	OTEZ365021
	OTEZ365022
	OTEZ365023
	OTEZ365024
	OTEZ365025
	OTEZ365026
	OTEZ365027
	OTEZ365028
	OTEZ365029
	OTEZ365030
	OTEZ365031
	OTEZ365032
	OTEZ365033
	OTEZ365034
	OTEZ365035
	OTEZ365036
	OTEZ365037
	OTEZ365038
	OTEZ365039
	OTEZ365040
	OTEZ365041
	OTEZ365042
	OTEZ365043
	OTEZ365044
	OTEZ365045
	OTEZ365046
	OTEZ365047
	OTEZ365048
	OTEZ365049
	OTEZ365050
	OTEZ365051
	OTEZ365052
	OTEZ365053
	OTEZ365054
	OTEZ365055
	OTEZ365056
	OTEZ365057
	OTEZ365058
	OTEZ365059
	OTEZ365060
	OTEZ365061
	OTEZ365062
	OTEZ365063
	OTEZ365064
	OTEZ365065
	OTEZ365066
	OTEZ365067
	OTEZ365068
	OTEZ365069
	OTEZ365070
	OTEZ365071
	OTEZ365072
	OTEZ365073
	OTEZ365074
	OTEZ365075
	OTEZ365076
	OTEZ365077
	OTEZ365078
	OTEZ365079
	OTEZ365080
	OTEZ365081
	OTEZ365082
	OTEZ365083
	OTEZ365084
	OTEZ365085
	OTEZ365086
	OTEZ365087
	OTEZ365088
	OTEZ365089
	OTEZ365090
	OTEZ365091
	OTEZ365092
	OTEZ365093
	OTEZ365094
	OTEZ365095
	OTEZ365096
	OTEZ365097
	OTEZ365098
	OTEZ365099
	OTEZ365100
	OTEZ365101
	OTEZ365102
	OTEZ365103
	OTEZ365104
	OTEZ365105
	OTEZ365106
	OTEZ365107
	OTEZ365108
	OTEZ365109
	OTEZ365110
	OTEZ365111
	OTEZ365112
	OTEZ365113
	OTEZ365114
	OTEZ365115
	OTEZ365116
	OTEZ365117
	OTEZ365118
	OTEZ365119
	OTEZ365120
	OTEZ365121
	OTEZ365122
	OTEZ365123
	OTEZ365124
	OTEZ365125
	OTEZ365126
	OTEZ365127
	OTEZ365128
	OTEZ365129
	OTEZ365130
	OTEZ365131
	OTEZ365132
	OTEZ365133
	OTEZ365134
	OTEZ365135
	OTEZ365136
	OTEZ365137
	OTEZ365138
	OTEZ365139
	OTEZ365140
	OTEZ365141
	OTEZ365142
	OTEZ365143
	OTEZ365144
	OTEZ365145
	OTEZ365146
	OTEZ365147
	OTEZ365148
	OTEZ365149
	OTEZ365150
	OTEZ365151
	OTEZ365152
	OTEZ365153
	OTEZ365154
	OTEZ365155
	OTEZ365156
	OTEZ365157
	OTEZ365158
	OTEZ365159
	OTEZ365160
	OTEZ365161
	OTEZ365162
	OTEZ365163
	OTEZ365164
	OTEZ365165
	OTEZ365166
	OTEZ365167
	OTEZ365168
	OTEZ365169
	OTEZ365170
	OTEZ365171
	OTEZ365172
	OTEZ365173
	OTEZ365174
	OTEZ365175
	OTEZ365176
	OTEZ365177
	OTEZ365178
	OTEZ365179
	OTEZ365180

